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Abstract

Electricity market are worldwide transitioning from centrally regulated systems to
decentralized markets. The specific characteristic of power exchange, i.e., reduced
number of producers, requires proper attention in the policy design in order to
guarantee market efficiency. In particular, this paper investigates the nature of the
clearing mechanism comparing two different methods, i.e., discriminatory and uni-
form auctions. The theoretical framework used to perform the analysis is the theory
of learning in games. We consider an inelastic demand faced by sellers which use
learning algorithms to understand proper for increasing their profits. We model the
auction mechanism in two different duopolistic scenario. A low demand situation,
where one seller can clear all the demand, and a high demand situation, where
both sellers are requested. Heterogeneity in the linear cost function is considered.
Consistent results are achieved with the two different learning algorithms.

Key words: Agent-based simulation, power-exchange market, market power,
reinforcement learning, competitive equilibrium.

1 Introduction

Electricity market have been characterized by a progressive liberalization
around the world. The deregulation of the electricity market brings competi-
tion to the previously monopolistic market. The sale of electric power now is
performed or through bilateral contracts or more and more through organized
markets, i.e., Power Exchanges (PEs). PEs are markets which aggregate the
effective supply and demand of electricity. Usually spot-price market are Day
Ahead Market (DAM) and are requested in order to provide an indication
for the hourly unit commitment. This first session of the complex daily en-
ergy market collects and orders all the offers, determining the market price by
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matching the cumulative demand and supply curves for every hour of the day
after according to a merit order rule. Subsequent market sessions (also online)
operate in order to guarantee the feasibility and the security of this plan.
The electric market is usually characterized by a reduced number of com-
petitors, thus oligopolistic scenario may arise. Understanding how electricity
prices depend on oligopolistic behavior of suppliers and on production costs
has become a very important issue. Several restructuring proposal for the elec-
tric power industry have been proposed. Main goal is to increase the overall
market efficiency, trying to study, to develop and to apply different market
mechanisms. Auction design is the standard domain for commodity markets
(5; 8). However, properties of different auction mechanism must be studied
and determined correctly before their appliance. Generally speaking, differ-
ent approaches have been proposed in the literature (3; 11; 1; 2; 7). Game
theory analysis has provided an extremely useful instrument to study and de-
rive properties of economic ”games”, such as auctions. Within this context,
an interesting computational approach, for studying market inefficiencies, is
the theory of learning in games. This methodology is useful in the context of
infinitely repeated games (13; 11; 6).

The paper is organized as follows: Section 2 introduces the models of auction
adopted in this work: discriminatory and uniform. We consider both mech-
anism, with the specific aim to compare market inefficiencies arising from
repeated interaction among players. Section 3 illustrates how the decision-
making process of the seller has been modeled in the framework of learning
algorithms. Section 4 describes the characteristic of the computational settings
used to study both auction mechanism in two different duopolistic scenarios.
Section 5 reports the results of our research.

2 Auction models

In many power exchanges, buyers and sellers exchange repeatedly quantities
of electric power through the submission of sale and of purchase bids to a clear-
inghouse double auction. This market mechanism is worldwide considered as
the restructuring proposals for wholesale electricity market, in particular for
the so called Day Ahead Market (DAM). The goal of this first market session
is to establish the hourly price of the electricity and to define the dispatched
power plants for the next day. The DAM simultaneously and separately col-
lects all bid and ask offers for every hour of the following day. 24 clearing-
house double-auctions independently operate in order to set market prices for
the 24 hours of the next day, matching buyer and seller offers according to
a price-merit criterion. At the beginning of each round, buyers and sellers
submit offers for a specific hour, i.e., one limit-price order together with the
corresponding quantity of energy. Matching procedures between supply and
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demand can be either ”discriminatory” or ”uniform”. The former sets individ-
ual prices for each matched buyer-seller pair according to a pay-as-bid rule,
whereas the latter sets a system marginal price at the intersection of demand
and supply curves. In this paper, both double-auctions have been modeled
according to realistic principles. Simple offer mechanism are considered, i.e.
each sale/purchase bid is a couple of values corresponding to a limit price
and a quantity of energy. More complex offer solutions, e.g., multiple offers,
are not currently included. Demand is assumed to be inelastic to price, i.e.,
it is modeled through a representative buyer offering a constant and inelastic
demand at each round.

2.1 Uniform Auction

In a uniform-auction, the auctioneer matches the empirical supply and de-
mand curves determining the crossing point of the two curves, thus establish-
ing the marginal price. The marginal price corresponds to the priced sale bid
made by the last production unit whose entry into the system was required
to satisfy the demand for electric power. Figure 1 shows the matching mech-
anism. Demand Qd(p) and supply Qs(p) curves are determined aggregating
buyer (qdi ) and seller (qsj ) quantity offers for a specific hour, i.e.,

Qd(p) =
∑

i|pdi≥p
qdi

Qs(p) =
∑

j|psj≤p
qsj

Hourly marginal price P (t) is found at the intersection of the demand and
supply curves and 24 marginal prices are determined independently and in
parallel for every hour of the subsequent day. Accepted bid and ask offers
are price offers greater or equal to the marginal price for sellers and equal or
lower to the marginal price for buyers, respectively. Since aggregate electric
power production and demand curves are discrete stepped curves, their cross-
ing point may give rise to indeterminacy in the assignment of electric power.
This requires the application of a distribution criterion that may correspond
to electric power purchase/sale bids. Generally speaking, in the presence of a
surplus of electric power supply, the criterion adopted in this work, randomly
selects some sellers, among those who offered at the marginal price, so that
the offer satisfy entirely or partially the demand at the marginal price.
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2.2 Discriminatory Auction

The discriminatory double-auction mechanism considered in this work, cor-
responds to a simple pay as bid procedure. The auctioneer collects all the
purchase and sale bids for a specific hour and creates the demand and supply
curve in order to match demand and supply according to a price-merit cri-
terion. Furthermore she establishes which bids are accepted according to the
crossing-point. The highest buyers price-bid is matched with the lowest sellers
price-bid. This procedure is iterated until demand and supply curves intersect.
We consider an inelastic demand, so every sellers accepted is matched with
the same ask-price. Finally, we use the bid-price as market price and not the
mid-point price as usually considered.

3 Learning

Real electricity markets are usually composed by a reduced number of pro-
ducers. Repeated interactions through the auction mechanism might cause
the occurrence of implicit collusive behavior (11). Thus, sellers can try to
behave opportunistically, i.e., increasing their profits, and sell at prices dif-
ferent from their true marginal costs. Generally speaking, analytical tools in
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Fig. 1. Example of clearing-house with a single representative buyer. (a): the match-
ing procedures in the uniform auction where the demand curve intersects supply
curve in the point p=4 and Q=8. the black spot highlights the market clearing
price. (b): the matching procedures in the discriminatory auction coincides with
the supply curve in the price interval p ∈ [4, 6] and Q=8. In both cases the marginal
price P is set to 4.
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single-round game have been largely used to investigate the nature of market
inefficiencies (14), but many interesting properties, such as implicit collusive
behavior, require to investigate repeated games (13). Two main approaches
can be considered in this framework, i.e., evolutionary game theory (9) or
learning in games theory(6). In this paper, we have used the latter. Seller
decision-making process is modeled through an homogenous individual learn-
ing behavior, whereas a representative buyer determines the constant and
inelastic demand curve. Two learning algorithms, which can be implemented
under the same behavioral hypothesis, are compared in order to highlight con-
sistent results studying the two auction mechanism. The algorithms are: Roth
and Erev reinforcement learning algorithm, henceforth RE, and Marimon and
McGrattan adaptive evolutionary learning algorithm, henceforth MM. Both
approaches requires minimal information for players’ knowledge. Both models
perform a stochastic search among the strategy space in order to identify the
high profitable strategy for every player. Players gain knowledge only from
their own actual and past selected actions and their associated realized profit.
Some sellers properties are common to both algorithm and are the following.
Each i-th seller is characterized by a fixed productive capacity Qsi and con-
stant marginal costs cm,i. Seller’s strategy space Ai is a discrete bi-dimensional
space defined by couples (qi, pi) for admissible sell orders. Ai is constrained by
maximal price P ∗ along the price-axis and by productive capacity along the
quantity-axis, i.e., Ai := {(p, q)|q ≤ Qsi and p ≤ P ∗}. At auction round t,
i-th seller realizes a positive or null profit Πi,âi(t) depending only on opponents
bids and on her strategy âi(t) selected at time t, i.e., âi(t) = (p̂i(t), q̂i(t)). Gen-
erally speaking, realized profit Πi,âi(t) differs according to the specific auction
mechanism. In this paper we consider both heterogenous linear cost functions
for sellers and strategy’s space Ai defined by the value of both qi and pi. Thus,
a pure rational player would not consider q-axis, but only her total capacity
as a rational choice for q-strategies available. However, our aim is to test if
the proposed framework is able to generalize over a bi-dimensional strategy
space in order to allow further experiments for non-linear cost functions. In
the following the complete mathematical formulation for each algorithm is
presented.

3.1 Marimon and McGrattan adaptive evolutionary learning algorithm

Marimon and McGrattan (10) aimed is to provide a behavioral foundation
for equilibrium theory in the theoretical context of bounded rationality. They
introduced a useful and general classification for adaptive learning algorithms,
where players have not perfect knowledge of the consequences of their actions
and they need to learn the economic environment in order to define their
”best” strategy. Inside this category of learning algorithms, they propose a
distinction among three subclasses according to agents’ information of the
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past history play and of opponent’s plays. In this work, we focus on the third
class of algorithms proposed by their original classification which is referred to
adaptive evolutionary learning subclass. In this framework, players have mini-
mal information about the evolution of the game. They keep track only of their
own realized payoffs and on the number of pure strategies played by them-
selves on the recent past and they do not consider the strategic consequences
of their actions. They introduce three properties in the algorithm in order to
replicate some human learning characteristics: adaptation, experimentation
and inertia. Adaptation stands for the tendency to exploit strategies which
performed better in the past, those strategies more likely will be played in
the future. Experimentation corresponds to the fact that mixed strategies will
always keep positive probabilities over every pure strategy. This implies that
all the pure strategies will always have a minimum probability of being played
at every time. Inertia is a mechanism which allows players to keep constant
their mixed strategies over a certain period without updating them in order
to better test the evolving environment. This mechanism is conceived to be
has no correlation among the player. The mathematical formulation of the
algorithm is the following: each seller assigns a strength to every strategy and
keep memory of its value in order to perform an update according to the real-
ized profits. Strength vector can be interpreted as a measure of performance
for every strategy subsequent to experimentation.

Si,t(ai) =




Si,t−1(ai)− 1

ηi,t−1(ai)
· [(Si,t−1(ai)− Πi,t−1(ai))] if i plays ai

Si,t−1(ai) otherwise

where ηi,t(ai) is the number of times that strategy ai was played between the
period of inertia of i-th player, whose updating value is:

ηi,t(ai) =




ηi,t−1(ai) + 1 if i plays ai

ηi,t−1(ai) otherwise

The inertia is determined according to parameter ρi,t. The sequence estab-
lishes whether or not i-th player will update her mixed strategies. The updat-
ing formula is the following:

σ̄i,t(ai) =




σi,t−1(ai) · eSi,t−1(ai)∑

σi,t(ai)e
Si,t−1(ai)

with probability ρi,t

σi,t−1(ai) with probability 1-ρi,t

This updating rule can converge to a zero probability for some strategies. An
important feature of this algorithm is to allow the player to have positive prob-
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ability for every strategy everytime. This mechanism is called experimentation
and is described by:

σi,t(ai) =




εi,t if σ̄i,t(ai) ≤ εi,t
σ̄i,t(ai)∑
σ̄i,t(ai)

(1− ε̄i,t) otherwise

where ε̄i,t = εi,t · |{σ̄i,t(ai) ≤ εi,t}|, εi,t ∈ (0, 1),
∑
t εi,t = +∞.

εi,t corresponds to the minimum probability assigned to a strategy. A random
draw, according to the mixed strategies, determines which strategy is going
to be selected at round (t+ 1).

3.2 Roth and Erev reinforcement learning algorithm

The second algorithm was inspired by the original work of Roth and Erev
(12; 4) and subsequently by Nicolaisen et alii (11). Roth and Erev studied
extensively individual human learning in multiagent experimental games with
unique equilibria. They came up with a concise and robust model which takes
into account different aspects of human learning in the context of decision-
making behavior. In their model, three psychological aspects are considered:
the power law of practice, i.e., reinforcement learning), the recency effect (i.e.,
forgetting effect) and an experimentation effect (i.e., not only experimented
action but also similar strategies are reinforced). Nicolaisen et alii already
adopted RE algorithm in order to study possible market power occurrence
in the context of the discriminatory auction. The paper proposed some mod-
ifications to the original RE algorithm in order to play a game with zero
and negative payoffs. Inspired by that work, we propose some slightly more
modifications both to the algorithm and to the strategy space (we use a bi-
dimensional strategy space). For each strategy ai ∈ Ai, a propensity fi is
defined. At every round t, propensities fi,t−1 are updated for all i according to
the learning algorithm which maps the current state of the world, i.e., marginal
price Pt realized in the market, to a new set of propensities fi,t. The following
formula holds:

fi,t(ai) = (1− r) · fi,t−1(ai) + Ei,t−1(ai) (1)

where r ∈ [0, 1] is the recency parameters which contributes to decrease ex-
ponentially the effect of past results. The second term is the experimentation
function.

Ei,t(ai) =




Ri,t−1(ai) · (1− e)
fi,t(ai) · e

n−1
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where e ∈ [0, 1] is an experimentation parameter which allows to assign dif-
ferent weight to the played action compared to the other actions.
This term is similar to the strength vector in MM algorithm. Propensities
are normalized in order to provide a probabilistic scheme of sellers strategies,
reproducing the mixed strategies of the i-th player, i.e.,

σi,t(ai) =
fi,t+1(ai)∑
ai
fi,t+1(ai)

(2)

A random draw at time t + 1 according to the mixed strategies then deter-
mines which strategy is going to be selected at round (t+ 1).

4 Computational setting

The proposed model is based on a duopoly framework. In this contest, a di-
rect application of classical game theory allows one to find the Nash equilibria
in pure-strategy. According to (? ), two generic scenarios has been consid-
ered: ”Low-Demand” (LD), in which one producer can meet the whole of
demand, i.e., the demand is less than the capacity of the smallest seller, and
”High-Demand” (HD), in which both producers will share the demand, i.e.,
the demand is greater than the capacity of greatest seller.
The price is fixed by means of two rules: uniform auction and discriminatory
auction. Moreover, every agent decides her offer trough two learning algo-
rithm: Roth and Erev reinforcement learning algorithm (RE) and Marimon
and McGrattan adaptive evolutionary learning algorithm (MM).

4.1 Market participants

There is a buyer agent representing the whole inelastic demand, i.e., at each
negotiation round, she asks a fixed energy quantity Qd.
The seller population consists of two independent agents each having con-
stant, but different marginal costs cm,i ≥ 0 (i = 1, 2) and identical production
capacity. At each round, every single agent may choose a price-quantity pair
(psi , Q

s
i ) in the strategy space, 0 ≤ psi ≤ P ∗ and 0 ≤ Qs

i ≤ Q∗, with unit
quantization. The market price depend on the specific auction mechanism.
For the simulations, each seller have been initialized with a quantity Qs

i = 5
and starting price psi = 8, the marginal costs have been set cm,1 = 7, cm,2 = 4
and the fixed cost cf,i = 0.
The Table 1 shows the parameter values of the learning algorithms in different
simulations.
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RE algorithm MM algorithm

e r r ρ η

0.9700 0.04 0.08 0.10 0.0001
Table 1
Parameter values of learning algorithms.

Finally, the results have been judged by the price that the buyer must pay
and the pure-strategy equilibrium frequency.

4.2 Market mechanism

Different simulations have been formed for all combinations of auction types
and learning algorithms. The number of negotiation has been fixed to 1000
for every 1000 games.
In the LD case, at each round negotiation, the agent offering the least price
will be accepted to supply the whole demand. Therefore, there exist pure-
strategy equilibria, i.e., system price equals the greater marginal cost. Thus,
only the agent having the least marginal cost is called to produce.
The payoff matrix in pure-strategy of classical game theory, is the same in
both auction cases, i.e., uniform and discriminatory. However, Table 2, points
out the existence of other pure-strategy equilibria not assuming multiple unit.
The analysis will be focused on the pure-strategy equilibria: (7, 8) and (6, 7).

II

10 9 8 7 6

I 10 (12,6) (0,8) (0,4) (0,0) (0,-4)

9 (20,0) (10,4) (0,4) (0,0) (0,-4)

8 (16,0) (16,0) (8,2) (0,0) (0,-4)

7 (12,0) (12,0) (12,0) (6,0) (0,-4)

6 (8,0) (8,0) (8,0) (8,0) (4,-2)
Table 2
Payoff Matrix in low demand case (Qs1 = Qs2 = Qs > Qd = 4), for uniform auction
(cm,1 = 4, cm,2 = 7).

In the HD case, if the system price is determined by uniform auction, there
exist pure-strategy equilibria satisfying either ps1 = P ∗ and ps2 < P ∗ or ps1 < P ∗

and ps2 = P ∗. This is confirmed by Table 3 that shows the payoff matrix in
pure-strategy and points out such equilibria.

If the system price is determined by discriminatory auction, the Table 4
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II

10 9 8

I 10 (33,16.5) (30,18) (30,18)

9 (36,15) (27.5,11) (25,12)

8 (36,15) (30,10) (22,5.5)
Table 3
Payoff Matrix in high demand (Qd = 11), for uniform auction (cm,1 = 4, cm,2 = 7).

shows the payoff matrix. It is worth noting that then exists one pure-strategy
equilibrium in (10, 10), i.e., when both agents offer at maximum price.

II

10 9 8

I 10 (33,16.5) (30,12) (30,6)

9 (30,15) (27.5,11) (25,6)

8 (24,15) (24,10) (22,5.5)
Table 4
Payoff Matrix in high demand (Qd = 11), for discriminatory auction (cm,1 =
4, cm,2 = 7).

5 Simulation results

5.1 Low demand analysis

The duopolistic scenario, in the case of low demand, reproduces the charac-
teristic of the Bertrand oligopoly. However, in our framework the two players
competes both with prices and quantities. Anyway, we present also the results
for the pure Bertrand oligopolistic conjecture. Figure 2 shows the results for
an auction ”game” played restricting the strategy space to a uni-dimensional
space, i.e., price-axis. Similar results are obtained for both algorithms. The re-
sults confirm that players, in both auction mechanisms, face the same payoff
matrix (Table 4.2). In both contexts, they learn to play in the same way. The
plot in the center shows the profits of the more efficient producers compared to
the profits obtained playing the nash equilibrium. A value of zero would mean
that the player at that time got a payoff equal to the one received playing the
nash equilibrium strategy.

In figure 3 and 4 are presented the results of the simulations using the bi-
dimensional strategy space. The figures show the same graphs, but obtained
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with different learning algorithms. Figure 3 refers to the results with the RE
algorithm, conversely figure 4 with the MM algorithm. The results show a
consistent behavior between the learning algorithms. The difference is in the
average number of times in which the nash equilibrium strategy is played.
In the long run, the RE algorithm plays more often this strategy. In both
simulations there is a clear difference between the two auction mechanisms.
The Nash equilibrium strategy is more often played in the Discriminatory
auction (DA) rather than in the Uniform auction (UA). It also results easier
for the sellers to get an higher profits in the Uniform rather than in the
Discriminatory auction. The results seem to indicate that for those ”bounded
rational” sellers it is easier to learn to collude in the uniform rather than in
the discriminatory auction context.

5.2 High demand analysis
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Fig. 2. This figure presents the results for a simulations in which the strategy space
of both sellers is reduced to a single axis, the price axis. The learning algorithm used
is the RE. In every plot, the green line refers to the results of the Discriminatory
auction (DA) and the blue line to the Uniform auction (UA).
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Fig. 3. This figure presents the results for a simulations in which the strategy space
of both sellers is bi-dimensional. The learning algorithm used is the RE. In every
plot, the green line refers to the results of the Discriminatory auction (DA) and the
blue line to the Uniform auction (UA).

14



0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
0

0.
050.

1

0.
150.

2
P

ro
b

ab
ili

ti
es

 o
f 

N
as

h
 e

q
u

ili
b

ri
u

m

tim
e 

(a
rb

itr
ar

y 
un

its
)

Percentage (%)

M
M

_U
A

M
M

_D
A

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
−

15

−
10−

50
P

ro
fi

ts
 o

f 
th

e 
m

o
re

 e
ff

ic
ie

n
t 

p
ro

d
u

ce
rs

tim
e 

(a
rb

itr
ar

y 
un

its
)

Average payoffs

M
M

_U
A

M
M

_D
A

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
−

505
P

ro
fi

ts
 o

f 
th

e 
le

as
t 

ef
fi

ci
en

t 
p

ro
d

u
ce

rs

tim
e 

(a
rb

itr
ar

y 
un

its
)

Average payoffs

M
M

_U
A

M
M

_D
A

Fig. 4. This figure presents the results for a simulations in which the strategy space
of both sellers is bi-dimensional. The learning algorithm used is the MM. In every
plot, the green line refers to the results of the Discriminatory auction (DA) and the
blue line to the Uniform auction (UA).
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