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Abstract

We develop a technique for analyzing the dynamics of shocks in structural

linear rational expectations models. Our work differs from standard SVARs

since we allow expectations of future variables to enter structural equations.

We show how to estimate the variance-covariance matrix of fundamental and

non-fundamental shocks and we construct point estimates and confidence

bounds for impulse response functions. Our technique can handle both de-

terminate and indeterminate equilibria. We provide an application to U.S.

monetary policy under pre and post Volcker monetary policy rules.

JEL-Classification: C39, C62, D51, E52, E58

Key-words: Identification, indeterminacy, rational expectations models.



Non Technical Summary

We develop a technique for analyzing the dynamics of shocks in struc-

tural linear rational expectations models. Our work differs from standard

SVARs since we allow expectations of future variables to enter structural

equations. We show how to estimate the variance-covariance matrix of fun-

damental and non-fundamental shocks and we construct point estimates and

confidence bounds for impulse response functions. Our technique can handle

both determinate and indeterminate equilibria. We provide an application

to U.S. monetary policy under pre and post Volcker monetary policy rules.
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1 Introduction

This paper introduces a technique for analyzing the dynamic effects of struc-

tural shocks in linear rational expectations models. The method we propose

is similar to the construction of impulse response functions in structural

VARs. It differs from the SVAR literature because the models we study con-

tain future expectations as explanatory variables. We apply our method to

a New-Keynesian model and show how to trace the effects of fundamental

and non-fundamental shocks on all of the variables of the system.

There is a well developed literature which evolved from the work of Sims

[15] that traces the effects of different shocks on small systems of variables by

estimating VARs. Sims identified alternative shocks by ordering the equa-

tions of an estimated VAR and imposing a Choleski decomposition on the

variance covariance matrix of the residuals. An extension of this method com-

bines sets of long-run and short run restrictions on a structural model. Al-

though the models in this literature are known as structural VARs, (SVARs)

this name is misleading. SVARs are not structural in the same sense as struc-

tural linear rational expectations models (SLREs) since they do not include

forward looking elements to account for the effects of expectations on cur-

rent behavior. The shocks, in an SVAR, are combinations of the fundamental

shocks that confound direct effects of fundamental impulses to the structural

equations with the indirect effect of these shocks on expectations.

The use of VARs and SVARs to identify monetary policy shocks is sur-

veyed in Christiano Eichenbaum and Evans [5]. These authors present a

range of methods that have been used in the literature to identify the effects

of monetary shocks and they summarize a consensus opinion on the effects

of a monetary shock, based on popular identification schemes.

The nature of this [consensus opinion] is as follows: after a
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contractionary monetary policy shock, short term interest rates

rise, aggregate output, employment, profits and various monetary

aggregates fall, the aggregate price level responds very slowly, and

various measures of wages fall, albeit by very modest amounts. In

addition, there is agreement that monetary policy shocks acount

for only a modest percentage of the volatility of aggregate output;

they account for even less of the movements in the aggregate price

level.

Christiano Eichenbaum Evans, op. cit.

Given the existing consensus on the effects of monetary policy, one might

wonder why we would write another paper on identifying monetary policy

shocks. Our motivation is based on a concern that identification schemes that

have been useful at describing the effects of past shocks may not be useful if

the goal of the policy maker is to design a policy rule. In short, VARs and

SVARs are subject to the Lucas critique of econometric policy evaluation.

Our goal in this paper is to identify shocks in complete structural models

that have been identified using restrictions suggested by economic theory.

In contrast to the SVAR literature, complete linear rational expectations

models are identified by equality and exclusion restrictions applied to equa-

tions that contain expectations of future variables. In this paper we show

that every structural linear rational expectations model has a representation

as an SVAR; however, this representation is not necessarily unique. For some

points in the parameter space, an SLRE has a unique determinate equilib-

rium that is driven solely by fundamental shocks such as those to preferences,

endowments and technology. But for other points in the parameter space of

the SLRE there may exist multiple indeterminate equilibria and in this case

non-fundamental or ‘sunspot’ shocks may also play a role even though the

remaining SVAR parameters are unchanged.
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This issue is not simply a theoretical curiosity. Clarida Galí and Gertler

[6] have argued that U.S. data in the period from 1960 through 1979 is

well characterized by an indeterminate equilibrium. This possibility raises

difficulties with the SVAR approach to identification of structural shocks

since, if the nature of the shocks driving the economy can change when

economic policy changes, fixed identification schemes in an SVAR cannot be

considered structural.

We provide an alternative to standard SVAR identification schemes by

deriving restrictions on a VAR that are implied by estimates of a structural

rational expectations model. We give an example of our approach within a

three equation New-Keynesian model of the U.S. economy and we show how

to impose structural restrictions that are difficult or impossible to impose us-

ing standard methods. We estimate the model by GMM and replicate recent

results on the determinacy properties of the system before and after 1979

as reported by Clarida-Galí-Gertler and substantiated by Lubik-Schorfheide

[12] and Boivin-Giannoni [4]. We provide a method for estimation of the

variance-covariance matrix of structural shocks for both the determinate and

indeterminate cases and we illustrate our method by constructing impulse

response functions for a set of fundamental and non-fundamental shocks es-

timated from U.S. data. Finally, we discuss the implications of our work for

the analysis of monetary policy.

2 Estimating a Structural Linear Rational Ex-

pectations Model

In this section we discuss the use of GMM to obtain consistent estimates of

the parameters of A,F,B and C in the structural model
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AYt + FEt [Yt+1] = BYt−1 + C + Vt, (1)

Et [VtV
0
s ] =

⎧⎨⎩ Ωvv, t = s,

0, otherwise.
(2)

In this notation A,F, and B are n× n matrices of coefficients, C is an n× 1
vector of constants, Et is a conditional expectations operator, Yt is an n-

dimensional vector of endogenous variables, and {Vt} is a weakly stationary
i.i.d. stochastic process with covariance matrix Ωvv and mean zero.1 We

maintain the convention that coefficients of endogenous variables appear on

the left side of each equation with positive signs and explanatory variables

appear on the right side of equations with positive signs. The first issue

we face is that of identification. Each of the n equations in (1) contains 2n

endogenous variables since the expectations terms Et (Yt+1) are endogenous

variables to be determined at date t. Application of order and rank conditions

(as in Fisher [7]) should be checked for each equation, but identification does

not pose additional complications over standard structural models.2

In order to estimate the parameters of model (1) in this paper we propose

an estimator based on a systems GMM approach. Our method, originally

suggested by McCallum [13], replaces unobserved expectations Et (Yt+1) by

their realizations Yt+1 and rewrites Equation (1) as a linear model that in-

cludes future values of the observed endogenous variables with moving aver-

age error terms

AYt + FYt+1 = BYt−1 + C +ΨvVt +ΨwWt+1. (3)

1We will focus on the case of one lag, but our method can easily be expanded to include

additional lags or additional leads of expected future variables.
2For an application of the rank and order condition to a three equation New-Keynesian

model see Beyer et. al. [3]
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The vectorWt+1 represents one-step-ahead forecast errors. Let the variance-

covariance matrix between forecast errors and fundamental shocks be

Ω = E [Vt,Wt] [Vt,Wt]
0 .

When the model has a unique rational expectations equilibrium these

errors will be exact functions of the fundamental shocks Vt+1. In this case

the 2n× 2n covariance matrix

Ω =

⎡⎣ Ωvv Ωvw

Ωwv Ωww

⎤⎦ (4)

has rank n. When the model has an indeterminate equilibrium of degree r,

the variance-covariance matrix Ω has rank n + r > n. In this case one can

pick a particular rational expectations equilibrium by imposing the assump-

tion that the elements of Ωww and Ωwv are time invariant. In either case,

estimation of Equation (3) must take account of the fact that the errors have

an MA(1) structure.3

To estimate the parameters of (1), a number of alternative approaches

have been suggested in the literature. One method, discussed in Anderson

et. al [1] and implemented amongst other by Lindé [10], is full information

maximum likelihood (FIML). We chose not to follow this route since it re-

quires the econometrician to take a prior stand on the determinacy properties

of the equilibrium.4 To construct the likelihood function one must be pre-

pared to specify the joint probability distribution of the errors and to make

assumptions about the covariance matrix Ω. Since the rank of Ω can change

3In our empirical work we dealt with this issue by estimating (3) with GMM using

a heteroskedastic-autocorrelation-consistent (HAC) estimator for the optimal weighting

matrix.
4See Benhabib-Farmer [2] for a discussion of determinacy and sunspots in macroeco-

nomics.
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across regions of the parameter space, depending on the degree of indeter-

minacy, this approach requires the econometrician to estimate a different

theoretical model for every such region.5

3 Accounting for Shocks

In this section we discuss the problem of disentangling the dynamic effects

of different kinds of shocks. This problem involves first, estimating Ω, the

variance-covariance matrix of the fundamental and non-fundamental shocks

and second, attributing the effects of these shocks to the reduced form equa-

tions. A complication arises when equilibria are indeterminate since the

impact effects of alternative shocks must be attributed to fundamental and

non-fundamental sources.

We begin by constructing an estimator for Ω using a two-step approach.

First, we obtain estimates of the structural parameters Â, F̂ , B̂, Ĉ, Ψ̂v and

Ψ̃w in (3) by GMM; second, we use these parameter estimates to construct

reduced form residuals from which we estimate Ω. This two-step procedure

involves a complication which we discuss in the following section. It arises

from the fact that the reduced form of the model obtained by standard

solution algorithms will not generally be free of unobserved expectations.6

5For an application of Maximum Likelihood from a Bayesian perspective, see the paper

by Lubik and Schorfheide [12].
6We compute the reduced form of the model with a QZ decomposition. Our algorithm,

SysSolve, is described in Appendix A It is based on code by Sims [16] and amended by

Lubik and Schoefheide [11] to account for the possibility that there may be multiple

indeterminate solutions.
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3.1 Finding an Observable Reduced Form

To compute the reduced form of our structural model we define a vector

Xt =

⎡⎣ Yt

Et [Yt+1]

⎤⎦
which consists of observable variables Yt and (possibly unobserved) expec-

tations variables Et [Yt+1]. Our procedure for computing the reduced form

of the model uses an algorithm, SysSolve,which returns a VAR(1) in this

augmented state vector. When the equilibrium is determinate, this system

can be broken down into two separate subsystems. One is a VAR(1) in

the observable variables Yt and the other is a static function that determines

Et [Yt+1] as a function of Yt. When the equilibrium is indeterminate, however,

it is not generally possible to carry out this decomposition. The following

example illustrates this problem in practise and proposes a solution that can

be generalized.

Consider the single equation model

pt =
1

α
Et [pt+1] + vt,

where pt is observable and vt is a fundamental error. This model can be

written as follows,⎡⎣ 1 − 1
α

1 0

⎤⎦⎡⎣ pt

Et [pt+1]

⎤⎦ =
⎡⎣ 0 0

0 1

⎤⎦⎡⎣ pt−1

Et−1 [pt]

⎤⎦+
⎡⎣ 1
0

⎤⎦ vt +
⎡⎣ 0
1

⎤⎦wt.

When |α| < 1, the solution is indeterminate and SysSolve returns the solu-
tion

pt = Et−1 [pt] + wt, (5)

Et [pt+1] = αEt−1 [pt−1]− αvt + αwt. (6)

Although this solution is valid, both equations contain unobservable expec-

tations and for some purposes it might be helpful to have an alternative
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dynamic representation that involved a single stochastic difference equation

in the observable variable pt. In this example one can find such a represen-

tation by rearranging Equation (5) to find Et−1 [pt] as a function of pt and

wt and substituting this solution at dates t− 1 and t− 2 into Equation (6).
This process leads to the expression

pt = αpt−1 − αvt−1 + wt. (7)

Equation (7) is a VARMA(1,1) in the observable variable pt and the vector

of shocks (vt, wt)
0 .

The coexistence of VAR and VARMA representations, exhibited in this

example, carries over to more general SLRE models when the solution is

indeterminate. TheQZ solution method suggested by Sims and implemented

in SysSolve, leads to a reduced form expression of the form

Xt = Γ∗Xt−1 + C∗ +Ψ∗V Vt +Ψ∗WWt.

Since Γ∗ is generally singular, there will be more than one way to partitionXt

into two subsets (X1
t ,X

2
t ) such that X

1
t forms an autonomous VARMA(1,1)

model that is independent of X2
t . One or more of these representations will

be in terms of the observable variables Yt and Yt−1, but these observable

representations will not generally reduce to a VAR(1). An exception, is the

case of a determinate equilibrium when the solution is unique. In Appendix

B, we provide an algorithm to generalize the above example to the case of an

n−dimensional SLRE and we provide MATLAB code, Arrange, that imple-
ments our algorithm by rearranging the output from the QZ decomposition

provided by SysSolve.

3.2 Computing an Estimate of Ω

In this section we provide a method to recover consistent estimates of the

population variance-covariance matrix Ω. First, we write the reduced form
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as a VARMA(1,1) in the observable variables Yt and the unobserved shocks

ηt = (Vt,W
1
t )
0,

Yt = Γ∗aYt−1 + C∗a +Ψ∗aηt +Ψ∗bηt−1. (8)

We assume that the econometrician can obtain consistent estimates of the

population parameters Γ∗a, C
∗
a ,Ψ

∗
a and Ψ∗b which we refer to as Γ̂

∗
aT , Ĉ

∗
aT , Ψ̂

∗
aT

and Ψ̂∗bT where T is the sample size.

Let et be a vector of sample residuals defined as follows;

et = Yt − Γ̂∗aTYt−1 − Ĉ∗aT , (9)

where Yt are observable variables and Γ̂∗aT and Ĉ
∗
aT are consistent estimates of

the VARMA(1,1) representation of the reduced form. Now define the sample

autocorrelations Ŝ0T and Ŝ1T as follows;

Ŝ0T =
1

T

TX
t=1

³
Yt − Γ̂∗aTYt−1 − Ĉ∗aT

´³
Yt − Γ̂∗aTYt−1 − Ĉ∗aT

´0
, (10)

Ŝ1T =
1

T

TX
t=1

³
Yt − Γ̂∗aTYt−1 − Ĉ∗aT

´³
Yt−1 − Γ̂∗aTYt−2 − Ĉ∗aT

´0
. (11)

In Appendix C, we show that one can obtain consistent estimates of the

elements of Ω by finding a solution to the equations

ŜT
n×n

= Ψ̂T
n×(n+r)

Ω̂T Ψ̂0
T

(n+r)×n
, (12)

where

ŜT = Ŝ0T + Ŝ1T + Ŝ01T , (13)

Ψ̂T = Ψ̂∗aT + Ψ̂∗bT , (14)

and Ψ̂∗aT and Ψ̂∗bT are consistent estimates of Ψ
∗
a and Ψ∗b .

It is important to notice that Equation (12) cannot be solved uniquely

for the elements of Ω̂T since it consists of n (n+ 1) /2 independent equations
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in (n+ r) (n+ r + 1) /2 unknowns.7 The non-uniqueness of the solution to

Equation (12) means that, when equilibrium is indeterminate, the econome-

trician cannot distinguish between fundamental and non-fundamental distur-

bances to the economy.

For the purposes of examining the dynamic properties of the model, the

inability to distinguish between determinate and indeterminate shocks is not

a problem as long as the variance-covariance matrix Ω remains time invari-

ant - it is simply a question of how we choose to name the observed distur-

bances to each equation.8 For the purposes of constructing impulse response

functions in the New-Keynesian model that we describe below, we chose to

ascribe all shocks in the indeterminate regime to fundamentals by setting the

elements of Ωw and Ωwv to zero.

4 Application to the New-Keynesian Model

In this section we describe a New-Keynesian model that puts together sim-

plified versions of specifications of the representative agent’s Euler equation

by Fuhrer and Rudebusch [8], the Phillips curve by Galí-Gertler [9], and the

Central Bank reaction function by Clarida-Galí-Gertler [6].

7As an example, consider the case when there are two equations and one degree of

indeterminacy. In this case ŜT is a known symmetric 2 × 2 matrix and Ψ̂T is a known
2 × 3 matrix both of which are functions of the data. For this example, Equation (12)
consists of 4 equations in 9 unknowns. Since ŜT is symmetric only 3 of these equations

are independent and since Ω̂ is symmetric only 6 elements of Ω need to be independently

calculated. Only three linear combinations of the variance-covariance parameters Ω are

identified from the data.
8The question becomes more interesting if we observe data from different regimes since

then one might ascribe a change in the observed variance of the data to the additional

contribution of sunspots as suggested by Clarida-Galí-Gertler [6].
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4.1 A Description of the Model

The model we estimate consists of the following three equations.

yt = α0 + α1Et [yt+1] + α2(it −Et [πt+1]) + α3yt−1 + v1t , (15)

πt = β0 + β1Et [πt+1] + β2yt + β3πt−1 + v2t , (16)

it = γ0+γ1 (1− γ3) (Et [πt+1]−π∗)+γ2 (1− γ3) (yt−y∗)+γ3it−1+v3t . (17)

The variable yt is a measure of the output gap (we used the same one-sided

HP-filtered series as in [3], BFHM), πt is the GDP deflator, it is the Federal

Funds rate andEt is again a conditional expectations operator. Equation (15)

is an output equation derived from the representative agent’s Euler equation,

Equation (16) is a hybrid New-Keynesian Phillips curve, and Equation (17)

is a Central Bank reaction function, (also referred to as a Taylor rule after

the work of Taylor [17]).

4.2 Unrestricted Parameter Estimates

In this section we report the results of estimating Equations (15)—(17) by

GMM on the full system. Table 1 reports these estimates using three lags of

the endogenous variables as instruments.9 Since there is evidence of parame-

ter instability across the full sample, particularly in the policy rule, we split

the data in 1979. This follows the lead of Clarida, Galí and Gertler [6], who

suggest that the rule followed in the pre-Volcker period (1960:4—1979:3), has

very different properties from that during the Volcker-Greenspan years. We

9Beyer et. al. [3] estimate this model on the same data set that we use here. They

report results from a number of alternative estimation methods and show how to obtain

more efficient parameter estimates using factors as instruments. The reader is referred

to their work for a more complete description of the robustness properties of the system

GMM estimator and for a discussion of parameter stability across different subsamples.
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discarded the quarters 1979:4—1982:4 since this was a period of considerable

instability in which the Fed followed a money targeting rule that was quickly

abandoned. Our second sub-sample consists of the years 1983:1—1999:3.10

  TABLE 1:                                       UNRESTRICTED GMM PARAMETER ESTIMATES

Sample 60:4 79:3 Sample 83:1 99:3

Eqn Param Coeff Std Err t-stat p-val Coeff Std Err t-stat p-val

Euler  Eq. gapt+1(α1) 0.480*** 0.032 14.85 0.00 0.394*** 0.048 8.230 0.00

rit(α2) -0.073* 0.038 -1.91 0.06 0.001 0.012 0.070 0.95

gapt-1(α3) 0.549*** 0.034 16.21 0.00 0.595*** 0.040 14.920 0.00

Phil. Curve πt+1(β1) 0.739*** 0.083 8.95 0.00 0.539*** 0.087 6.170 0.00

gapt(β2) -0.020 0.024 -0.85 0.40 -0.068*** 0.019 -3.660 0.00

πt-1(β3) 0.268*** 0.073 3.7 0.00 0.276*** 0.063 4.380 0.00

Pol. Rule πt+1(γ1) 0.876*** 0.190 4.62 0.00 1.660*** 0.427 3.890 0.00

gapt(γ2) 0.644** 0.244 2.64 0.01 0.257** 0.124 2.060 0.04

it-1(γ3) 0.843*** 0.051 16.64 0.00 0.761*** 0.058 13.150 0.00

J-stat = 10.0290    p-val = 0.9310 J-stat = 9.8014    p-val = 0.9382

* (**) (***) denotes significance at 10% (5%) (1%) level

Table 1 is divided into three sections, one for each equation of the New-

Keynesian model. The table is further divided into two halves reporting

estimates, in the left panel, for the sub-sample from 1960:4—1979:3 and in

the right panel, for the sub-sample 1983:1—1999:3. For each sub-sample we

were able to fit a tightly parameterized model; the equality and exclusion

restrictions that we imposed to achieve identification passed Hansen’s J−test
with p−values of 93% and 94% for the two samples. Further, as reported in

Beyer et. al. [3], the residuals for this model are consistent with the model

assumptions. After removing an MA(1) component, predicted by theory, the

residuals passed a range of misspecification tests including absence of ARCH

effects, absence of additional serial correlation and the Jarque Bera test for

normality.

As in BFHM, we find that detrended output and inflation are well de-

10We chose to end at this date for comparability with other studies.
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scribed by their own future and lagged values. Coefficients on future and

lagged output in the Euler equation are tightly estimated and qualitatively

similar across sub-periods. Our point estimate for α1, (the estimated coeffi-

cient on future output), is equal to 0.48 in the first sub-period and 0.39 in

the second and both coefficients are significant at the 1% level using HAC

standard errors. The coefficient on lagged output, a3, is estimated as 0.55

and 0.59 in the two sub-samples.

Theory predicts that the real interest rate coefficient in the Euler equa-

tion, α2, should be negative and of the same order of magnitude as the

average value of the real interest rate. In practice this coefficient is small and

imprecisely estimated but, at least for the first sub-sample, the point esti-

mate lies within two standard errors of 0.02 which we take to be a ball park

figure for the quarterly real return to capital. Similar results hold for our

estimates of the hybrid Phillips curve. The coefficients on future and lagged

inflation, β1 and β3, are significant and qualitively similar across sub-samples

although the coefficient on the output gap, β2, is small and insignificant in

the first sub-sample and has the wrong sign in the second.

Our estimates of the policy rule are similar to those reported by Clarida-

Galí-Gertler (CGG). Like CGG, we find that the estimated coefficient on

future inflation in the policy rule, γ1, switches from 0.87 in the pre-Volcker

period to 1.66 in the Volcker-Greenspan years.11 This is an important coeffi-

cient since, when the parameters of the Phillips curve and the Euler equation

are calibrated to values suggested by economic theory, γ1 regulates the deter-

minacy of equilibrium. If γ1 is less than one, the Fed responds to expected

future inflation by lowering the real rate of interest; a policy of this kind

11CGG used GMM in a single equation framework and used a larger instrument set.

Our findings for the policy rule are, however, qualitatively the same as theirs for the

unrestricted model.

14



is called passive. If γ1 is greater than one, the Fed responds to expected

inflation by raising the real interest rate; a policy of this kind is called active.

CGG calibrated the parameters of the Phillips curve and Euler equation

to values that are standard in the literature and showed that a model economy

would display an indeterminate equilibrium with the pre-Volcker policy rule

and a determinate equilibrium with a post-Volcker policy rule. They pointed

out that output and inflation have been less volatile in the post-Volcker

period and they raised the possibility that this reduction in volatility arose

from the elimination of sunspot uncertainty associated with a switch from

an indeterminate to a determinate policy rule.

4.3 Dynamics Implied by the Unrestricted Parameter

Estimates

Our next step was to compute VARMA(1,1) representations of the reduced

form for each regime using the SysSolve and Arrange algorithms described

in Appendices A and B. In Table 2 we report the absolute values of the

generalized eigenvalues of the companion forms for the first and second sub-

samples. In the first sub-sample our point estimates suggest an indeterminate

equilibrium with two unstable roots, and for the second sub-sample, a deter-

minate equilibrium with three unstable roots. These findings are consistent

with the reported results of CGG [6], LS [11] and BG [4], in spite of the fact

that the point estimates of the interest coefficients in the Euler equation and

the output gap coefficients in the Phillips curve are often insignificant and/or

have the wrong signs.
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  TABLE 2:                             UNRESTRICTED ESTIMATES OF GENERALIZED EIGENVALUES

Sample Point estimates of roots

60:4—79:3 0.00 0.00 0.00 0.37 0.80 0.80 0.93 2.44E+16* 1.58

83:1—99:3 0.00 0.00 0.00 0.34 0.76 0.95 2.18E+17 1.55 1.55

 *Bold figures indicate unstable roots.

Estimated size of determinate, indeterminate and unstable  regions of the parameter space

60:4—79:3 83:1—99:3

Point Estimates Imply Indeterminate Equilibrium Point Estimates Imply Determinate Equilibrium

Percentage of Indeterminate Draws = 73 Percentage of Indeterminate Draws = 1.5

Percentage of Determinate Draws = 25.9 Percentage of Determinate Draws = 70.4

Percentage of Non-Existent Draws = 1.1 Percentage of Non-Existent Draws = 28.1

Percentage of Non-Positive Definite Draws = 0 Percentage of Non-Positive Definite Draws = 0

Percentage of Change in Dimension = 28.2 Percentage of Change in Dimension = 1.5

To check the robustness of our determinacy findings, for each sub-sample,

we took 10, 000 parameter draws from a normal distribution centered on the

point estimates of the parameters with a variance covariance matrix equal

to the asymptotic estimate using HAC standard errors from the GMM es-

timation. For each draw, we calculated the number of stable generalized

eigenvalues and calculated whether the implied equilibrium was determinate,

indeterminate or non-existent. The results of this exercise are reported in

Table 2. For the first sub-sample we found that 73% of our draws were con-

sistent with the point estimate in the sense that they fell in the indeterminate

region. A further 25.9% were in the determinate region and for 1.1% of the

draws stationary equilibrium did not exist. For the second sub-sample 70.4%

of the the draws were determinate, (consistent with the point estimates for

this sub-sample), 1.5% were indeterminate and 28.1% implied non-existence.

This exercise suggests a lower degree of confidence than that reported by

Lubik and Schorfheide [12] who developed Bayesian techniques to determine

the posterior odds ratio for the probability that any given model is associated

with a determinate as opposed to an indeterminate region of the parameter
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space.12

Our next step was to study the dynamics of the economic response of

the output gap, inflation and the Fed funds rate to alternative fundamental

shocks to the system. First, we constructed an estimate of the variance-

covariance matrix of the fundamental shocks using the methods described in

Section 3. The results of this exercise are reported in Table 3.

  TABLE 3:                    UNRESTRICTED ESTIMATES OF VCV MATRIX OF FUNDAMENTAL SHOCKS

Sample 60:4—79:3 Sample 83:1—99:3

X 10-3 Gap Infl Irate Sunspot X 10-3 Gap Infl Irate

Gap 10.3 0 0 0 Gap 4.50 0.00 0.00

Infl 7.3 7.9 0 0 Infl -0.60 9.50 0.00

Irate -32.4 15.5 30.8 0 Irate 6.10 1.90 8.30

Sunspot 0 0 0 0

Since we found an indeterminate model in the first sub-period, we were

forced to take a stand on how to attribute the residuals to three equations

to four possible shocks. As described in Sub-section 3.2, there is no unique

solution to this problem and we chose to identify the shocks by setting the

variance and covariance terms of the sunspot shock equal to zero. The result

of identifying shocks with this assumption is reported in Table 3 which reports

the Choleski decomposition of the estimated variance-covariance matrices for

each sub-sample. We find the estimated standard deviation of output to be

roughly twice as high in the pre-Volcker period as in the Volcker-Greenspan

years; the standard deviation of interest rate shocks is correspondingly four

times bigger whereas the inflation shock is of the same order of magnitude.

12Lubik and Schorfheide used a slightly different sample and different identification

assumptions. More importantly, the parameters α2 and β2, in their analysis, were strongly

influenced by Bayesian priors. When we restrict these parameters we also obtain much

tighter estimates of the determinacy and indetermionacy regions in line with the LS results.
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Figure 1: Unrestricted Impulse Responses: First Subsample

In Figures 1 and 2 we used our point estimates of the parameters to

generate impulse response functions associated with the theoretical models

for each sub-sample. The solid lines in each figure are impulse responses

computed from the point estimates and the dashed lines are 90% confidence

bounds. The upper and lower bounds were computed by simulating 10000

draws from the asymptotic distribution of the parameter estimates, ranking

the responses for each quarter, and picking the values that delineate the

5th and 95th quantiles. In our simulations, we discarded draws for which

the determinacy properties of the simulation were different from the point

estimates. These confidence intervals should therefore be interpreted as

conditional on the determinacy properties of the point estimates. For the

pre-Volcker period our procedure resulted in discarding 28.8% of the draws.

18



25.9% of these discards were in the determinate region, 1.1% were in the

non-existent region and 1.8% were indeterminate of a higher degree than the

point estimates. For the Volcker-Greenspan period we rejected 29.6% of the

draws (1.5% in the indeterminate region and 28.1% in the non-existent region

of the space).
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Figure 2: Unrestricted Impulse Responses: Second Subsample

Comparison of Figures 1 and 2 reveals wide error bands, very little consis-

tency across sub-samples, and results that are difficult to interpret in terms

of economic theory.13 Inspection of these figures suggests that the exercise of

13The standard error bands are often asymmetric and in some examples (the top right

panel of Figure 1 is an example) one or more of the confidence regions is coincident with

the axis. This is because we are discarding draws for which the determinacy properties

change and this may coincide with one or more of the variables changing sign and the
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constructing impulse responses from structural shocks may have little use as

a tool of analysis, and, the unrestricted estimates are in this sense a failure.

However, recall that the point estimates from the model do not incorpo-

rate restrictions from economic theory. Restrictions that have been success-

fully imposed by other authors include calibration of the magnitude and sign

of the interest rate coefficient in the Euler equation and of the output gap

coefficient in the Phillips curve. The following section repeats the estimation

procedure after imposing these restrictions.

4.4 Restricted Parameter Estimates

Although our structural model is formally identified, when estimating models

in this class they often suffer from problems of weak instruments. This

arises when the instruments are only weakly correlated with their targets

and it leads to possible inconsistency of parameter estimates even in large

samples. A correlate of the weak instrument problem is that the data alone

cannot distinguish between a range of alternative additional over-identifying

assumptions and there is a possible role for economic theory to further restrict

parameter estimates. An example of the ramifications of this issue related to

our NKE model is the fact that in equations (15) and (??), the parameters

α2 and β2 have important economic content. But they are estimated weakly

in the data with large standard errors. To address this problem we added

two pieces of identifying information from economic theory.

The parameter α2 is the interest rate coefficient in the Euler equation

and, theoretically, it is obtained from linearization of a representative agent’s

marginal utility of consumption. Theory suggests that α2 should be in the

range of 0.05 to 0.4, the same order of magnitude as a measure of the real

interest rate. We experimented with a number of values in this range with

implied impulse function crossing the axis.
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little qualitative difference from the results reported in In Table 4 which

contains parameter estimates by GMM for the case when a2 is equal to

−0.02.

TABLE 4:                                         RESTRICTED GMM PARAMETER ESTIMATES

Sample 60:4 79:3 Sample 83:1 99:3

Eqn Param Coeff Std Err t-stat p-val Coeff Std Err t-stat p-val

Euler  Eq. gapt+1(α1) 0.480*** 0.026 18.270 0.00 0.506*** 0.026 19.300 0.00

rit(α2) -0.020 -0.020

gapt-1(α3) 0.542*** 0.025 21.910 0.00 0.502** 0.022 22.680 0.00

Phil. Curve πt+1(β1) 0.116* 0.069 1.670 0.09 0.807*** 0.148 5.440 0.00

gapt(β2) 0.250 0.250

πt-1(β3) 0.692*** 0.064 10.860 0.00 0.353*** 0.083 4.230 0.00

Pol. Rule πt+1(γ1) 0.252 0.626 0.400 0.69 1.906** 0.729 2.620 0.01

gapt(γ2) 2.290* 1.341 1.710 0.09 0.352* 0.201 1.760 0.08

it-1(γ3) 0.926*** 0.042 21.900 0.00 0.894*** 0.043 21.010 0.00

J-stat = 11.8309    p-val = 0.9218 J-stat = 10.9645    p-val = 0.9471

* (**) (***) denotes significance at 10% (5%) (1%) level

The parameter β2 is the output coefficient in the Phillips curve and eco-

nomic theory predicts that this parameter should equal the inverse of the rep-

resentative agent’s coefficient of relative risk aversion. Clarida-Galí-Gertler

choose β2 = 1 in their calibrated model and Lubik-Schorfheide set a prior

mean of β2 = 0.5. These values correspond to risk aversion coefficients of

1 and 2 respectively. We experimented with values of β2 in the range 0.01

through 1 but our parameter estimates led to non-existence of stationary

equilibrium for values much above 0.4. In Table 4 we report the results of

GMM estimates in which we restrict β2 = 0.25, which corresponds to a

coefficient of relative risk aversion of 4.

Table 4 also presents the parameter estimates for the remaining parame-

ters of the model under the joint restrictions α2 = −0.02, β2 = 0.25. The

restricted estimates pass Hansen’s J−test for overidentifying restrictions with
p−values of 0.92 and 0.95 respectively for the pre-Volcker and post-Volcker
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samples. The restrictions do not have a big effect on the parameters of future

and lagged inflation in the Phillips curve nor do they change qualitatively

the coefficients on future and lagged output in the Euler equation. They do,

however, have a significant effect on the estimates of the Taylor rule.

In the unrestricted case the coefficient on future inflation was estimated

to be 0.87 in the first sub-sample and 1.67 in the second sub-sample; further,

both estimated coefficients were significant at the 1% level. For the restricted

estimates the pre-Volcker inflation response, γ1 is insignificant whereas the

post-Volcker response is higher and equal to 1.9.

  TABLE 5:                                  RESTRICTED ESTIMATES OF GENERALIZED EIGENVALUES

Sample Point estimates of roots

60:4—79:3 0.00 0.00 0.00 0.82 0.82 0.73 2.66E+16* 7.98 1.58

83:1—99:3 0.00 0.00 0.00 0.66 0.58 0.66 8.85E+15 1.24 1.24

 *Bold figures indicate unstable roots.

Estimated size of determinate, indeterminate and unstable  regions of the parameter space

60:4—79:3 83:1—99:3

Point Estimates Imply Determinate Equilibrium Point Estimates Imply Determinate Equilibrium

Percentage of Indeterminate Draws = 0.3 Percentage of Indeterminate Draws = 0.3

Percentage of Determinate Draws = 98.7 Percentage of Determinate Draws = 99.7

Percentage of Non-Existent Draws = 1 Percentage of Non-Existent Draws = 0

Percentage of Non-Positive Definite Draws = 0 Percentage of Non-Positive Definite Draws = 0

Percentage of Change in Dimension = 0.3 Percentage of Change in Dimension = 0.3

In Table 5 we report point estimates and frequency distributions for the

determinacy properties of equilibrium. In contrast to Clarida-Galí-Gertler

we find that for our restricted estimates equilibrium is determinate in both

sub-samples. Further, this property is a robust feature of the estimates in

the sense that in both sub-samples 99% or more of draws from the estimated

asymptotic parameter distribution result in reduced form models with deter-

minate equilibria.
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  TABLE 6:                    RESTRICTED ESTIMATES OF VCV MATRIX OF FUNDAMENTAL SHOCKS

Sample 60:4—79:3 Sample 83:1—99:3

X 10-3 Gap Infl Irate X 10-3 Gap Infl Irate

Gap 8.8 0 0 Gap 5.9 0 0

Infl -8.4 11.6 0 Infl -18.3 23.5 0

Irate -83.5 18.7 77.5 Irate -31.2 41 18

Table 6 documents our estimates of a Choleski decomposition of the esti-

mated variance-covariance matrix of the shocks using the restricted parame-

ter estimates and Figures 3 and 4 compare the estimated impulse response

functions for the two sets of restricted estimates.14

14For the pre-Volcker period, the estimated standard deviations of output shocks and

inflation shocks are comparable but the interest rate standard deviation is two and a half

times larger. For the Volcker-Greenspan period the standard deviation of the output shock

is comparable to the unrestricted model, but the inflation standard deviation is twice as

high and the interest rate shock-deviation increases by a factor of two. For the Pre-Volcker

years the determinant of the matrix of standard deviations is a three times higher in the

restricted versus unrestriced case and seven times higher in the Volcker-Greenspan period.
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Figure 3: Restricted Impulse Responses: First Subsample

The main feature of these graphs is the consistency across sub-samples

in the qualitative features of the impulse responses. The New-Keynesian

model, estimated by GMM, provides a plausible economic interpretation of

the effects of shocks and the way that the effects of these shocks trace them-

selves through the system. According to this interpretation, there are two

fundamental shocks, one to the Phillips curve and one to the Euler equation.

These shocks are negatively correlated and there is some evidence that the

Phillips curve shock has increased in magnitude since 1979. In the following

discussion we refer to the shock to the Euler equation as an output shock

and the shock to the Phillips curve as an inflation shock.
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Figure 4: Restricted Impulse Responses: Second Subsample

A typical output shock causes the output gap to increase by 1% to 2%

above trend and to return to trend in approximately six quarters. This

response is graphed in the top left panels of Figures 3 and 4. Turning to

the middle left panels, the output shock causes a small drop in inflation that

quickly reverses itself and inflation remains above trend for the subsequent

two to ten quarters after the impact. Under the pre-Volcker policy rule the

inflation effect of an output shock was less than one half of a percentage point

on impact and inflation remained within one half of a percentage point of its

steady state level during the entire return path. In the Volcker-Greenspan

period the response of inflation to an output shock is qualitively identical

but the magnitude is roughly twice as big, possibly because the interest rate

response to an output shock is lower in the Volcker Greenspan period. Notice
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from the lower left panels of these Figures that the time path of interest rates,

following an output shock, is qualitively the same as that of inflation but,

in the pre-Volcker period, the Fed’s response was more aggressive. Within

two quarters of an output shock, the Fed moved the nominal interest rate up

by 5% above trend; in the Volcker-Greenspan period this response has been

closer to 2% on average.

The middle column of Figures 3 and 4 illustrate estimated responses to an

inflation shock. The typical inflation shock has been 1% in the pre-Volcker

period and 2% under Volcker-Greenspan and our estimates suggest that in-

flation returned to trend in ten quarters in the first sub-sample and four

quarters in the second. An inflation shock caused a 2% interest rate increase

in the pre-Volcker period and a 5% increase in the post Volcker period; these

interest rate increases were associated with small drops in output, varying

from 0.2 to 0.5 basis points.

The final column of Tables 3 and 4 illustrates the effect of interest shocks

to the economy. Interest rate policy is less volatile in the Volcker-Greenspan

period. Interest rate increases cause falls in output and corresponding falls

in inflation, both of which subsequently return to trend roughly ten quarters

later.

[MAYBE A SHORT CONCLUSIVE PARAGRAPHON THEMOST IM-

PORTANT LESSON FROM THE EMPIRICAL EXERCISE?][

5 Conclusion
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Appendix A
In this section we explain how our solution algorithm SySolve works in

the case of an indeterminate equilibrium. The reader is referred to Sims [16]

for a more detailed explanation of GENSYS, on which our algorithm is based.

The structural model has the form

Ã0Xt = Ã1Xt−1 + C̃ + Ψ̃vVt + Ψ̃wWt. (A1)

Using a QZ decomposition, write this as

QSZXt = QTZXt−1 + C̃ + Ψ̃vVt + Ψ̃wWt. (A2)

where QQ0 = ZZ 0 = I and S and T are upper triangular and S and T are

ordered such that all unstable generalized eigenvalues are in the bottom right

corner. Recall that the generalized eigenvalues are defined as the ratios of

the diagonal elements of T to the diagonal elements of S. Now define,

xt = ZXt (A3)

and

et = S−1Q0
³
C̃ + Ψ̃vVt + Ψ̃wWt

´
, (A4)

and partition xt and et as follows;

xt =
¡
x1t , x

2
t

¢0
, et =

¡
e1t , e

2
t

¢0
(A5)

where x1t ∈ Cn1, x2t ∈ Cn2 are (possibly) complex vectors and n1 and n2 are

the numbers of stable and unstable roots. Now partition the matrices S and

T

S =

⎡⎣ S11 S12

0 S22

⎤⎦ , T =

⎡⎣ T11 T12

0 T22

⎤⎦ (A6)
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and the matrices S−1 and Q0 as;

S−1 =

⎡⎣ S11 S12

0 S22

⎤⎦ , Q0 =

⎡⎣ Q11 Q12

Q22 Q22

⎤⎦ . (A7)

Using this notation write (A2) as;⎡⎣ S11 S12

0 S22

⎤⎦⎡⎣ x1t

x2t

⎤⎦ =
⎡⎣ T11 T12

0 T22

⎤⎦⎡⎣ x1t

x2t

⎤⎦+
⎡⎣ e1t

e2t

⎤⎦ . (A8)

In Equation (A8) the lower block acts as an autonomous unstable subsystem

in the transformed variables x2t . For the system to exhibit a non-explosive

solution, one requires that x2t = e2t = 0 for all t. This restriction requires that

that the non-fundamental errors Wt be chosen to remove the influence of the

fundamental errors Vt. To this end, the solution algorithm sets

e2t = S22
h
Q21 Q22

i³
C̃ + Ψ̃vVt + Ψ̃wWt

´
= 0. (A9)

A necessary condition for these equations to have a solution is that there are

at least as many elements of Wt as there are unstable roots (the number of

rows in Equation system (A9) ). In the case of r degrees of indeterminacy

there are r more elements of Wt than one requires to eliminate unstable

roots. In this case, our algorithm transfers the first r non-fundamental shocks

to the vector Vt thereby treating the elements of W 1
t ∈ Rr as additional

fundamentals. We refer to the expanded vector of fundamentals as (Vt,W 1
t ).

It might appear that this solution is arbitrary since a particular solution

depends on the ordering ofWt. To see that this is not the case, let Ω represent

the variance-covariance matrix of the expanded fundamentals

Ω = Et

⎡⎣ Vt

W 1
t

⎤⎦⎡⎣ Vt

W 1
t

⎤⎦0 =
⎡⎣ Ωvv Ωvw

Ωwv Ωww

⎤⎦ . (A10)

Since we do not place any restrictions on Ω our algorithm is capable of gen-

erating the full range of sunspot solutions. Different solutions are captured

by picking different values for the variance-covariance terms Ωww and Ωwv.
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Appendix B
This appendix explains how to generate a VARMA model in observable

variables Yt from the VAR in Yt and Et [Yt+1] that is generated by the solution

algorithm SySolve. Consider the structural model

Ã0Xt = Ã1Xt−1 + C̃ + Ψ̃vVt + Ψ̃wWt, (B1)

where Xt = (Y
1
t , Y

2
t )
0.15 Our goal is to write Y 1

t as a VARMA(1,1); that is,

in the form,

Y 1
t = Γ̃Y 1

t−1 +Ψaηt +Ψbηt−1, (B2)

where Y 1
t is a subset of Xt that are observable,

ηt =

⎡⎣ Vt

W 1
t

⎤⎦ ,
and W 1

t is a subset of Wt.

Since the case of a determinate equilibrium is well understood, we con-

centrate in this appendix on the case of indeterminacy. Using a QZ de-

composition (see Sims ??) to eliminate the influence of unstable generalized

eigenvalues, write the reduced form of (B1) as follows,

Xt = Γ∗Xt−1 + C∗ +Ψ∗V Vt +Ψ∗WW 1
t (B3)

where Xt = (Y
1
t , Y

2
t ) . By construction, all of the roots of Γ

∗ are inside the

unit circle and W 1
t has dimension equal to the degree of indeterminacy. For

each unstable generalized eigenvalue of
n
Ã0, Ã1

o
, Γ∗ has one zero root. It

follows that Γ∗ has rank k ≤ m+ n.

15For the model in Section ??, Y 1
t = Yt and Y 2

t = Et [Yt+1] but more generally, the

dimensions of the vectors Y 1
t and Y 2

t need not be equal. For example, if the model has

additional lags then Y 1
t might consist of the vector [Yt, Yt−1]

0 .
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Without loss of generality we assume that

rank (Γ∗) = k ≤ n.

If k > n, Equation (B1) can be expanded by increasing the space of prede-

termined observable variables from Y 1
t = Yt, to Y 1

t = (Yt, Yt−1) and adding

the identity row Yt−1 = Yt−1to Equation (B1). This expansion leaves k un-

changed, (since Γ∗ is augmented by n columns of zeros) and m unchanged

(since the dimension of Y 2
t remains the same) but it increases the dimension

of Y 1
t by n.

Using the decomposition

Γ∗ = QΛQ−1

where Λ is a diagonal matrix of eigenvalues ordered with the n − k zero

eigenvalues of Γ∗ in the lower right position, rewrite (B3) as

xt = Λxt−1 + dt (B4)

where

xt = Q−1Xt, Xt = Qxt (B5)

dt = Q−1 (C∗ +Ψ∗V Vt +Ψ∗WWt) . (B6)

Now partition xt =
¡
xat , x

b
t

¢0
Λ = (Λa, 0)

0and dt = (d1t, d2t)
0 such that the

variables xbt correspond to the zero roots of Γ
∗ and partition Q conformably

as

Q =

⎡⎣ Qaa Qab

Qba Qbb

⎤⎦ .
Consider the following four equations:

xat = Λax
a
t−1 + dat , (B7)

xbt = dbt , (B8)
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Y a
t = Qaax

a
t +Qabx

a
t , (B9)

Y a
t−1 = Qaax

a
t−1 +Qabx

b
t−1. (B10)

Equation (B7) contains the rows of (B4) associated with the k non-zero

eigenvalues and (B8) the rows associated with the n − k zero eigenvalues.

Equations (B8) and (B10) follow from the first k rows of Equation (B5).

Solving these equations for Y a
t in terms of Y a

t−1, d
a
t , d

b
t and dbt−1 gives the

following expression

Y a
t =

£
Q−1aaΛaQaa

¤
Y a
t−1 +Qaada+Qabd

b
t +

£
Q−1aaΛaQaa

¤
Qabd

b
t−1.

From Equation (B6) one can find an expression for dat and dbt as functions

of C∗,Ψ∗V ,Ψ
∗
W , Vt and W 1

t . This leads to an expression in the form of (B2),

which is what we set out to accomplish.
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Appendix C
This Appendix shows that the estimator of Ω proposed in Section 3.2 is

consistent. Taking probability limits of (10) and making use of Equation (8),

the consistency of Γ̂∗a and Ĉ∗a and the assumption (Equation (??)) that ηt is

uncorrelated with its own lags leads to;

p lim
T→∞

Ŝ0T =
TX
t=1

¡
Ψ∗aηt +Ψ∗bηt−1

¢ ¡
Ψ∗aηt +Ψ∗bηt−1

¢
T

= Ψ∗aΩΨ
∗0
a +Ψ∗bΩΨ

∗0
b ,

(C1)

p lim
T→∞

Ŝ1T =
TX
t=1

¡
Ψ∗aηt +Ψ∗bηt−1

¢ ¡
Ψ∗aηt +Ψ∗bηt−1

¢
T

= Ψ∗aΩΨ
∗0
b . (C2)

Now form the sum

ŜT = Ŝ0T + Ŝ1T + Ŝ01T . (C3)

Taking probability limits of (C1), using (C2) and (C3) gives

p lim
T→∞

ŜT = (Ψ
∗
aT +Ψ∗bT )Ω (Ψ

∗
aT +Ψ∗bT )

0 . (C4)

Now replace Ψ∗a and Ψ∗b by consistent estimates Ψ̂
∗
aT and Ψ̂∗bT obtained from

passing the GMM estimates of the structural parameters through the QZ so-

lution algorithms and Arrange to obtain the following system of n2 equations

in the (n+ r)2 unknown elements of the variance-covariance matrix Ω.

ŜT
n×n

=

Ã
Ψ̂∗aT

n×(n+r)
+ Ψ̂∗bT

n×(n+r)

!
Ω̂T

(n+r)×(n+r)

Ã
Ψ̂∗aT

n×(n+r)
+ Ψ̂∗bT

n×(n+r)

!0
. (C5)

Now define

Ψ̂T = Ψ̂∗a + Ψ̂∗b . (C6)

Since ŜT and Ω̂T are symmetric this system reduces to n (n+ 1) /2 equations

in (n+ r) (n+ r + 1) /2 unknowns which we write as

vech
³
ŜT
´
= B

³
Ψ̂
´
vech

³
Ω̂T

´
, (C7)
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where vech is the operator that stacks the lower triangular elements of a

symmetric matrix into a row vector. For r > 1 Equation (C7) system will

have multiple solutions and we are free to choose r (n+ r + 1) /2 linear com-

binations. We identify a solution by adding an arbitrary [r (n+ r + 1) /2]

× [(n+ r) (n+ r + 1) /2] matrix R such that.

vech
³
ŜT
´
= Rvech

³
Ω̂T

´
. (C8)

Our estimator of Ω̂T is given by

vech
³
Ω̂T

´
=

⎡⎣ B
³
Ψ̂T

´
R

⎤⎦−1 vech³ŜT´ . (C9)

Consistency follows for arbitrary R from the properties of probability limits

and the fact that

vech (ST ) =

⎡⎣ B (Ψ)

R

⎤⎦ vech (Ω) . (C10)
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