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Abstract

In this paper we consider the optimal control problem with regime
shifts and forward looking agents. This extends the results of Zampolli
(2004) who considered models without forward-looking expectations.
An algorithm is devised to compute the solution of a rational expec-
tations model with random parameters or regime shifts. A second
algorithm computes the time consistent policy and the resulting Nash
Stackelberg equilibrium. We apply these methods to compute the op-
timal (nonlinear) monetary policy in a small open economy subject to
random parameter shifts.
JEL: C6, E5, D8
Keywords: monetary policy; time consistency; asymmetric risk;

rational expectations; regime switching

1 Introduction

Uncertainty is one of the considerable problems faced by economic policy-
makers. It surrounds observed data, unobserved expectations and potential
equilibria as well as both the structure and parameters of the economy. Even
if models are subject to quantifiable risk, this can have a substantial impact
on the formulation of optimal economic policies. A considerable amount of
recent research has been directed at countering these and various sources of
uncertainty.1

0Corresponding author: Fabrizio Zampolli (fabrizio.zampolli@bankofengland.co.uk).
Please do not quote without the authors’ permission. The paper has been presented at
the Senior Economist Workshop on "Threaths to Inflation Targeting", held at Centre for
Central Bank Studies (Bank of England) in September 2004, and to a seminar at the
Bank. We thank Emilio Fernandez-Corugedo and several participants for their comments
and suggestions.

1See, in a completely arbitrary but recent list, Kozicki (2004); Swanson (2004); Planas
and Rossi (2004).
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In this paper we focus on one such quantifiable risk, one in which the
economy is subject to regime shifts with the particular regime followed be-
ing determined by a Markov process. This set up can be thought of as
encompassing a number of possible representations of the world. It can be
viewed as a model with stochastic parameters or perhaps a model in which
agents learning is characterised as a jump process. This latter set up can
be particularly useful for models where bubble-like behaviour is observed.
A collapsed bubble is one where sufficient agents feel it is unsustainable.

The economic policy problem is pervasive in such a world. For any model,
particularly a stochastic one, we need to decide what form of policy rule we
should implement and together with rational, forward-looking agents we
need to consider the appropriate treatment of expectations in the optimal
policy problem. In this paper we adopt a game-theoretic framework for
the design of optimal policy. In particular we seek policies which are both
time consistent and subgame perfect, following Fershtman (1989): Policies
need to both be consistent and take into account the stochastic nature of
the problem. This requires us to consider solutions derived by dynamic
programming rather than Lagrange multipliers: We need a ‘rule’ for agents’
expectations, not a time path for future actions (Başar and Olsder, 1999).

This is particularly appropriate in our case. Following Zampolli (2004)
we adopt a recursive approach to optimal policy formulation with Markov-
switching parameters. Such an approach necessarily imposes time consis-
tency via the principle of optimality. If the model itself is subject to change,
why should policymakers actions be immune? We therefore rule out poten-
tially time inconsistent behaviour through our recursive formulation.

To do this we develop algorithms both for the solution of rational ex-
pectations models with probabalistically-driven regime changes and for the
optimal time-consistent subgame-perfect control of such models. The con-
trol solution developed by Zampolli (2004) is adapted to provide the best
policy. These methods are applied to a small open economy model devel-
oped by e.g. Batini and Nelson (2000) and Leitemo and Söderström (2004)
to investigate structural changes in agent behaviour. These can both be
characterised as a form of learning. In Appendix A we develop the same
methods in a form consistent with Oudiz and Sachs (1985) rather than the
semi-structural form used in the main part of the paper (see Dennis and
Söderström (2002)).

2 Undetermined coefficient model solution with
regime shifts

We consider a linear rational expectations model in semi-structural form:

xt = A(st)xt−1 +B(st)E [xt+1|It] +C(st)εt (1)
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where A(st), B(st) and C(st) are stochastic matrices which depend on
regime st ∈ {1, 2, ...N}, E [εt+1|It] = 0. The dominant regime will be deter-
mined by a Markov process.

The model can be solved depending on agent’s expectations of future
policy regimes. Let the assumed reduced-form law of motion be:

xt = D(st)xt−1 + F (st)εt (2)

where D(·) and F (·) are matrices of undetermined coefficients and we have
solved out for expectations. For simplicity we assume that there are only
two states. The formulae are easily generalised to the N-state case (see
Appendix A, for example).

To find the unknown coefficients, first solve for the expectation:

E [xt+1|It] = E [D(st+1)xt + F (st+1)εt+1|It]
= E [D(st+1)|It]xt +E [F (st+1)|It]E [εt+1|It]
= E [D(st+1)|It]xt
= (pi1D1 + pi2D2)xt

≡ D̄ixt

= D̄i (Dixt−1 + Fiεt)

= D̄iDixt−1 + D̄iFiεt

where i denotes the regime at time t, i.e. st = i. Now plugging the above
expression back into the model gives:

xt = Aixt−1 +Bi

¡
D̄iDixt−1 + D̄iFiεt

¢
+ Ciεt

=
¡
Ai +BiD̄iDi

¢
xt−1 +

¡
BiD̄iFi + Ci

¢
εt. (3)

Given the assumed law of motion, xt = Dixt−1 + Fiεt, the undetermined
coefficients must satisfy the following conditions:

Di = Ai +BiD̄iDi (4)

Fi = BiD̄iFi +Ci (5)

for i = 1, ...N . The first set of equations are to be solved for the feedback
part of the solution, Di:

Di = Ai +BiD̄iDi

= Ai +Bi (pi1D1 + pi2D2)Di.

So, for i = 1:

D1 = A1 +B1 (p11D1 + p12D2)D1

= A1 +B1p11D
2
1 +B1p12D2D1

0 = B1p11D
2
1 + (B1p12D2 − I)D1 +A1
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Likewise for i = 2. This yields a pair of coupled equations that need to be
solved simultaneously:

0 = B1p11D
2
1 + (B1p12D2 − I)D1 +A1 (6)

0 = B2p22D
2
2 + (B2p21D1 − I)D2 +A2. (7)

These equations can be solved iteratively, if a solution exists2 using an ap-
propriate solution method. Given a procedure for solving matrix quadratic
equations, we can solve the linked equations sequentially. The following is
a possible solution algorithm for the two-state case. It generalises easily for
the multi-state model.3

Algorithm 1 Rational solution with Markov switching (two-state case).
For the model (1) assume a solution of the form (2).

1. Select initial values for D0 =
¡
D0
1, D

0
2

¢
.

2. Solve quadratic equations for given values of Dr, obtaining a new set
Dr+1:

Dr+1
1 = g(B1p11, B1p12D

r
2 − I, A1)

Dr+1
2 = g(B2p22, B2p21D

r
1 − I, A2)

where g(·) is a quadratic equation solver for (6) and (7). Similarly
solve F .

3. Check convergence: if
¯̄
Dr+1

¯̄
< ε or too many iterations stop; else

repeat 2.

There are some issues to consider. First, in the standard case the roots
of the single quadratic equation can be checked and it can be established
if there are determinate, indeterminate or no solutions. In our linked case
this is no longer possible. If a solution exists and can be found by this
procedure, we can check whether the solution is stable conditional on the
other Riccati solution(s). As mentioned above, issues of existence have not
been established in this class of model and time consistent policy problem.

Second, if the model incorporates the optimal policy rule, is this solution
stabilising and unique? In the linear-quadratic optimal control problem, it
is. What about in this non-standard case? Again, results do not currently
exist, but we have so far been able to find solutions using our suggested
algorithms.

In the next section we turn to the optimal control problem, which relies
on the reduced form solutions obtained here.

2There are few proofs about the existence of solutions to such problems. We consider
this to be a useful avenue for future research, as, in our experience, solution methods can
fail for interesting and plausible economic models.

3As with the control solutions below we have implemented the solutions in Matlabtm.
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3 Optimal control

The rational solution algorithm presented above can be used as a basis for
solving the optimal control problem with regime shifts and forward looking
expectations. There are different equilibrium concepts one can use to come
up with a solution. Here the primary concern is to find a time-consistent
solution. We proceed with a closed-loop (feedback) time-consistent approach
similar to Oudiz and Sachs (1985). In Appendix A we follow their state-space
approach. Here we develop solutions using the so-called semi-structural
form, following Dennis (2001).

Write the model (which represents the constraint of the optimal control
problem) as:

xt = A(st)xt−1 +B(st)ut−1 +D(st)Et [xt+1|st] + C(st)εt (8)

where A(st), B(st), C(st) and D(st) are random matrices depending on
the same Markov chain st, Et [xt+1|st] is the expectation conditional on the
information set available at time t which also include st. st is observable.

It is convenient to begin with the assumption that a control law exists:

ut = −F (st)xt
which is conveniently re-formulated as a function of the states and shocks.
To make sure the system parameters are always a function of the same
regime st (rather than e.g. (st, st−1)), and to get rid of the control (that is
why we are assuming that a control rule exists), it is convenient to use the
augmented model:·

I 0
F (st) I

¸ ·
xt
ut

¸
=

·
A(st) B(st)
0 0

¸ ·
xt−1
ut−1

¸
+

·
D(st) 0
0 0

¸
Et

··
xt+1
ut+1

¸
|st
¸

+

·
C(st)
0

¸
εt

or (after pre-multiplication):

zt = A+(st)zt−1 +D+(st)Et [zt+1|st] + C+(st)εt.

Now that the system is one without control variables (which are incorpo-
rated in z), we can then use the solution method developed in the previous
section to solve for the equilibrium law of motion of z, and hence for the
expectations. Assume an equilibrium law of motion for z:

zt = Gizt−1 +Hiεt (9)

where Gi and Hi are undetermined, and st = i in an obvious notation.
Following the steps above, one can find Gi and Hi by solving the following
systems of inter-twined equations:

Gi = A+i +D+
i ḠiGi (10)

Hi = D+
i ḠiHi + C+i (11)
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where i = 1, 2, ..., N and Ḡi =
PN

j=1 pijGj =
PN

j=1 p[st+1 = j|st = i]Gj .
(10) is a system ofN coupled quadratic equations in G = (G1, ..., GN). After
solving for the feedback part, the feedforward part can be easily solved as:
Hi = (I −D+

i Ḡi)
−1C+i .

What have we established? Subject to some feedback rule F , we have
computed the law of motion of the economy (9) which is now a backward
looking regime-switching VAR (where the regime is observable). Recalling
the definition of z, we can rewrite the law of motion of the economy in such
a way that the control actions are explicit:

xt = Gxx(st)xt−1 +Gxu(st)ut−1 +Hx(st)εt (12)

where Gxx, Gxu and Hx are matrices partitioned conformably. (12) can
be used as an input into the optimal control problem with regime shifts,
for which we have a solution algorithm as in Zampolli (2004). This takes
Gxx, Gxu and the transition probability matrix P as input and returns an
updated feedback rule ut = −F (st)xt. This is used to update the matrices
A+, D+ and C+ and start a new iteration of the algorithm.

So far we have characterised but not solved the control problem. This is
established in the next subsection, following Zampolli (2004).

3.1 The optimal control problem with regime shifts

The policymaker’s problem is to choose a decision rule for the control ut to
minimise the inter-temporal loss function:

∞X
t=0

βtr(xt, ut) (13)

where β ∈ (0, 1] is the discount factor and r is a quadratic form:

r(xt, ut) = x0tRxt + u0tQut (14)

with R a n × n positive definite matrix, Q a m ×m positive semi-definite
matrix. The optimisation is subject to x0, s0 and the model of the reduced-
form economy:

xt+1 = A(st+1)xt +B(st+1)ut + εt+1 t ≥ 0 (15)

x is the n-vector of state variables, u is the m-vector of control variables and
ε is the n-vector of mean-zero shocks with variance-covariance matrix Σε.
The matrices A and B are stochastic and take on different values depending
on the regime or state of the world st ∈ {1, ..., N}. The regime st, which is
observable at t,4 is assumed to be a Markov chain with probability transition

4This means that the uncertainty faced by the policymaker is about where the system
will be at t+ 1, t+ 2, and so forth.
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matrix5

P = [pij ] i, j = 1, .., N (16)

in which pij = prob {st+1 = j|st = i} is the probability of moving from state
i to state j at t + 1; and

PN
j=1 pij = 1, i = 1, ..., N . These probabilities

are assumed to be time-invariant and exogenous. The formulation (15) is
general enough to capture different types of jumps or extreme changes in
the economic system.

3.1.1 Solution

Solving the problem means finding a state-contingent decision rule, i.e. a rule
which tells how to set the control ut as a function of the current vector of
reduced-form state variables, xt, and the current regime st. Associated with
each current state of the world is a Bellman equation. Therefore, solving the
model requires jointly solving the following set of N inter-twined Bellman
equations:

v (xt, i) = max
ut

r (xt, ut) + β
NX
j=1

pijE
ε
t [v (xt+1, j)]

 i = 1, ...,N (17)

where v(xt, i) is the continuation value of the optimal dynamic programming
problem at t written as a function of the state variables xt as well as the
state of the world at t, st = i, Eε

t is the expectation operator with respect
to the martingale ε, conditioned on information available at t, such that
Eε
t [εt+1] = 0.
The policymaker has to find a sequence {ut}∞t=0 which maximises her

current payoff r(·) as well as the discounted sum of all future payoffs. The
latter is the expected continuation value of the dynamic programming prob-
lem and is obtained as the average of all possible continuation values at time
t+1 weighted by the transition probabilities (16). Given the infinite horizon
of the problem, the continuation values (conditioned on a particular regime)
have the same functional forms.

Given the linear-quadratic nature of the problem, let us further assume
that:

v(xt, i) = x0tVixt + di i = 1, ..,N (18)

where Vi is a n×n symmetric positive-semidefinite matrix, and di is a scalar.
Both are undetermined. To find them, we substitute (18) into the Bellman

5For an introduction to Markov chain and regime switching vector autoregressive mod-
els see e.g. Hamilton (1994).
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equations (17) (after using (14)) and compute the first-order conditions,
which give the following set of decision rules:

u(xt, i) = −Fixt i = 1, .., N (19)

where the set of Fi depend on the unknown matrices Vi, i = 1, .., N . By
substituting these decision rules back into the Bellman equations (17), and
equating the terms in the quadratic forms, we find a set of inter-related
Riccati equations, which can be solved for Vi, i = 1, .., N by iterating jointly
on them, that is:

[V1 . . . VN ] = T ([V1 . . . VN ]) . (20)

This set of Riccati equations defines a contraction over V1, . . . , VN , the fixed
point of which, T (·), is the solution. After lengthy matrix algebra, the
resulting system of Riccati equations can be written in compact form as:

Vi = R+ βG
£
A0V A|s=i

¤
−β2G £A0V B|s=i¤ ¡Q+ βG

£
B0V B|s=i

¤¢−1
G
£
B0V A|s=i

¤
(21)

where i = 1, .., N , and G(·) is a conditional operator defined as follows:

G
£
X 0V Y |s=i

¤
=

NX
j=1

X 0
j (pijVj)Yj

where X ≡ A,B; Y ≡ A,B. Written in this form the Riccati equations
contain ‘averages’ of different ‘matrix composites’ conditional on a given
state i.

Having found the set of Vi which solves (21), the matrices Fi in the
closed-loop decision rules (19) are given by:

Fi = (Q+ βG
£
B0V B|s=i

¤
)−1βG

£
B0V A|s=i

¤
i = 1, .., N (22)

Solving for the constant terms in the Bellman equations (17) after substitu-
tion of (19) gives (IN − βP ) d = βPΓ. The vector of scalars d = [d]i=1,...,N
in the value functions (18) is given by:

d = (IN − βP )−1 βPΓ (23)

where Γ = [tr (ViΣε)]i=1,...,N .
6

6The transition law (15) can be generalised to make the variance of the noise statistics
vary across states of the world, i.e.

xt+1 = A (st+1)xt +B (st+1)ut + C(st+1)εt+1

Assuming Eε (εtε
0
t) = I, then the covariance matrix of the white-noise additive shocks

would be Σ (st) = C (st)C (st)
0 or, to simplify notation, Σi = CiC

0
i (i = 1, ..,N). The

introduction of a state-contingent variance for the noise process does not affect the decision
rules ut = −Fixt but affects the value functions through Γ in (23): Γ = [tr (ViΣi)]i=1,...,N .
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The decision rules (19) depend on the uncertainty about which state of
the world will prevail in the future, as reflected in the transition probabilities
(16). Yet, the response coefficients (i.e. the entries in Fi) do not depend on
the variance-covariance matrix Σε of the zero-mean shock ε in (15). Thus,
with respect to ε certainty equivalence holds in that the policy rules (19)
are identical to the ones obtained by assuming that within each regime the
system behaves in a completely deterministic fashion. The noise statistics,
as is clear from (23), affect the objective function.

It is interesting to note that the above solutions incorporate the stan-
dard linear regulator solutions as two special cases. First, by setting the
transition matrix P = IN (i.e. N -dimensional identity matrix), one obtains
the solution of N separate linear regulator problems, each corresponding to
a different regime on the assumption that each regime will last forever (and
no switching to other regimes occurs). This case could be useful as a bench-
mark to see how the uncertainty about moving from one regime to another
impacts on the state-contingent rule. In other words, by setting P = IN ,
we are computing a set of rules which will differ from ones computed with
P 6= IN , in that the latter will be affected by the chance of switching to an-
other regime. Second, by choosing identical matrices (i.e. Ai = A, Bi = B),
the solution obtained is trivially that of a standard linear regulator problem
with a time-invariant law of transition.7

3.2 Complete solution

For greater clarity, the algorithm is given in steps below. It consists of two
main blocks: one solve the REH model with regime shifts given a feedback
rule, thereby putting it into backward looking form; the other solves the op-
timal control problem given the backward looking form. By iterating back
and forth on these two distinct blocks the algorithm converges to a solution
if one exists, perhaps with the use of some damping. The gist of the algo-
rithm is thus to make expectation formation and optimisation consistent,
through repeated iteration. It can be compared with the solutions given in
Appendix A.

7 In this case (22) reduces to:

F =
¡
Q+ βB0V B

¢−1
βB0V A

where V is the solution to the single Riccati equation:

V = R+ βA0V A− β2A0V B
¡
Q+ βB0V B

¢−1
B0V A

and (23) is the constant:

d = (1− β)−1 β · tr (VΣε) .

See e.g. Ljungqvist and Sargent (2000, pp. 56-58).
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Algorithm 2 We want to compute the optimal control of the following
economy:

xt = A (st)xt−1 +B (st)ut−1 +D (st)E [xt+1|It] + C (st) εt.

The algorithm is implemented in Matlabtm and uses intrinsic functions
(called RSSOLVE and ISRE). The algorithm consists of the following steps:

1. Assume an initial control law:

ut = −F (st)xt.

2. Form the augmented system (the goal here is to get rid of the control
and make sure that the stochastic matrices depend only on st, not on
(st, st−1)):·

Inx 0nx,nu
F (st) Inu

¸ ·
xt
ut

¸
=

·
A (st) B (st)
0 0

¸ ·
xt−1
ut−1

¸
+

·
D (st) 0
0 0

¸
E

·
xt+1
ut+1

|It
¸
+

·
C (st)
0

¸
εt

Premultiply by
·

Inx 0nx,nu
F (st) Inu

¸−1
(which clearly exists) to get:

zt = A+ (st) zt−1 +D+ (st)E [zt+1|It] + C+ (st) εt

where zt = [xt ut]
0.

3. The augmented system can be solved by RRSOLVE, yielding the equi-
librium law of motion:

zt = G (st) zt−1 +H (st) εt

(The bottom rows in the structural model above contains the policy
rule written as a function of the lagged state xt−1, the lagged control
ut−1, and expected future E [xt+1], and current shocks εt. The bottom
rows in the solution law of motion contain the policy rule written as a
function of its own lag, the lagged state, and the current shock).·

xt
ut

¸
=

·
Gxx (st) Gxu (st)
Gux (st) Guu (st)

¸ ·
xt−1
ut−1

¸
+

·
Hx (st)
Hu (st)

¸
εt

4. The upper part is used as an input into the optimal control toolbox:8

xt = Gxx (st)xt−1 +Gxu (st)ut−1 +Hx (st) εt

8The bottom part gives the policy rule as a function of the past states and controls:

ut = Gux (st)xt−1 +Guu (st)ut−1 +Hu (st) εt
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5. The optimal control obtained from ISRE is:

ut = −F (st)xt

6. Having obtained this, the next step is to check for convergence:°°°F (st)− F (st)
(0)
°°° < ε

If there is convergence (or too many iterations) terminate, otherwise
go to the next step.

7. Select the control law to use in the subsequent iteration:

F (st)
(1) = γF (st) + (1− γ)F (st)

(0)

where γ ∈ (0, 1] is appropriately chosen. A combination is necessary
to prevent the law of motion to move too further away from the stable
one, which ensures convergence.

We conclude this section with a number of remarks. First, this algorithm
has unknown numerical properties, as with the Oudiz and Sachs (1985)
method. This is a fixed point algorithm, modified to allow for a relaxation
parameter γ. This substantially improves convergence properties in some
cases.

Second, the algorithm could be made faster (and possibly more stable)
by iterating on the first order conditions rather than solving the optimal
control problem as in Oudiz and Sachs (1985). Our approach, however, has
the advantage that the two ‘blocks’ of the solution procedure are distinct.
In Appendix A we outline a modified Oudiz and Sachs (1985) approach.
However, sufficient damping has so far proved a reliable method for finding
the fixed point.

Third, the algorithm solves for the time-consistent Nash-Stackelberg
equilibrium. See Appendix A for a different Nash approach and Dennis
(2001) for a similar one.

Finally, an interesting extension to the algorithm of Section 1 is to intro-
duce stochastic re-optimisation by the policymaker (as in Roberds (1987)):
for example, if one can reformulate the problem in such a way that the
Lagrange multiplier is reset to zero stochastically, then one could solve the
problem using such algorithm.

4 Application

The algorithms above are developed with the intent to provide new insights
in the area of optimal monetary policy. As suggested by some authors,
monetary policy may optimally react differently if the model changes, say
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in a pre-bubble and a post bubble regime. It would also be affected by the
uncertainty that a bubble is not a rational bubble but reflects expectation
of a higher earnings or productivity regime, and so on. One immediate
application would be to compute the optimal policy which would be regime
contingent in the model, perhaps to study how monetary policy should react
to asset prices. Another potential interesting application is the study of how
asymmetric risk about future earnings affects households’ debt and saving
decisions. In this paper we look at how optimal policy is affected if the
structure of the economy might change in some specific way, and investigate
probabilities that key parameters change. We outline our model here, and
then the control and simulation experiments later.

4.1 A small open-economy model

We apply the methods discussed above to an open economy model. Ours
model embeds those of Batini and Nelson (2000) and Leitemo and Söder-
ström (2004) and enables us to discuss stochastic changes in parameters.
The model is in the tradition of New Keynesian policy models. It consists
of the following equations:

1. IS curve The now-standard intertemporal IS curve is used:

yt = φ [(1− θ)Etyt+1 + θyt−1]− σ (Rt −Etπt+1) + δqt−1 + vt

2. Phillips Curve A forward-looking Phillips curve with inertia:

πt = απt−1 + (1− α)Etπt+1 + φyyt−1 + φqqt−1 − φqqt−2 + ut

3. Uncovered interest parity Nominal exchange rate equation:

s̄t = Êtst+1 −Rt − kt − zt

4. Definition of q Real exchange rate definition:

qt − qt−1 = st − st−1 − πt

5. Expectations of s

Êts̄t+1 = ψEts̄t+1 + (1− ψ) sat+1,t

6. Adaptive expectations

sat+1,t = ξsat,t−1 + (1− ξ) st

12



7. IS shock

vt = ρvvt−1 + evt

8. Phillips curve shock

ut = ρuut−1 + eut

9. Risk premium/non-UIP factors

kt = ρkkt−1 + ekt

In addition there are a number of definitional equations we need for our
model form, which are the definition of q̄ as well as qt−1 and qt−2. We add
two new variables Rt−1 and Rt−2, necessary to add a smoothing target to
the cost function, i.e. (Rt −Rt−1)2. We give further details in Appendix B.

4.2 Experiments

In this paper we conduct the following experiments. We assume that there
is a structural break in some key parameters, e.g. α. We assume there is
some probability P of a permanent shift up or down. We then plot selected
response coefficients as a function of P .9

In the graphs we plot a mixture of experiments. Firstly, we assume in a
two-state model that there is a probability p that there will be a change in
the coefficient, and a probability q that once it has changed regime it will
switch back. Thus the Markov matrix is given by:

P =

·
1− p p
q 1− q

¸
.

In the first set of experiments we assume that q = 0, that is once a switch has
occurred there is no switch back. On the same graphs we plot a three-state
problem using the Markov matrix:

P =

 1− p 1
2p

1
2p

q 1− q 0
q 0 1− q


where there is equal likelihood of two changes–which we choose to be up
or down by the same amount–so we can get a handle on the certainty
equivalence of the results. This is the red (usually central) line on the
graphs.

We begin by assuming that all changes are expected to be permanent
(q = 0). In Figure 1 we show the effect of a change in α from the central

9 In future work we will look at optimal responses to ‘bubble’-like behaviour.
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Figure 1: Effect of changes in α

case of 0.8. An anticipated fall requires a more aggressive response to the
output gap for example, but only past some critical point. In Figure 2 we
show the same effect on σ. A similar pattern emerges, but with no marked
switching effect on the real exchange rate and output coefficients. Figure 3
illustrates an almost perfect certainty equivalence result for changes to the
exchange rate pass through coefficient, as the red line is near horizontal.

However if we consider changes to φy a different picture emerges (Figure
4). Here complicated tradeoffs between coefficients occur. This seems par-
ticularly true of the coeffcients on the real exchange rate and the inflation
rate. In Figure 5 changes to ϕ have small and predictable effects.

As φy seems an important parameter we plot this for different assump-
tions about q. Figure 6 refers to the case q =0.5, and Figure 7 refers to
q =0.25. The pattern of trade-offs in coefficients seems to be preserved.

5 Simulating the model

The above indicates how we calculate optimal policies. It has built into it
assumptions about agent and policymaker perceptions about each other’s
behaviour. Consider the following. Our control algorithm solves a fixed
point problem, which can be succinctly represented as follows:
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Figure 2: Effect of changes in σ
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Figure 3: Effect of changes in φq
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Figure 4: Effect of a change in φy
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Figure 5: Effect of changes in ϕ
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Figure 6: Effect of changes in φy, q = 0.5
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Figure 7: Effect of changes in φy, q = 0.2
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1. The policy maker (cb) computes policy u as a function of the proba-
bility P and the private sector’s (ps) expectations Eps, that is:

ucb = u(P, Eps).

2. In turn, the private sector forms expectations Eps as a function of the
probability P and the policy rule ucb, that is:

Eps = E (P, ucb)

3. Hence, ucb = u (P,Eps) = u (P,E (P, ucb)). The algorithm solves for
the fixed point ucb. It is assumed that P is the true probability gov-
erning the transition across regimes.

These expectations are determined by the various agent’s perceived val-
ues for P . All, some or none of these beliefs may be accurate. We can
simulate the model under a variety of assumptions about perceived values
for P .

5.1 Simulating the model under symmetric and asymmetric
beliefs

Policy and expectations can be set under different assumptions than above.
The assumptions regard what each agent believes or know about the world,
the probability and the other agent’s decision problem. There are a number
of cases that we consider, which are not exhaustive.

The first case we consider is one in which both agents share the same
beliefs about the probability matrix P (as well as everything else) but such
beliefs may be wrong. Let us indicate these beliefs with P̂ . The problem
can now be characterised by the pair of decision rules:

ucb = u(P̂ , Eps)

Eps = E(P̂ , ucb)

The problem is solved as before: ucb = u(P̂ , Eps) = u
³
P̂ , E (P, ucb)

´
with

the diffence being the different probability matrix P̂ . Once ucb and Eps have
been found, they can be substituted out from the true model, obtaining a
reduced form. This reduced form is the same as obtained under P̂ . However,
it needs to be simulated under the true (but unknown to agents) value of
P . One can compare responses under P̂ and P to gauge the possible errors
involved in selecting P̂ 6= P . If P is genuinely unknown, one can compute
the losses corresponding to the probability pairing

³
P̂ , P

´
, where P̂ are the

probabilities chosen by agents and P is the realisation of the true probability.
The losses can inform the selection of the ‘optimal’ P̂ that minimises risk.
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For example, it can be selected using a min-max criterion or some other
criterion.

The second case is one in which the private sector correctly perceives
P and perfectly knows the policy rule adopted by the policymaker. The
policymaker, on the other hand, has beliefs P̂ , which in general differ from
the true P , and also believes that the public shares those beliefs and hence
forms expectations according to E

³
P̂ , ucb

´
, i.e.:

ucb = u
³
P̂ , E

³
P̂ , ucb

´´
.

As the public correctly perceives P and the beliefs of the policymaker:

Eps = E (P, ucb) = E
³
P, u

³
P̂ , E

³
P̂ , ucb

´´´
.

To find the equilibrium solution, one needs to find the fixed point in ucb =

u
³
P̂ , E

³
P̂ , ucb

´´
, which is done using the standard algorithm. Then ucb

is substituted out from the true model. The solution algorithm for forward
looking models with regime shifts will contextually compute the expectations
Eps = E(P, ucb) based on the true P as well as the policy ucb computed in
the previous step.

A third case is one in which the policymaker and the private sector do
not share the same beliefs but perfectly understand each other’s beliefs and
decisions. Namely:

ucb = u(P̂ , Eps)

Eps = E(P̄ , ucb)

where in general P̂ 6= P̄ . Both P̂ and P̄ may also be different from the true
P . The standard algorithm needs to be modified to allow computation of this
case. If an equilibrium exists, we can designate it the ‘known disagreement’
equilibrium. A special case of this is a variation of case two illustrated above:
the policymaker chooses policy ucb = u

³
P̂ , Eps

´
knowing that the public

has knowledge of the true probability matrix P , i.e. Eps = E (P, ucb).
A fourth case is one in which a disagreement is unknown to both players:

ucb = u
³
P̂ , E

³
P̂ , ucb

´´
Eps = E

¡
P̄ , u

¡
P̄ , Eps

¢¢
.

The standard algorithm can be run twice to solve for ucb and for Eps sepa-
rately. Then, ucb and Eps need to be substituted out from the true model
to find the reduced form associated with this case.

There are, of course, many other cases which can be considered. Each
agent may form beliefs not only about the true model but also about the
other agent’s beliefs about the true model, beliefs about his own beliefs,
beliefs about his own beliefs over the other beliefs, and so on ad infinitum.
This problem of infinite regress is not dealt with here.

19



5.2 Learning

When simulating the model under the previous cases we implicitly assume
that agents do not learn through time. This is clearly not realistic but
there are two ways of defending the approach. First, the simulations help us
inform about the choice of P , and therefore we are actually learning from
them. Second, we could extend the algorithm to allow for passive learning.
In other words, agents updates their probabilities using (for example) a
Bayesian scheme in every period, but they make decision assuming that
these probabilities will not change in the future. This is in some ways
realistic: not all agents are so rational as to anticipate the way they will
learn in the future, i.e. know the law of motion of the probabilities. In
this case of passive learning, Bayesian techniques can be used to update
the probabilities period by period, and the above algorithm can be used to
compute the policymaker’s instrument choice as well as the private sector’s
expectations of future variables. A more sophisticated algorithm may record
the evolution of the probabilities and estimate a law of motion for them.
Thus the policymaker will need to solve a more sophisticated control problem
in which he has to allow for future variation in the probabilities.

6 Simulation results

We plot a variety of responses in the following graphs.

• Case 1: both agents incorporate uncertainty as well as each other
reactions.

• Case 2: only the central bank factors in uncertainty while the private
sector does not and assumes regime 1 persists forever.

• Case 3: the central bank has a certainty equivalent rule, which is
understood by the public, but the public factors in the probability of
a regime shift

In each of the graphs the blue line is the ‘certainty equivalent’ policy, so
that p = 0.

We concentrate on a break in α, as before possibly falling from 0.8 to
0.6. In Figure 8 we show a supply shock of unity and the assumption that
p = 0.5. Here the responses of the output gap, inflation, the real exchange
rate and interest rates are shown for each of the scenarios above. In Figure
9 we show the interest rate responses for this and other shocks. In Figure
10 we repeat the analysis for p = 0.25. It is clear that the perceptions of
the various players can matter a great deal.

Now consider Figure 11. This simulation assumes break in α jumping
down to 0.6 from 0.8. There is an initial negative inflationary shock and then
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Figure 8: α goes from 0.8 to 0.6 with p = 0.5
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Figure 10: α goes from 0.8 to 0.6 with p = 0.25

the break in α occurs in period 3 (with probability 50% we would expect
the breaks to concentrate mostly in period 2 and 3). You can see that not
taking into account uncertainty produces a somewhat ‘bumpier’ economy.
Note that when the break occurs, in all cases the policymaker can observe the
break and switches to the same policy rule. However, because the system is
at that point in a different state following the different policies, the responses
follow different paths from that point onwards, though all converging in the
long run towards equilibrium. In Figure 12 we reduce the probability to
0.25. What does this imply? Policy should be loosened less in response to
a negative shock but should then return more gradually to neutral stance.

7 Conclusions

In this paper we have investigated optimal time-consistent monetary policy
when the model is subject to regime shifts driven by Markov processes. We
have barely scratched the surface of the control and simulation experiments
that can be carried out. We in general find that policies are more cautious
with this form of uncertainty. Recall that we are considering time consistent
policies. If the monetary authorities are unable to affect expectations at all
it may be that they would do almost nothing.

We have tried out a number of possible simulation scenarios. As the main
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Figure 11: Negative inflation shock, break to α in period 3, p = 0.5
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Figure 12: Negative inflation shock, break to α in period 3, p = 0.25
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source of uncertainty here is the Markov process and not the model (we know
all the alternative models or parameterisations) and indeed how likely we
are to switch between them. It is an interesting problem to extend this
model to the case in which we are uncertain about the Markov process and
model the learning over that rather than behavioural parameters directly.

In future work we also plan to examine optimal time-consistent policy
responses to asset price volatility.
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A State space solutions

A.1 A generalised rational expectations solution

Define a rational expectations model in state space as:·
zt

E [xt+1|It]
¸
=

·
Ai
11 Ai

12

Ai
21 Ai

22

¸ ·
zt−1
xt

¸
. (24)

We seek a solution of the form:

xt = −N izt−1 (25)

where we recognise that there may be a change in regime of some sort. For
two possible regimes this means that E [xt+1|It] = −(pi1N1+pi2N

2)E [zt|It]
for a model in ‘state 1’ or, more generally, for l possible regimes:

E [xt+1|It] = −
 lX

j=1

pijN
j

E [zt|It] (26)

for the ith regime. Using this in the model (24) gives:

−
 lX

j=1

pijN
j

 ¡Ai
11zt−1 +Ai

12xt
¢
= Ai

21zt−1 +Ai
22xt (27)
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implying:

−
 lX

j=1

pijN
j

Ai
12 +Ai

22

xt

=

 lX
j=1

pijN
j

Ai
11 +Ai

21

 zt−1 (28)

or:

xt = −
³
Ñ iAi

12 +Ai
22

´−1 ³
Ñ iAi

11 +Ai
21

´
zt−1

= −N izt−1.

where Ñ i =
Pl

j=1 pijN
j . We can develop an iteration based on this as:

Ñ1
k+1 =

lX
i=1

p1iN
i
k+1

N1
k =

³
Ñ1
k+1A

1
12 +A122

´−1 ³
Ñ1
k+1A

1
11 +A121

´
Ñ2
k+1 =

lX
i=1

p2iN
i
k+1

N2
k =

³
Ñ2
k+1A

2
12 +A222

´−1 ³
Ñ2
k+1A

2
11 +A221

´
...

Ñ l
k+1 =

lX
i=1

pliN
i
k+1

N l
k =

³
Ñ l
k+1A

l
12 +Al

22

´−1 ³
Ñ l
k+1A

l
11 +Al

21

´
which continues until convergence. Thus in equilibrium for the ith regime
we get:

−
 lX

j=1

pijN
j

 ¡Ai
11 −Ai

12N
i
¢
=
¡
Ai
21 −Ai

22N
i
¢

(29)

as the solution to the ith linked Riccati-type equation.10

A number of remarks should be made. First, in common with Oudiz
and Sachs (1985) we assume that

³
Ñ i
k+1A

i
12 +Ai

22

´
is non-singular. This is

almost always the case in our experience. Secondly, if the model is instead:·
Ei
11 Ei

12

Ei
21 Ei

22

¸ ·
zt

E [xt+1|It]
¸
=

·
Ai
11 Ai

12

Ai
21 Ai

22

¸ ·
zt−1
xt

¸
(30)

10See Blake (2004) for a discussion of the types of Riccati equations used in rational
expectations solutions.
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we can develop an equivalent iteration based on Blake and Pierse (2004) as
long as their assumptions hold for time consistent control, i.e. Ei

11 and Ai
22

are non-singular. Indeed, the semi-structural form model can be written:·
I 0
0 Bi

¸ ·
xt

E [xt+1|It]
¸
=

·
0 I
−Ai I

¸ ·
xt−1
xt

¸
(31)

which conforms to those restrictions. Finally, if the regimes are all the same
then the solution reduces down to:

−N (A11 −A12N) = (A21 −A22N) (32)

which could be solved using the method of Blanchard and Kahn (1980) or
iteratively as above.

A.2 Control

Let the control model in state space be:·
zt

E [xt+1|It]
¸
=

·
Ai
11 Ai

12

Ai
21 Ai

22

¸ ·
zt−1
xt

¸
+

·
Bi
1

Bi
2

¸
ut. (33)

We can apply the solutions of the previous section to yield:

xt = −
³
Ñ iAi

12 +Ai
22

´−1 ³
Ñ iAi

11 +Ai
21

´
zt−1

−
³
Ñ iAi

12 +Ai
22

´−1 ³
Ñ iBi

1 +Bi
2

´
ut

= −J izt−1 −Kiut. (34)

For a given feedback rule, say ut = −F izt, then:

xt = −(J i −KiF i)zt−1
= −N izt−1. (35)

Now consider the discounted quadratic objective function:

Ct =
1

2

∞X
t=0

βt
¡
y0tQyt + u0tRut

¢
(36)

where yt = C

·
zt−1
xt

¸
+Dut. This is minimised subject to (33) and a time

consistency restriction. We next sketch a solution in the standard case and
then for the Markov switching case.

To simplify what follows let:

Γt = y0tQyt + u0tRut

=
£
z0t−1 x0t

¤
C0QC

·
zt−1
xt

¸
+ 2u0tD

0QC
·
zt−1
xt

¸
+ u0t(R+D0QD)ut

= s0tQ̃st + 2u
0
tŨst + u0tR̃ut

where st =
·
zt−1
xt

¸
.
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A.2.1 Standard time consistent policies

The ‘standard’ Oudiz and Sachs (1985) dynamic programming solution is
obtained from the following. Write the value function as:

Vt =
1

2
s0tStst = minut

1

2

¡
y0tQyt + u0tRut

¢
+

β

2
s0t+1St+1st+1. (37)

Note that the first line of the model is:

zt = A11zt−1 +A12xt +B1ut (38)

which we substitute in as the constraint. We can obtain the following deriv-
atives:

∂Vt
∂ut

= R̃ut + βB01St+1zt (39)

∂Vt
∂xt

= βA012St+1zt (40)

∂xt
∂ut

= −K (41)

with the last obtained from (34), our time consistency restriction. This
reflects intra-period leadership with respect to private agents, so can be
seen as reflecting Stackelberg behaviour. Using (34) we can also write (38)
as:

zt = (A11 −A12J)zt−1 + (B1 −A12K)ut. (42)

We can use (39)—(41) and (42) to obtain the first order condition:

∂Vt
∂ut

+
∂Vt
∂xt

∂xt
∂ut

=
¡
R+ β(B01 −K 0A012)St+1(B1 −A12K)

¢
ut

+β(B01 −K 0A012)St+1(A11 −A12J)zt−1
= 0

⇒ ut = −β ¡R+ β(B01 −K 0A012)St+1(B1 −A12K)
¢−1

× ¡(B01 −K 0A012)St+1(A11 −A12J)
¢
zt−1

= −FSzt−1 (43)

with the subscript emphasising the Stackelberg equilibrium. The value func-
tion can be written:

z0t−1Stzt−1 = z0t−1
¡
Q+ F 0SRFS + β(A011 − J 0A012 − F 0S(B

0
1 −K 0A012))

×St+1(A11 −A12J − (B1 −A12K)FS)) zt−1

implying:

St = Q+F 0SRFS+β(A011−N 0A012−F 0SB01)St+1(A11−A12N−B1FS) (44)
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where N = J −KFS.
Note we could assume that ∂xt/∂ut = 0, the Nash assumption, and

instead obtain:
∂Vt
∂ut

=
¡
R+ βB01St+1(B1 −A12K)

¢
ut

+βB01St+1(A11 −A12J)zt−1 = 0

⇒ ut = −β ¡R+ βB01St+1(B1 −A12K)
¢−1

× ¡B01St+1(A11 −A12J)
¢
zt−1

= −FNzt−1 (45)

with associated Riccati equation:

St = Q+F 0NRFN +β(A011−N 0A012−F 0NB
0
1)St+1(A11−A12N −B1FN )

with N = J−KFN now. This gives us a second time consistent equilibrium
to investigate.

A.2.2 Markov switching models

We now turn to the case with random matrices and follow the approach of
Zampolli (2004). We modify the value function for the ith regime to:

V i
t = minut

1

2

¡
z0t−1Qzt−1 + u0tRut

¢
+ βEtV̂

i
t+1 (46)

where we need to make some assumption about V̂ i
t+1. In common with what

went before we will weight the forward value function by the probability
that it comes to pass. However, the information set assumed will determine
the exact form.

In either case the required modification is very simple, and it is easy
to see that one possibility is to replace the last term with the probability
weighted values of the alternative future value functions to give:

1

2
z0t−1S

i
tzt−1 = minut

1

2

¡
z0t−1Qzt−1 + u0tRut

¢
+

β

2
zi0t S̃

i
t+1z

i
t. (47)

where:

zit = (A
i
11 −Ai

12J
i)zt−1 + (Bi

1 −Ai
12K

i)ut

and X̃i =
Pl

j=1 pijX
j for any X, the same as the weight scheme we had

before for the expectations generating mechanism. In so doing we are as-
suming that the policymaker identifies the regime that they currently face
but is uncertain about the future one. If uncertainty extended to the current
regime, then the optimisation problem would be:

1

2
z0t−1S

i
tzt−1 = minut

1

2

¡
z0t−1Qzt−1 + u0tRut

¢
+

β

2
z̃0tS̃

i
t+1z̃t. (48)

29



where:

z̃t = (Ã
i
11 − Ãi

12J̃)zt−1 + (B̃
i
1 − Ãi

12K̃)ut

as policymakers would only know the previous policy regime, i, and the
transition probabilities from that regime and so must ‘average’ the models
to give the anticipated state.

For the first case, the first order condition then yields:

∂V i
t

∂ut
+

∂V i
t

∂xt

∂xt
∂ut

=
³
R+ β(Bi0

1 −Ki0Ai0
12)S̃

i
t+1(B

i
1 −Ai

12K
i)
´
ut

+β(Bi0
1 −Ki0Ai0

12)S̃
i
t+1(A

i
11 −Ai

12J
i)zt−1 = 0

⇒ ut = −β
³
R+ β(Bi0

1 −Ki0Ai0
12)S̃

i
t+1(B

i
1 −Ai

12K
i)
´−1

×
³
(Bi0

1 −Ki0Ai0
12)S̃

i
t+1(A

i
11 −Ai

12J
i)
´
zt−1

= −F i
Szt−1

for the Stackelberg case. Substituting into the value function we have the
following Ricatti-type equation for regime i:

Si
t = Q+F i0

SRF
i
S +β(Ai0

11−N i0Ai0
12−F i0

SB
i0
1 )S̃

i
t+1(A

i
11−Ai

12N
i−Bi

1F
i
S)

where N i = J i −KiF i
S.

In the second case, we get the Stackelberg solution:

∂V i
t

∂ut
+

∂V i
t

∂xt

∂xt
∂ut

=
³
R+ β(B̃i0

1 −Ki0Ãi0
12)S̃

i
t+1(B̃

i
1 − Ãi

12K
i)
´
ut

+β(B̃i0
1 −Ki0Ãi0

12)S̃
i
t+1(Ã

i
11 − Ãi

12J
i)zt−1 = 0

⇒ ut = −β
³
R+ β(B̃i0

1 −Ki0Ãi0
12)S̃

i
t+1(B̃

i
1 − Ãi

12K
i)
´−1

×
³
(B̃i0

1 −Ki0Ãi0
12)S̃

i
t+1(Ã

i
11 − Ãi

12J
i)
´
zt−1

= −F i
Szt−1

with:

Si
t = Q+F i0

SRF
i
S+β(Ai0

11−N i0Ai0
12−F i0

SB
i0
1 )S̃

i
t+1(A

i
11−Ai

12N
i−Bi

1F
i
S).

A.3 Iterative schemes

Consider the Stackelberg equilibrium with current state information for
every participant. A possible solution scheme is shown in Table 1. We
can develop Nash solutions by deleting the relevant part of the policy rules.
The resulting modified algorithm in Table 2.

The ‘no current information for the policymaker’ solutions involve prob-
ability averaging the matrices A11, A12 and B1 in the recursions for F and
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S. The resulting algorithmns are given in Tables 3 and 4. Note that this
involves different data sets for agents and policymakers, emphasised by the
lack of the tilde’s over the system matrices in the equations determining J
and K.

We need to note the termination rules that we should observe. In the
tables we merely terminate when the period count reaches 0. We would
normally terminate iteration before this if the matrices have converged to
a steady state. In general, without the stochastic matrices, we would stop
when abs(max(Nt+1−Nt)) < � and abs(max(St+1−St)) < � for some small
�. This does not work for the stchastic matrix case, as the future values are
always probability weighted, so we need to store N and S between iterations
separately.
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Table 1: FBS

Si
T = S̄, N i

T = N̄ , for i = 1, ..., l.
for t = T − 1, 0
for i = 1, l

Ñ i
t+1 =

Pl
j=1pijN

j
t+1

S̃i
t+1 =

Pl
j=1pijS

j
t+1

J i =
³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1A

i
11 +Ai

21

´
Ki =

³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1B

i
1 +Bi

2

´
F i
S = β

³
R+ β(Bi0

1 −Ki0Ai0
12)S̃

i
t+1(B

i
1 −Ai

12K
i)
´−1

×
³
(Bi0

1 −Ki0Ai0
12)S̃

i
t+1(A

i
11 −Ai

12J
i)
´

N i
t = J i −KiF i

S

Si
t = Q+ F i0

SRF
i
S + β(Ai0

11 −N i0
t A

i0
12 − F i0

SB
i0
1 )

×S̃it+1(Ai
11 −Ai

12N
i
t −Bi

1F
i
S)

endfor
endfor
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Table 2: FBN

Si
T = S̄, N i

T = N̄ , for i = 1, ..., l.
for t = T − 1, 0
for i = 1, l

Ñ i
t+1 =

Pl
j=1pijN

j
t+1

S̃i
t+1 =

Pl
j=1pijS

j
t+1

J i =
³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1A

i
11 +Ai

21

´
Ki =

³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1B

i
1 +Bi

2

´
F i
N = β

³
R+ βBi0

1 S̃
i
t+1(B

i
1 −Ai

12K
i)
´−1

Bi0
1 S̃

i
t+1(A

i
11 −Ai

12J
i)

N i
t = J i −KiF i

N

Si
t = Q+ F i0

NRF
i
N + β(Ai0

11 −N i0
t A

i0
12 − F i0

NB
i0
1 )

×S̃it+1(Ai
11 −Ai

12N
i
t −Bi

1F
i
N )

endfor
endfor
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Table 3: FBS, policy information lag

Si
T = S̄, N i

T = N̄ , Ãi
11 =

Pl
j=1 pijA

j
11, Ã

i
12 =

Pl
j=1 pijA

j
12

and B̃i
1 =

Pl
j=1 pijB

j
1 for i = 1, ..., l.

for t = T − 1, 0
for i = 1, l

Ñ i
t+1 =

Pl
j=1pijN

j
t+1

S̃i
t+1 =

Pl
j=1pijS

j
t+1

J i =
³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1A

i
11 +Ai

21

´
Ki =

³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1B

i
1 +Bi

2

´
F i
S = β

³
R+ β(B̃i0

1 −Ki0Ãi0
12)S̃

i
t+1(B̃

i
1 − Ãi

12K
i)
´−1

×
³
(B̃i0

1 −Ki0Ãi0
12)S̃

i
t+1(Ã

i
11 − Ãi

12J
i)
´

N i
t = J i −KiF i

S

Si
t = Q+ F i0

SRF
i
S + β(Ãi0

11 −N i0
t Ã

i0
12 − F i0

S B̃
i0
1 )

×S̃it+1(Ãi
11 − Ãi

12N
i
t − B̃i

1F
i
S)

endfor
endfor
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Table 4: FBN, policy information lag

Si
T = S̄, N i

T = N̄ , Ãi
11 =

Pl
j=1 pijA

j
11, Ã

i
12 =

Pl
j=1 pijA

j
12 and B̃i

1 =Pl
j=1 pijB

j
1 for i = 1, ..., l.

for t = T − 1, 0
for i = 1, l

Ñ i
t+1 =

Pl
j=1pijN

j
t+1

S̃i
t+1 =

Pl
j=1pijS

j
t+1

J i =
³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1A

i
11 +Ai

21

´
Ki =

³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1B

i
1 +Bi

2

´
F i
S = β

³
R+ βB̃i0

1 S̃
i
t+1(B̃

i
1 − Ãi

12K
i)
´−1

B̃i0
1 S̃

i
t+1(Ã

i
11 − Ãi

12J
i)

N i
t = J i −KiF i

S

Si
t = Q+ F i0

SRF
i
S + β(Ãi0

11 −N i0
t Ã

i0
12 − F i0

S B̃
i0
1 )

×S̃it+1(Ãi
11 − Ãi

12N
i
t − B̃i

1F
i
S)

endfor
endfor
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B Model in semi-structural form

The model can be written:

Hxt = Axt−1 +But−1 +DEt[xt+1|It] +Cεt

where the x, u and ε vectors are defined as:
xt

1 yt
2 πt
3 s̄t
4 qt
5 Êts̄t+1 or Êtst+1
6 sat+1,t
7 vt
8 ut
9 kt
10 q̄t
11 q̄t−1
12 qt−1
13 qt−2
14 Rt−1
15 Rt−2
16 c
17 zt
18 bt
19 st

ut

1 Rt

εt

1 evt
2 eut
3 ekt
4 ezt .

Note that the model as set up above includes some state variables not used
in the current version of this paper: z is the bubble to the exchange rate
as defined in Batini and Nelson (2000); b is an alternative definition of
bubble, defined by us as the deviation of the nominal exchange rate s from
its fundamental value s̄ (as determined by the uncovered interest parity).

The parameters, similar to Batini and Nelson (2000) and Leitemo and
Söderström (2004), were set as φ = 0.9, θ = 0.7, σ = 0.2, δ = 0.05, α = 0.8,
φy = 0.1, φq = 0.025, ψ = 1 (full rationality unless stated otherwise; in
examining learning we set the updating parameter to ξ = 0.1), ρv = 0,
ρu = 0 and ρk = 0.753 consistent with a small open economy. The shock
variances were set as σv = 1%, σu = 0.5%, and σk = 0.92%.

Finally, the policymaker’s preferences were set (in the main case) to be
β = 1, λy = 1, λπ = 2 and λ∆R = 0.1.
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B.1 Loss function

Period function:

x0tRxt + u0tQut + 2x
0
tWut

R =



λy 0 0 0 0 0 0 0 0 0 0 0
0 λπ 0 ... 0
0 0 0 ... 0

0

...

0 0 0 ... 0



Q = [λ∆R]

W =



0
0
0
0
0
0
0
0
0
0

−λ∆R

0


So 2x0tWut = 2 (−Rt−1λ∆R)Rt = −2λ∆RRtRt−1
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