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Abstract

We explore whether forecasting an aggregate variable using information
on its disaggregate components can improve the prediction mean squared
error over forecasting the disaggregates and aggregating those forecasts, or
using only aggregate information in forecasting the aggregate. An implica-
tion of a theory of prediction is that the first should outperform the alternative
methods to forecasting the aggregate in population. However, forecast mod-
els are based on sample information. The data generation process and the
forecast model selected might differ. We show how changes in collinearity
between regressors affect the bias-variance trade-off in model selection and
how the criterion used to select variables in the forecasting model affects
forecast accuracy. We investigate why forecasting the aggregate using in-
formation on its disaggregate components improves forecast accuracy of the
aggregate forecast of Euro area inflation in some situations, but not in others.
The empirical evidence on Euro-zone inflation forecasts suggests that more
information can help, more so by including macroeconomic variables than
disaggregate components.
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1 Introduction

Forecasts of marcoeconomic aggregates are used by the private sector, governmen-
tal and international institutions as well as central banks. Recently there has been
renewed interest in the effect of contemporaneous aggregation in forecasting. For
example, one issue has been the potential improvement in forecast accuracy de-
livered by forecasting the component indices and aggregating such forecasts, as
against simply forecasting the aggregate itself.1 The theoretical literature shows
that aggregating component forecasts improves over directly forecasting the ag-
gregate if the data generating process is known. If the data generating process is
not known and the model has to be estimated, it depends on the unknown data gen-
erating process whether the disaggregated approach improves the accuracy of the
aggregate forecast. It might be preferable to forecast the aggregate directly. Since
in practice the data generating process is not known, it remains an empirical ques-
tion whether aggregating forecasts of disaggregates improves forecast accuracy of
the aggregate of interest. For example, the results in Hubrich (2004) indicate that
aggregating forecasts by component does not necessarily help to forecast year-on-
year Eurozone inflation twelve months ahead.

In this paper, we suggest an alternative use of disaggregate information to fore-
cast the aggregate variable of interest, that is to include the disaggregate informa-
tion or disaggregate variables in the model for the aggregate as opposed to fore-
casting the disaggregate variables separately and aggregating those forecasts.

We show that disaggregating elements of the information setIT−1 into their
components cannot lower predictability of a given aggregateyT . We focus on
disaggregation across variables (such as sub-indices of a price measure). Disag-
gregation may also be considered across space (e.g., regions of an economy), time
(higher frequencies), or all of these. The predictability concept considered in this
paper concerns a property in population of the variable of interest in relation to
an information set. A related predictability concept is discussed by Diebold &
Kilian (2001). Whereas that paper considers measuring predictability of different
variables based on one information set, we investigate predictability of the same
variable based on different information sets. In contrast to predictability as a prop-
erty in population, we use ’forecastability’ to refer to the improvement in forecast
accuracy related to the sample information given the unconditional moments of a

1See e.g. Espasa, Senra & Albacete (2002), Hubrich (2004) and Benalal, Diaz del Hoyo, Lan-
dau, Roma & Skudelny (2004); see also Fair & Shiller (1990) for a related analysis for US GNP).
Contributions to the theoretical literature on aggregation versus disaggregation in forecasting can be
found in e.g. Grunfeld & Griliches (1960), Kohn (1982), Lütkepohl (1984, 1987), Pesaran, Pierse &
Kumar (1989), Van Garderen, Lee & Pesaran (2000); see also Lütkepohl (2004) for a recent review
on forecasting aggregated processes by VARMA models.
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variable. Potential misspecification of the forecast model due to model selection
and estimation uncertainty as well as data measurement errors and structural breaks
will affect the accuracy of the resulting forecast and help to explain why theoret-
ical results on predictability are not confirmed in empirical applications (see also
Hendry (2004) and Clements & Hendry (2004a)).

In contrast to most previous papers on disaggregation in forecasting that are
set up in a VAR framework, our proposal for including disaggregate variables in
the aggregate model, gives rise to a classical model selection problem. We anal-
yse model selection and estimation in the conditional model. We condition on We
particularly focus on model selection for forecasting, the role of model misspeci-
fication in the forecast period and changes in collinearity between regressors. The
degree of misspecification, i.e. the deviation of the forecast model from the true
data generating process in the forecast period, is not known in practice. Although
the predictability theory provides a useful guide for forecasting, we need to empir-
ically investigate the usefulness of different methods of model selection to include
disaggregate information for euro area inflation. Thereby we extend the results in
Hubrich (2004) and relate our empirical findings to the analytical results presented
in the previous sections.

The paper is organised as follows. First, section 2 briefly reviews the notion
of (un-)predictability and its properties most relevant to our subsequent analysis.
Then we show that adding lagged information on disaggregates to a model of an
aggregate must improve predictability. However, an improvement in predictabil-
ity is a necessary, but not sufficient condition for an improvement in the forecast
accuracy. In section 3, we investigate the effect of model selection and estimation
uncertainty on the forecast accuracy in a conditional model with particular refer-
ence to forecasting the aggregate when disaggregate information is included in the
aggregate model. Section 4 notes an extension to dynamic forecasts for horizons
larger than one. In section 5, we investigate in a simulated out-of-sample exper-
iment whether adding lagged values of the sub-indices of the Harmonized Index
of Consumer Prices (HICP) to a model of the aggregate improves the accuracy of
forecasts of that aggregate relative to forecasting the aggregate HICP only using
lagged aggregate information, or aggregating forecasts of those sub-indices. Sec-
tion 6 concludes.

2 Improving predictability by disaggregation

In this section the notion of predictability and its properties most relevant to our
subsequent analysis are reviewed first, before we address the issue of predictability
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and disaggregation.2

2.1 Predictability and its properties

A non-degenerate vector random variableνt is unpredictable with respect to an
information setIt−1 (which always includes the sigma-field generated by the past
of νt) over a periodT = {1, . . . , T} if its conditional distributionDνt (νt|It−1)
equals its unconditionalDνt (νt):

Dνt (νt | It−1) = Dνt (νt) ∀t ∈ T . (1)

Unpredictability, therefore, is a property ofνt in relation toIt−1 intrinsic to νt.
Predictability requires combinations withIt−1, as for example in:

yt = φt (It−1, νt) (2)

soyt depends on both the information set and the innovation component. Then:

Dyt (yt | It−1) 6= Dyt (yt) ∀t ∈ T . (3)

The special case of (2) relevant here (after appropriate data transformations, such
as logs) is predictability in mean:

yt = ft (It−1) + νt. (4)

Other cases of (2) which are potentially relevant are considered in Hendry (2004).
In (4),yt is predictable in mean even ifνt is not as:

Et [yt | It−1] = ft (It−1) 6= Et [yt] ,

in general. Since:

Vt [yt | It−1] < Vt [yt] when ft (It−1) 6= 0 (5)

predictability ensures a variance reduction.
Predictability is obviously relative to the information used. Given an informa-

tion set,Jt−1 ⊂ It−1 when the process to be predicted isyt = ft (It−1) + νt as
in (4), less accurate predictions will result, but they will remain unbiased. Since
Et [νt|It−1] = 0:

Et [νt | Jt−1] = 0,

2The theory of economic forecasting in Clements & Hendry (1998, 1999) for non-stationary pro-
cesses subject to structural breaks, where the forecasting model differs from the data generating
mechanism, is rooted in the properties of (un-)predictability. Hendry (2004) considers the founda-
tions of this predictability concept in more detail.
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so that:
Et [yt | Jt−1] = Et [ft (It−1) | Jt−1] = gt (Jt−1) ,

say. Letet = yt − gt (Jt−1), then, providingJt−1 is a proper information set
containing the history of the process:

Et [et | Jt−1] = 0,

soet is a mean innovation with respect toJt−1.
However, as:

et = (ft (It−1)− gt (Jt−1)) + νt = wt−1 + νt

(say) whereE [wt−1ν
′
t] = 0 then:

Et [et | It−1] = ft (It−1)− Et [gt (Jt−1) | It−1] = ft (It−1)− gt (Jt−1) 6= 0.

As a consequence of this failure ofet to be an innovation with respect toIt−1:

E
[
ete′t

]
= E

[
(νt + wt−1) (νt + wt−1)

′]

= E
[
νtν

′
t

]
+ E

[
νtw′

t−1

]
+ E

[
wt−1ν

′
t

]
+ E

[
wt−1w′

t−1

]

= E
[
νtν

′
t

]
+ E

[
wt−1w′

t−1

]

≥ E
[
νtν

′
t

]

where strict equality follows unlesswt−1 = 0 ∀t.
Nevertheless, that predictions fromJt−1 remain unbiased on the reduced in-

formation set suggests that, by itself, incomplete information is not fatal to the
forecasting enterprise.

In particular, disaggregating components ofIT−1 into their elements cannot
lower predictability of a given aggregateyT , where such disaggregation may be
across space (e.g., regions of an economy), time (higher frequency), variables
(such as sub-indices of a price measure), or all of these. These attributes sug-
gest forecasting using general models to be a preferable strategy, and provide a
formal basis for including as much information as possible, being potentially con-
sistent with many-variable ‘factor forecasting’ (see e.g. Stock & Watson (2002),
and Forni, Hallin, Lippi & Reichlin (2000)), and with the benefits claimed in the
‘pooling of forecasts’ literature (e.g., Clemen, 1989; Clements & Hendry, 2004b,
for a recent theory). Although such results run counter to the common finding in
forecasting competitions that ‘simple models do best’ (see e.g. Makridakis & Hi-
bon, 2000; Allen & Fildes, 2001; Fildes & Ord, 2002), Clements & Hendry (2001)
suggest that simplicity is confounded with robustness.

5



2.2 Predictability and disaggregation

The previous section concerns adding content to the information setJt−1 to deliver
IT−1. One form of adding information is via disaggregation of the target variable
yT into its componentsyi,T althoughDyT+1 (yT+1|·) remains the target of interest.
We consider only two components and a scalar process to illustrate the analysis,
which clearly generalizes to many components and a vector process.

Consider a scalaryt to be forecast, composed of:

yT+1 = w1,T+1y1,T+1 + w2,T+1y2,T+1 (6)

with the weightsw1,T+1 andw2,T+1 = (1 − w1,T+1) for each of the two compo-
nents. It may be thought that, when theyi,t themselves depend in different ways on
the general information setIt−1, which by construction includes theσ–field gen-
erated by the past of theyi,t−j , predictability could be improved by forecasting the
disaggregates and aggregating those forecasts to obtain those foryT+1. However,
let:

ET+1 [yi,T+1 | IT ] = δ′i,T+1IT (7)

which is the conditional expectation of each componentyi,T+1 and hence is the
minimum mean-square error (MSE) predictor. Then, taking conditional expecta-
tions in (6), aggregating the two terms in (7) deliversET+1[yT+1|IT ]:

ET [yT+1 | IT ] =
2∑

i=1

wi,T+1ET+1 [yi,T+1 | IT ] =
2∑

i=1

wi,T+1δ
′
i,T+1IT = λ′T+1IT (say).

By way of comparison, consider predictingyT+1 directly fromIT :

ET+1 [yT+1 | IT ] = φ′T+1IT , (8)

soφT+1 = λT+1 with a prediction error:

yT+1 − ET+1 [yT+1 | IT ] = vT+1 (9)

which is unpredictable fromIT and hence nothing is lost predictingyT+1 directly
instead of aggregating component predictions once the general information setIT

is used. In practice, if both the weightswi,T+1 and the coefficients of the compo-
nent modelsδ′i,T+1 change more than the coefficients of the aggregate modelλT+1,
forecasting the aggregate directly could well be more accurate than aggregating the
component forecasts. Thus, the key issue in (say) aggregate inflation prediction is
not predicting the component price changes, but including those components in the
information setIT . This result implies that weights are not needed for aggregating
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component forecasts, and also saves the additional effort of specifying disaggregate
models for the components.

Including the components in the information setIT is quite distinct from re-
stricting information to lags of aggregate inflation, an information set we denote
byJT . Then:

ET+1 [yT+1 | JT ] = ψ′T+1JT ,

so that usingyT+1 from (8) and (9) gives:

yT+1 − ET+1 [yT+1 | JT ] = φ′T+1IT − ψ′T+1JT + vT+1, (10)

which must have largerMSE than (9), since according to section 2.1, although the
predictions based onIT andJT are both unbiased, the prediction based on the
smaller information setJT , here only including the lags of aggregate inflation and
no disaggregate information, is less accurate, and has a larger variance than the
forecast based onIT . If yT+1 was unpredictable from both information sets, i.e.
ψT+1 = φT+1 = 0, then (9) and (10) would have equalMSE.

2.3 Example

Let the DGP be a vector autoregression of order one in the componentsyi,t:

(
y1,t

y2,t

)
=

(
π11 π12

π21 π22

)(
y1,t−1

y2,t−1

)
+

(
v1,t

v2,t

)
(11)

whereE[vt] = 0, E[vtv′t] = Σv andE[vtv′s] = 0 for all s 6= t. Furthermore,
yt = w1,ty1,t + (1− w1,t) y2,t, as in a price index, where weights shift with value
shares, leading to:

yt = w1,t [(π11 − π21) y1,t−1 + (π12 − π22) y2,t−1] + π21y1,t−1 + π22y2,t−1

+w1,tv1,t + (1− w1,t) v2,t.
(12)

2.3.1 Disaggregate forecasting model: True disaggregate process known

The disaggregate forecasting model for known parameters is:

(
ŷ1,T+1|T
ŷ2,T+1|T

)
=

(
π11 π12

π21 π22

)(
y1,T

y2,T

)
,

with:
ŷT+1|T = w1,T+1ŷ1,T+1|T + w2,T+1ŷ2,T+1|T .
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Thus, the forecast error from forecasting the disaggregate components and aggre-
gating those forecasts is:

yT+1 − ŷT+1|T = w1,T+1

(
y1,T+1 − ŷ1,T+1|T

)
+ w2,T+1

(
y2,T+1 − ŷ2,T+1|T

)
= w1,T+1v1,T+1 + w2,T+1v2,T+1

(13)
which is unpredictable, independent of whether the weights are known or not
known.

2.3.2 Aggregate forecasting model with known parameters: True disaggre-
gate process known

In contrast to the first example where the disaggregate forecasting model is fitted
to the process, consider restricting the information set underlying the forecasting
model to lags ofyt alone, with no disaggregates used. Furthermore, the true ag-
gregate process is assumed known so that the true parameters of the aggregate
forecasting model are known to the forecaster. In the following, to simplify the
presentation, it is assumed thatw1,t = w2,t = 1,3 so thatyt = y1,t + y2,t. Then the
aggregateyt based on the true disaggregate process (11) can be represented by an
ARMA(2,1) process (for a proof see e.g. Lütkepohl, 1987, Ch.4,1984a).

The VAR in (11) can be written asΠ(L)yt = vt:
(

1− π11L −π12L
−π21L 1− π22L

)(
y1,t

y2,t

)
=

(
v1,t

v2,t

)
. (14)

Multiplying (14) by the adjointΠ(L)∗ of the VAR operatorΠ(L) gives:
(

1− a1 − a2L
2 0

0 1− a1 − a2L
2

)(
y1,t

y2,t

)
=

(
1− π22L π12L

π21L 1− π11L

) (
v1,t

v2,t

)
.

(15)
Furthermore, multiplying (15) by the vector of weightsF = (1, 1) of the disaggre-
gate components entails:

(1− a1L− a2L
2)yt = (1− b1L)v1,t + (1− b2L)v2,t (16)

with a1 = π11 +π22, a2 = π12π21−π11π22, b1 = π21 +π22 andb2 = π12 +π11. It
can be shown that the right-hand side of expression (16) is a process with an MA(1)
representation, so that the aggregate process has an ARMA(2,1) representation:
(1− a1L− a2L

2)yt = (1− γL)ut.4

3Results are easily extended to the case of different and time-varying component weigths.
4More generally, it has been shown in the literature that, if the disaggregate process follows a

VARMA( p, q), the aggregate process follows an ARMA(p∗, q∗) process withp∗ ≤ (n−m)+1× p
andq∗ ≤ (n−m)× p + q with n being the number of variables in the system andm being the rank
of the matrix of aggregation weights (see e.g. Lütkepohl, 1987, Ch.4).
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The model in (16) is used as a forecasting model based on the information set
restricted to the aggregate:

ŷT+1 = a1yT + a2yT−1 + v1,T+1 − b1v1,T + v2,T+1 − b2v2,T (17)

To derive the forecast error made, recall that the aggregate isyt = y1,t +y2,t. Then
(16) entails:

yt = a1y1,t−1 + a2y1,t−2 + a1y2,t−1 + a2y2,t−2

+v1,t − b1v1,t−1 + v2,t − b2v2,t−1
(18)

Since in this section, we have assumed thatw1,t = w2,t = 1 for ease of exposition,
the disaggregate process in (11) simplifies to

yt = (π11 + π21) y1,t−1 + (π12 + π22) y2,t−1 + v1,t + v2,t. (19)

Then the forecast error of the disaggregate process is given by the difference be-
tween (19) and (18):

ûT+1|T = yT+1 − ŷT+1|T
= (π11 + π21) y1,T − a1y1,T − a2y1,T−1

+ (π12 + π22) y2,T − a1y2,T − a2y2,T−1

+v1,T+1 + v2,T+1 − v1,T+1 + b1v1,T − v2,T+1 + b2v2,T

= (π11 − π22) y1,T − a2y1,T−1 + (π12 − π11) y2,T − a2y2,T−1

+b1v1,T + b2v2,T

which will not be unpredictable in general. The entailed restrictions are of the
following form5:

π21 − π22 = 0
π12 − π11 = 0

a2 = −π11π22 − π12π21 = 0

These restrictions will usually not be fulfilled simultaneously, sout will be pre-
dictable fromy1,t−i and/ory2,t−i (i = 1, 2).

2.3.3 Aggregate forecasting model with unknown parameters: True disag-
gregate process not known

Alternatively, consider again restricting the information set to lags ofyt with no
disaggregates used. In contrast to the previous example, the true disaggregate pro-
cess is not known. Consequently, the aggregate process has to be approximated. A

5(See e.g., L̈utkepohl, 1984, for the implied restrictions for equality of the aggregate and the
disaggregate forecast model for a more general DGP).
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further difference to the previous example is that we assume that the aggregate is a
weighted average of the two disaggregates where the weights are allowed to vary
across components and change over time.

We approximate (11) by an autoregression of the form:

yt = ρyt−1 + ut (20)

where:
ŷT+1|T = ρ̂yT .

Sinceyt = w1,ty1,t + (1− w1,t) y2,t, (20) entails that:

yt = ρw1,t−1y1,t−1 + ρ (1− w1,t−1) y2,t−1 + ut. (21)

Thus, the forecast error̂uT+1|T from forecasting the true disaggregate process (11)
with an estimated AR(1) model is given by (12) minus (21):

ûT+1|T = yT+1 − ŷT+1|T
= (w1,T+1 [π11 − π21] + π21 − ρ̂w1,T ) y1,T

+(w1,T+1 [π12 − π22] + π22 − ρ̂ (1− w1,T )) y2,T

+w1,T+1v1,T+1 + (1− w1,T+1) v2,T+1,

(22)

which will not be unpredictable in general. Even for constant weights, the entailed
restrictions are well known to be of the form:

w1 (π11 − π21 − ρ̂) + π21 = 0
w1 (π12 − π22 + ρ̂) + (π22 − ρ̂) = 0

There is no reason to anticipate thatρ̂ can simultaneously satisfy both requirements
(even less so with time-varying weights), souT+1 will be predictable fromy1,T and
y2,T , as in the previous example where the true aggregate process was known.

These results indicate that it should improve forecast accuracy to include disag-
gregate information in the aggregate forecasting model. The additional difficulties
in an actual forecast exercise of the choice of the information set, estimation of
unknown parameters, unmodeled breaks, forecasting the weights, and data mea-
surement errors that the forecaster faces, however, may be sufficiently large to
offset the potential benefits. The role of estimation and model selection in a condi-
tional model is considered analytically in the next section and is extended to a very
simple dynamic forecasts in section 4.1. Section 5 presents an empirical analysis
for forecasting euro-area inflation.
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3 Model selection and estimation in a conditional model

When forecasting aggregates by disaggregates, the selection issue concerns retain-
ing or omitting the disaggregates. First, a general framework is considered in this
section to establish the role of model selection and estimation in a conditional
model. Then we relate the discussion to the choice of a forecasting model for
forecasting aggregates by disaggregates.

We first state our notation. Consider the conditional regression model:

yt = β′xt + νt where νt ∼ IN
[
0, σ2

ν

]
(23)

with xt ∼ INk [µ,Σ] (independent normal, meanµ, varianceΣ) independently of
{νt} . Then usingE [·] to denote an expectation:

E
[
xtx′t

]
= µµ′ + Σ = Ω, (24)

say withE [yt] = β′µ. The notation allows that one of the components ofxt is a
unit vector. For largeT , it is well known (see e.g., Hendry (1995) thatE[β̂] = β
and: √

T
(
β̂ − β

)
fa Nk

[
0, σ2

νΩ
−1

]
, (25)

so (V [·] denotes a variance):

V
[
β̂
]
' σ2

vT
−1Ω−1.

Fork regressors with estimated coefficients and a known outside-sample value
of x, denotedxT+1, a forecast can be based on:

ŷT+1 = β̂′xT+1, (26)

when:
yT+1 = β′xT+1 + νT+1, (27)

with a forecast error:

ν̂T+1 = yT+1 − ŷT+1 =
(
β − β̂

)′
xT+1 + νT+1 (28)

so that its conditional mean-square forecast error (MSFE) is (lettingE [νT+1] = 0
andE

[
ν2

T+1

]
= σ2

ν):

M [ν̂T+1 | xT+1] = σ2
v + x′T+1V

[
β̂
]
xT+1 ' σ2

ν

(
1 + T−1x′T+1Ω

−1xT+1

)
.

(29)
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The unconditionalMSFE is obtained by taking the expectation of (29) over draw-
ings ofxT+1 from its distribution, mainly using (24), in which case, (29) simplifies
to the well-known formula:

M [ν̂T+1] = σ2
ν

(
1 + T−1k

)
. (30)

Even in a constant parameter setting, to judge selection by (29) requires several
aspects that do not seem to have been addressed, and are discussed below. First,
what criteria should be used to judge the parsimony of the selected model? Re-
searchers often use ‘statistical significance’, determined by the conventional rule
that an observedt-statistic exceeds its 5% significance level, which is approxi-
mately 2. To avoid having to consider signs, we translate that criterion intot2bβi

≥ 4
for the i-th variable. Since collinearity is likely to influence the observed t-value,
we first analyze that issue, then consider the converse problem of omitting relevant
variables, and finally combine these analyses to try to determine rules for model
selection.

The assumptions underlying the conditionalMSFE (29) are quite strong since
they imply parameter constancy. For an extensive analysis of such problems of
different parameter values in the forecast regime the reader is referred to Clements
& Hendry (1999).

3.1 Collinearity

Factorize the variance-covariance matrixΩ of the regressorsxt in (25) asΩ =
H′ΛH whereH′H = Ik andHxt = zt, so that:

E
[
ztz′t

]
= Λ (31)

and:
yt = γ′zt + νt where γ = Hβ. (32)

Clearly, despite the transform,γ̂ ≡ Hβ̂ and:

ŷT+1 = γ̂′zT+1 = β̂′H′HxT+1 = β̂′xT+1,

so neither estimation nor forecasting are affected. Then:

x′T+1Ω
−1xT+1 = x′T+1

(
H′ΛH

)−1 xT+1 = x′T+1H
′Λ−1HxT+1

= z′T+1Λ
−1zT+1 =

k∑

i=1

z2
i,T+1

λi
. (33)
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On average, (31) entails thatE[z2
i,T+1] = λi, and therefore, unconditionally:

E
[
x′T+1Ω

−1xT+1

]
= E

[
k∑

i=1

z2
i,T+1

λi

]
= k. (34)

Thus, substituting (34) in the unconditional value of (29) again simplifies to (30).
That result shows that any ‘collinearity’ inxt is irrelevant to forecasting,so long as
the marginal process remains constant. Alternatively, the linear regression model
is invariant under linear, and therefore orthogonal transforms, as shown in (32), so
collinearity is not an attribute of a model but only of a particular parameterization
of that model.

3.1.1 Changes in collinearity in the forecast period

Whenβ stays constant, but the regressor variance-covariance matrixΩ of the in-
sample period changes toΩ∗ out-of-sample, so the mean square of the marginal
processxT+1 alters, withΛ changing toΛ∗ then:

E

[
k∑

i=1

z2
i,T+1

λi

]
=

k∑

i=1

λ∗i
λi

, (35)

so that the unconditionalMSFE is:

M [ν̂T+1] ' σ2
ν

(
1 + T−1

k∑

i=1

λ∗i
λi

)
. (36)

Changes in the magnitude of the eigenvalue of the least well determinedβj ,
corresponding to the smallestλj , will induce the biggest relative changes inM[ν̂T+1].
For example, let the smallestλj = 0.0001 where the change is toλ∗j = 0.01 which
remains small. Nevertheless,λ∗j/λj = 100 rather than unity, so a dramatic increase
in the MSFE arises from retaining that variable.

3.2 Mis-specification

Consider a model based on prior simplification which happens to exclude a re-
gressor setx2,t, where we partitionx′t = (x′1,t : x′2,t) of dimensionsk1 andk2

respectively, whenk1 + k2 = k, leading to the forecast:

yT+1 = x′1,T+1β1, (37)
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whereβ′ = (β′1 : β′2) and:

β1 =

(
T∑

t=1

x1,tx′1,t

)−1 (
T∑

t=1

x1,tyt

)
. (38)

Without loss for an analysis of forecasting, we consider the case whereΩ = Λ, so
that:6

β1,e = E[β1] ' Λ−1
11 ρ1y = β1 + Λ−1

11 Λ12β2 = β1, (39)

whereρ1y = E[x1,tyt]. The forecast error resulting atT + 1 is ωT+1|T = yT+1 −
yT+1|T so:

ωT+1|T = x′1,T+1

(
β1 − β1

)
+ x′2,T+1β2 + ωT+1, (40)

with expectation:

E
[
ωT+1|T | xT+1

]
= x′1,T+1 (β1 − β1,e) + x′2,T+1β2 = x′2,T+1β2. (41)

The forecast is systematically biased byx′2,T+1β2. Whenx′2,T+1β2 ' x′2,tβ2

∀t = 1, . . . , T , this bias is ‘absorbed by’, and reflected in, the in-sample estimates,
so the forecastMSFE is close to that anticipated from the in-sample estimates..
However, ifx′2,T+1 differs markedly from in-sample values, then serious forecast
errors could result. Therefore, in a non-constant parameter process a change even
in the excluded variables matters for forecasting.

3.3 Mis-specification and collinearity

In this section, we derive the trade-off between the estimation costs from retaining
a variable–leading to an increased forecast variance–and the increased bias due
to mis-specification costs when a variable is incorrectly omitted. We consider a
process with changing collinearity: note that under general linear transformations,
that would become a non-constant parameter process.

The conditional variance of the forecast errorωT+1|T due to the omission of a
relevant variable is:

E
[(

ωT+1|T − E
[
ωT+1|T | xT+1

])2 | xT+1

]
= σ2

ω, (42)

6A similar result holds under non-orthogonal regressors on replacingΛ22 below by Ω22 −
Ω21Ω

−1
11 Ω12, and retaining covariances.
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so using the factorizations from section 3.1, the conditionalMSFE is (tr denotes
the trace):

E
[
ω2

T+1|T | xT+1

]
= σ2

ω + tr
{
E

[
x1,T+1x′1,T+1

]
V

[
β1

]}
+ β′2E

[
x2,T+1x′2,T+1

]
β2

= σ2
ω

(
1 + T−1

k1∑

i=1

λ∗i
λi

)
+ β′2Λ

∗
22β2. (43)

Thus, the net costs of inappropriate exclusion are given by the last term relative to
the ‘saving’ from not having the estimation cost of:

T−1
k∑

i=k1+1

λ∗i
λi

.

This trade-off is central to selecting a particular specification from a class when
the objective is forecasting, albeit that the future values of theλ∗i are bound to be
unknown, and is explored in more detail in section 4.

3.4 Adding disaggregates to forecast aggregates

Let yt denote the vector ofn disaggregate prices with elementsyi,t where we
illustrate using:

yt = Γyt−1 + et (44)

as the DGP for the disaggregates. Letyt = ω′tyt be the aggregate price index with
weightsωt. Then pre-multiplying (44) byω′t:

yt = ω′tΓyt−1 + ω′tet = κω′t−1yt−1 +
(
ω′tΓ− κω′t−1

)
yt−1 + ω′tet

= κyt−1 + (φt − κωt−1)
′ yt−1 + νt (45)

whereφt = Γωt. Thus, even if the DGP is (44) at the level of the components, an
aggregate model will be systematically improved by adding disaggregates only to
the extent thatφt − κωt−1 = π is both constant, and elements contribute substan-
tively to the explanation.

To relate (45) to (23), letzt = ρ′xt be an aggregate variable (such as a ‘factor’
component), so the analysis applies more widely than just price index aggregation,
then (23) can be expressed as:7

yt = κzt + (β − κρ)′ xt + ut. (46)

7Even though (46) is perfectly collinear if the price index weights are unchanging, either any
component can be deleted or aPcGetsmodel selection approach can be adopted (see Hendry &
Krolzig, 2004) .
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This requires thatβ is constant, and the choice of aggregate is a constant linear
function ofxt. From (45), those conditions seem unlikely to be fulfilled when the
regressorsxt in (46) areyt−1 andzt is yt−1 with ρ = ωt−1. If so, the additional
role of disaggregate information over just the aggregate in (46) is represented by
the extent to whichβ 6= κρ for each variable. This is similar to (45), with the
added requirement of constancy ofπ.

Four distinct types of change can be distinguished in (45):
a) changes in the price index weightsωt−1 can be due to changes in expenditure
shares with constant correlations between the disaggregates;
b) changes in the second-moment matrix of the disaggregatesyt−1 (i.e., in the re-
gressor correlation structure) can change collinearity, inducing the effects noted in
the previous section;
c) changes in the parametersφt of the disaggregates, so the role of the disaggregate
regressors is non-constant; and
d) changes in the autoregressive parameterκ.
All four potential shifts influence the decision of whether or not to include (or
model) the disaggregates, and might hamper possible improvements in the forecast
of the aggregateyt from adding disaggregate variablesxi,t to a model with lags of
the aggregate already included. The first three of these shifts favour an aggregate
model, and could do so even ifκ is not constant. The selection issue in this con-
text, therefore, concerns omitting or retaining the disaggregates, where the trade-
off is between the impact of changing collinearity increasing forecast uncertainty
as described in section 3.1.1, and the mis-specification costs of omitting relevant
regressors considered in section 3.2. We evaluate that trade-off in a non-constant-
parameter process in section 4, which establishes that for retention of disaggregate
variables to be useful, the non-centralities of their squaredt-statistics in (45) must
be greater than unity.

Given these results, we now consider the selection of a forecasting model.

4 Model selection for forecasting

The central issue of this paper is how to select a forecasting model given the con-
siderations discussed above. When forecasting aggregates by disaggregates, the
selection issue concerns retaining or omitting the disaggregates. First, a general
framework is considered in this section to establish the role of model selection and
estimation in a conditional model. Then we relate the discussion to the choice of a
forecasting model for forecasting aggregates by disaggregates.

If all relevant variables were known and only those were included, and the
observation to be forecast was a random draw from the same population as the
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estimation sample, then (29) would correctly represent the resultingMSFE. If the
‘most-accurate forecast’ is defined by minimizingM [ν̂T+1|xT+1], then criteria for
trying to select that model can be determined. The central trade-off is between
retaining or omitting variables that will improve the accuracy of the forecast mean,
where retention will add to the forecast-error variance. Notice the deliberate use of
the word ‘will’: even under the conditions stated here, (26) depends on the actual
forecast origin (i.e.,xT+1). WhenxT+1 can differ markedly from any in-sample
observed value, model choice can differ from that conventionally supposed, and
that issue is addressed below.

To relate theMSFE conditional onxT+1 in (43) to the unconditionalMSFE
in (36), we express the former in terms of the non-centralityτ2

βj
of the expected

values of thet2-tests on theβ2,i in the DGP noting that:

β′2Λ22β2 =
k∑

i=k1+1

β2
i λi. (47)

Let the non-centralityτ2
βj

of the t2-tests onβj be expressed in terms of the true
parameters of the DGP:

τ2
βj

=
β2

j

∑T
t=1 x2

j,t

σ2
ω

' Tβ2
j λj

σ2
ω

. (48)

From (43) and (48), the conditionalMSFE E[ω2
T+1|T |xT+1] from using only

the first set of regressorsx1,T+1 and omitting the secondx2,T+1 can be related to
the conditionalMSFE E[ω̂2

T+1|T |xT+1] from using all the variables as:

E
[
ω2

T+1|T | xT+1

]
' σ2

ω


1 + T−1

k1∑

i=1

λ∗i
λi

+ T−1
k∑

j=k1+1

Tβ2
j λ∗j

σ2
ω




= σ2
ω


1 + T−1




k1∑

i=1

λ∗i
λi

+
k∑

j=k1+1

τ2
βj

λ∗j
λj







= E
[
ω̂2

T+1|T | xT+1

]
+

σ2
ω

T

k∑

j=k1+1

(
τ2
βj
− 1

) λ∗j
λj

. (49)

For a simplified model to out-perform relative to the unrestricted requires that the
averageτ2

βj
be less than unity for the omitted variables. In such a case, a selected

model can out-perform the estimated DGP, as well as less parsimonious estimated
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models. Omitting irrelevant variables (τ2
βj

= 0) is clearly sufficient to justify se-
lecting the simplified model, but is not necessary. If there is no change in collinear-
ity between the regressors in the forecast period in comparison with the in-sample
period, i.e.,λ∗j = λj , the cost-benefit trade-off from (43) relative to (36) only de-

pends on
∑k

j=k1+1 τ2
βj

relative tok2, but (49) reveals considerably more structure
to the choice. Indeed, when collinearity between the regressors is changing in the
forecast period, e.g.,λ∗j 6= λj , then the general formula in (49) is needed. Changes
in collinearity affect forecasts from both included and incorrectly-excluded vari-
ables, so simply omitting highly collinear regressors is not a viable solution for
selecting forecasting models.

For the illustrative case ofk2 = 1 (which implies omitting one relevant regres-
sor) then the cost (or benefit) of omission is simply:

T−1σ2
ω

(
τ2
βk
− 1

) λ∗k
λk

. (50)

If that variable is irrelevant, soτ2
βk

= 0, andλ∗k > λk by a ratio of 100 (say), there
is a dramatic benefit to correct omission. Conversely, ifτ2

βk
= 2 (as the symmetric

case), an equally large loss occurs. However, the probability of retaining such a
variable ont-testing also rises withτ2

βk
.

Notice that (49) is based on theτ2
βk

in the DGP, not the observedt2βk=0 that
happened to arise in-sample when estimating the model. Because thet2βk=0 have a
sampling distribution even in the DGP, selecting those variables that happen to have
observedt2βk=0 values larger than unity will lowercalculatedMSFE (as shown
above), but will not lower the trueMSFE unless they correspond toτ2

βj
> 1. Of

course,τ2
βk

is not observed, onlyt2βk=0. Under the null thatβk = 0, the squared
t-test,t2βk=0 is:

t2βk=0 =
T β̂2

k

∑T
t=1 x2

k,t

σ̂2
ω

∼ χ2
1 (0) , (51)

so:
E

[
t2βk=0 | τ2

βk
= 0

]
= E

[
χ2

1 (0)
]

= 1.

Consequently (see () Johnson & Kotz, 1970):

E
[
t2βk=0 | τ2

βk
6= 0

] ' 1 + τ2
βk

. (52)

Thus, although retention under the null would be 50% for a criterion wheret2βk=0 >
1 (only one tail of the distribution is relevant sinceβk 6= 0 can have either a positive
or a negative sign), the result in (52) suggests requiringt2βk=0 > 2 as correct cut-off
for retaining the associated variable.
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In the present context, the disaggregate prices are inter-correlated, and seem to
have changing collinearity, with weights that are also changing in the price index.
In the empirical study, the weights in first year of the out-of-sample period change
little, but change between 0% for processed food inflation up to almost 6.5% for
energy inflation in 1999 over the previous (last in-sample period for 12 months
ahead forecasts) year. Indeed, collinearity between components is changing from
the in-sample to the out-of-sample period (and also over the forecast period).

Should some of the disaggregates have non-zero effects in (46), the costs of
omitting them are the mis-specification effects in (49). We assume their net effects,
after including the aggregate information, is not too large, sayτ2

βk
≤ 9. Retaining

a variable with a value ofτ2
βk

= 1 carries the same cost as omitting it, namely
T−1σ2

ωλ∗k/λk: smallerτ2
βk

favour omission, larger favour retention. If the DGP
were by chance specified as the initial model, but tested in a conventional manner,
then variables withτ2

βk=0 = 2 would be retained on average (i.e., half the time)
only if α = 0.16. Interestingly, that significance value is close to the implicit
significance level of AIC whenT = 100 for a range ofN (see Akaike (1973) and
Campos, Hendry & Krolzig (2003)).

The probability-weighted data-based omission costs from (49) whenτ2
βk

= r
are:

p
(
t2βk(DGP )

< cα | τ2
βk

= r; α
)

T−1σ2
ω (r − 1)

λ∗k
λk

.

Table 1 reports these costs for integer values of2 ≤ τ2
βk
≤ 9, with α = 0.16, and

reveals that they are remarkably constant across the range of relevantτ2
βk

values
considered.

Table 1: Probability-weighted omission costs

τ2
βk

= r (r − 1)× p
(
t2βk(DGP )

< cα | τ2
βk

= r; α = 0.16
)

cost

2 1× 0.50 0.50
3 2× 0.37 0.74
4 3× 0.28 0.84
5 4× 0.21 0.84
6 5× 0.15 0.75
7 6× 0.11 0.66
8 7× 0.08 0.56
9 8× 0.06 0.48

Conversely, because a large number of candidate regressors is created by en-
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tering all the disaggregates at several lags, adventitious significance is likely: with
N irrelevant candidates and a significance level ofα, thenαN will be retained by
chance. If such a loose significance level asα = 0.16 were used for a general
model withN = 20, then3 irrelevant variables would be retained on average, with
costs of

∑3
k=1 σ2

ωT−1λ∗k/λk. This corresponds roughly to the total effect for four
terms from table 1. A larger value ofα than 0.16 would lower the costs in table
1 and raise the retention rate for irrelevant variables, suggesting perhaps seeking
equality for a givenN to minimize their total costs.

4.1 Dynamic forecasts

The analysis of open models, where some variables are not endogenized, is difficult
primarily because the properties of the ‘explanatory’ variables are unspecified. In
practice, for multi-step ahead forecasts, either those variables have to be forecasted
‘off-line’, which is reliant on untested strong exogeneity assumptions, endogenized
for the forecasts risking ill-specified relationships, or multi-step estimation has to
be adopted. The last of these is the subject of other research and will not be ad-
dressed here: seeinter alia Bhansali (2002) and Chevillon & Hendry (2004).

Moreover, the importance of parameter-estimation uncertainty is heavily de-
pendent on the postulated nature of the DGP and the specific transformations of the
variables to be forecast. Specifically, if the DGP is near non-stationary, but treated
as stationary, and the horizon is relatively long compared to the estimation sample
period available, then parameter-estimation uncertainty plays a fundamental role:
see e.g., Stock (1996). The opposite extreme is when the DGP is stationary and a
long estimation sample is available, in which case estimation becomes relatively ir-
relevant as the horizon increases: see the results in Chong & Hendry (1986), noting
the potential non-monotonicity of interval forecasts after the first few steps ahead.
In between, there is often a surprisingly small component of forecast uncertainty
deriving from parameter-estimation uncertainty: see Clements & Hendry (1998),
although cases where it matters also occur, as in Marquez & Ericsson (1993).

4.1.1 Estimation Uncertainty

To illustrate the changes which arise in the impact of parameter-estimation uncer-
tainty in dynamic forecasts from dynamic models, we use the first-order autore-
gression discussed in Clements & Hendry (1998):

yt = ρyt−1 + εt where εt ∼ IN
[
0, σ2

ε

]
,
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when |ρ| < 1, E [yt] = 0, andE
[
y2

t

]
= σ2

y = σ2
ε /

(
1− ρ2

)
. Projectingh-steps

ahead:

yT+h = ρhyT +
h−1∑

j=0

ρjεT+h−j , (53)

so the conditional forecast error from̂yT+h|T = ρ̂hyT is:

ε̂T+h|T = yT+h − ŷT+h|T =
(
ρh − ρ̂h

)
yT +

h−1∑

j=0

ρjεT+h−j . (54)

On aMSFE measure wherey†T = yT /σy:

MAR(1)

[
ε̂T+h|T | yT

] ' σ2
y

[(
1− ρ2h

)
+ T−1h2ρ2(h−1)

(
1− ρ2

)
y†2T

]
. (55)

The first term is due to the error variance accumulation as the horizon grows, and
the second to parameter-estimation uncertainty. As is well known, overall (55)
is not monotonic in the horizon, as the second term tends to increase first before
converging to zero. Unconditionally, averaging acrossy†2T yields:

MAR(1)

[
ε̂T+h|T

] ' σ2
ε

(
1− ρ2h

)

(1− ρ2)
+

σ2
ε

T
h2ρ2(h−1). (56)

4.1.2 Simplification

One practical alternative to estimating an unknown parameter is to restrict it to
zero, such that the corresponding regressor is omitted. Consider the competing
forecast based on omitting the lagged dependent variable, so the forecast becomes
the unconditional mean of zero,ỹT+h = 0 ∀h with:

MAR(0)

[
ε̃T+h|T | yT

]
= σ2

y

[(
1− ρ2h

)
+ ρ2hy†2T

]
. (57)

The first terms in (55) and (57) are the same, so the relativeMSFE difference,
denotedR (ε̃, ε̂, h), is:

R (ε̃, ε̂, h) =
MAR(0)

[
ε̃T+h|T |yT

]−MAR(1)

[
ε̂T+h|T |yT

]

σ2
y

= T−1ρ2(h−1)
(
1− ρ2

) [
τ2
ρ=0 − h2

]
y†2T , (58)

where:

τ2
ρ=0 =

Tρ2

1− ρ2
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is the non-centrality of thet-test of H0: ρ = 0 in the DGP equation. Thus,
τ2
ρ=0 > h2 is necessary in (58) for an improvement over simply using the un-

conditional mean. For a 1-step forecast, the criterion is simplyτ2
ρ=0 > 1. Notice

that100R (ε̃, ε̂, h) is the loss/gain as a percentage ofσ2
y .

As an illustration, ifT = 20 andρ = 0.4, thenτ2
ρ=0 ' 3.8 so fory†2T = 1:

R (ε̃, ε̂, 1) = 0.12; R (ε̃, ε̂, 2) = −0.001; R (ε̃, ε̂, 3) = −0.006;

whereas whenρ = 0.8, τ2
ρ=0 ' 35.6 with:

R (ε̃, ε̂, 1) = 0.62; R (ε̃, ε̂, 2) = 0.36; R (ε̃, ε̂, 3) = 0.20; R (ε̃, ε̂, 12) = −0.01,

and the sign reverses ath = 6. For largerρ, the sign reverses even later. Once the
sign changes, however, the percentage loss stays small, so it is irrelevant if either
the conditional or unconditional forecast is chosen for longer horizons.

We conclude that for the simple AR(1) model:

1. there is a clear and measurable trade-off between the costs of estimation and
those of omission;

2. the trade-off relates directly to the significance of the variable in the DGP
equation via the non-centrality of thet-test;

3. the costs areO(T−1), but could nevertheless be large;

4. the trade-off criterion becomes more stringent as the forecast horizon in-
creases; but

5. once the costs are balanced at some horizon, they stay small for longer hori-
zons.

Points 1.–5. seem to suggest selecting different models at different horizons.
However, the last point is crucial for model selection: even relatively insignificant
estimates should contribute to forecasting (i.e., variables withτ2

ρ=0 > 1). Replicat-
ing this finding in more general settings suggests that one need not worry greatly
about point 4. In other words, providedτ2

ρ=0 > 1, then even ifτ2
ρ=0 < 4 say,

there will be a gain at 1-step, and little additional loss for horizons beyond 4, so
the advantages of switching specification afterh = 1 are unlikely to be large. Nev-
ertheless, checking on the properties of multi-step estimation in this context for
more general models would be worthwhile. However, the VAR setting considered
by Clements & Hendry (1998) did not deliver any clear recommendations.
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5 Empirical results: Euro area inflation

In this section, we analyze empirically the following questions: First, does includ-
ing the disaggregate variables in the aggregate model improve the direct forecast
of the aggregate? Second, is including disaggregate information in the aggregate
model better in terms of forecast accuracy than forecasting disaggregate variables
and aggregating those forecasts? Third, does it improve the indirect forecast of
the aggregate to include aggregate information in the component models? Fourth,
does including additional macro-economic predictors improve the aggregate fore-
cast? We relate the findings to the predictability results from section 2 and the
analytical results regarding the effects of model selection and estimation from sec-
tion 3. Whether we find that the result from a general theory of prediction that
including disaggregate variables does improve predictability of the aggregate will
hold empirically, will depend on the effect of model selection and estimation, i.e.,
on the trade-off between improving the forecast accuracy of the mean by retaining
a variable in the model on the one hand and adding to the forecast error variance on
the other hand. In the context of forecasting an aggregate by disaggregates this will
depend on how collinearity and component weights change over the forecast pe-
riod. However, all the theoretical implications above assume the absence of other
complicating factors, such as location shifts and measurement errors, which may
play an important role in practice.

5.1 Data

The data employed in this study include aggregated overall HICP for the Euro area
as well as its breakdown into five subcomponents: unprocessed food, processed
food, industrial goods, energy and services prices.

This particular breakdown into subcomponents has been chosen in accordance
with the data published and analyzed in the ECB Monthly Bulletin. A range of
explanatory variables for inflation is also considered: Industrial production, nom-
inal money M3, producer prices, import prices (extra euro area), unemployment,
unit labour costs, commodity prices (excluding energy) in euro, oil prices in euro,
the nominal effective exchange rate of the euro8, as well as a short-term and a
long-term nominal interest rate.

The data employed are of monthly frequency,9 starting in 1992(1) until 2001(12).
This relatively short sample is determined by the availability of data for the Euro
area and has to be split for the out-of-sample forecast experiment. Seasonally ad-

8ECB effective exchange rate core group of currencies against euro.
9Except for unit labour costs which are of quarterly frequency and have been interpolated.
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justed data have been chosen10 because of the changing seasonal pattern in some
of the HICP subcomponents for some countries due to a measurement change.11
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Figure 1:First differences of HICP (sub-)indices (in logarithm)

The month-on-month inflation rates (in decimals) and the year-on-year infla-
tion rates (in %) of the indices are displayed in Figures 1 and 2, respectively.

We have carried out Augmented Dickey Fuller (ADF) tests for all HICP (sub-)
indices (in logarithms), since Diebold & Kilian (2000) show for univariate models
that testing for a unit root can be useful for selecting forecasting models. The
tests are based on the sample from 1992(1) to 2000(12). This is the longest of the
recursively estimated samples in the simulated out-of-sample forecast experiment
(see Section 5.3). The tests do not reject non-stationarity for the levels of all (sub-)
indices over the whole period.12 Non-stationarity is rejected for the first differences
of all series except the aggregate HICP and HICP services. For the first differences
of the latter two series, however, non-stationarity is rejected for all shorter recursive

10Except for interest rates, producer prices and HICP energy that do not exhibit a seasonal pattern.
11The data used in this study are taken from the ECB and Eurostat.
12The ADF test specification includes a constant and a linear trend for the levels and first dif-

ferences. The number of lags included is chosen according to the largest significant lag on a 5%
significance level.
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Figure 2:Year-on-year HICP inflation (in %), aggregate and subindices
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estimation samples up to 2000(8) and 2000(7), respectively. Therefore and because
of the low power of the ADF test HICP (sub-)indices are assumed to be integrated
of order one in the analysis and modeled accordingly.

5.2 Forecast methods and model selection

Different forecasting methods using different model selection procedures are em-
ployed for both direct and indirect forecast methods, i.e., forecasting HICP inflation
directly versus aggregating subcomponent forecasts. We employ simple autore-
gressive (AR) models where the lag length is selected by the Schwarz (SIC) and
the Akaike (AIC) criterion respectively (see e.g. Inoue & Kilian, 2005). We include
a subcomponent vector autoregressive model (VARsubc) to indirectly forecast the
aggregate by aggregating subcomponent forecasts. We use a VAR including the ag-
gregate and the components, VARagg,sub, to investigate the hypothesis from section
2 that including component information in the aggregate forecast model improves
the forecast of the aggregate. We include a VAR where the lags of the aggre-
gate and the components are automatically chosen usingPcGets, VARagg,sub

Gets (see
Hendry & Krolzig, 2003). In a second group of methods, we include additional
macroeconomic predictors in the VARs of the aggregate and the components, re-
spectively. This group includes two VARs with a set of domestic and international
variables, the VARint, where the specification is the same across the aggregate and
the components, and the VARint

Gets, where the specification is allowed to vary across
components. Finally, a VAR including potentially all variables, i.e., aggregate,
components and other macroeconomic predictors, VARIntAggSub

Gets , is considered.13

The lag length of the VAR is selected on the basis of theSIC, theAIC and an
F-test.14

5.3 Simulated out-of-sample forecast comparison

5.3.1 The experiment

A simulated out-of-sample forecast experiment is carried out to evaluate the rela-
tive forecast accuracy of alternative methods to forecast aggregate HICP using in-
formation on its disaggregate components as opposed to aggregating the forecasts

13For the forecast accuracy results presented in the tables of this section model selection proce-
dures are carried out on the basis of the first recursive estimation sample until 1998(1). However,
recursive model selection was carried out for the most relevant models. The results did not suggest a
change to our conclusions.

14It should be noted that due to the large number of parameters in the high-dimensional VARs the
maximum lag order was chosen on the basis of a rough rule such that the total number of parameters
in the system would not exceed half the sample size.
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of HICP subcomponent models or forecasting the aggregate only using aggregate
information. One to twelve step ahead forecasts are performed based on different
linear time series models estimated on recursive samples. The main criterion for
the comparison of the forecasts employed in this study, as in a large part of the
literature on forecasting, is the root mean square forecast error (RMSFE).

Table 2 and 5 present the comparison of the relative forecast accuracy measured
in terms of RMSFE of year-on-year (headline) inflation of the direct forecast of
aggregate inflation (∆12p̂

agg) and the indirect forecast of aggregate inflation, i.e.
the aggregated forecasts of the sub-indices (∆12p̂

agg
sub ). The results for 1-,6- and

12-months ahead forecasts are presented.

5.3.2 Aggregate and disaggregate information

First we compare methods only based on aggregate information as opposed to fore-
cast methods for the aggregate including disaggregate variables in addition (see
Table 2, column for direct forecast for each forecast horizon). Within the frame-
work of the general theory of prediction we have shown that including disaggregate
variables in the aggregate model does improve predictability of a variable (see sec-
tion 2). We find that the direct forecast using a VAR including the aggregate and
subcomponents where the variables are selected by PcGets, VARagg,sub

Gets , performs
slightly better inRMSFE terms 1 month ahead than directly forecasting the ag-
gregate with an AR model only including lagged aggregate information with the
lag length determined by the SIC criterion. Thus, ourRMSFE results for the
VARagg,sub

Gets for h = 1 confirm this predictability result in a forecast experiment.

However, the model including the aggregate and all subcomponents, VARagg,sub
(1)

does not provide a more accurate forecast of the aggregate than the autoregressive
models ARSIC and ARAIC .

Furthermore, we investigate the accuracy of forecasting the aggregate directly
including disaggregate variables relative to the forecast accuracy of indirectly fore-
casting the aggregate by aggregating component forecasts based on an AR model
or a subcomponent VAR,V ARsub, (Table 2), i.e., the way previous literature has
been taken disaggregate variables into account (see e.g. Hubrich (2004)). The
VAR model that outperforms the other direct forecast methods of the aggregate,
VARagg,sub

Gets , also exhibits higher forecast accuracy for the indirect forecast than all
other methods forh = 1. Thus, including aggregate variables in the disaggregate
model improves forecast performance for short horizons. The VARagg,sub

Gets does

also outperform the VARagg,sub
(1) , where the variables and lag length are the same

across the aggregate and components, forh = 1.
Overall, the direct forecast including the aggregate and subcomponents is best

for 1 month ahead forecasts if no additional macroeconomic indicators are con-
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Figure 3:Year-on-year inflation rate and forecasts in %, 1 months ahead, solid line: actual,
Fdir: direct forecast of aggregate, Find: indirect forecast of aggregate
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sidered. That confirms within a forecasting set-up the results derived with respect
to predictability in section 2, i.e. that forecasting the aggregate directly including
disaggregate information in the aggregate model might perform better than aggre-
gating component forecasts. Figure 3 shows that the one months ahead forecasts
from the different methods are very close to actual year-on-year inflation. The dif-
ferences between the different methods for one month ahead forecasts appear to
be quite small. Figure 4 presents the forecast 6 months ahead. Six months ahead
forecasts of year-on-year inflation do generally relatively well. The graphs show
that the differences in RMSFE terms between some of the forecasts are relevant to
be considered when choosing the forecasting model.
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Figure 4:Year-on-year inflation rate and forecasts in %, 6 months ahead, solid line: actual,
Fdir: direct forecast of aggregate, Find: indirect forecast of aggregate

More important from a monetary policy point of view is the 12 months ahead
forecast. Here we find that the direct forecast including disaggregate information
(VARagg,sub

(1) ) is clearly better than the indirect forecast based on AR or VAR mod-
els of the components. The low forecast accuracy of aggregating subcomponent
models is analyzed in Hubrich (2004), and it is found that this is due to unexpected
shocks that occur in the forecast period and affect some or all components in the
same direction so that forecast errors do not cancel. Furthermore, predictability
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in the sense we have defined in section 2.1 is low for some component series and
their unconditional variance is large. Consequently they are very difficult to fore-
cast. This leads to low forecast accuracy of the indirect forecast of the aggregate.
Hubrich (2004) investigates whether forecast combination of different methods im-
proves forecast accuracy of the components and hence the indirect forecast of the
aggregate and finds that this is not the case. However, directly forecasting the ag-
gregate using VARagg,sub

(1) is very similar in terms of forecast accuracy to using the
same model, i.e. including all disaggregate variables and the aggregate, for the
indirect forecast. Including the aggregate in the component models seems to im-
prove forecast accuracy of the aggregate.15 We find that the indirect forecast based
on a VAR including subcomponents with no lags as chosen by the SIC exhibits
higher forecast accuracy than all other indirect forecast methods. This model rep-
resents a random walk with drift for prices for each of the components and for the
aggregate and is selected by theSIC for the V ARsub, theV ARagg,sub and the
V ARint. However, the direct forecast using a simple AR model does lead to the
highest forecast accuracy 12 months ahead overall.

For a 12 months ahead horizon the VARagg,sub
(1) outperforms the VARagg,sub

Gets in

contrast to the one-month ahead result. Furthermore, note that the ARSIC performs
better than the ARAIC for one and twelve months ahead forecasts in line with the
results in section 4.1 that the trade-off between costs of estimation and omission
becomes more stringent as the forecast horizon increases (see also Inoue & Kilian
(2005) for a comparison of the SIC and the AIC).

Although perfect collinearity between aggregate and components does not pose
a problem due to annually changing weights in price indices, we present additional
results where different subsets of price components are selected. Comparing fore-
cast accuracy of the VARagg,i,s,pf , the VARagg,e,uf,pf and the VARagg,e,uf we find
that selection from disaggregate variables seems to improve the forecast accuracy.
When we exclude processed food inflation from the VARagg,e,uf,pf , the lower di-
mensional VARagg,e,uf does perform worse than the VARagg,e,uf,pf , in particular
for h = 12. Therefore, the decline in collinearity of the excluded variable and the
variables in the system does matter for the forecast accuracy of the method (see
also section 3).

Figure 5, in the upper two panels, shows the relevance of the differences in
the forecasts for h=12 discussed above from a monetary policy viewpoint, i.e., a
difference between 0.2 up to almost 2 percentage points for some methods in some
periods of the forecast period is clearly relevant in this context. Tests to compare

15It should be noted, however, that this result depends on the lag length of 2 suggested by the F-test.
A lag order of zero as chosen by theSIC, representing a random walk with drift for prices, provides a
more favourable result for the indirect forecast with no aggregate included in the component models.
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Table 2:Aggregate and disaggregate information, Relative forecast accuracy:
Average RMSFE ratios over AR(p) of year-on-year inflation in percentage
points

horizon 1 6 12
method direct indirect direct indirect direct indirect

∆12p̂
agg ∆12p̂

agg
sub ∆12p̂

agg ∆12p̂
agg
sub ∆12p̂

agg ∆12p̂
agg
sub

ARSIC 0.137 0.139 0.431 0.478 0.740 0.880

ARAIC 1.015 1.014 0.937 1.000 1.245 1.027
VARsub

(2) 1.086 1.402 1.593

VARagg,sub
(0) 1.007 0.993 1.039 0.937 1.035 0.876

VARagg,sub
(1) 1.044 1.036 1.046 0.939 1.081 0.9l3

VARagg,sub
Gets 0.978 0.964 1.079 0.960 1.124 0.933

VARagg,i,s,pf
(1) 1.029 1.030 1.042

VARagg,e,uf,pf
(1) 1.007 1.009 1.022

VARagg,e,uf
(1) 1.007 1.019 1.030

Note: RMSFE displayed forAR(SIC) model, Recursive estimation samples 1992(1) to
1998(1),...,2000(12), Super and subscripts indicate model selection procedure, SIC: Schwarz criterion,
AIC: Akaike criterion, VARsub: VAR only including subcomponents, lag order,p = 2, VARagg,sub:
VAR with aggregate and subcomponentsp = 0 (SIC),p = 1 (AIC), VARagg,sub

Gets : VAR with aggregate
and subcomponents selected by PcGets, liberal strategy Hendry & Krolzig (2001)
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Figure 5: Year-on-year inflation rate and forecasts in %, 12 months ahead, solid line:
actual, Fdir: direct forecast of aggregate, Find: indirect forecast of aggregate
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Table 3:Factor models based on disaggregate prices only, RMSFE and average
RMSFE ratios of direct forecast of annualised inflation in percentage points

horizon 1 6 12

RMSFE ARSIC 0.180 0.396 0.780
RMSFE ratios over ARSIC

FM(f1) 1.036 1.101 1.084
FM(f2) 1.016 1.078 1.046
FM(f3) 1.024 1.097 1.067
FM(f4) 1.044 1.086 1.105
DFM(f1)SIC 1.117 1.157 1.390
DFM(f2)SIC 1.013 1.110 1.007
DFM(f3)SIC 1.029 1.225 0.955
DFM(f4)SIC 1.062 1.333 1.116

Note: RMSFE for AR(SIC) model, Recursive estimation samples 1992(1) to 1998(1),...,2000(12), Su-
per and subscripts indicate model selection procedure, SIC: Schwarz criterion, FM(f): factor models
with 1,2,3,4 factors, DFM(f)SIC : dynamic factor models with 1,2,3,4 factors with factor lag lengths
chosen by SIC

the significance of the difference in forecast accuracy are not carried out due to
their poor size (and power) properties in small forecast samples as considered here
(for simulation evidence see e.g. Harvey, Leybourne & Newbold (1997)).

In section 3.4 we have analysed theoretically the effects of different types of
changes influencing forecast accuracy of the aggregate model including disaggre-
gate components. We now analyse two of those changes in the context of forecast-
ing euro area inflation: a change in component weights and a change in collinearity
of disaggregate regressors.

There is some change in (consumer spending) weights of euro area price com-
ponents: Weights decline between -3.9 % and -1.3 % annually on average over the
previous year over the forecast evaluation period for unprocessed food, processed
food and industrial goods prices, where in one year for example the decline is al-
most -9% for unprocessed food. For energy prices weights decline by -6.5% in
1999 and then increase by 3.4% and 5.6 %, respectively. Service price weights
increase by 3% on average per year over the forecast evaluation period. These
changes in weights mean that the relevance of the changes of, say, unprocessed
food prices for the aggregate declines over the forecast evaluation period so that
positive shocks to unprocessed food prices does affect the aggregate less, whereas
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the positive shocks to energy prices will affect the aggregate more in the future.16

Second, we analyse the change in the correlation structure between the aggre-
gate and the components over the forecast evaluation period. Table 4 presents the
correlation matrix, where the upper triangle represents the correlation for the first
estimation sample until 1998(1) and the lower triangle represents the correlation
for the last forecast sample up to 2001(12). Most of the time correlations between
aggregate and components, particularly large declines are observed between∆pagg

and∆ps. Overall, correlations between the aggregate and the components decline.
Including the respective component(s) in the forecast model might then lower fore-
cast accuracy by increasing estimation uncertainty. This might help explaining that
selection pays according to the results in Table 2 where the VARagg,sub

Gets outperforms
all other models one month ahead. Furthermore, correlation among disaggregate
components included in the models decline, i.e. collinearity is lower between the
regressors. This will affect forecast accuracy as discussed in section 3. A partic-
ularly large decline in correlation can be found in∆puf and∆ppf as well as∆pi

and∆ps. In some cases even the sign switches:∆puf and∆ppf , ∆puf and∆pi

as well as∆pe and∆ps, with low negative correlation between those components
for the longest sample. This increases the costs of omission of the respective com-
ponents, as is apparent in the lower forecast accuracy of the more parsimonious
model VARagg,e,uf

(1) in comparison with VARagg,e,uf,pf
(1) .

The above effects favour an aggregate model, in particular for longer forecast
horizons as a year, in the sense that an aggregate only including lags of the ag-
gregate might be a more robust forecasting device when the effect of changing
weights and collinearity on the trade-off between the costs of estimation and those
of omission is unknown a priori.

5.3.3 Extending the information set further: Macroeconomic Predictors

In Table 5 theRMSFE results for models including additional macroeconomic
predictors are presented alongside the most relevant methods only including ag-
gregate and disaggregate information. Including relevant macroeconomic predic-
tors changes the findings. In that case, the indirect methods tend to perform better
one month ahead and the international VAR (VARint) does outperform all other
indirect forecasts and also the direct forecasts forh = 1 andh = 6. Even a VAR
method that initially allows for all variables to enter the forecast model where the
relevant variables are selected (VARInt

Gets) is outperformed by the VARint. This
can be explained by our analytical results in section 3 that imply choosing a loose
significance level in forecast model selection.

16The indirect forecast of the aggregate by aggregating the component forecasts is also affected
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Table 4: Correlation matrix of first differences of log prices: upper triangle
sample until 1998(1), lower triangle sample until 2001(12)

∆pagg ∆puf ∆ppf ∆pi ∆ps ∆pe

∆pagg 1 0.27931 0.43579 0.63135 0.70929 0.60797
∆puf 0.3229 1 -0.22429 -0.1362 -0.13113 0.036102
∆ppf 0.34893 0.028023 1 0.41859 0.52704 0.0048911
∆pi 0.53733 0.044988 0.28777 1 0.61273 0.085604
∆ps 0.49376 -0.06515 0.51041 0.45057 1 0.10458
∆pe 0.7071 0.0076403 -0.078966 0.039373 -0.06116 1

Table 5:Including macroeconomic predictors, Relative forecast accuracy: Av-
erage RMSFE ratios of year-on-year inflation in percentage points

horizon 1 6 12
method direct indirect direct indirect direct indirect

∆12p̂
agg ∆12p̂

agg
sub ∆12p̂

agg ∆12p̂
agg
sub ∆12p̂

agg ∆12p̂
agg
sub

ARSIC 0.137 0.139 0.431 0.478 0.740 0.880

VARsub
(2) 1.086 1.402 1.593

VARagg,sub
(1) 1.044 1.036 1.046 0.939 1.081 0.913

VARagg,sub
Gets 0.978 0.964 1.079 0.960 1.124 0.933

VARInt(2) 0.839 0.748 0.979 0.937 1.065 0.964
VARInt

Gets 1.022 0.842 1.186 1.000 1.272 0.966
VARIntSub

Gets 1.015 1.007 1.188 1.073 1.219 1.031

Note: RMSFE forAR(SIC) model, Recursive estimation samples 1992(1) to 1998(1),...,2000(12),
Super and subscripts indicate model selection procedure, SIC: Schwarz criterion, VARsub: VAR only
including subcomponents, lag orderp = 2, VARagg,sub: VAR with aggregate and subcomponents
p = 0 (SIC),p = 1 (AIC), VARagg,sub

Gets : VAR with aggregate and subcomponents selected by PcGets,
liberal strategy Hendry & Krolzig (2001) VARInt(p): model including international and domestic vari-
ables, lag lengthp = 2, VARInt

Gets: variables as VARInt, model selection with PcGets, VARIntSub
Gets : as

VARInt, additionally including subcomponents, model selection with PcGets,
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Table 6: Including macroeconomic predictors, RMSFE and average RMSFE
ratios of direct multi-step forecast of annualised inflation in percentage points

horizon 1 6 12

RMSFE ARSIC 0.180 0.396 0.780
RMSFE ratios over ARSIC

FM(f1) 1.016 0.970 1.005
FM(f2) 0.966 0.943 0.973
FM(f3) 0.943 0.968 0.961
FM(f4) 0.877 0.981 0.948
DFM(f1)SIC 0.986 0.986 1.015
DFM(f2)SIC 0.980 0.881 0.972
DFM(f3)SIC 0.997 1.172 0.890
DFM(f4)SIC 0.917 1.313 1.065

Note: Recursive estimation samples 1992(1) to 1998(1),...,2000(12), Super and subscripts indi-
cate model selection procedure, SIC: Schwarz criterion, FM(f): factor models with 1,2,3,4 factors,
DFM(f)SIC : dynamic factor models with 1,2,3,4 factors with factor lag lengths chosen by SIC

The 12 months ahead forecast of the VARint is more accurate than the VARagg,sub
(1)

model including the aggregate and its subcomponents. For this horizon the VARagg,sub

outperforms VARagg,sub
Gets . However, the AR model is now performing best overall,

even better than the VARint. Regarding the indirect methods the VAR including
aggregate information instead of macroeconomic predictors performs best. The
lower two panels of figure 5 show the relevance of the differences in the forecasts
for h=12 when additional macroeconomic predictors are included in the models
from a monetary policy viewpoint.

Overall, including additional macroeconomic predictors improves the forecast
accuracy of directly forecasting aggregate inflation over all other linear models
considered except for a forecast horizon of 12 where the AR model outperforms
all the others. This might be attributed to the change in collinearity between the
explanatory variables which will influence the trade-off in forecast model selection
between retaining and omitting variables (see section 3). Examining the change in
correlations between the variables included in the VARint reveals that the collinear-
ity is changing over time, with weaker (positive or negative) correlation between
many variable for the last recursive estimation sample up to 2000(12) than in the
first sample up to 1998(1). This provides a rationale why the ARSIC might be bet-

since the weights are used for aggregation.
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ter for longer forecast horizons than the VARint whereas the opposite is found for
short forecast horizons. For long horizons, the change in collinearity is dominating
the result from section 4.1 for the dynamic forecast that for large h model selection
does not necessarily have to be parsimonious and the specification that is best for
short horizons might be retained. A parsimonious model is to be preferred due to
the change in collinearity.17

For the indirect forecast macroeconomic predictors improve forecast accuracy
for a 1 month horizon whereas for a 12 months horizon including aggregate infor-
mation in the disaggregate model is better. Figure 5, the lower two panels, shows
that differences inRMSFE terms between the direct forecasts of the AR and the
international VAR model matter for 12 step ahead forecasts.

The out-of-sample forecasting experiment suggests that for 1 month ahead
forecasts the information set selected is an important determinant of the forecast
accuracy. In an iterative multi-step forecasting set-up the parsimony of the fore-
cast model specification appears to be a very important factor for longer forecast
horizons, in particular in the relatively small sample available and under chang-
ing collinearity and structural breaks. In this case estimation uncertainty of a high
number of parameters increases theMSFE relatively more.

6 Conclusions

In this paper, we show that a theory of prediction suggests that including disaggre-
gate variables in an aggregate model should outperform in terms of predictability
an aggregate model which only includes lags of the aggregate. However, we find
that it does not always do so when forecasting euro area inflation.

There are many steps between predictability in population and ’forecastability’
where the forecast model might differ from the data generation process. Recall
that the predictability concept that we consider in this paper refers to a property of
the variable of interest in relation to the information set considered. In contrast,
forecastability refers to the improvement in forecast accuracy given the uncondi-
tional moments of a variable based on the information set available. The predictive
value of disaggregate information can be off-set by estimation uncertainty; model
selection; changing collinearity, as measured by the ratio of eigenvaluesλ∗/λ; and
unmodeled breaks. The effect of estimation uncertainty is O(T−1) or O(T−1λ∗/λ)
depending on whether collinearity is unchanged or changing in the forecast period.

17Recursive model selection has been carried out for theARSIC and theV ARInt
Gets and the fore-

cast accuracy has been compared with the methods considered so far. The forecast accuracy did not
improve over theARSIC and theV ARInt presented in the tables and hence did not change our
conclusions.
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For model selection, a loose significance level is suggested based on the analytical
results for a forecast horizon of one period in section 3. Collinearity is shown to
be irrelevant if it is unchanged, but changes in collinearity of both included and
incorrectly-excluded variables affect forecasts. Section 4.1 suggests that for longer
horizons, selection of an even more parsimonious model may not improve fore-
cast accuracy greatly. However, which method performs best in terms of forecast
accuracy would then depend on other factors, such as changes in collinearity. Fur-
thermore, the theoretical implications of predictability assume the absence of other
complicating factors, such as location shifts and measurement errors, which may
play an important role in practice.

In the context of forecasting euro area inflation, changing weights in the price
index and changing collinearity between disaggregate prices both act against dis-
aggregate-based models. When only considering aggregate and disaggregate vari-
ables as the initial information set included in the forecast model, the following
conclusions can be drawn from our empirical analysis: Overall, we find that there
is little cost or benefit from selection in multivariate models for short horizons,
although the model chosen byPcGetsis best at a forecast horizon ofh = 1. How-
ever, more stringent selection pays ash grows when comparing AR models based
on theSIC versusAIC. Indirect forecasts, i.e., forecasting the disaggregates and
aggregating those forecasts, usually perform worst, although the selection proce-
dure does play a role. Furthermore, including aggregates as regressors in the VAR
of disaggregate variables might pay, again depending on the lag order selection
procedure applied. All 1-month ahead forecasts are quite close, whereas the differ-
ences between the different methods increase ash grows. Overall, the theoretical
result on predictability that more disaggregate information does help does not find
strong support in this forecasting context. Dynamic factor forecasts, where the fac-
tors are derived based on disaggregate price variables only, improve over the AR
model only if 3 factors are included.

If the information set is extended further, including macroeconomic predictors,
some of the previous results change. We still find that more stringent selection is
worthwhile ash grows since the AR model selected bySICclearly outperforms the
other methods in terms of forecast accuracy. Similar to including disaggregate in-
formation, additional information in terms of macroeconomic predictors helps for
shorter forecast horizons. The large ‘international’ VAR exhibits higher forecast
accuracy than the AR model based on theSIC for short forecast horizons. Further-
more, there is little benefit from selection when comparing the large ‘international’
VAR with the VAR selected byPcGets. There appears to be no benefit from addi-
tionally including disaggregates in the international VAR. Dynamic factor models
do also improve over the AR model in terms of forecast accuracy.

All methods perform quite similar in terms of forecast horizon of one-step
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ahead. For a forecast horizon of one year, differences between the forecasts from
the different methods are larger and are relevant from a monetary policy perspec-
tive.

We can now answer the four questions posed above for forecasting euro area
inflation and our analytical results help explain those empirical results. First, in-
cluding disaggregate variables in the aggregate model does not really improve fore-
casts of the aggregate, in particular for longer forecast horizons. Second, including
disaggregate information in the aggregate model might be better than forecasting
disaggregates and aggregating those forecasts. Third, including aggregate informa-
tion in component models might improve those forecasts of the aggregate that are
derived by aggregating component forecasts. Fourth, including additional macro-
economic predictors does improve the aggregate forecast for shorter forecast hori-
zons, but not for longer.

That disaggregate variables and macro-economic predictors do not necessarily
improve forecast accuracy in our empirical application seems to be in contrast to
our theoretical results in the context of predictability in population. However, it
might be attributed to a large extent to changing collinearity between components
and macro-economic predictors as regressors in the aggregate model. Since the
effect of changing collinearity on the model selection trade-off between the costs
of estimation and those of omission is unknown in practice, an aggregate model
only including lags of the aggregate might be considered a more robust forecasting
device for longer forecast horizons.
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