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Abstract 

 

This paper proposes a new way of modeling and forecasting intraday returns.  We decompose 

the volatility of high frequency asset returns into components that may be easily interpreted 

and estimated.   The conditional variance is expressed as a product of daily, diurnal and sto-

chastic intraday volatility components.  This model is applied to a comprehensive sample 

consisting of 10-minute returns on more than 2500 US equities.   
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1. INTRODUCTION 
 

 This paper proposes a new way of modeling and forecasting intraday returns.  We de-

compose the volatility of high frequency asset returns into multiplicative components, which 

may be easily interpreted and estimated.   The conditional variance is expressed as a product 

of daily, diurnal and stochastic intraday volatility components.  This model is applied to a 

comprehensive sample consisting of 10-minute returns on more than 2500 US equities.  We 

apply a number of different specifications.  Namely we build models for separate companies, 

pool data into industries and consider various criteria for grouping returns.  It turns out that 

results for the pooled regressions seem to be more stable.  The forecasts from the pooled 

specifications outperform the corresponding forecasts from company-by-company estimation 

but there are several issues in the best way to pool.   

A number of papers have presented related work on intraday returns.  The most com-

monly cited studies include Andersen and Bollerslev (1997, 1998). The authors propose 

models for 5-minute returns on Deutschemark-dollar exchange rate and the S&P500 index.  

In the first paper, Andersen and Bollerslev build a multiplicative model of daily and diurnal 

volatility, and in the second they add an additional component which takes account of macro-

economic announcements.  For most of their models, the intra-daily volatility components 

are deterministic.  In contrast, the intra-daily components in our model include both determi-

nistic (the diurnal) and stochastic (a separate intra-daily ARCH).  

Conventional GARCH approaches were argued to be unsatisfactory by authors at the Ol-

sen conference on High Frequency Data Analysis but in response see Ghose and Kroner 

(1997).  A long memory stochastic volatility approach was applied by Deo Hurvich and 

Lu (2005).  This paper diurnally adjusts in the frequency domain and then uses a local Whit-

tle estimator on log of squared returns to estimate the parameters.   

 We expect our model to be of particular interest for derivative traders or hedge funds who 

seek high frequency measures of risk or time varying hedge ratios.  Another potential use lies 

in devising the optimal trading strategy either in placement of limit orders or scheduling 

trades.  The paper is organized as follows: Section 2 presents the model. Section 3 describes 

the data and gives results of estimation. Conclusions and an outline of further research are of-

fered in Section 4. 

 

   



 3

2. THE MODEL 
 

2.1. Notation 

We use the following notation. Days in the sample are indexed by t (t =1,…, T).  Each day is 

divided into 10 minute intervals referred to as bins and indexed by i (i =0,…, N).  The current 

period is {t,i}.  The price of an asset at the end of day t and bin i is denoted by P{t,i}. The con-

tinuously compounded return r{t,i} is modeled as: 
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The overnight return in bin zero is deleted leading to a total number of return observations, 
M=TN 

2.2. Model 

 

We propose a new GARCH model for high frequency intraday financial returns, 

which specifies the conditional variance to be a multiplicative product of daily, diurnal and 

stochastic intraday volatility.  Intraday equity returns are described by the following process: 

 { , } { , } { , } { , } and    ~ (0,1) t i t i t i t i t ir h s q Nε ε=  (2) 

where: 

ht is the daily variance component, 

si is the diurnal (calendar) variance pattern, 

q{t,i} is the intraday variance component with mean one,  and 

ε{t,i} is an error term.  

 

The daily variance component could be specified in a number of ways.  Andersen and Boller-

slev (1997, 1998), estimate this component from a daily GARCH model for a longer sample, 

going back a number of months or years.  It could also be estimated based on daily realized 

variance as proposed by Engle(2001) and Engle and Gallo(2005).  We adopt a different 

route, however, and utilize commercially available volatility forecasts produced daily for 
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each company in our sample.  This eliminates the need for longer series for the daily model 

than for the intra-daily model.  With the turnover of corporate ownership, it is difficult to get 

consistent long series for a big universe of stocks.   

The diurnal component is calculated as the standard deviation of returns in each bin after 

deflating by the daily volatility.  To see this consider the variance of these returns: 
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Practically, we estimate the model in two stages.  First we normalize returns by daily 
and diurnal volatility components, and then model the residual volatility as a unit 
GARCH(1,1) process: 

 { , } { , } { , } { , }
ˆ/t i t i t t i t iy r h q ε= =  (4) 

 2
{ , } { , 1} 1 { , 1}

ˆ ˆ( / )t i t i t i t iq r h sω α β q− −= + + −  (5) 

The GARCH specification can be rewritten as: 
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The unit GARCH might enforce the constraint 1ω α β= − −  although in the empirical work 
this has not been done.   
 
3. ECONOMETRIC ISSUES 
 

In this section we will discuss statistical properties of the two-step estimator of the model 

outlined in the previous section.  The estimation proceeds in two steps. First we specify and 

estimate the diurnal component.  Following equation  (3) we estimate the diurnal component 

for each bin as the variance of y in this bin.  That is: 
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The second step consists of standardizing y{t,i}  by  and estimating parameters of the 

GARCH(p,q) model, which describes the dynamics of the intraday stochastic compo-

nent as in (6).  Such a multi-step estimation strategy is potentially misleading as errors 

in one stage can lead to errors in the next stage.   Nevertheless it will be shown below 

that the estimator is consistent but that the standard errors should be adjusted. 

iŝ

 In deriving the asymptotic properties of the estimators in this sequential procedure, 

we will follow Newey and McFadden (1994) (later denoted as NM) and cast the above 

steps into the GMM framework. We will consider the GMM estimator of the moment 

conditions stacked one on the other. We will use the following notation. Vector 
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ψ  contains both the k1 parameters φ, estimated in the first step, and the k2 pa-

rameters θ, estimated in the second step,.   Let there be k1 moment conditions g1(φ) and 

k2 moment conditions g2(φ , θ) comprising vector ( ) ( )
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sample sums are g1M and g2M, giving gM=(g1M’, g2M’)’.  We will consider the GMM es-

timator of the parameter vector 
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Since it is a just identified system, W=I.  To solve this system, φ must solve the first set 

of equations and θ must solve the second set conditional on the estimated value of φ. 

Thus it is a natural framework to analyze two step estimators of this type.  Newey and 

McFadden (1994) (c.f. their Theorem 6.1, p. 2178), have shown that if  are 

consistent estimators of the true φ

θφ ˆandˆ

0 and θ0, respectively, and gM satisfies a number of 

standard regularity conditions, the resulting GMM estimator is consistent and asymp-

totically normal:  
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As in Hansen (1982), the above matrices can be consistently estimated by replacing ex-

pectations by sample averages and parameters by their estimates.   

 The NM approach is very convenient and may be applied when parameters at some 

steps are estimated by ML.  In this case some of the GMM moment conditions are taken 

to be score functions.  In the current two-step setting, the sample sums in the first and 

the second stages are: 
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In order to apply NM’s Theorem 6.1, we have to make sure that  are consis-

tent estimators of the true parameter values at each stage.  This is indeed the case for 

estimator (7).  In random sampling from a stationary ergodic distribution, the sample 

mean is a consistent estimate of the expected value.  Consistency of  follows from, for 

example, Hansen and Lee (1994) or Lumsdaine (1996).  In sum, the consistency and as-

ymptotic normality of the estimator (11) is a corollary to Theorem 6.1 (p. 2178) in 

Newey and McFadden (1994).  The above results could, in principle, be generalized to a 

multi-step estimation.   

θφ ˆandˆ

θ̂

 
 
4. EMPIRICAL RESULTS 
 

4.1. DATA 
 

Our sample consists of price data on 2721 companies obtained from the TAQ data-

base.  We analyze logarithmic returns standardized by a commercially available volatil-
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ity forecast for each company and each day and the standard deviation of returns in 

each 10-minute bin.  Data spans a three-month period in April-June 2000.    

 
4.2. RESULTS FOR A SINGLE STOCK 

 

Some results will be presented using a single randomly chosen NYSE-listed stock – 

Republic Group Inc.   In the following, we will refer to the company by its ticker sym-

bol RGC.   We have its daily price data since August 1985 and tick-by-tick data during 

the period from January 2, 1998 to June 30, 1999.  This return series has been previ-

ously used by Engle and Patton (2004) and comes from their 4th decile for trading fre-

quency.  Over the examined period (1.5 years) it had almost 13 thousand trades or about 

35 per day.  On the basis of this ultra-high frequency data we calculate 10-minute re-

turns based on closing midquotes, which are used in the subsequent analysis.  

We obtain forecasts of daily volatilities ht from a sequence of daily GARCH(1,1) 

models estimated from August 1985 until one day before the forecast period. This pro-

cedure is similar to the daily volatility component estimation applied by Andersen and 

Bollerslev (1997, 1998).  Daily forecasts are computed for RGC between January 2, 

1998 and June 30, 1999.  Next we divide 10-minute returns by their respective daily 

volatility forecasts.  What can be observed for these data, however, is a very pro-

nounced diurnal volatility pattern.  Figure 1 plots the standard deviation of returns in 

each of 40 10-minute bins. There is a pronounced increased variation in the beginning 

of each day, a calm period in the middle and somewhat increased variation towards the 

end.  This diurnal pattern has been observed by many studies for all sorts of financial 

returns.   

The sample standard deviation for each bin will be our estimate of diurnal compo-

nent si. Hence in the second step, returns are normalized by their respective diurnal 

standard deviations.  In order to take account of the remaining intraday dynamics, we fit 

a GARCH (1,1) model into returns standardized in that way.  Tables 1 and 2 present re-

sults of daily and intraday GARCH estimation.  Figure 2a. superimposes the three vola-

tility components described above.  We have chosen to only show two-week period (Fig 

2a) and 2.5-month period (Fig.2b) for the reason of clarity.    
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The black rectangular line denoted shows daily volatility forecast, common for each 

day. The blue line represents the regular diurnal pattern, and the stochastic intraday 

component appears in pink.  We may appreciate that this component is able to modify 

the regular deterministic diurnal pattern.  

                   

 

 

Figure 1 
Standard deviation of return during a day for the RGC Stock 
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Note:  The horizontal axis labels denote hours during a trading day. 
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Figure 2a 
Volatility Components for the RGC Stock 
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Figure 2b 
Volatility Components for the RGC Stock 

 

500 1000 1500 2000 2500

1

2

3

Observations

Volatility Components

D
ai

ly

500 1000 1500 2000 2500

1

2

3

In
tr

ad
ay

500 1000 1500 2000 2500

1

2

3

D
iu

rn
al

  

 

   



 10

Figure 2c 
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Figure 2d 
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4.3. RESULTS FOR A SAMPLE OF 2721 STOCKS 

 
4.3.1 SEPARATE ESTIMATION RESULTS 

 

 Model (6) is estimated for 2721 US stock equity returns, which have been previously 

divided by a volatility forecast for a day and “diurnally adjusted” by the standard devia-

tion for each bin. Any remaining serial correlation is eliminated by fitting an 

ARMA(1,1).    Estimation is performed for the period April-May 2000, and the combined 

count of observations during this period exceeds 4.2 million data points.  Since it is rather 

demanding to fit results of this estimation into a table of a manageable size, we report re-

sults of this procedure resorting to graphical methods.  By a “GARCH parameter” and an 

“ARCH parameter”, we refer to β and α coefficients from equation (3).  The top and 

middle panels of Figure 3 depict β and α  parameters, respectively.  The bottom panel 

plots the sum of both parameters, thus informing us how persistent the volatility is.  We 

may observe a fair amount of variation in the values of parameters and the measure of 

persistence.  This result cannot be surprising taking into account that the estimation sam-

ple spans only two months.  Although for 10-minute returns this translates into 1560 ob-

servations for most companies, the actual interval appears to be very short. Figure 4 sheds 

some more light on the nature of the observed parameter variation in separate regressions.  

It reports results of the very same estimations; however the sequence of companies has 

changed.  We have sorted the companies according to the percentage of “zero” returns.  

This percentage could roughly be understood as a measure of intensity of trading.  Sub-

stantial percentage of zero returns would indicate lack of active trading (although a zero 

return may result from trading at the same price).     

 Companies at the very left of Figure 4 almost always trade, and at the very right- 

hardly ever trade or trade at the same price most of the time.  It can be observed that es-

timates’ variability increases with the percentage of zero returns.  Further, there is an up-

ward trend in the GARCH parameter and a downward tendency for the ARCH parameter.   
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Figure 3 
GARCH Estimation Results for the Intra-Day Component   
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Note:  The horizontal axis indicates companies. 

 
B. Histogram of GARCH parameters 
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Figure 4 
GARCH Estimation Results for the Intra-Day Component   

 2721 Separate Models, Companies Sorted According to Their Trading Intensity 
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Note:  The horizontal axis indicates particular companies. 
 
 
 

4.3.2 GROUPED ESTIMATION RESULTS 
 

In order to improve forecasting performance of our model, we have decided to group 
data into 54 industries and estimate 54, instead of 2721 GARCH (1,1) models for an in-
traday component. Each return series has been divided by its standard deviation in order 
to render returns comparable across stocks.  Standardized returns within each industry 
have been pooled into industry series.    Estimation results of this step are summarized 
in Table 3 and parameters plotted in Figure 5.  The last column indicates a very substantial 
reduction in persistence of volatility.  Of course, industries vary in number of companies. 
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Table 4 reports results for ARCH estimation for the intraday component for one giant 
pool of all the companies, comprising over 4.2 million observations.  Similarly to the indus-
try case, this table also indicates modest persistence of intraday volatility.  

A third approach to pooling stocks is to sort them by time series characteristics.   This 
could have the benefit of reduced parameter uncertainty but preserving the natural heteroge-
neity across this dimension.   Based on the previous results, we sorted on liquidity as meas-
ured by the percentage of time bins with zero returns.  We estimated 50 categories of Liquid-
ity for the GARCH models.  

 

 

Figure 5a 
GARCH Estimation Results for the Intra-Day Component   
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 15

Figure 5b 
GARCH Estimation Results for the Intra-Day Component   

54 Industry Models, Persistence Parameter A+G, Histogram 
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Figure 6 
GARCH Estimation Results for the Intra-Day Component   

50 Liquidity-Sorted Models 
G

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

A

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

A+G

0.6
0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

 
 

5. FORECASTING RESULTS 
 

5.1. LOSS FUNCTIONS AND DESIGN 
 

We now turn to out of sample forecast accuracy.  We use the parameter estimates  
for the period April-May 2000, and forecast one step ahead volatilities for each bin in 
June 2000.  Forecasts are obtained in a sequential procedure on the basis of estimated 
parameters and the volatility forecast calculated at previous bin.  From the structure of 
the model, forecasts of the variance of returns are the product of the daily variance 
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forecast, the diurnal variance and the garch variance.  In this analysis, the variance that 
is forecast is of the return deflated by the daily vol times the diurnal vol. 

 It should be appreciated that forecasting volatility is connected with an addi-
tional complication since of course we do not observe the variable we want to forecast.  
In our forecasting evaluation we will compare our forecasts with the squared return 

.  This return is a random variable drawn from a distribution with a vari-

ance we are trying to estimate.   We expect that the squared return will be large only 
when the true variance is large, however, the squared return may be small even when 
the variance is large.  As a consequence, it is not at all clear what a sensible loss func-
tion should be.  For recent discussions of forecast accuracy measures, see Granger 
(2003) or Patton (2004).   In the following, we use two loss functions: 

{ } { }
2 2

, ,
ˆ ˆ/ t it i t iz r h= s

 

L1 LIK Out-of-sample likelihood 2
{ , }

1 { , }
{ , }

log t i
t t i f

t i

z
L q

q
= +  

L2 MSE Mean Squared Error ( )22
2 { , } { , }

f
t t i t iL z q= −  

 

The use of squared return in place of the true volatility renders many popular loss func-
tions problematic (so does the RV measure).  However, under MSE and LIK  loss func-
tions optimal forecasts unbiased (c.f. Patton, 2004).    

We determine forecasts for each company separately, using parameters estimated in 
both separate and pooled estimations. Therefore for each time period, for each com-
pany, we obtain 5 different forecasts that will form the basis for a subsequent model 
evaluation and comparison. 

 

 

 
5.2. OUT-OF-SAMPLE FORECAST COMPARISON 

 

We have performed five different estimations for companies pooled into groups in 
various ways and will refer to these ways as modes.  The first mode (NSTOCH) con-
tains no stochastic component (5) at all.  Mode No. 2 (UNIQUE) involves no pooling, 
i.e. we estimate unique GARCH models for separate companies. Mode No. 3 (INDUST) 
denotes a GARCH estimation for companies grouped according to their primary indus-
try classification.  In Mode No. 4 (LIQUID) we have grouped companies according to 
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the average number of trades per day.  The last mode (ONEBIG) involves estimation of 
a large GARCH model, for all companies pooled together to form one group.  

For each of these 5 separate estimations we have calculated a series of forecast er-
rors.  These forecast errors are used to calculate accuracy measurement criteria using 

loss functions L1 and L2, ∑
=

=
τ

τ 1

1
t

jtj LL .  

Table 5 reports aggregated average results on forecast accuracy measures. It calcu-
lates average loss measures across all stocks.  It also contains the ordering that each cri-
terion assigns to the five estimation modes.  Number 1 denotes the best model with the 
smallest error, model numbered as fifth performs the worst.  The last column shows the 
average score, or the average ordering.  According to the average score, the liquidity 
sorted model appears to forecast best out of sample for grouped data.   Industry group-
ing comes as second, followed by one large GARCH mode.  Please note that all the cri-
teria assume very similar values for the three grouping modes.  A clear message 
emerges from this table, however, that the separate estimation is inferior in terms of 
forecasting accuracy in comparison to the pooled modes.  LIK criterion favours 
UNIQUE mode of NSTOCH model, whereas the MSE measure gives an opposite an-
swer.   

The results reported above are highly aggregated and call for a more detailed inves-
tigation. We will consider forecast accuracy measures separately for each of the 5 esti-
mations and for each company, which amounts to a total of (10* 2721 =)  27210 num-
bers.     

Table 6 reports aggregated results for pair wise forecast comparisons. It calculates 
the probability that the mode in the row will outperform the mode in the column or a 
random stock for a particular loss function.  For example, the third row second column 
compares results of NSTOCH vs. separate estimations.  Here the number 0.618 means 
that the specification without component (5) yields worse forecasts than the individual 
company by company estimation 62 % of times.  The second column of the table in-
forms us that NSTOCH estimation mode performed worse than all the other modes. 

As we learn from column three, separate estimation gives worse forecasting results 
than INDUST, LIQUID and ONEBIG modes.  The fifth column establishes forecasting 
inferiority of LIQUID mode in comparison to both INDUST and ONEBIG modes (as far 
as aggregate results are concerned).  Finally the sixth and forth columns fails to reveal a 
clear winner in this forecasting competition.  The MSE criterion marginally favours 
INDUST estimation, whereas the out-of-sample likelihood prefers one large GARCH 
estimation.    
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 Tables 5 and 6 give somewhat conflicting answers to the question - which method of 
company grouping should be adopted. They only agree that the very grouping is desir-
able to the separate estimation.  We investigate the supposed disagreement looking at 
liquidity issues.  We limit our attention to the upper and lower tails of companies’ dis-
tribution, as far as liquidity is concerned.   We repeat the same calculations that were 
reported in Table 5, but take two separate samples of 550 most liquid and most illiquid 
companies.  Table 8.A reports forecast accuracy measures for the subsample of least 
liquid stocks.  The measures presented in Tables 5 and 8 are not exactly comparable, 
since each of them refers to a different sample/subsample. It is clear, however, that the 
means of error functions are bigger for least liquid stocks than the aggregate numbers in 
Table 5, which are in turn bigger than the means for most liquid stocks (Table 8, Panel 
B.).  Nowhere the difference between tails is as visible as for the MSE measure.  The 
figures differ by an order of a magnitude, and this illustrates the sensitivity of the MSE 
criterion to outlying observations, more frequently haunting illiquid stocks.    

 If on inspecting Table 8, we concentrate on the question of which estimation mode 
gives superior forecasts, we will notice that the conclusions for illiquid stocks are al-
most identical to the results for the aggregate results.   Table 8.A recommends liquidity 
sorted GARCH model as a preferred solution.   

 The picture suddenly changes when we look at the results assembled in Table 8.B, 
which concern the most liquid stocks.  Here one big GARCH solution, followed closely 
by industry grouping outperform both liquidity-sorted models and separate estimation.  
These conclusions closely resemble results reported for separate companies. 

 To sum up, we have seen uniformly improved forecasting performance on the basis 
of cross section information, i.e. when applying different methods of pooling.  The ex-
act way how we chose to group companies heavily relies on company characteristics, 
liquidity in this case.  Most liquid stocks seem to benefit from the widest pooling possi-
ble, i.e. using all available cross section information.  Most illiquid stock apparently 
exhibit intraday dynamics which is idiosyncratic to their particular liquidity-determined 
group.   

 

6. CONCLUSION 
   

This paper proposes a new way of modeling and forecasting intraday returns.  We decompose 

the volatility of high frequency asset returns into components that may be easily interpreted 

and estimated.   The conditional variance is expressed as a product of daily, diurnal and sto-
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chastic intraday volatility components.  This model is applied to a comprehensive sample 

consisting of 10-minute returns on more than 2500 US equities.   
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Table 1.  RGC Daily GARCH Results 
 
                            Standard          T      
  Parameter       Value          Error       Statistic  
 -----------   -----------   ------------   ----------- 
           C    0.00023757    0.00041135     0.577537 
           K    0.00013636    0.00001149    11.86358 
    GARCH(1)    0.65957       0.019085      34.5596 
     ARCH(1)    0.18073       0.010675      16.93021 

Note: C denotes a constant in the mean equation, and K - a constant in the variance equation 
 
 

Table 2.  RGC Intraday GARCH Results 
 
                            Standard          T      
  Parameter       Value          Error       Statistic  
 -----------   -----------   ------------   ----------- 
           C    -0.0047551     0.0072439       -0.6564 
           K    0.079635       0.0020221       39.3828 
    GARCH(1)    0.8311         0.0033093      251.1402 
     ARCH(1)    0.097794       0.002116        46.2155 
 
Note: C denotes a constant in the mean equation, and K - a constant in the variance equation 
 
 
 
 

   



 
 

Table  3.  Industry Results (Notes on the next page) 
 

Industry NoObs LLF C tC K tK G tG A tA BIC 1 2 5 10 20 40 A+G sum
1 92976 -128890 -0.0140 -4.61 0.132 121.48 0.805 558.34 0.065 110.66 257820 1.993 4.76 7.58 11.68 33.56 71.31 0.870
2 24102 -33598 -0.0110 -1.83 0.256 61.22 0.649 120.20 0.101 54.37 67236 0.011 0.77 1.45 2.39 3.82 13.97 0.750
3 71292 -98840 -0.0155 -4.49 0.144 134.95 0.783 533.04 0.076 92.81 197720 0.423 1.34 5.13 10.66 73.71 129.84 0.859
4 134200 -186330 -0.0074 -2.90 0.125 120.58 0.808 557.18 0.069 107.76 372700 1.930 3.74 7.80 12.97 24.02 161.73 0.877
5 100580 -139360 0.0116 3.95 0.107 118.80 0.826 649.19 0.069 98.56 278770 0.458 1.01 6.61 13.20 103.65 147.08 0.895
6 43641 -60851 -0.0017 -0.38 0.101 52.28 0.840 317.81 0.061 52.63 121740 0.643 2.22 3.66 5.13 10.05 39.47 0.901
7 55380 -76573 0.0034 0.86 0.111 64.10 0.793 292.88 0.100 62.23 153190 0.999 1.03 43.51 44.50 65.38 86.19 0.893
8 102610 -141890 0.0029 0.99 0.169 110.13 0.737 336.33 0.098 95.58 283830 0.359 2.72 4.46 15.16 30.18 69.32 0.834
9 23673 -32638 0.0101 1.74 0.118 78.44 0.808 358.65 0.082 66.39 65317 0.238 0.27 2.07 4.25 7.86 118.25 0.890

10 10647 -14695 0.0037 0.44 0.150 48.29 0.755 178.30 0.104 36.45 29426 0.445 0.45 1.45 7.01 142.95 160.76 0.859
11 37323 -51825 0.0050 1.04 0.159 68.97 0.752 254.07 0.092 81.17 103690 0.442 1.07 2.71 15.79 22.34 76.92 0.844
12 28236 -39090 -0.0024 -0.42 0.232 62.43 0.683 140.03 0.086 45.27 78222 0.001 0.20 1.55 3.39 7.48 253.32 0.769
13 33540 -46304 -0.0157 -3.19 0.187 54.69 0.703 133.14 0.114 43.30 92651 0.015 0.25 0.96 2.18 3.79 6.34 0.817
14 56978 -78622 -0.0208 -5.58 0.094 90.88 0.837 526.71 0.072 79.95 157290 2.048 2.08 9.04 11.63 28.75 57.13 0.908
15 44928 -60880 -0.0081 -1.94 0.094 90.89 0.809 449.96 0.100 80.36 121800 3.571 3.61 11.13 15.59 23.61 65.68 0.909
16 37401 -51323 0.0002 0.05 0.112 57.39 0.785 237.54 0.107 55.84 102690 1.898 2.61 6.81 12.28 36.76 47.13 0.892
17 90714 -123720 -0.0072 -2.42 0.113 146.53 0.783 562.79 0.107 100.38 247480 0.450 1.21 4.20 6.62 52.08 100.34 0.891
18 24960 -34412 -0.0038 -0.67 0.125 62.90 0.774 257.30 0.104 52.14 68864 1.693 2.48 7.71 14.57 24.90 42.96 0.878
19 84240 -115920 -0.0061 -1.95 0.083 128.23 0.856 830.67 0.062 113.08 231880 1.461 1.50 2.83 7.67 11.90 28.08 0.918
20 57330 -79145 -0.0151 -3.93 0.074 81.01 0.863 587.80 0.066 74.98 158330 2.166 2.17 9.64 20.53 26.12 43.01 0.928
21 103230 -141720 -0.0137 -4.72 0.126 153.10 0.788 601.23 0.089 104.86 283480 0.014 0.37 1.81 4.52 8.36 22.54 0.877
22 28119 -39152 0.0030 0.54 0.134 41.77 0.792 184.19 0.076 42.78 78346 0.690 1.00 5.21 7.52 16.13 51.38 0.869
23 37401 -51842 -0.0024 -0.51 0.206 50.80 0.680 129.13 0.120 60.64 103730 0.914 1.97 9.92 12.01 39.23 55.49 0.799
24 25584 -34907 -0.0061 -1.09 0.073 58.53 0.860 438.01 0.068 55.61 69854 0.473 0.50 8.97 10.34 25.12 75.87 0.928
25 48165 -66239 -0.0071 -1.69 0.095 92.02 0.832 529.08 0.075 71.41 132520 3.651 3.69 6.60 13.66 39.91 65.51 0.907
26 10920 -14976 -0.0062 -0.73 0.091 19.69 0.811 114.01 0.099 24.81 29988 3.649 3.69 5.12 12.46 19.14 48.62 0.910
27 42119 -57852 -0.0084 -1.87 0.127 63.59 0.777 237.50 0.099 55.96 115750 0.233 1.42 1.89 4.56 8.10 646.70 0.875
28 17121 -23836 0.0027 0.37 0.185 32.55 0.742 102.24 0.074 31.63 47711 0.092 0.88 0.99 2.34 7.47 32.70 0.816
29 103540 -142960 -0.0063 -2.18 0.112 142.93 0.817 689.12 0.074 116.15 285970 0.303 1.82 4.61 9.90 13.52 24.18 0.891
30 119110 -166030 0.0113 4.12 0.147 138.16 0.771 522.60 0.083 93.20 332100 5.716 6.45 23.68 28.00 118.85 153.48 0.854
31 58733 -81804 0.0121 3.16 0.093 76.81 0.848 493.08 0.061 71.20 163650 1.023 1.26 4.17 10.34 26.81 114.25 0.909
32 15600 -21405 0.0010 0.14 0.094 25.74 0.803 135.94 0.109 30.64 42850 0.055 1.09 3.27 8.50 18.50 34.50 0.911
33 31629 -43650 -0.0036 -0.70 0.196 78.15 0.695 194.59 0.116 58.08 87342 0.031 1.14 2.64 5.73 26.91 66.64 0.811
34 44694 -60711 -0.0031 -0.79 0.088 153.28 0.820 868.30 0.100 109.77 121470 2.506 3.29 5.75 8.59 12.75 74.63 0.920
35 51401 -70025 0.0006 0.14 0.097 63.02 0.794 329.90 0.114 76.98 140090 14.129 15.06 20.17 25.39 40.37 72.11 0.908
36 108810 -148910 -0.0043 -1.65 0.108 127.52 0.795 606.19 0.102 124.64 297860 4.554 5.46 11.45 18.69 22.48 45.36 0.897
37 214610 -290520 -0.0122 -6.57 0.089 161.37 0.801 891.12 0.114 188.33 581080 3.368 3.55 8.31 16.64 80.34 109.06 0.916
38 222300 -298840 -0.0130 -7.17 0.084 191.53 0.806 952.12 0.113 169.34 597720 4.439 7.57 21.20 44.04 50.19 100.56 0.919
39 148820 -197780 -0.0146 -6.82 0.061 108.20 0.818 744.25 0.126 131.09 395600 16.126 17.58 45.50 73.92 81.46 193.38 0.944
40 125260 -168830 -0.0178 -7.20 0.088 174.91 0.807 801.51 0.105 132.50 337710 0.368 0.52 3.31 5.79 8.46 632.56 0.913
41 258060 -344260 -0.0236 -14.61 0.073 228.02 0.810 1372.00 0.123 222.82 688570 16.312 17.97 39.25 60.83 68.41 160.80 0.932
42 34242 -46826 0.0016 0.32 0.109 60.39 0.795 282.90 0.100 59.50 93694 3.999 4.33 9.42 12.43 21.39 57.09 0.895
43 113020 -153890 -0.0180 -6.84 0.092 129.93 0.819 662.60 0.091 109.66 307820 0.926 2.41 10.34 18.61 24.77 127.73 0.909
44 50505 -68427 -0.0307 -7.79 0.116 123.27 0.777 467.03 0.112 86.16 136900 0.021 0.08 0.97 3.90 12.98 72.66 0.889
45 174680 -235800 -0.0157 -7.75 0.085 184.04 0.814 935.66 0.107 154.84 471660 4.365 5.84 16.64 26.94 32.91 66.18 0.920
46 85602 -117200 -0.0031 -1.04 0.089 118.16 0.835 729.52 0.079 116.18 234450 5.362 5.46 15.80 20.04 40.39 58.82 0.914
47 34865 -47537 0.0058 1.21 0.109 89.12 0.799 429.74 0.096 84.32 95115 5.988 6.95 12.86 17.93 27.10 62.16 0.895
48 96524 -132830 0.0049 1.72 0.074 169.03 0.865 1506.90 0.063 128.44 265700 14.657 14.72 17.65 24.20 30.03 212.02 0.928
49 218210 -302410 0.0067 3.48 0.098 185.07 0.842 1064.50 0.062 149.24 604880 3.776 4.97 10.41 16.23 26.80 154.44 0.904
50 48048 -66832 0.0039 0.95 0.090 74.70 0.859 533.63 0.052 71.95 133710 2.984 4.15 7.04 10.86 12.75 36.55 0.911
51 57679 -78235 -0.0029 -0.79 0.097 117.88 0.802 535.37 0.105 89.48 156510 0.370 0.85 4.39 8.74 15.65 41.16 0.907
52 87903 -119860 -0.0061 -2.02 0.060 156.60 0.876 1391.00 0.066 131.10 239760 4.911 4.99 6.84 9.02 20.79 98.63 0.943
53 79754 -104390 -0.0284 -10.46 0.050 74.06 0.817 501.03 0.137 97.43 208830 10.193 10.20 23.44 42.19 50.96 120.91 0.955
54 156160 -218270 0.0133 5.73 0.104 97.56 0.838 575.22 0.059 101.57 436580 1.455 2.40 7.01 17.43 45.70 64.92 0.898

ARCH test critical values 3.842 5.99 11.07 18.31 31.41 55.76
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Notes to Table 3 
 
NoObs Number of observations 

LLF  Value of the Loglikelihood function 
C  Constant in the mean equation 
tC  t-value for C parameter 
K  Constant in the variance equation 
tK  t-value for K parameter 
G  beta in the variance equation 
tG  t-value for G 
A  alpha in the variance equation 
tA  t-value for A 
BIC  Schwartz Information Criterion 
1  ARCH LM test for volatility clustering in residuals – Lag 1 
2            Lag 2 
5          Lag 5 
10          Lag 10 
20          Lag 20 
40          Lag 40 
A+G the sum of alpha and beta parameters 
 
 
 

Table 4 All Sample Results 
 
                               Standard          T      
  Parameter       Value          Error       Statistic  
 -----------   -----------   ------------   ----------- 
           C    -0.0072459     0.00043311     -16.7301 
           K    0.099443       0.00011118     894.4290 
    GARCH(1)    0.81556        0.00018085    4509.5115 
     ARCH(1)    0.087421       0.00011767     742.9462 
 
Note: C denotes a constant in the mean equation, and K - a constant in the variance equation 
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Table 5.  Forecast accuracy measures for different estimation modes 
   Aggregate results 

 
  Forecast accuracy measures LIK O MSE O 

 NSTOCH No stochastic intraday component 1.0001 5 3.8228 4 

 UNIQUE Separate GARCH estimation  0.9402 4 3.8231 5 

 INDUS Industry GARCH estimation 0.9292 2 3.8014 2 

 LIQUID Liquidity-Sorted GARCH estima-
tion 

0.9264 1 3.7973 1 

 ONEBIG One large GARCH estimation 0.9295 3 3.8018 3 

 
   Note: O denotes ordering from best (1) to worst (4).  
    

Table 6 Forecast comparison 
LIK  NSTOCH UNIQUE INDUST LIQUID ONEBIG 

NSTOCH   0.382 0.275 0.245 0.262 
UNIQUE 0.618   0.354 0.404 0.339 
INDUST 0.725 0.646   0.572 0.445 
LIQUID 0.755 0.596 0.428   0.377 
ONEBIG 0.738 0.661 0.555 0.623   

MSE NSTOCH UNIQUE INDUST LIQUID ONEBIG 

NSTOCH   0.304 0.203 0.307 0.222 
UNIQUE 0.696   0.419 0.465 0.432 
INDUST 0.798 0.581   0.615 0.520 
LIQUID 0.694 0.535 0.385   0.411 
ONEBIG 0.778 0.568 0.480 0.590   
 Fraction of companies where row beats column 
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Table 7 Forecast accuracy comparison for different estimation modes individual 
stocks 

    NSTOCH UNIQUE INDUST LIQUID ONEBIG 

LIK  Mean 1.0001 0.9485 0.9306 0.9271 0.9313 

  Rank 5 4 2 1 3 

LIK  Median 1.0002 0.9543 0.9430 0.9432 0.9410 

  Rank 5 4 2 3 1 

MSE  Mean 3.4930 3.4835 3.4668 3.4661 3.4666 

  Rank 5 4 3 1 2 

MSE  Median 2.9765 2.9571 2.9495 2.9498 2.9478 

  Rank 5 4 2 3 1 

 
 

Table 8.  Forecast accuracy measures for different estimation modes 
  

 
A. Least Liquid Stocks 

 Forecast accuracy measures LIK O MSE O Av. Score 

NSTOCH No stochastic intraday component 1.0002 5 5.8425 2 3.5
UNIQUE Separate GARCH estimation  0.9779 4 5.8871 5 4.5
INDUST Industry GARCH estimation 0.9548 2 5.8481 3 2.5
LIQUID Liquidity-Sorted GARCH estimation 0.9405 1 5.8287 1 1
ONEBIG One large GARCH estimation 0.9629 3 5.8541 4 3.5

B. Most Liquid Stocks 

 Forecast accuracy measures LIK O MSE O Av. Score 

NSTOCH No stochastic intraday component 0.9999 5 2.7439 5 5
UNIQUE Separate GARCH estimation  0.9679 4 2.7309 4 4
INDUST Industry GARCH estimation 0.9293 2 2.7084 2 2
LIQUID Liquidity-Sorted GARCH estimation 0.9339 3 2.7172 3 3
ONEBIG One large GARCH estimation 0.9274 1 2.7044 1 1

 
      Note: O denotes ordering from best (1) to worst (4).  Average Score is calculated as the mean of 
ordering measures in each row.  
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Table 9. Forecast accuracy comparison Diebold-Mariano test  – t-values 

A. Least Liquid Stocks 
LIK NSTOCH UNIQUE INDUST LIQUID ONEBIG 

NSTOCH   -1.603 -8.911 -4.618 -2.524 
UNIQUE 1.603   - 1.739 -1.911 -0.731 

INDUST 8.911 1.739  -0.967 0.476 
LIQUID 4.618 1.911 0.967  1.465 
ONEBIG 2.524 0.731 -0.476 -1.465   

B. Most Liquid Stocks 
LIK  NSTOCH UNIQUE INDUST LIQUID ONEBIG 

NSTOCH   -26.822 -36.386 -10.686 -12.407 
UNIQUE 26.822   -9.411 -0.621 -1.832 

INDUST 36.386 9.411  0.758 -0.408 
LIQUID 10.686 0.621 -0.758   -1.174 

ONEBIG 12.407 1.832 0.408 1.174   
 
 
 

   


