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Abstract

This paper is related to a large recent literature studying the Phillips curve in
sticky-price equilibrium models. It differs in allowing for the degree of price sticki-
ness to be determined endogenously. A closed-form solution for short-term inflation
is derived from the dynamic stochastic general equilibrium (DSGE) model with
state-dependent pricing originally developed by Dotsey, King and Wolman. This
generalised Phillips curve encompasses the New Keynesian Phillips curve (NKPC)
based on Calvo-type price-setting as a special case. It describes current inflation as
a function of lagged inflation, expected future inflation, and current and expected
future real marginal costs. The paper demonstrates that inflation dynamics gen-
erated by the model for a broad class of time and state-dependent price-setting
behaviours are well approximated by the popular hybrid NKPC (with one lag of
inflation) in a low-inflation environment. This provides an explanation of why the
hybrid NKPC performs well in describing inflation dynamics across industrial coun-
tries. It implies, however, that the reduced-form coefficients of the hybrid NKPC
may not have a structural interpretation.
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The Phillips curve has long served as a useful description of monetary policy effects on
inflation. In modern New Keynesian models, it is explicitly derived from the pricing decisions
of firms. One advantage of this new approach is that because the relationship has a structural
interpretation, we can, for example, infer implications for the transmission of inflation following
a shock; the Phillips curve is no longer a ‘black box’. But if there are structural changes in the
economy, such as the move to a low-inflation environment witnessed since the 1990s in the United
Kingdom and several other countries, the price-setting behaviour of firms may change and affect
inflation dynamics. From a policy perspective, therefore, two important issues arise. First, how
sensitive is short-term inflation dynamics to such shifts in the economic environment? Second,
how well does a Phillips curve based on the assumption of unchanged price-setting behaviour of

firms describe inflation dynamics of an economy where the former has in fact changed?

In recent years, dynamic general equilibrium models with nominal rigidities have become
the standard tool to analyse the effects of monetary policy on output and prices. These models
regularly assume some form of staggered price-setting with an exogenous timing of price changes
(time-dependent pricing). The implication is that firms do not adjust the time pattern of their
price adjustments in response to changes in macroeconomic conditions. This is hardly plausible
if we think of an environment with shifts in trend inflation, for example, and may limit the value
of these models for monetary policy analysis. In response to this problem, Dotsey et al. (1999)
have developed a dynamic general equilibrium model with endogenous timing of price changes.
Building on earlier contributions by Sheshinski and Weiss (1983) and Caplin and Leahy (1991),
they describe an economy where the firms’ time pattern of price changes responds to the state
of the economy (state-dependent pricing). Recent contributions to the literature have developed
state-dependent pricing models that emphasise the role of sticky pricing plans (Burstein (2002))

and idiosyncratic marginal cost shocks (Golosov and Lucas (2003)).

The analysis of monetary policy in dynamic general equilibrium models is usually performed
by numerical methods. Nevertheless, it is useful for many purposes to have a closed-form solution
for short-term inflation. In the case of time-dependent pricing, a structural equation relating
inflation dynamics to the level of real marginal costs (or another measure of real activity) has

been derived from the Calvo (1983) model. Under zero trend inflation, it relates inflation to



marginal costs and the expectation of next period’s inflation. This is the New Keynesian Phillips

curve (NKPC).!

In this paper, we derive a closed-form solution for short-term inflation from the Dotsey et al.
(1999) model. The resulting equation is less compact than the New Keynesian Phillips curve. It
relates inflation to lagged inflation, expected future inflation, and current and expected future
real marginal costs. The number of leads and the size of the coefficients are endogenous and
depend on the level of steady-state inflation and on firms’ beliefs about future adjustment costs.

We refer to this structural equation as the state-dependent Phillips curve (SDPC).

In contrast to the NKPC, the SDPC allows lagged inflation terms to affect current inflation.
This is an interesting feature since estimates presented by Gali and Gertler (1999) and Gali
et al. (2003) among others suggest that the NKPC extended by a lagged inflation term provides
a better description of inflation dynamics than the purely forward-looking NKPC. There are
various ways to derive a specification with lagged inflation beyond the SDPC. Three approaches
have been considered in the recent literature. First, Gali and Gertler (1999) extend the Calvo
(1983) model to allow for a subset of sellers that resort to a backward-looking rule of thumb to set
prices. Second, Christiano et al. (2001) assume backward-looking indexation of wages and prices
to the aggregate price level. Third, Wolman (1999), Dotsey (2002), Guerrieri (2002), Kozicki
and Tinsley (2002), and Mash (2003) use other forms of time-dependent models of price-setting
that build on the staggered contract model of Taylor (1980). While all three approaches provide
lagged inflation terms, the structure of these Phillips curves is conditional on the assumption
about exogenous nominal rigidities. So a key advantage of the SDPC over this class of Phillips
curves is its endogenous structure. This aspect can offer guidance to policymakers on how

structural changes can affect inflation dynamics.

Given the empirical evidence suggesting that the NKPC with a lagged inflation term performs
well for several countries, the question arises whether the data generating process underlying the
SDPC is realistic. To explore this issue, we generate artificial data based on various calibrations
of the state-dependent model and estimate the NKPC with one lagged inflation term, ie the
hybrid Phillips curve of Gali and Gertler (1999), using the GMM approach. Our findings suggest

1See Woodford (2003) for a detailed exposition.



that the parsimonious structure of the hybrid NKPC is a good reduced-form description of
inflation dynamics for a wide range of time and state-dependent price-setting behaviour in a
low-inflation environment. However, the reduced-form coefficients of the hybrid NKPC may not
have a structural interpretation. In this sense, the hybrid NKPC may still share the weaknesses

of the traditional Phillips curve approach.

The paper is organised as follows. Section 2 reviews the main features of the state-dependent
model by Dotsey et al. (1999). Section 3 derives the SDPC and shows that this generalised
Phillips curve nests the NKPC. To explore the SDPC, Section 4 shows how it varies with
the price-setting characteristics at the firm level (price adjustment cost assumption) and trend
inflation. Section 5 confronts the SDPC with the hybrid NKPC. We generate artificial data sets
from the state-dependent model for a range of calibrations and discuss the performance of the

hybrid NKPC in describing the dynamics of these data sets. Section 6 concludes.

1 The state-dependent pricing model

The framework we use in this paper is the dynamic stochastic general equilibrium model with
state-dependent pricing of Dotsey et al. (1999). The economy studied by these authors is
characterised by monopolistic competition between firms selling final goods. With a common
technology and common factor markets real marginal costs are the same for all firms. The
novel feature of the model is the way price adjustment costs are introduced. It is assumed that
firms face stochastic costs of price adjustment which are i.i.d. across firms and across time.
Firms evaluating their prices weigh the expected benefit from price adjustment against the price
adjustment cost they have drawn in the current period. Conditional on the current adjustment

costs, some firms do adjust while others do not. All adjusting firms set the same price.

In this section, we focus on the key equations describing the optimal nominal price and the
aggregate price level, respectively. The rest of the model is familiar and formal details can be
found in Dotsey et al. (1999). To simplify the presentation, we split the price-setting problem
into two parts. For a given realisation of the adjustment cost, each firm has to decide whether

to adjust the price of the final good it produces and, if so, to what level. The former can be



characterised by the dynamic programming problem
Vi = max (v — §wi, vjt) (1.1)

where vg; gives the current value of the firm if it adjusts the price in the current period, and
vj¢ is the firm’s value if it keeps the price set j periods ago unchanged. The price adjustment
cost is denoted by &wy, where & is the realisation of the stochastic adjustment cost expressed

in labour units, and w; is the real price of labour.

The value of the firm in case of a price adjustment in ¢ is determined by

1 -
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The corresponding value of the firm in case of no price adjustment in ¢ is
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where z;; denotes the current real profit based on the optimal price set j periods ago, P;;, and
the term in the square brackets reflects the two possibilities of adjustment and non-adjustment
next period. With probability 1 — aj41 41, the firm will not adjust its price next period; in this
case, we have the discounted expected value of a non-adjusting firm, E;[3Q¢ +1vVj41,41], where
BQ¢i+1 is the discount factor which varies with the ratio of future to current marginal utility.
With probability a;11¢41, the firm will adjust its price next period; in this case, we have the
discounted expected value of an adjusting firm, E;[BQ¢+1v0¢+1], less the expected adjustment
cost the firm will have to pay, amounting to E; [wt+104j_+11¢ +12j+1,¢+41]. The average cost in labour
units paid conditional on adjustment, a;_:LtHE]-JrLtH, depends on G_l(aj+17t+1), where G(+)
denotes the distribution of the fixed price adjustment cost. Equation 1.2 refers to a firm which
does adjust its price in the current period, so that j = 0; otherwise the interpretation is the

same as in 1.3.



Now a firm will change its price only if the benefit of a price adjustment exceeds the reali-

sation of the random adjustment cost. Formally,
’Uo,t—vj,t 2 wtft, Vj = 1,2,...,J (1.4)

If both sides of 1.4 are equal, the firm is indifferent between adjusting its price and keeping it
unchanged. This borderline case can be used to derive the price adjustment probability a;; of
a firm that adjusted its price j periods ago. It is the likelihood of drawing an adjustment cost
that is smaller than the benefit expressed in labour units, (vo; — vj¢)/w;. This can be written
as

Oéj,t:G(UO’tw;tUj’t), Vi=1,2...,J (1.5)

Equation 1.5 describes how the adjustment probabilities depend on the state of the economy.
As the value functions evolve stochastically with the state of the economy, the adjustment
probabilities aj; Vj = 1,2,...,J, also change. Note that J is the maximum number of periods
the firm is willing to do without a price adjustment. It is finite because, with adjustment costs
bounded from above and positive trend inflation, the net benefit of a price adjustment becomes
arbitrarily large over time. The state-dependent behaviour of the adjustment probabilities is a
key feature of the model. It captures the intuitive notion that adjustment behaviour responds
to shocks, and that with positive inflation a firm which last changed its price a long time ago is

more likely to readjust than a firm which changed its price more recently.

The adjustment probabilities ¢, Vj = 1,2,...,J, can then be used to describe the distri-
bution of price vintages in the economy and the evolution of this distribution through time. Let
the firms at the beginning of period ¢ be ordered according to the time that has elapsed since
their most recent price adjustment 7;4,Vj = 1,2,...,J, where Z;.Izl 7+ = 1. In period ¢, a
fraction «;; of vintage-j firms decides to adjust in accordance with 1.4, and a fraction (1 — «;)
decides to stick to the old price P;;. The total fraction of firms adjusting in period ¢, wo, is

therefore S
wot = Zaj,tTj,t (1.6)
j=1

and the fractions of the other firms, ie the firms that last adjusted their prices j periods ago,
are

ww = (1 — Oéjt)Tjﬂg, \V/j = 1,2, .. .,J -1 (17)



The end-of-period fractions then define the distribution of the price vintages at the beginning
of period ¢t + 1: Tj41441 = wjt,Vj = 0,1,...,J — 1. Note that the fraction of adjusting firms,
wo,¢, is conditional on the exogenous adjustment cost distribution function G(§). In Section 4.1
below, we will examine the sensitivity of the optimal price-setting behaviour with respect to

different assumptions for G(-).

We then turn to the second aspect of the firm’s price-setting problem, that is the determi-
nation of the optimal nominal price Fy;. The adjusting firm will choose Fy; such that vg; is
maximised. Differentiating 1.2 with respect to Fp; and removing v; 11 by recursive forward

substitution leads to the optimality condition
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where MCiyj, Ciyj, and P;i; denote aggregate real marginal costs, aggregate demand and
aggregate prices, and 6 is the elasticity of substitution between goods (or equally, the elasticity
of demand for any single good). Equation 1.8 is the dynamic counterpart to the static optimality
condition for the monopolistic firm’s price-setting problem. It requires the sum of the discounted
marginal profits due to a price adjustment to be zero, or, since the profits are defined as revenues
minus costs, the sum of discounted expected marginal revenues to equal the sum of expected
marginal costs. With common factor markets, the firm’s real marginal costs in turn can be

expressed as a function of aggregate real marginal costs and aggregate prices.

Solving 1.8 for the optimal price Fy;, yields

J—1 nj Wit 8 ‘
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(1.9)

This is the central pricing equation and corresponds to that in Dotsey et al. (1999). The optimal
price depends on current and expected future aggregate real marginal costs, aggregate demand

and aggregate prices. The weights, Eyw;j¢4j/woy, reflect the expected probabilities to be stuck
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with the currently set price for j periods, E; [[]_;(1 — cj¢4;). These conditional probabilities

are endogenous and vary in response to changes in the state variables. They would be neither

endogenous nor time varying in a purely time-dependent model.

As all firms have identical marginal costs and identical expectations of future adjustment

2

costs, P is the same for all adjusting firms. Therefore, the aggregate price level P; can be

written as a convex combination of Py ;, the nominal prices set by the firms of the J price
vintages:

1
-0

J—1
P = ij,t(po,tj)l—ﬁl (1.10)
j=0

A revision of the price adjustment probabilities induced by a shock to the money supply, for
example, thus affects the persistence of the aggregate price level through the reweighting of

individual prices in 1.10.

2 The state-dependent Phillips curve (SDPC)
2.1 Derivation

This section discusses the derivation of a Phillips curve from the model outlined in Section 2.
The key equations are 1.9 describing the optimal nominal price set by adjusting firms, Py, and
1.10 describing the aggregate price level, P,. Starting from 1.9, we can divide both sides of the
equation by P; to get relative prices. By log-linearising around the steady state and solving for

the optimal relative price z¢ ¢, one obtains

J—-1J-1 J-1
wor=Er Y Y [0pi+ (1= 0)8i]mer; + B Y {wymerj + (pj — 6)[@jars — @0} (2.1)
j=1 i=j J=0

2Golosov and Lucas (2003) present a menu-cost model in which firms set prices optimally in response
to both aggregate and idiosyncratic shocks. In this set-up price adjusting firms may charge different
prices.
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where the w-terms denote absolute deviations and the other time-varying lower-case letters de-

pj = Vi = pj + k(p; — ;)

note percentage deviations from their respective steady-state values. Appendix A summarises
the main steps of this derivation. Equation 2.1 describes the variations of the optimal relative
price around its steady state, xo:, as a function of the expected deviations of future infla-
tion, 4, of current and future real marginal costs, mci;, and of future probabilities of non-
adjustment, w; ¢4 ; —wo ¢, from their steady-state values. The coefficients depend on steady-state
inflation, II, the steady-state distribution of price vintages, w;, the number of price vintages,
J, the real discount factor, 3, the price elasticity of demand, 8, and the elasticity of aggregate
demand with respect to real marginal costs, k. With an increase in steady-state inflation for
instance, the benefit of adjusting relative prices is rising for all firms. Hence, the adjustment
probabilities are increasing (according to 1.4), and the structure and number of the wj-terms
are moving (according to 1.6 and 1.7), thereby affecting the magnitude of the coefficients in 2.1

endogenously.

Starting from 1.10, we then derive the log-linearised version of the aggregate price level in

terms of zg;. In Appendix A we show that this yields

J—2 J-1
1 .
o4 = poTi + Y HiTij Zwﬂ/ﬂ%t A D Vi (2.2)
j=1 7=0
1 = 1
- Tri0-1) R 1))
M= Z i A
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We define Q; = Z}-Jz_ol vjwje. Thus, we have that
J—2 1
T4 = MoT + Z,ujm,j — ij‘l/jl‘o’tfj + mﬂt (2.3)
j=1 :

Equation 2.3 indicates that zg is related to deviations of current and lagged inflation, m;_;,
and of lagged optimal relative prices, xo—;, from their steady-state values. Further it is related
to the deviation of the distribution of price vintages from the steady state, Q. The coefficients,

in turn, depend on steady-state inflation, II, the steady-state distribution of price vintages, wj,
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the number of price vintages, J, and the price elasticity of demand, 6. As in 2.1, the parameter
structure in 2.2 moves state-dependently. That is, with an increase in steady-state inflation,
the steady-state adjustment probabilities and thus the distribution of price vintages change
endogenously. Since the aggregate price level depends on the distribution of price vintages, the
shifting pattern of the distribution caused by the increase in steady-state inflation affects the

dynamics of the aggregate price level expressed in terms of .

To obtain an equation for the dynamics of inflation, we combine 2.1 and 2.3 and solve for

Tr¢:
1 J—-1J-1 J—1 J—1
T = % Z Z[@pz + (1 — 9)(51']7&4_3' + Et Z ¢jm0t+j + Et Z(pj — 5]')[@]',134_]' — L:J()’t]
j=1 i=j =0 =0

J—2 J—1 1
_ T . - 9) 2.4
;Mﬂrt it ;WJVJCUOJ iT1 =g (2.4)

Applying iterative backward substitution to 2.3 allows us to eliminate all optimal relative
price terms in 2.4. The procedure is outlined in Appendix B. The equation for the inflation

dynamics then becomes

J—1 J—1 J—1 00 o)
mo=E Y Smj+ By Wimery+ E Y vl — Qodl + > moi+ > 0iQ; (2.5)

j=1 j=0 j=0 j=1 Jj=0
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The details about the matrices H, A, B and C are given in Appendix B. It is sufficient to

note here that €'is a unity row vector with [(j+1)(J —1) — 1] elements and that the matrices H,



A, B and C are square matrices of order [(j + 1)(J — 1) — 1]. The subscript [.,j — (i — 1)] then
denotes the column of matrix [H(—B)~YA] and [H(—B)®Y] which are premultiplied by €.

We refer to 2.5 as the state-dependent Phillips curve (SDPC). According to the SDPC, the
deviation of current inflation from the steady state, 7, depends on the deviations from their
respective steady-state values of lagged inflation, m;_;, expected future inflation, 74, current
and expected future real marginal costs, mcj, expected future probabilities of non-adjustment,

Wjt+5 — Wo,t, and of the lagged distributions of price vintages, Qt_j.

The number of leads for my;, mci4 4, and @; 44 — o are finite, while the number of lags for
mi—; and Qt_j are infinite. The infinite lag structure results from the elimination of the relative
prices. However, the coefficients on these lags can be shown to converge to zero since the price
adjustment cost and therefore the price-setting behaviour is stochastic implying that wo; > w s,
Vji=1,2,...,J — 1. How fast this comes about depends again on the assumption made about

the adjustment cost distribution and on the state of the economy.

The coefficients in the SDPC depend on steady-state inflation, the steady-state distribution
of price vintages, the number of price vintages, and the price elasticity of demand. Those on the
expected variables also depend on the real discount factor; those on the marginal cost terms,
further depend on the elasticity of aggregate demand with respect to real marginal costs. The
price adjustment costs are not made explicit in 2.5, but they are lingering in the background.
By affecting the number and the distribution of price vintages, they are indirectly linked to the
coefficients of the SDPC. Thus we conclude that with a change in the distribution of adjustment
costs or a change in steady-state inflation, the structure of the SDPC will change as well. We
have suggested already how an increase in steady-state inflation influences the optimal pricing
behaviour in the state-dependent model. In Section 4, we shall give a more detailed account

based on numerical methods and figures.

2.2 Nesting the New Keynesian Phillips curve

A substantial amount of recent research in monetary economics has focused on theoretical and

empirical issues related to the NKPC. The NKPC states that current inflation depends on next
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period’s expected inflation and on marginal costs or another measure of economic activity:

a(l-p5(1-a))

7 = BEimip1 + (1—a)

mee (2.6)

This specification can be derived from a dynamic equilibrium model with monopolistic com-
petition and Calvo-type price stickiness.> Calvo (1983) assumes that the price-setter adjusts
his or her price whenever a random signal occurs. The signals are i.i.d. across firms and across
time. Thus, there is a constant probability « that a given price-setter will be able to reset his
or her price in a given period. The adjustment probability is independent of the time that has
elapsed since the previous price adjustment, and the adjustment frequency does not depend on

the state of the economy.

If we consider the Dotsey et al. (1999) model under the assumption that price-setting follows
Calvo (1983) and that the level of steady-state inflation is constant at zero (ie, II = 1 in gross
terms), we can show that the SDPC representation of inflation dynamics collapses to the NKPC.
Since the Calvo pricing assumption implies that the adjustment probability is constant for all
firms, o;; = «, the number of price vintages becomes infinite and the weights of the price

vintages can be written as a function of « and j:

wir=a(l —a), Vi=0,1,...00

With these modifications, 2.5 takes the form

o oo o0 o o
m=FE Y Smy+ B Y imen + By vl — God + Y pm+ 0y (27)

j=1 §=0 §=0 j=1 §=0

where
, . . , 1-—05(1— ; ; /
5j:(1iya)ﬁj(1—oé)] %’Za( (16_(04) a))ﬂj(l—a)J =0 p;=0 ¢;=0

There are three points to note here. First, under the assumption of Calvo-type price-setting
and zero trend inflation, the SDPC does not include any lagged terms. This is the consequence
of the definition of the aggregate price level in 1.10. The infinite geometric lag structure allows

us to abstract from the weights of the previously set optimal prices and to summarise the

3For the derivation of the NKPC see Galf and Gertler (1999) or Sbordone (2002).
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whole pricing history in terms of the previous period’s aggregate price level. This result holds
regardless the level of steady-state inflation. Second, the effect of the state-dependent pricing
behaviour (reflected in 2.5 by w;y; — wor, Qt_j) disappears. Third, equation 2.7 includes an
infinite number of leads for expected inflation and expected real marginal costs. As shown in

Figure 1, the coefficients on these leaded variables take a geometrically falling and infinite form.*

After isolating expected next period’s inflation and current marginal costs in 2.7, the SDPC

representation of the Calvo model takes the form

T = af BTl + o1 (_15(10[)_ O[))mct
+ ﬁ Zﬂj(l - a)jEtWt+j + ol zlﬂ_(la)— %) Zﬂj(l - a)jEtht+j (2.8)
j=2 j=1

The geometrically falling and infinite coefficient structure then allows us to express the whole
lead structure in 2.8 in terms of Ejmyy1:

a(l - B0 - a))

Bl — a)Eimiyr = i—a)

Z ﬂj(l — Oc)jEtht+j

o

o . .
g B'(1 — a)! Bympyj +
s j=1

(1=a) 2
(2.9)

Making use of 2.9, the SDPC representation in equation 2.8 reduces to the NKPC in 2.6.°
The quantitative effect of this simplification on the coefficient of Eym;1 1 is exhibited in Figure 1.
The coefficient on expected next period’s inflation is a5 in the SDPC representation of the Calvo
model and 3 in the NKPC. Since 0 < a < 1, the coefficient is larger in the NKPC. Note that

the coefficient on current real marginal costs is the same in both representations.

3 Evaluation of the SDPC

We now evaluate the SDPC with respect to different rates of steady-state inflation and different
types of price-setting. One way of describing price-setting behaviour is by the sequence of
adjustment probabilities [, ..., a;j,...,a j—1]" considered by the firm. We compare three such

sequences which are based on three different distributions of price adjustment costs.

4Although the actual number of leads is infinite in the Calvo model, there are only 15 leads displayed
in Chart 1.

5Similarly, it can be shown that the SDPC nests the NKPC specifications derived under positive trend
inflation by Ascari (2004) and Bakhshi et al. (2003).
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Figure 1: Phillips curve coefficients based on Calvo-type price-setting, 7., = 0%
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Following Dotsey et al. (1999), the three distribution functions are assumed to have the
form G(§) = ¢1 + catan[cz€ — c4]. The calibrations are chosen such that the average duration
of price rigidity turns out to be six quarters for a steady-state inflation rate of 3%.5 The rest
of the model calibration is the same for all three cases of price-setting. As suggested by Dotsey
et al. (1999), we take 3 = 0.984 for the quarterly real discount rate, II = 1.03 (in gross terms)
for the annual steady-state inflation rate, and 6 = 4.33 for the price elasticity of demand. The

alternative steady-state inflation rate we use for comparison is IT = 1.06 (in gross terms).

Table 1 summarises the calibrations and Figure 2 illustrates the three distributions of price
adjustment costs. The first, labelled ‘flat C.D.F.’, indicates that a firm is likely to draw either a
very small or a very large adjustment cost over the interval [0,0.0133]. The likelihood of drawing
an intermediate adjustment cost is very small. The second distribution function, labelled ‘S-
shaped C.D.F.’, implies that a firm still is likely to draw either a small or a large adjustment cost;
but the interval now is [0,0.010] and the likelihood of drawing an adjustment cost in the middle
range is higher than under the first distribution function.” The third function, labelled ‘linear

C.D.F.’, approximates a uniform distribution of adjustment costs over the interval [0,0.0105].

6This benchmark calibration is slightly higher than the durations of price rigidity reported in the
literature. See Wolman (2000) for a survey.

"The S-shaped distribution function is qualitatively similar to that adopted by Dotsey et al. (1999).
Recently, Klenow and Kryvtsov (2003) have calibrated the parameters of the distribution function to
monthly micro data underlying the US CPI for the period 1988-2003. Their calibration implies a distri-
bution function which is similar in shape to the one underlying the Calvo model.
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Table 1: Model calibrations

PARAMETERS SYMBOL  VALUES
Preferences Quarterly discount factor 154 0.984
Risk aversion o 0
Labour supply elasticity 00
Technology Labour share ar 0.667
Demand elasticity 0 4.33
Adjustment costs Flat C.D.F. 1 0.2142
Co 0.02273
3 226.088
4 1.4651
B 0.0133
S-shaped C.D.F. c1 0.2793
Co 0.1111
c3 260.9951
cy 1.1921
B 0.01
Linear C.D.F. 1 4.7124
Co 2.5
3 9.9907
4 1.0830
B 0.0105
Steady-state inflation Tes 3% and 6%

Notes: B = upper bound of price adjustment costs.
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Figure 2: Cumulative distribution functions (C.D.F.) of fixed adjustment costs
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3.1 Steady-state comparisons of adjustment probabilities and
fractions of firms in price vintages

We start our evaluation by looking at the steady-state adjustment probabilities, «;, and the
corresponding distribution of price vintages, w;. Figure 3 summarises the results for the three
types of price-setting behaviour and the two levels of steady-state inflation. The horizontal axis

indicates the vintages ordered by the number of quarters j since the price has been set.

We notice that the adjustment probability «; is rising in j in all three models. This is due to
the fact that in an inflationary environment the benefit of adjusting prices is larger for firms of
vintage j + 1 than for firms of vintage j, resulting in a higher adjustment probability. Take the
model with the S-shaped C.D.F. as an example. If 7z, = 3%, firms which adjusted their price
in the previous period (j = 1) adjust again in the current period with a probability of 2%. This
reflects the relatively small benefit of readjusting after just one period. In contrast, firms which
set their price ten periods ago (j = 10) expect a sizable profit gain from readjusting; hence the

probability of adjusting in the current period exceeds 40%.

Moreover, notice that the adjustment probability a; increases with the level of steady-state

inflation. Since the relative prices of the firms erode more rapidly under high inflation, the
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Figure 3: Characterisation of steady-state price-setting behaviour
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firms adjust their prices more frequently. Also, the increase in the rate of steady-state inflation
lowers the number of price vintages. Consider the model with the S-shaped C.D.F. There are
13 price vintages when steady-state inflation is 3%. As the steady-state inflation rises to 6%,
the number of vintages declines to 8. Simultaneously, the average duration of price rigidity falls

from 6 quarters to 4.5 quarters.

Turning to the fractions of firms in the different price vintages, we note that the fractions
are declining with rising j. Also, with higher steady-state inflation, the number of price vintages
is smaller and the number of firms in the vintages with low j is larger. In our example, wy

increases from 0.17 at 3% inflation to 0.22 at 6% inflation.

Finally, we observe that the shape of the adjustment probabilities differs depending on the
adjustment cost distribution function. This difference is not transmitted to the distribution
of price vintages, however. At least for low rates of steady-state inflation, the distribution of

relative prices is strikingly similar across the three price-setting assumptions.

3.2 Different types of price-setting behaviour and the SDPC

We have seen that differences between adjustment cost distributions cause substantial differences
between sequences of adjustment probabilities. Here we ask how those different distributions

translate into different implications for the coefficients in the SDPC.

Figure 4 displays the SDPC coeflicients computed for the various adjustment cost distribu-
tion functions (flat C.D.F., S-shaped C.D.F. and linear C.D.F.) under the assumption of 3%
steady-state inflation. The leads (+) and lags (—) of the variables are given on the horizontal
axis, the size of the coefficients on the vertical axis. We can see that the coefficients on expected
future inflation, 6}, and on current and expected future real marginal costs, w;, take their high-
est values at low leads and fall off smoothly with higher leads in a slightly convex pattern.
Figure 4 displays only 10 leads, although the maximum lead J — 1 is 12 or 14, depending on
the adjustment cost distribution. Note that the pattern of the coeflicients is not too different

from the one we observed in the SDPC representation of the Calvo model (see Figure 1). The

coefficients on lagged inflation, ,u;», are quantitatively important at low lags but fall off rapidly
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at higher lags and converge to zero in an oscillating pattern. The coefficients which are related
to the state-dependent nature of price-setting, o; and +;, are all negligible in size, with gy as

the only exception.

Turning to the different types of price-setting behaviour, the main result is that the SDPC
coefficients are remarkably similar across the three adjustment cost distribution functions. The
differences between the three functions (all calibrated such that the average duration of price
rigidity is six quarters) have little effect on the reduced-form coefficients of the SDPC. To under-
stand this result, we consult the definitions of the coefficients. According to 2.5 the coefficients
depend on the level of steady-state inflation rate, I, the number of different price vintages in
the economy, J, the steady-state fractions of different price vintages, w;, the steady-state real
discount factor, 3, the price elasticity of demand, 8, and the elasticity of aggregate demand with
respect to marginal costs, k. We know from our assumptions that II = 3%, 8 = 0.984, 6 = 4.33
and k are the same in all three models. Also, we have noticed in the preceding section that the
number of price vintages (flat C.D.F.: J = 13, S-shaped C.D.F.: J = 13, linear C.D.F.: J = 15)
and the distribution of price vintages, wj, vary little across the three models despite marked
differences in the sequences of adjustment probabilities. Thus, the similarity can be traced back
to the parameters and steady-state values going into the reduced-form coeflicients of the SDPC,

which are all either equal or similar across the three types of price-setting behaviour.

3.3 Different steady-state inflation rates and the SDPC

Finally, we explore the effect of the steady-state inflation rate on the reduced-form coefficients
of the SDPC. The two steady-state inflation rates considered are 3% and 6%. The adjustment

cost distribution function assumed throughout is the S-shaped C.D.F..

We have seen in Figure 3 that a higher level of steady-state inflation leads to an upward
revision of the optimal adjustment probabilities. As a consequence, prices are adjusted more
frequently. The number of price vintages, J, declines and the distribution of price vintages, w;,
is modified. The other factors determining the reduced-form coefficients of the SDPC (3, 6 and

k) are not affected by the increase in steady-state inflation.
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Figure 4: Coefficients in the SDPC for different types of price-setting behaviour, 7, = 3%
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Figure 5: Reduced-form coefficients in the SDPC when steady-state inflation moves
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As shown in the top panel of Figure 5, the number of leads falls to 7 (from 12) when steady-
state inflation is raised to 6%. The coefficients on expected future inflation, 6;, on current
and future marginal costs, w;, and on the expected variations in state-dependent price-setting
behaviour, v;, increase with inflation at low leads while falling off more rapidly at higher leads.
Also, the size of the coefficients increases on low lags of inflation, but falls off more rapidly with
increasing lag length. At the same time, the oscillating pattern gets more distinct. Note, finally,
that the coefficients on expectations about future state-dependent deviations from steady-state

adjustment behaviour are still negligible.

4 An interpretation of the hybrid NKPC

In this section, we examine whether the hybrid NKPC is a good empirical approximation to the
inflation dynamics generated by a plausibly calibrated model with state-dependent pricing. The
hybrid NKPC was proposed by Gali and Gertler (1999). They assume that some firms set their
prices in a forward-looking optimising way based on Calvo (1983), while the other firms apply

a backward-looking rule of thumb. The resulting equation is

T = Wm—1 + Ve Ermep1 + Amey (4.1)

Similar specifications have been derived by Christiano et al. (2001) adding full dynamic
indexation, and by Woodford (2003) adding partial dynamic indexation to Calvo-type price-
setting.® Empirical evidence suggests that the hybrid NKPC does well empirically and provides
a better description of inflation dynamics than the purely forward-looking NKPC. Examples are
Gali and Gertler (1999), Gali et al. (2001), Gagnon and Khan (2004), Leith and Malley (2002),
Smets and Wouters (2003), and Sbordone (2003).° Galf et al. (2003) present evidence for the
robustness of the hybrid NKPC in response to criticisms by Rudd and Whelan (2002) and Linde

8The details of how the coefficients 75, and v relate to the underlying structure are slightly different
for each formulation. For example, we have v, + v < 1 under the hybrid NKPC and ~, + v = 1 under
the indexation formulation.

90n the other hand, Sbordone (2002) and Lubik and Schorfheide (2004) present results for the United
States which support the purely forward-looking NKPC.
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(2003).10

To examine the hybrid NKPC in the context of a model with state-dependent pricing, we
start by doing stochastic simulations of the full Dotsey et al. (1999) model to generate artificial
data sets. There are three types of shocks: money supply shocks, money demand shocks and
technology shocks. All shocks are assumed to follow an AR(1) process with a persistence param-
eter of 0.5; otherwise, the three shocks are mutually independent. The standard deviation of the
innovation to a shock is 1%. We generate 1,000 samples of 150 quarterly observations for each
case considered. Overall, we consider twelve different cases based on three different calibrations
of the distribution of price adjustment costs (flat C.D.F., S-shaped C.D.F., and linear C.D.F.),
two levels of steady-state inflation (3% and 6%), and both time-dependent and state-dependent
simulations of the model. In the state-dependent simulations (SD), the adjustment probabili-
ties vary over time in response to a shock, while in the time-dependent simulations (TD), the
adjustment probabilities are restricted to stay constant at their steady-state solutions implying

that @;¢1; —wo and w;; do not show up in the linearised equations 2.1 and 2.2 of the model. !

We then estimate 4.1 under the restriction 4y + 4, = 1 using the GMM approach.'? The
instrument set comprises of four lags each of inflation, real marginal costs and the output gap.'?
Table 2 summarises the estimation results based on the artificial data sets generated under 3%

steady-state inflation. We present the mean estimates of the coefficients A, v; and «, over the

10 Jondeau and LeBihan (2003) find that omitted dynamics may explain the discrepancies between ML
and GMM estimates of the hybrid model. Eichenbaum and Fisher (2003) interpret the significance of
lagged inflation as arising due to measurement errors in the data.

Hn the state-dependent simulations we have to make sure that the out-of-steady-state adjustment
probabilities are not greater than one or less than zero. This constraint is critical for adjustment prob-
abilities which are close to one in the steady state, ie for firms with a relatively old price. Therefore,
we keep the adjustment probabilities constant at their steady-state values for an accumulated 2% of the
oldest price vintages. For the remaining 98%, the adjustment probabilities fluctuate around their steady-
state values. If a probability takes a value greater than one or smaller than zero the shock is drawn again.
With the calibration we are using this case arises only rarely.

2Dotsey (2002) conducts a similar experiment. He estimates 4.1 based on data generated by a three-
period forward-looking truncated Calvo model under zero steady-state inflation. The estimated coefficient
on lagged inflation, 4y, is positive, statistically significant, and of the same magnitude as the one estimated
by Gali and Gertler (1999). Hence, Dotsey (2002) points out that there may be pitfalls in interpreting
the estimated lagged coefficient as one arising from backward-looking rule-of-thumb pricing behaviour.
He also discusses the issue of instrument validity in the case where additional lags of inflation appear in
the specification.

13This lag length corresponds to that typically used in the empirical literature. See, for example, Gali
and Gertler (1999).
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respective 1,000 data sets. The interval in square brackets is given by the 10% and the 90%
quantiles of the distributions of coefficient estimates. If this interval includes zero, the share of
the 1,000 data sets with a significant t-value is given in brackets. J* indicates the fraction of

the 1,000 data sets where the Sargan-Hansen instrument validity test is passed.

The estimation results do not vary much across the three adjustment cost distribution func-
tions. The estimated forward-looking inflation coefficient, v, dominates the backward-looking
inflation coefficient, ,. The point estimates of the marginal cost coefficient, 5\, are positive but
small. When the data sets are generated by SD simulations (implying time-varying adjustment
behaviour), \ is significant only in a small fraction of the simulated data sets independent of
the type of adjustment cost distribution. Interestingly, the point estimates displayed in Table 2
based on simulated data are close to those reported in Gali et al. (2003). Their estimates are
P = 0.355, 7y = 0.627, and A =0.014 (all statistically significant) based on post-war US data

from the 1960 Q1-1997 Q4 period over which the average annual inflation is approximately 4%.

Next, we compare the distribution of correlations between fundamental inflation and effective
inflation.' Effective inflation is the inflation generated by the full state-dependent model.
Fundamental inflation, in turn, refers to the inflation dynamics implied by the estimated hybrid
NKPC. To compute fundamental inflation, inflation in 4.1 is rewritten as a function of lagged

inflation and of the expected path of future real marginal costs, as in Gali and Gertler (1999):

~

= 0171 + —)\ (—)jE (4 2)
_ g MCry 4 .
t 17¢—1 o : 5 tTMCt4j
where §; and do denote the eigenvalues of the estimated equation 4.1. The data for expected

future marginal costs are generated using a bivariate VAR(2) with inflation and marginal cost.

The results summarised in Figure 6 refer to TD and SD simulated data sets. They show
high correlations between fundamental and effective inflation in all six cases considered. The
highest correlation results from the SD simulated data sets generated by the model with the
flat C.D.F.: in over 90% of the 1,000 simulations, the correlation is greater than 0.9. This is of
the magnitude found in the empirical literature. Gagnon and Khan (2004), for example, report

estimates implying that the correlation between observed inflation and fundamental inflation

MKurmann (2002) reports the distribution of the correlation between observed and fundamental infla-
tion based on the purely forward-looking NKPC.
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Table 2: Estimation results for the hybrid NKPC, 7gg = 3%

DATA GENERATING PROCESS: TD
ADJUSTMENT COSTS A ol Y J*

Flat C.D.F. 0.012 (0.52) 0.573 0.427 0.98
[-0.002, 0.027] [0.455, 0.702]

S-shaped C.D.F.  0.012 (0.36) 0.555 0.445 0.98
[-0.000, 0.026] [0.462, 0.667]

Linear C.D.F. 0.012 (0.39) 0.539 0.461 0.98
[-0.001, 0.025]  [0.459, 0.63]

DATA GENERATING PROCESS: SD

~

A Vs Vo J*

Flat C.D.F. 0.002 (0.04) 0.541 0.459 0.95
[-0.006, 0.01]  [0.453, 0.639]

S-shaped C.D.F.  0.009 (0.07) 0.567 0.433  0.95
[-0.028, 0.048]  [0.469, 0.684]

Linear C.D.F. 0.007 (0.08) 0.621 0.379 0.93
[-0.034, 0.05]  [0.495, 0.773]

Notes: vy + v = 1.
J* = proportion of 1000 simulations passing the .J-test.

D = average duration of price stickiness.
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Table 3: Estimation results for the hybrid NKPC, 7gg = 6%

DATA GENERATING PROCESS: TD
ADJUSTMENT COSTS A o S

Flat C.D.F. 0.019(0.84) 0.568 0.432 0.98
-0.003, 0.044]  [0.466, 0.699]

S-shaped C.D.F.  0.029 (0.59) 0.568 0432 0.97
0.006, 0.054]  [0.486, 0.677]

Linear C.D.F. 0.036 (0.69) 0.551 0.449 0.98
0.008, 0.065] [0.479, 0.643]

DATA GENERATING PROCESS: SD

~
~

A o7 Yo J*

Flat C.D.F. 0.014 (0.07) 0.649 0.351 0.94
-0.015, 0.05]  [0.515, 0.823]

S-shaped C.D.F.  0.010 (0.03) 0.711 0.289 0.95
-0.039, 0.058]  [0.549, 0.920]

Linear C.D.F. 0.098 (0.55) 0.592 0.408 0.73
-0.062, 0.283]  [0.443, 0.766]

Notes: v¢ +v = 1.
J* = proportion of 1,000 simulations passing the J-test.

D = average duration of price stickiness.
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Figure 6: Distribution of correlations between effective and fundamental inflation, 7, =

3%
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based on the hybrid NKPC is 0.88 for the United States, 0.91 for Canada, and 0.92 for the euro

area.

Taken together, the results in Table 2 and the correlations in Figure 6 suggest that for
3% steady-state inflation the hybrid NKPC is a good approximation to the inflation dynamics
implied by the underlying models of price-setting. In other words, the misspecification of the
hybrid model is small. This result is not robust to an increase in trend inflation, however. In
Table 3 and Figure 7, we report results for the same type of exercise under the assumption of
6% steady-state inflation. Although point estimates remain qualitatively similar, the correla-
tions between fundamental and effective inflation deteriorate markedly. This indicates that the

misspecification of the hybrid model has increased significantly.
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Figure 7: Distribution of correlations between effective and fundamental inflation, 7, =

6%

Data from SD simulations
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To explore the factors which contribute to this result, we make use of the information pro-
vided by Figures 1, 4 and 5. In Figure 4, the coefficients on expected future inflation, 5;., and on
current and expected future marginal cost, w;-, have a pattern resembling the geometric pattern
of the corresponding coefficients in the SDPC representation of the Calvo model displayed in
Figure 1. In the Calvo model, the geometric pattern collapses to just two terms denoting the
expectation of next period’s inflation and current real marginal costs. Consequently, one lead
of inflation and the current marginal cost term will turn out to be a good approximation of the
higher order lead structure in the SDPC, if the lead structure of the (5;8 and w;-s approximates

that geometric pattern well. In this case, the forward-looking structure of the SDPC indicates

a relatively small deviation from its counterpart in the hybrid NKPC.
At higher levels of steady-state inflation, the lead structure of the SDPC differs evidently
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from the monotonically declining geometric lead pattern implied by the NKPC. As shown by
Figure 5 (for 6% steady-state inflation and the S-shape C.D.F.), the number of price vintages
declines and the size of the coeflicients is modified. Thus, one lead of inflation becomes a
poor approximation for the lead structure of the SDPC. At the same time, the weight on the
most recent lags on inflation becomes larger. The estimates of the hybrid NKPC still turn
out to be similar as under the 3% case; but the correlation between effective (model-based) and
fundamental (hybrid NKPC-based) inflation deteriorates indicating stronger misspecification for

the hybrid NKPC.

5 Conclusions

In this paper we have used the state-dependent pricing model of Dotsey et al. (1999) to derive
a general specification for the Phillips curve which allows for positive steady-state inflation and
state-dependent price-setting behaviour. In the state-dependent Phillips curve (SDPC) inflation
depends on current and expected future real marginal costs, past and expected future inflation,
and past and expected future fluctuations in the price adjustment pattern. The specific nature
of firms’ price-setting behaviour and the deep structural parameters of the model, such as the
level of steady-state inflation or the elasticity of substitution, have important implications for

the structure of the SDPC.

Also, we have demonstrated that the dynamics of inflation generated by simulations of
various variants of the Dotsey et al. (1999) model are highly correlated with those implied
by the estimated hybrid NKPC. This suggests that the hybrid NKPC with its parsimonious
structure provides a good reduced-form description of inflation dynamics for a broad class of
time and state-dependent price-setting behaviours. By comparing the structure of the SDPC
with the SDPC representation of the Calvo (1983) model underlying the NKPC, we find that this
result holds as long as the distribution of the different vintages falls smoothly and in a slightly
convex pattern. For our adjustment cost distribution functions, this property holds if steady-
state inflation is low (3%), but not if inflation rates are as high as 6%. We draw two conclusions:
first, the hybrid NKPC can be a good description of inflation dynamics in an economy that allows

for state-dependent pricing, particularly at low trend inflation rates. Second, the coefficients of
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the hybrid NKPC may not have a structural interpretation. In this sense, the hybrid NKPC

may still share the weaknesses of the traditional Phillips curve approach.
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A Log-linearization of the main pricing equations

Consider the first-order condition for an optimal nominal price, as given by equation 1.8 in the

text. After some rearrangement, we obtain
1-6
Ciyj =

J-1

) Wbt
E; Z ﬂth,Hj —
wo,t

)

Por P
Py Py

J-1

9 , Wi t4j Poyr P
E; g B Q4,14 Z;ﬁﬂ MCyy L

: ¢

j=0 ’

P, Py

-6
0—1 Ciyj (A1)

Replacing Py /P by Xo; and using P;/P,yj = 1/Hf:1 IT;1;, A.1 can be rewritten as

1-6
Wi t+j 1
E ¥ Jt T C X —
z@ T
0 ! w 1 -’
- B FQuiy;LHMCy, Ciri (A2)
0 Z 07 ] Hl 17Tt+l !

Log-linearising A.2 around the steady-state values w; = w;,Vj =0,...,J—-1,C =C, Il =1I,

X =58 Q=1 and MC = MC yields
J-1
Etz Qi 45+ @jpyj — Qo+ (0 —1) Zﬁt+z+0t+]+$0t B ]Hje Vox =
7=0 =1

I ]HJ(’C’MC (A.3)

J-1
0
o= tZ[(ht—i—] + Wjtrj — Wo,t + MCty +927Tt+z + Ciyj
=1

where w-terms denote absolute deviations and the other time-varying lower-case letters denote
percentage deviations of variables from their respective steady-states values. Using
J-1 A
R
_ j=0
X = . . MC (A.4)
> Blw;I0-1)
j=0

we can solve for the optimal relative price:

J—1 IBJWJHJG
900t—EtZ Qtt+j T Wit+j — W0t+mct+]+02ﬂ't+z+ct+] AR
J=0 i=1 E Biw,; IT
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— Fy Z Qip+j + Wjtrj — o + (60 — 1) Z Titi + Ctj J— (A.5)
7=0 =1

S Biw,ITi0-1)
i=0
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Relating real marginal cost fluctuations to the fluctuations of output, we can write
ct = Kmcey (A.6)

where k denotes the elasticity of aggregate demand with respect to real marginal costs. If the
expected future fluctuations of the stochastic discount factors, g, are ignored, substituting

A.6 into A.5 and rearranging yields

J-1J-1 J-1

= F; Z Z 902 5 ]7Tt+] + E Z{¢Jmct+3 + (p 5j)[d)j,t+j _ @Oﬂf]} (A.7)
Jj=11i=j =0
where
o gjwjnjf? ‘ 5]@ Hj (6-1) s | |
pj_m a Z w; TTé(0-1) ¥j = pj + K(pj — 9j)

Equation A.7 corresponds to 2.1 in the text.
Log-linearisation of the aggregate price level:

Consider the aggregate price level described by 1.10 in the text:

1

J-1 —6
> wj,t(Po,tj)l_el (A.8)
=0

Equation A.8 can be rewritten such that all elements are constant along the inflationary steady

J—1 P 1-6 J—1 P P 1-0

_ 4 0,t—j _ , 0t—j 1t—j

1—Z[wg,t< B ) ‘Z[%<pt_j a) ] (A.9)
j=0 Jj=0

Replacing Py;—;/P;—; by Xo4—; and P;_;/P; by 1/[]/3 T;i, we obtain

state:

Xo:2;
1 = Zwﬂt ] — (A.10)
7=0 H Ht )

Log-linearising A.10 around the steady-state values Xo;_; = X, w; = wj, and II = II gives

X0 x1-0 x1-0 4
— Wit t+ (]. — e)w]‘ W«To,t—j - (1 - G)ij Mi—i (All)

=0

where again w-terms denote absolute deviations and the other time-varying lower-case letters

denote percentage deviations of variables from their respective steady-states values. Since X =

Py/P, we have
. P, 1-6 J-1
-\ P

]:0 1=0

7j—1
(0-1) <9wjt+wj(x0t —j Z?Tt i )] (A.12)
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Solving for the optimal relative price, x¢ ¢, yields, after some rearrangement,

J-2 J-1 J-1
1 S0 1)
Togt = — Z Z CUZHZ (6-1) 7Tt —j ZWJH] l‘()ﬂ:_j + m Z HJ(0 1)u)j7t (Alg)
7=01=j5+1 7=0

Equation A.13 corresponds to 2.2 in the text.

B Derivation of the SDPC coefficients

Consider 2.1 and 2.3. Combining these two equations and solving for m;, one obtains

J-1J-1
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Using 2.2 and applying matrix notation, the weighted lagged relative price terms in B.1, can be

written as
Hft :HAﬁt—HBIﬁtfl +HOQt (BQ)
where -~ ) ~ ~ _ )
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By iterative backward substitution, the lagged relative price terms in B.2 can be expressed
in terms of lagged inflation rates and lagged deviations of the distributions of price vintages

from their steady-state distribution:

H7, = HA®, — HBxy_1 + HOOQ,

= HAﬁt — HB[Aﬂ't_l — B.Tt_g + CQt_l] + HCQt

k
=Y H(-BY[A%_; + CQy_j] + H(-B)*" a4y
7=0
k .
= lim Zg H(-B)[AT_; + CQs] (B.3)
]:

Thus, if we unwind the lagged relative price terms in B.2 to the infinite past, B.1 can be

expressed as

J—-1 J—-1 J—1
Et25 Har +Etzwjmct+ﬂ +Et2'7j Wt — Wt +Zﬂj7"t —j +ZQ]Qt - (B4)
] 1 j =0 ] =0 ] 1 J 0
where
J—1 J—1 . . . .
1 wo Bl 10 B, ITHO-D)
8= — Op;+(1—6)4;] = 0 ———+(1-6
T o ;[ pit( )3 J 1 wka(B 1) Z[ Zg;é (3w, ITkO ( )Zi;é ﬁkwkﬂk(e—l)]
W _ 1 i = wo ﬁjwjﬂgﬂ o ﬁﬂw 1179 ﬂjw -1 )
J Mo J E;;Jz_ll wiHi(Gfl) Z;']:_Ol ﬁiwinw E ﬁzw Hz@ Z ﬁzw T1é(0—1)
_ i( 8 = wo ( ﬁjwjnje ;T 9 Y
K Ho S RPN | LCeOR Sl 2080 § (U Sl e | O
1< .
”Q_MO(ZéTH( B)"~ 1A][ —(i-1)] — ) p; =0,vj>J—1
ot 1i’m B¢ e
7 =0} Y2

Note that € is a unity row vector with [(j +1)(J — 1) — 1] elements and that the matrices H,
(

)
A, B and C are square matrices of order [(j + 1)(J — 1) — 1]. The subscript [.,j — (¢ — 1)] then

denotes the column of matrix [H(—B)#~VA] and [H(—B) Y] which are premultiplied by €.
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