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Abstract

Most studies of optimal monetary policy under learning rely on opti-
mality conditions derived for the case when agents have rational expec-
tations. In this paper, we derive optimal monetary policy in an econ-
omy where the Central Bank knows, and makes active use of, the learn-
ing algorithm agents follow in forming their expectations. In this setup,
monetary policy can influence future expectations through its effect on
learning dynamics, introducing an additional tradeoff between inflation
and output gap stabilization. Specifically, the optimal interest rate rule
reacts more aggressively to out-of-equilibrium inflation expectations and
noisy cost-push shocks than would be optimal under rational expecta-
tions: the Central Bank exploits its ability to ”drive” future expectations
closer to equilibrium. This optimal policy closely resembles optimal policy
when the Central Bank can commit and agents have rational expectations.
Monetary policy should be more aggressive in containing inflationary ex-
pectations when private agents pay more attention to recent data. In
particular, when beliefs are updated according to recursive least squares,
the optimal policy is time-varying: after a structural break the Central
Bank should be more aggressive and relax the degree of aggressiveness in
subsequent periods. The policy recommendation is robust: under our pol-
icy the welfare loss if the private sector actually has rational expectations
is much smaller than if the Central Bank mistakenly assumes rational
expectations whereas in fact agents are learning.
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†Universitat Pompeu Fabra, Barcelona; Email: krisztina.molnar@upf.edu.
‡Universitat Pompeu Fabra, Barcelona; Email: sergio.santoro@upf.edu.

1



1 Introduction

Monetary policy makers can affect private-sector expectations through
their actions and statements, but the need to think about such things
significantly complicates the policymakers’ task. (Bernanke (2004))

How should optimal monetary policy be designed? A particularly influen-
tial framework used in studying this question is the dynamic stochastic general
equilibrium economy where money has real effects due to nominal rigidities,
sometimes referred to as the “New Keynesian” model. Many papers have ex-
plored optimal monetary policy in this framework, under the assumption that
both agents and policymakers have rational expectations.1 More recently, the
literature has started to explore the robustness of these optimal policies when
some of the assumptions of the standard New Keynesian setup are relaxed.2

An important aspect of this robustness analysis is to model more carefully the
process through which the private sector forms expectations. This issue is par-
ticularly relevant given that there is a large body of evidence which suggests
that agents’ forecasts are not consistent with the paradigm of rational expec-
tations.3 In response, a growing theoretical literature explores the robustness
of the optimal policies, which were derived under rational expectations, when
instead agents update their expectations according to a learning algorithm.4 A
typical result in this literature is that interest rate rules that are optimal under
rational expectations may lead to instability under learning.

Earlier research uses either ad hoc policy rules, as for example Orphanides
and Williams (2005a), or optimality conditions derived under rational expecta-
tions, like Evans and Honkapohja (2003b), Evans and Honkapohja (2003a) and
Evans and Honkapohja (2002). In this paper, we take a normative approach,
and address the issue of how in a New Keynesian setup, a rational Central Bank
should optimally conduct monetary policy, if the private sector forms expecta-
tions following an adaptive learning model.

We are able to analytically derive optimal monetary policy in our theoretical
model. One important feature of the optimal policy is that the Central Bank
should act more aggressively towards inflation that what a rational expectations
model suggests. Earlier work in the literature that uses ad hoc rules has shown
similar results computationally (see Ferrero (2003), Orphanides and Williams

1See Clarida, Gali, and Gertler (1999) for a survey on this literature, and Woodford (2003)
for an extensive treatise on how to conduct monetary policy via interest rate rules.

2Wieland (2000a) and Wieland (2000b) look at the effects of parameter uncertainty; Aoki
(2002) and Orphanides and Williams (2002) explore monetary policy with for data uncertainty,
Levin, Wieland, and Williams (2003) and Hansen and Sargent (2001) study model uncertainty.

3See Roberts (1997), Forsells and Kenny (2002) and Adam and Padula (2003).
4For an early contribution to adaptive learning applied to macroeconomics, see Cagan

(1956), Phelps (1967), for early applications to the Muth market model see Fourgeaud,
Gourieroux, and Pradel (1986) and Bray and Savin (1986). The modern literature on this
topic was initiated by Marcet and Sargent (1989), who were the first to apply stochastic
approximation techniques to study the convergence of learning algorithm. Important earlier
contributions to the literature on convergence to the rational equilibrium are Bray (1982) and
Evans (1985).
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(2005a), Orphanides and Williams (2005b)); here we establish that these results
extend to the case when the central bank uses the optimal policy, and provide
a formal proof. The intuition for the result is that aggressively driving inflation
close to equilibrium helps private agents to learn the true equilibrium value of
inflation at a faster pace. As is well-known, even with rational expectations
the central bank cares about price stability due to nominal rigidities. When,
in addition expectations of nominal variables are sluggish because of learning,
our results show that monetary policy should be even more aggressive towards
inflation. Being aggressive towards inflation generates a welfare cost in terms
of an increased volatility of the output gap. We show analytically that the
optimal policy involves a more volatile output gap then the rational expectations
benchmark; this holds true even if the Central Bank puts a high weight on output
gap stabilization.

A second important feature of the optimal policy is that it is time consis-
tent, and qualitatively resembles the commitment solution under rational ex-
pectations in the sense that the optimal policy is unwilling to accommodate
noisy shocks. As a consequence the impulse response of a cost push shock is
also similar to the commitment case. The contemporaneous impact of a cost
push shock on inflation is small (compared to the case of discretionary policy
rational expectations), and inflation reverts to the equilibrium in a sluggish
manner. In both instances this pattern comes from the Central Bank’s (CB)
ability to directly manipulate private expectations, even if the channels used
are quite different. Under commitment the policy maker uses a credible promise
about the future to obtain an immediate decline in inflation expectations and
thus in inflation; the inertia in the optimal solution is due to the commitments
carried over from previous periods. In contrast, under learning the pattern re-
sults from the sluggishness of expectations: the CB influences private sector’s
belief through its past actions, and the inertia comes from the past realizations
of the endogenous variables. We observe a smaller initial response of inflation
relative to the RE discretionary case because optimal policy reacts less to the
cost push-shock to ease private agents learning. In this sense, we can say that
the ability to manipulate future private sector expectations through the learning
algorithm plays a role similar to a commitment device under RE, hence easing
the short-run trade-off between inflation and output gap.

An analogous investigation, when the model is characterized by a Phillips
Curve à la Lucas and private agents follow a constant gain algorithm is per-
formed in Sargent (1999), Chapter 5. A parallel paper of Gaspar, Smets, and
Vestin (2005) provides a numerical solution to optimal monetary policy under
constant gain learning in the New Keynesian framework with indexation to
lagged inflation among firms. They show that an optimally behaving Central
Bank aims to decrease the limiting variance of the private sector’s inflationary
expectations and show that optimal policy qualitatively resembles the commit-
ment solution under rational expectations. In their framework private agents
estimate the persistence of inflation. Another important result they find is that,
when the degree of estimated persistence is high the central bank should be more
aggressive.
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The ability to derive analytical solutions allows us to contribute to this
literature in several respects. We derive that optimal policy should be more
aggressive when private agents heavily discount past data and place more weight
on current data. Under constant gain learning this implies that the incentive to
decrease volatility of inflationary expectations is more pronounced when the gain
parameter is higher. The intuition behind this is: under constant gain learning
expectations remain volatile even in the limit, and this limiting variance is higher
with a high gain parameter; this volatility in expectations causes welfare losses
even in the limit, so it is optimal to conduct monetary policy against it. We also
show that optimal policy at the same time allows for higher volatility in output
gap expectations. The reason for this is that optimal policy allows for higher
variability of the output gap, which translates to higher volatility of output gap
expectations. Of course, allowing a higher variance in output gap also causes
welfare losses. We analytically determine the extent to which output gap losses
should be tolerated.

Our next contribution is to derive optimal policy under decreasing gain learn-
ing. We show that our main results are robust to the changing the gain parame-
ter: (1) optimal policy is aggressive on inflation even at the cost of higher output
gap volatility, (2) optimal policy under learning qualitatively resembles optimal
policy under rational expectations when the Central Bank is able to commit. A
new result is that when beliefs are updated according to a decreasing gain algo-
rithm, the optimal policy is time-varying, reflecting the fact that the incentives
for the Central Bank to manipulate agents’ beliefs evolve over time. After a
structural break, for example the appointment of a new central bank governor,
the Central Bank should be more aggressive in containing inflationary expecta-
tions and decrease the extent of this aggressiveness in subsequent periods. The
intuition for this result is that in the first periods after the appointment of a
new governor, agents pay more attention to monetary policy actions (place more
weight on current data), therefore an optimally behaving central bank should
make active use of this by aggressively driving private sector expectations close
to the equilibrium inflation.

Finally, we show that when the Central Bank (CB) is uncertain about the
nature of expectation formation (within a set relevant for the US economy)
the optimal learning rules derived in our paper are more robust than the time
consistent optimal rule derived under rational expectations. Optimal learning
rules provide smaller expected welfare losses even if the Central Bank assigns
only a very small probability to learning and a very high probability to rational
expectations in how it believes the private sector forms its expectations.

The rest of the paper is organized as follows: in Section 2 we analyze optimal
policy under constant gain learning where there is no exogenous cost-push shock;
in Section 3 we study how the introduction of the cost-push shock affects our
results; Section 4 relaxes the assumptions that expectations follow constant
gain learning, and show that out main results remain valid under decreasing
gain learning; Section 5 conducts policy proposal within a set of private sectors
expectation formation; Section 6 relaxes the assumption that the policy maker
can perfectly observe the fundamental shocks and the beliefs of the agents;
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Section 7 concludes.

2 The Model without a cost push shock

We will consider the baseline version of the New Keynesian model, which is by
now the workhorse in monetary economics; in this framework, the economy is
characterized by two structural equations5. The first one is an IS equation:

xt = E∗
t xt+1 − σ−1(rt − E∗

t πt+1 − rrt) + gt (1)

where xt, rt and πt denote time t output gap6, short-term nominal interest rate
and inflation, respectively; σ is a parameter of the household’s utility function,
representing the intertemporal elasticity of substitution, gt is an exogenous de-
mand shock and rrt is the natural real rate of interest, i.e. the real interest rate
that would hold in the absence of any nominal rigidity. Note that the operator
E∗

t represents the (conditional) agents’ expectations, which are not necessarily
rational. The above equation is derived by loglinearizing the household’s Eu-
ler equation, and imposing the equilibrium condition that consumption equals
output minus government spending .

The second equation is the so-called New Keynesian Phillips Curve (NKPC):

πt = βE∗
t πt+1 + κxt (2)

where β denotes the subjective discount rate, and κ is a function of structural
parameters; this relation is obtained by assuming that the supply side of the
economy is characterized by a continuum of firms that produce differentiated
goods in a monopolistically competitive market, and that prices are staggered
à la Calvo (Calvo (1983)) 7.

The model with cost push shock will be examined in the next section. We
examine the case without cost push separately, because in this case learning
introduces an inflation-output gap tradeoff which is not present under rational
expectations (see below).

The loss function of the Central Bank (CB) is given by:

E0

∞∑
t=0

βt(π2
t + αx2

t ) (3)

where α is the relative weight put by the CB on the objective of output gap
stabilization8.

5For the details of the derivation of the structural equations of the New Keynesian model
see, among others, Yun (1996), Clarida, Gali, and Gertler (1999) and Woodford (2003).

6Namely, the difference between actual and natural output.
7In other words, in each period firm i can reset the price with a constant probability 1− θ,

and with probability θ it keeps the same price as in the previous period. If firms take this
structure into account when deciding the optimal price it can be shown (See Yun (1996)) that
the aggregate inflation is given by (2). κ is decreasing in the level of stickiness, the longer are
prices fixed in expectation the smaller the effect of the output gap is on inflation.

8As is shown in Rotemberg and Woodford (1998), equation (3) can be seen as a quadratic
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2.1 Benchmark: discretionary solution under rational ex-
pectations and under learning

A key feature of this model is that, if expectations are rational (i.e., if E∗
t = Et),

there is no trade-off between inflation and output gap stabilization; in fact, fol-
lowing Gali (2003), we can solve forward equation (2) and impose a boundedness
condition on π, obtaining:

πt = κEt

∞∑
s=0

βsEtxt+s

Therefore, if the CB stabilizes output gap in every period, under RE inflation
will also be equal to zero every period; moreover, this plan is time-consistent, in
the sense that the optimal plan chosen by the CB if optimizing at period t + 1
will be equal to the continuation of the optimal plan set when optimizing at t.
The absence of inflation bias is due to the fact that, differently from Barro and
Gordon (1983) and all the subsequent literature, the target for output chosen
by the CB is the natural level of output, and not a higher level; in other words,
the target for output gap is zero, as shown in (3). To restore an inflation
stabilization/output gap stabilization trade-off it is necessary to modify the
NKPC introducing a so-called cost-push shock9.

The lack of an inflation-output gap tradeoff can be also seen from the dis-
cretionary solution. Under discretion private agents take into account how the
monetary policy adjusts its policy, given that the monetary authority is free
to reoptimize every period. The discretionary rational expectation equilibrium
thus has the property that the Central Bank has no incentive to change its
policy (it is time consistent).

Since the Central Bank can not credibly manipulate beliefs, in the optimiza-
tion it takes expectations as given. The policy problem is to choose a time
path for the nominal interest rate rt

10 to engineer a time path of the target
variables πt and xt such that the social welfare loss (3) is minimized, subject to
the structural equations (1) and (2), and given the private sectors expectations.

min
{πt,xt,rt}∞t=0

E0

∞∑
t=0

βt(π2
t + αx2

t ) (4)

s.t. (1), (2)
Etπt+1, Etxt+1 given for ∀ t

Because there are no endogenous state variables, problem (4) reduces to
a sequence of static optimization problems. As shown in Clarida, Gali, and

approximation to the expected household’s utility function; in this case, α is a function of
structural parameters.

9For a discussion of this point, see Gali (2003).
10We have chosen the nominal interest rate to be the instrument variable for easier inter-

pretation (as in real life it is usually a primary instrument of central banks). We could have
equally chosen πt or xt.
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Gertler (1999), and the optimality condition to this problem (at time t) is

xt = −κ

α
πt . (5)

Under rational expectations (henceforth RE) solving for the fixed point in ex-
pectations results that the Central Bank can set πt = xt = 0 in all periods.

Under non-rational expectations (E∗), using (5) the optimal allocations are:

πt =
αβ

α + κ2
E∗

t πt+1 (6a)

xt = − κβ

α + κ2
E∗

t xt+1 . (6b)

and solving for rt from the structural equations (1) and (2) yields

rt = rrt + δEH
π E∗

t πt+1 + δEH
x E∗

t xt+1 + δEH
g gt (7)

where:
δEH
π = 1 + σ κβ

α+κ2

δEH
x = σ

δEH
g = σ

and E∗
t denote non-rational expectations. Throughout the paper we denote the

coefficients by EH referring to the paper Evans and Honkapohja (2003b), where
the authors derive a rule analogous to (7)11. In the terminology introduced
in Evans and Honkapohja (2003b), Evans and Honkapohja (2003a) (EH here-
after), this is an expectations-based reaction function. EH show that this rule
guarantees not only determinacy under RE, but also convergence to the RE
equilibrium when expectations E∗

t evolve according to least squares learning.
However, a rational Central Bank, knowing that private agents follow learn-

ing, could do even better. In other words the solution (7) under learning is
not a full optimum. In the next section we show how optimal monetary pol-
icy is modified when the CB optimizes taking into account its effect on private
expectations.

2.2 Constant Gain Learning

We will assume that private sector’s expectations are formed according to the
adaptive learning literature12; in particular, we assume that agents’ Perceived
Law of Motion (PLM) is consistent with the Law of Motion that the CB would
implement under RE: in other words, both inflation and output gap are assumed
to be constant, and agents use a learning algorithm to find out this constant.

11In particular, Evans and Honkapohja (2003a) derive a rule in a framework where a cost
push shock is present.

12For an extensive monograph on this paradigm, see Evans and Honkapohja (2001).
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Throughout this subsection we will assume that expectations evolve following a
constant gain algorithm:

E∗
t πt+1 ≡ at = at−1 + γ(πt−1 − at−1) (8)

E∗
t xt+1 ≡ bt = bt−1 + γ(xt−1 − bt−1) (9)

where γ ∈ (0, 1).
The use of constant gain algorithms to track structural changes is well known

from the statistics and engineering literature13. Analogously, private agents
would be likely to use constant gain algorithms if they confidently believe struc-
tural changes to occur. This algorithm implies that past data are geometrically
downweighted, in other words agents ’believe more’ current data. This approach
is closely related to using a fixed sample length, or rolling window regressions.

In Section 4 we will relax this assumption, and examine how optimal policy
changes when agents follow decreasing gain learning.

To analyze the optimal control problem faced by the CB, we use the standard
Ramsey approach, namely we suppose that the policymakers take the structure
of the economy (equations (1) and (2)) as given; moreover, we assume that the
CB knows how private agents’ expectations are formed, and takes into account
its ability to influence the evolution of the beliefs. Hence, the CB problem can
be stated as follows:

min
{πt,xt,rt,at+1,bt+1}∞t=0

E0

∞∑
t=0

βt(π2
t + αx2

t ) (10)

s.t. (1), (2), (8), (9)
a0, b0 given

This optimization problem is linear quadratic, the Bellman equation holds, thus
the resulting policy is time consistent 14.

The first order conditions at every t ≥ 0 are:

λ1t = 0 (11)
2πt − λ2t + γλ3t = 0 (12)

2αxt + κλ2t − λ1t + γλ4t = 0 (13)

Et

[
β

σ
λ1t+1 + β2λ2t+1 + β (1− γ) λ3t+1

]
= λ3t (14)

Et [βλ1t+1 + β (1− γ) λ4t+1] = λ4t (15)

13See for example Benveniste and P. (1990), Part I. Chapters 1. and 4.
14A problem solved at t is said to be time consistent for t + 1 if the continuation from t + 1

on of the optimal allocation chosen at t solves in t + 1; moreover, in period zero it is time
consistent if the problem in period t is time consistent for t + 1 for all t ≥ 0.
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where λit, i = 1, ..., 4 denote the Lagrange multipliers associated to (1), (2),
(8) and (9), respectively. The necessary conditions for an optimum are the
first order conditions, the structural equations (1)-(2) and the laws of motion
of private agents’ beliefs, (8)-(9). Combining equation (11) and (15), we get:

λ4t = β (1− γ) Et [λ4t+1]

which can be solved forward, implying that the only bounded solution is:

λ4t = 0 (16)

If we put together equations (11)-(14) and (16), we derive the following opti-
mality condition:

κ

α
πt + xt = βEt

[
βγxt+1 + (1− γ)

(κ

α
πt+1 + xt+1

)]
(17)

Inflation-Output Gap Tradeoff

A crucial difference from the rational expectations case is that under learning
there is an inflation-output gap tradeoff even without a cost push shock. From
equation (2) we can see that, if at is different from zero, inflation and output
gap cannot be set contemporaneously equal to zero, as in the RE case. Hence,
the fact that the expectations are not rational, introduces a trade-off between
inflation and output gap stabilization that is not present under RE. In par-
ticular, we have the contemporaneous presence of two trade-offs. There is an
intratemporal trade-off between stabilization of inflation at t and output gap at
t, determined by the presence of the nonzero term βat in the Phillips Curve (2).
There is an additional intertemporal trade-off between optimal behavior at t
and stabilization of output gap at t+1, which is generated by the ability of the
CB to manipulate future values of a. This can be seen from iterating forward
the optimality condition (17):

κ

α
πt + xt = β2γEt

[ ∞∑
s=1

[β (1− γ)]s−1
xt+s

]
.

Hence, for a given positive value of xt, the optimal disinflation is less harsh
with respect to the one implied by (5), provided that future output gaps are
also expected to be positive. A smaller deflation in turn guarantees that future
inflationary expectations will be closer to the rational expectations equilibrium
of inflation, zero.

Let us summarize our first result for later reference:

Result 1. Learning introduces an intertemporal trade-off not present under
rational expectations.

As a result of the intertemporal trade-off, when the CB can manipulate
expectations, it renounces to optimally stabilize the economy in period t, in
exchange for a reduction in future inflation expectations that allows an ease in
the future inflation output gap trade-off embedded in the Phillips Curve.
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Optimal allocations

To derive the optimal allocations, we can use (2) to substitute out xt in (17),
then using the evolution of inflationary expectations (8)we get:

πt +
α

κ2
[πt − βat]− βEt

[ α

κ2
(1− γ (1− β)) [πt+1 − βat+1] + (1− γ) πt+1

]
= 0

(18)
Hence, at an optimum, the dynamics of the economy can be summarized by
stacking equations (8), (9) and (18), obtaining the trivariate system15:

Etyt+1 = Ayt (19)

where yt ≡ [πt, at, bt]′, and:

A ≡

 κ2+α+αβ2γ(1−γ(1−β))
αβ(1−γ(1−β))+κ2β(1−γ) −αβ(1−β(1−γ)(1−γ(1−β)))

αβ(1−γ(1−β))+κ2β(1−γ) 0
γ 1− γ 0
γ
κ −βγ

κ 1− γ


The three boundary conditions of the above system are:

a0, b0 given
lim

t→∞
|Etπt+1| < ∞ . (20)

The last one is due to the fact that, if there exists a solution to the problem
(10) when the possible sequences {πt, xt, rt} are restricted being bounded, then
this would also be the minimizer in the unrestricted case16.

Since A is block triangular, its eigenvalues are given by 1 − γ and by the
eigenvalues of:

A1 ≡

(
κ2+α+αβ2γ(1−γ(1−β))

αβ(1−γ(1−β))+κ2β(1−γ) −αβ(1−β(1−γ)(1−γ(1−β)))
αβ(1−γ(1−β))+κ2β(1−γ)

γ 1− γ

)
(21)

In the Appendix we show that A1 has one eigenvalue inside and one outside the
unit circle, which implies (together with (1 − γ) ∈ (0, 1)) that we can invoke
Proposition 1 of Blanchard and Kahn (1980) to conclude that the system (19)-
(20) has one and only one solution. In other words, there exists one and only
one stochastic process17 for each of the three variables of y such that (20) is
satisfied. Moreover, note that y1t ≡ [πt, at]′ does not depend on bt; therefore,
the processes for inflation and a that solve (together with the process for b) the
system (19)-(20) are also a solution of the subsystem:

Ety1t+1 = A1y1t

15Once we have the equilibrium laws of motion for [πt, at, bt], we can use (1) and (2) to
derive the equilibrium rt and xt.

16For a proof, see the Appendix.
17Since the system (19) does not depend on the only source of randomness in this economy

(i.e., g), in equilibrium the process followed by the endogenous variables turns out to be
deterministic, see below.
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together with the boundary conditions:

a0 given, lim
t→∞

|Etπt+1| < ∞

Since A1 has the saddle path property, we can express the equilibrium law
of motion for inflation as:

πt = ccg
π at (22)

Following the adaptive learning terminology, we call (22) the Actual Law of
Motion (ALM) of inflation.

We provide a characterization of ccg
π in the following Proposition:

Proposition 1. Let ccg
π be the feedback coefficient defined in (22); then, the

following holds:
-if γ ∈ (0, 1), we have that 0 < ccg

π < αβ
α+κ2 ;

-if γ = 0, i.e. if expectations are constant, we have that ccg
π = αβ

α+κ2 .

Proof. See the Appendix.

Under the optimal policy (OP) a positive at increases current inflation, but less
than proportionally, since αβ

α+κ2 < 1.
As is shown in the Appendix, ccg

π depends on all the structural parameters; in
particular, its dependence on the constant gain γ is not necessarily monotonic.
In fact, a higher value of γ has two effects on ccg

π : on one hand, it increases
the effect of current inflation on future expectations, increasing the incentive
for the CB to use this influence (i.e., it would determine a lower ccg

π ); on the
other hand, it reduces the impact of current expectations on future expectations,
thus reducing the benefits from a reduction of the expectations, so that there
is an incentive to set a higher ccg

π . In Figure 4 we show a numerical example
with the calibration found in Woodford (1996), i.e. with β = 0.99, σ = 0.157,
κ = 0.024 and α = 0.04; in this case, the first effect dominates, so that ccg

π is a
monotonically decreasing function of γ.

Using the structural equation (2) we can derive the optimal allocation of the
output gap:

xt = ccg
x at (23)

where:

ccg
x =

ccg
π − β

κ

ccg
π < αβ

α+κ2 (see Proposition 1) implies ccg
x < − κβ

α+κ2 ; if the private sector expects
inflation to be positive, the optimal CB response will imply a negative output
gap, i.e. the policymaker will contract economic activity (using the interest rate
instrument) in order to attain an actual inflation sufficiently smaller than the
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expected one. Using (22) and (23) in (1) we can derive the nominal interest
rate:

rt = rrt + δcg
π at + δcg

x bt + δcg
g gt (24)

where:

δcg
π = 1− σ

ccg
π −β

κ
δcg
x = σ

δcg
g = σ

The interest rate rule (24) is an expectations-based reaction function, which
is characterized by a coefficient on inflation expectations that is decreasing in
ccg
π : an optimal ALM for inflation that requires a more aggressive undercutting

of inflation expectations (a lower ccg
π ) calls for a more aggressive behavior of the

CB when it sets the interest rate (a higher coefficient on inflation expectations
in the rule (24)). Moreover, the coefficients on bt and gt are such that their
effects on the output gap in the IS curve are fully neutralized.

Since ccg
π,t < β (see Proposition 1) δcg

π,t is always bigger than 1. In response
to a rise in expected inflation optimal policy should raise the nominal inter-
est rate sufficiently to increase the real interest rate. An increase in the real
rate has a negative effect on current output; this reflects the intertemporal sub-
stitution of consumption. Then a contraction in output will decrease current
inflation through the Phillips Curve (2), and consequently through Equation
(8) inflationary expectations in the next period will decrease. This criteria is
also emphasized in Clarida, Gali, and Gertler (1999) under the discretionary
rational expectations solution; since this holds both under RE and learning it
provides a very simple criteria for evaluating monetary policy18.

Asymptotically, the system will converge to the RE equilibrium, with infla-
tion and output gap equal to zero, and so do the corresponding expectations;
this can be seen from the autonomous, linear, homogeneous system of first-order
difference equations (19). The asymptotic properties of this kind of systems are
well-known19, and with two eigenvalues inside and one outside the unit circle,
and the set of boundary conditions (20), we have only one non-explosive so-
lution, which is such that in the long run the system converges to the trivial
solution yt = 0.

3 Introduction of a cost-push shock

In this section we will change the model, introducing an additional term in the
Phillips Curve, called a cost-push shock20, so that equation (2) becomes:

πt = βE∗
t πt+1 + κxt + ut (25)

18Clarida, Gali, and Gertler (2000) estimate that the pre-Volcker area violated this simple
criteria.

19See for example Agarwal (2002).
20For interpretations of this shock, see among others Clarida, Gali, and Gertler (1999),

Erceg, Levin, and Henderson (2000), Woodford (2003).
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where ut ∼ N(0, σ2
u) is a white noise21. In the New Keynesian literature, this

shock is introduced to generate a trade-off between inflation and output gap
stabilization; because of this, πt and xt cannot be set contemporaneously equal
to zero in every period. Moreover, the full commitment solution of the optimal
monetary policy under RE turns out to be time inconsistent, even if the CB does
not have a target for output gap larger than zero. Hence, the time-consistent
discretionary solution will be suboptimal, giving rise to what is sometimes called
as stabilization bias. There is, however, a crucial difference with the traditional
inflation bias problem: the discretion and the commitment solution are not only
different in the coefficients of the equilibrium laws of motion of aggregate vari-
ables, but even the functional form of these laws of motion differs between the
two cases; in particular, under discretion inflation and output gap are linear
functions of the cost-push shock only, under commitment an additional depen-
dence on lagged values of output gap is introduced22.

3.1 Benchmark: discretionary solution under rational ex-
pectations and under learning

As shown in Clarida, Gali, and Gertler (1999), when the cost-push shock is iid
the discretionary optimal policy implies that the RE solutions for πt and xt are:

πRE
t =

α

κ2 + α
ut (26a)

xRE
t = − κ

κ2 + α
ut . (26b)

Using optimality conditions of the discretionary rational expectations prob-
lem with non-rational expectations (E∗

t ) one can derive the following ALM for
inflation and output gap:

πt =
αβ

α + κ2
at +

α

α + κ2
ut (27a)

xt = − κβ

α + κ2
at −

κ

α + κ2
ut . (27b)

Evans and Honkapohja (2003b) derives the expectations based interest rate rule
that implements this allocation:

rt = rrt + δEH
π E∗

t πt+1 + δEH
x E∗

t xt+1 + δEH
g gt + δEH

u ut (28)

where:
δEH
π = 1 + σ κβ

α+κ2

δEH
x = σ

δEH
g = σ

δEH
u = σ κ

α+κ2 .

21Note that the cost-push shock is usually assumed to be an AR(1); we instead assume it
to be iid to make the problem more easily tractable, see below.

22See Woodford (2003), Clarida, Gali, and Gertler (1999) and McCallum and Nelson (1999).
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This rule guarantees determinacy under RE, and also convergence to the discre-
tionary RE equilibrium when expectations E∗

t evolve according to least squares
learning23.

3.2 Constant Gain Learning

At the presence of cost push shocks an additional problem arises in designing
the optimal monetary policy when agents are learning: namely which PLM
the agents are learning. As we explained above the actual law of motion of
the discretion and the commitment solution have different functional forms.
For analytical simplicity, in this paper we will restrict our attention to the
discretionary case. In particular, we assume that agents believe that inflation
and output gap are continuous invariant functions of the cost-push shock only,
πt = π(ut) and xt = x(ut)24; this hypothesis, together with the iid nature of the
shock, implies that the conditional and unconditional expectations of inflation
and output gap coincide, and are perceived by the agents as constants. Hence,
it is natural to assume that agents will estimate them using their sample means:
the stochastic recursive algorithms (8), (9)25.

We can now follow a procedure analogous to the one used in the model
without cost-push shock. The optimality condition we get is the same as before,
Equation (17).

With cost push shocks, there is a well known intratemporal tradeoff between
inflation and the output gap present under RE; the presence of learning intro-
duces an additional intertemporal tradeoff (Result 1 holds). We can isolate
the two tradeoffs from the optimality condition. When γ = 0 (which implies
constant expectations) (17) implies:

κ

α
πt + xt = βEt

[κ

α
πt+1 + xt+1

]
.

This can be solved forward, yielding the unique bounded solution:

κ

α
πt + xt = 0 , (29)

which is identical to the optimality condition derived in the RE optimal mone-
tary policy literature when the CB sets the optimal plan taking private sector’s
expectations as given (i.e., in the discretionary case). Clarida, Gali, and Gertler
(1999) describe this relation as implying a ‘lean against the wind’ policy: in
other words, if output gap (inflation) is above target, it is optimal to deflate the
economy (contract demand below capacity). Because of the presence of the cost
push shock in the Phillips Curve, the Central Bank cannot set πt and xt equal
to zero every period; so an intratemporal tradeoff between inflation and output
gap is present (even in the limit). When γ > 0 iterating forward (17) show

23See Evans and Honkapohja (2003b).
24In the terminology of Evans and Honkapohja (2001) Chapter 11, the PLM is a noisy

steady state.
25To be precise, in the algorithms (8), (9) the observations are weighted geometrically, while

in the normal sample average they all receive equal weight.
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the presence of an intertemporal tradeoff, just like in Section 2.2. When the
current output gap is positive, the Central Bank will decrease inflation less then
under RE; the Central Bank renounces to fully stabilize the current economy,
in exchange of easing future inflation-output gap tradeoffs.

Stacking (17) with the Phillips Curve (25) and the algorithms (8)-(9), we
can show that at the optimum the economy evolves according to: Etπt+1

at+1

bt+1

 = A

 πt

at

bt

+

 − α
αβ(1−γ(1−β))+κ2β(1−γ)

0
−γ

κ

ut (30)

(where A is defined as in the previous section), plus the boundary conditions
(20). The system (30)-(20) is in the form studied in Blanchard and Kahn (1980),
so that we can use their results. In particular, since there are two predetermined
variables and one non-predetermined, and A has one eigenvalue outside the unit
circle and two inside, there exists one and only one solution. Moreover, also the
system: (

Etπt+1

at+1

)
= A1

(
πt

at

)
+
(
− α

αβ(1−γ(1−β))+κ2β(1−γ)

0

)
ut (31)

(where A1 is defined as in the previous section) respects the Blanchard-Kahn
conditions for existence and uniqueness of a (bounded) solution, and this unique
solution can be written as26:

πt = ccg
π at + dcg

π ut (32)

Combining Etπt+1 = ccg
π at+1 with the optimality condition (17) and the Phillips

Curve (25), and making use of the law of motion of inflation expectations (8),
we derive the values of the coefficients ccg

π and dcg
π , which are summarized in the

next Proposition.

Proposition 2. Let the economy evolve according to the system (30), (20);
then the ALM for inflation is:

πt = ccg
π at + dcg

π ut

where ccg
π is the same given in Proposition 1, and:

dcg
π =

α

κ2 + α + αβ2γ2(β − ccg
π ) + βγ (1− γ) (αβ − (κ2 + α) ccg

π )

The ALM for output gap and the interest rate rule are given by:

xt = ccg
x at + dcg

x ut (33)

rt = rrt + δcg
π at + δcg

x bt + δcg
g gt + δcg

u ut (34)

26See Blanchard and Kahn (1980), Proposition 1.
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where ccg
x , δπ, δcg

x , δcg
g are the same as in (24), and:

dcg
x = dcg

π −1
κ

δcg
u = −σ

dcg
π −1
κ

Plugging (32) into (8), we get:

at+1 = at + γ(ccg
π − 1)at + γdcg

π ut

= (1− γ(1− ccg
π )) at + γdcg

π ut

which is a stationary27 AR(1); thus, as is well-known in the literature on adap-
tive learning, the contemporaneous presence of random shocks in the ALM and
of constant gain specification of the updating algorithm, prevents the expecta-
tions from converging asymptotically to a precise value: instead, we have that
at ∼ N

(
0,

γ2(dcg
π )2

1−(1−γ(1−ccg
π ))2

σ2
u

)
.

3.3 Comparison with the myopic rule

In this section we state results regarding how optimal monetary policy under
constant gain learning differs from myopic rules used earlier in the literature,
where myopic means a rule that considers expectations as given in the opti-
mization problem: in particular we refer to rule (28), derived in Evans and
Honkapohja (2003b) (henceforth EH).

It is clear that the coefficients on the output gap expectations and on the
demand shock are the same in rule (28) as in rule (34), while the other two co-
efficients are typically different. Proposition 1 implies δcg

π,t > δEH
π : the interest

rate response of OP to out-of-equilibrium inflation expectations is more aggres-
sive than the interest rate response of EH. This is due to the fact that when
the CB takes into account its ability to influence agents’ beliefs, it optimally
chooses to undercut future inflation expectations more than what a myopic CB
would do.

From Proposition 1 and 2 it also follows that δcg
u,t > δEH

u : optimal policy re-
acts more aggressively also to cost push shocks. After a positive cost push shock
the optimally behaving Central Bank raises the interest rate more aggressively
than the myopic one, this in turn decreases output, which has a negative effect
on inflation. Thus conducting an aggressive interest rate rule in response to
the cost push shock, decreases the influence of the cost push shock on inflation,
and this in turn will ease agents learning about the true equilibrium level of
inflation.

The inflation and output gap allocations implemented by the two different
interest rate rules are also different. Under constant gain learning optimal allo-
cations are characterized by (32) and (33). Under EH allocations are given by
(27) with E∗

t πt+1 = at.

27In fact, since 0 < ccg
π < 1, it immediately follows that 0 <

`
1− γ(1− ccg

π )
´

< 1.
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From Proposition 1 we know that the feedback coefficient under optimal
policy ccg

π is smaller than under the EH rule, in order to undercut inflation ex-
pectations more. Also the response to the cost push shock is of lesser magnitude
when (34) is used instead of (28) (in fact, ccg

π < αβ
κ2+α implies that dcg

π < α
κ2+α ),

because the CB is less willing to accommodate noisy shocks, in order to make
easier for the private sector to learn what is the long-term value of the condi-
tional expectations of inflation.

Under OP both coefficients in the ALM of xt are higher in absolute value
than under EH. This implies that the CB allows a higher feedback from out of
equilibrium expectations and noisy cost push shocks to the output gap then a
myopic policymaker.

The difference between OP and the myopic policy can be summarized as
follows:

Result 2. When the CB takes into account its influence on private agents
learning it is optimal to decrease the effect of out of equilibrium expectations on
inflation (engineering an aggressive interest rate reaction to inflationary expec-
tations) and increase the effect of out of equilibrium expectations on the output
gap compared to the myopic policy.

This way optimal policy undercuts future private sector expectations more
aggressively than the myopic policy.

Result 3. When agents are learning an optimally behaving policymaker ac-
commodates less the effect of noisy shocks to inflation compared to a myopic
policymaker, even if it translates into a more volatile output gap.

This way optimal policy makes it easier for the private sector to learn what
is the “true” value of the conditional expectations of inflation.

Similarity to the commitment solution

From Result 2 and 3 it follows that the impact of a given nonzero cost push
shock drives inflation (output gap) closer to (further from) target when agents
are learning, relative to the discretionary RE case. Interestingly, this behavior
qualitatively resembles the optimal RE equilibrium under commitment within a
simple class of policy rules derived in Clarida, Gali, and Gertler (1999): if the
CB can commit to a policy rule that is a linear function of ut, the solution can
be characterized, when compared to the discretionary equilibrium, by inequal-
ities analogous to the ones summarized in the results stated above. However,
the (constrained) commitment solution differs from the discretionary one only
when the cost-push shock is an AR(1); if u -and consequently, the equilibrium
processes for inflation and output gap- is iid, the two solutions coincide, since
future (rational) expectations of the agents cannot be manipulated by the CB.
Instead, if expectations are backward-looking, the future beliefs can be manip-
ulated also when the shock is iid: the current actions of the CB influence future
beliefs through (8) and (9) even if the shock is iid.
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In both instances this behavior results from the CB’s ability to directly
manipulate private expectations, even if the channels used are quite different.
In fact, under commitment the policy maker uses a credible promise on the future
to obtain an immediate decline in inflation expectations and thus in inflation.
Under learning we observe a smaller initial response of inflation relative to the
RE discretionary case because optimal policy reacts less to the cost push-shock
to ease private agents learning. In this sense, we can say that the ability to
manipulate future private sector expectations through the learning algorithm
plays a role similar to a commitment device under RE, hence easing the short-
run trade-off between inflation and output gap.

Another similarity to the commitment solution is the sluggish behavior of
inflation after an initial cost push shock. The source of inertia under RE com-
mitment and learning is quite different. Under commitment the policy maker
carries commitments made in the past (in other words commits to behave in a
past dependent way). Under learning the pattern results from the sluggishness
of expectations.

As a result of these two similarities, the impulse response function of inflation
to a cost push shock will be also similar under OP and RE commitment. Figure 5
displays the impulse response function of inflation to a unit shock under OP and
discretionary RE policy. In the optimal RE discretionary policy, inflation rises
on impact and immediately reverts to the steady state once the shock dies out.
Instead, under learning the policy maker engineers a smaller initial response of
inflation; in subsequent periods inflation gradually converges back to the steady
state value. Clarida, Gali, and Gertler (1999) and Gali (2003) show a similar
disinflation path for the Ramsey policy : a smaller initial inflation compared to
the discretionary case, in exchange for a more persistent deviation from the
steady state later28 This behavior of Ramsey policy leads to welfare gains over
discretion due to the convexity of the loss function; this preference for slower
but milder adjustment to shocks is at the heart of the stabilization bias.

The similarity to the RE commitment solution resembles the analysis carried
out in Sargent (1999), Chapter 5, which shows that in the Phelps problem
under adaptive expectations29, the optimal monetary policy drives the economy
close to the Ramsey optimum. Moreover, when the discount factor β equals 1,
optimal policy under learning replicates the Ramsey equilibrium. In our case,
optimal policy under learning cannot replicate the commitment solution even
for β going to 1. This result follows from the particular nature of the gains
from commitment; commitment calls for an ALM with a different functional
form to the discretionary case30. In the Phelps problem, on the other hand, the
Phillips Curve is such that the discretion and commitment outcome of inflation
has the same functional form, but different coefficients. However, also in our

28A difference is that commitment policy under RE engineers a sequence of negative inflation
after the first period, while a positive sequence under learning.

29Phelps (1967) formulated a control problem for a natural rate model with rational Central
Bank and private agents endowed with a mechanical forecasting rule, known to the Central
Bank.

30See Clarida, Gali, and Gertler (1999).
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case an increase in the discount factor makes the optimal disinflationary path
under learning getting closer to the commitment solution. This can be seen in
Table 1, where we summarize the behavior of inflation in response to a unit cost
push shock when the model’s parameters are calibrated as in Woodford (1996),
apart from β which takes several values. As β goes to 1 the initial response of
inflation is milder and the path back to the steady state longer.

Table 1: Paths of inflation for different βs after an initial cost push shock
beta 0.5 0.6 0.7 0.8 0.9 1.0

1 0.99 0.99 0.98 0.98 0.96 0.91
2 0.44 0.52 0.61 0.69 0.75 0.73
3 0.24 0.33 0.44 0.55 0.66 0.66

10 0.00 0.01 0.04 0.12 0.27 0.33
50 0.00 0.00 0.00 0.00 0.00 0.01

Woodford (1996) calibration. Cost push shock u0 = 1 in the first period,

starting from a0 = 0, π0 = 0, x0 = 0, with γ = 0.2

Welfare Loss Analysis

To have a quantitative feeling of the welfare gains that the use of the optimal
rule (34) instead of the EH rule (28) implies, we present a numerical welfare
loss analysis.

Let us define the cumulative ext-post losses up to time T under the two
interest rate rules as:

LOP
T ≡

T∑
t=0

βt
((

πOP
t

)2
+ α

(
xOP

t

)2)
and:

LEH
T ≡

T∑
t=0

βt
((

πEH
t

)2
+ α

(
xEH

t

)2)
where the superscripts OP and EH indicates whether the variables are calcu-
lated using rule (34) or (28), respectively; then, for a cross sectional sample

size of 1000 we compute numerically the value of L̂T ≡
1000∑
i=0

LOP
T /

1000∑
i=0

LEH
T for

T=10000. We use the calibrations of McCallum and Nelson (1999) (McCN),
Woodford (1996) (W) and Clarida, Gali, and Gertler (2000) (CCG). The cali-
brated coefficients are as follows: in McCN κ = 0.3, α = 1.83, in the Woodford
calibration κ = 0.024, α = 0.048 and in the CCG calibration κ = 0.075, α = 0.3
31 32. The initial values for expectations are a0 = 0, and the shocks are drawn

31We adjust the CCG calibration for quarterly data, i.e. both the σ and κ values reported by
Clarida, Gali, and Gertler (2000) are divided by 4. We would like to thank Seppo Honkapohja
for drawing our attention on this difference in calibrations.

32The risk aversion parameter σ does not appear in the reduced form for inflation and
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from a standardized normal. In all three calibrations β = 0.99.
Results in Table 2 show that the gain in welfare losses is especially high for

constant gain learning with high tracking parameters: for γ = 0.9 the welfare
loss of not using the optimal rule is twice as large as under OP. The intuition
behind follows from the fact that, in the presence of a cost push shock, constant
gain learning does not settle down to RE, but converges to a limiting distribu-
tion. Optimal policy should takes this into account and aims to decrease the
limiting variance, while a myopic policy does not33.

Table 2: Ratio of welfare losses using OP and EH under constant gain
L̂ = LOP /LEH

Tracking parameter McCN W CCG
0.1 0.82 0.85 0.81
0.2 0.72 0.72 0.68
0.3 0.64 0.62 0.58
0.4 0.61 0.58 0.54
0.5 0.57 0.53 0.50
0.6 0.54 0.50 0.47
0.7 0.52 0.48 0.45
0.8 0.50 0.46 0.43
0.9 0.49 0.45 0.42

McCN: McCallum and Nelson (1999), W: Woodford (1996)

CCG:Clarida et al. (2000)

An increase in the tracking parameter (keeping everything else constant)
results in a larger variance of inflation expectations and, consequently, in a
larger opportunity cost of adopting a suboptimal rule of the form (28). This
is illustrated in Figure 7, which shows that the higher is γ, the higher is the
decrease in variance of a under OP compared to EH.

Optimal policy engineers a decrease in the limiting variance of inflationary
expectations (Figure 7) at the cost of allowing higher variance in output gap
expectations (Figure 8). This result is parallel to results 2 and 3, which both
state that optimal policy should focus on decreasing inflation variation even at
the cost of higher output gap variation. Table 3 shows that under constant gain
learning this incentive to focus on inflation is even more pronounced then under
decreasing gain learning. The higher is the tracking parameter, the higher is
the limiting variance of expectations and the more incentive the Central Bank
has to focus on low variance in inflation allowing for an increase in output gap
deviation from the flexible price equilibrium. For γ = 0.9 the Central Bank

output gap, hence it is not calibrated whatsoever. σ used for the plots of interest rate rule
coefficients are: CCG σ = 1/4, W σ = 0.157, McCN σ = 1/0.164 .

33It is worth noting that the EH rule is designed to ensure learnability of the optimal RE in
a decreasing gain environment, and its performance under constant gain is never considered
in the EH paper; however, it can be useful to employ a constant gain version of their rule to
illustrate potential advantages of fully optimal monetary policy over a myopic rule.
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engineers a 75 percent lower welfare loss in inflation when it properly conditions
on expectation formation, permitting at the same time 5-10 times more variation
in output gap.

Table 3: Ratio of welfare losses using OP and EH under constant gain learning
due to inflation and output gap variations

L̂ = LOP /LEH

Inflation Output gap
Tracking parameter McCN W CCG McCN W CCG

0.1 0.67 0.72 0.67 3.76 8.37 8.22
0.2 0.54 0.54 0.51 4.34 10.79 9.89
0.3 0.44 0.43 0.40 4.68 11.48 10.36
0.4 0.39 0.38 0.35 5.02 12.08 10.88
0.5 0.34 0.33 0.30 5.09 11.98 10.77
0.6 0.31 0.30 0.28 5.17 12.00 10.77
0.7 0.29 0.28 0.25 5.21 11.94 10.72
0.8 0.27 0.26 0.24 5.21 11.77 10.57
0.9 0.25 0.25 0.23 5.28 11.98 10.75

McCN: McCallum and Nelson (1999), W: Woodford (1996), CCG: Clarida et al. (2000)

Moreover, it is worth noting that the use of a myopic rule under constant
gain learning allows for the autocorrelation of inflation to rise, thus increasing
the persistence of a shock’s effect on inflation expectations. This problem arises
from the relatively weak response to inflation expectations which feeds back to
current inflation and, in turn, into subsequent expectations and inflations. The
optimal rule’s strong feedback to inflation expectations dampens this interaction
between inflation and expectations34.

This section has shown that optimal policy under learning is characterized by
a more aggressive interest rate reaction to out-of-equilibrium expectations and
to the cost push shock than would be optimal when the Central Bank does not
make active use of its influence on expectations. This aggressive behavior guar-
antees that inflation will deviate less from its equilibrium value, thus private
agents can learn the true equilibrium level of inflation faster than under my-
opic policy. Helping inflationary expectations is beneficial, even at the cost of
allowing higher deviations in output gap expectations and a higher output gap
volatility. Our welfare loss analysis has shown that properly conditioning on
private agents expectation formation is especially important in a nonconvergent
environment, i.e. when agents follow constant gain learning. Welfare gains from

34It can be easily derived that the autocorrelation of inflation under constant gain with

EH is EπEH
t πEH

t−1 =
“

αβ
α+κ2

”2 “
1− γ + γ αβ

α+κ2

”
σ2

aEH
+ αβ

α+κ2

“
α

α+κ2

”2
γσ2

u while under the

optimal rule EπOP
t πOP

t−1 =
`
ccg
π

´2 `
1− γ + γccg

π

´
σ2

aOP
+ccg

π

`
dcg

π

´2
γσ2

u. We have already seen

that σ2
aOP

< σ2
aEH

, ccg
π < αβ

α+κ2 and dcg
π < α

α+κ2 , thus EπOP
t πOP

t−1 < EπEH
t πEH

t−1.
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using the optimal policy are particularly pronounced when private agents use a
high tracking parameter (i.e. discount more past data) for forecasting.

4 Decreasing Gain Learning

In this section we relax the assumption of constant gain learning and show that
our main results remain valid also with decreasing gain learning (henceforth
DG) and show that the time varying nature of expectations imply that during
the transition the optimal policy should be time varying even in a stationary
environment.

Using a constant gain parameter γ is appropriate when agents believe struc-
tural changes to occur. If instead the private sector confidently believes that the
environment is stationary it is more reasonable to model their learning behavior
with a decreasing gain rule, namely an algorithm of the form:

E∗
t πt+1 ≡ at = at−1 + t−1(πt−1 − at−1) (35)

E∗
t xt+1 ≡ bt = bt−1 + t−1(xt−1 − bt−1) (36)

where the only difference with (8)-(9) is the substitution of γ with t−1.
An updating scheme of this form is equivalent35 to estimating inflation and

output gap every period with OLS36.

4.1 Without cost push shock

Let us first consider the economy without cost push shock. Then the problem
of the CB becomes:

min
{πt,xt,rt,at+1,bt+1}∞t=0

E0

∞∑
t=0

βt(π2
t + αx2

t ) (37)

s.t. (1), (2), (35), (36)
a0, b0 given

The optimization can be solved in a way analogous to the constant gain
case; hence, the dynamics of the system can be summarized by the optimality
condition:

κ

α
πt + xt = βEt

[
β

1
t + 1

xt+1 +
κ

α
πt+1 + xt+1

]
(38)

Iterating it forward we get:
35Under certain conditions on the values used to initialize the algorithm, see Evans and

Honkapohja (2001).
36Note that, since inflation and output gap are assumed by the learners to be constant, the

OLS is just the sample averages of the two.
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κ

α
πt + xt = Et

[ ∞∑
s=1

βs+1 1
t + s

xt+s

]
.

Similarly to Section 2 our result is that learning introduces an an intratemporal
tradeoff between inflation and output that is not present under RE in an econ-
omy without a cost push shock and an additional intertemporal tradeoff that is
not present in general under rational expectations (Result 1). From the latter
it follows that during the transition for a given positive value of xt, the opti-
mal disinflation is less harsh with respect to the one implied by (5) (optimizing
taking expectations as given) provided that the series on the right hand side is
expected to be positive. The intuition behind is that when the CB makes active
use of the expectation formation, it renounces its ability to optimally stabilize
the economy in period t, in exchange for a reduction in future inflation expec-
tations (in absolute value) and this allows an ease in the future inflation-output
gap trade-off embedded in the Phillips Curve.

To derive the optimal allocations, we can use (2) to substitute out xt in (38),
then using the evolution of inflationary expectations (35)we get:

Et [πt+1] = A11,tπt + A12,tat, (39)

where:

A11,t ≡
κ2 + α + αβ2 1

t+1

(
1 + β 1

t+1

)
αβ(1 + β 1

t+1 ) + κ2β

A12,t ≡ −
αβ
[
1− β

(
1− 1

t+1

)(
1 + β 1

t+1

)]
αβ(1 + β 1

t+1 ) + κ2β
.

Hence, at an optimum, the dynamics of the economy can be summarized by
stacking equations (35), (36) and (39), and obtaining the trivariate system:

Etyt+1 = Atyt (40)

where yt ≡ [πt, at, bt]′, and:

At ≡

 A11,t A12,t 0
1

t+1 1− 1
t+1 0

1
t+1
κ −β 1

t+1
κ 1− 1

t+1

 .

The three boundary conditions of the above system are (20), the same as in
section 2.2.

23



We can find the solution with the method of undetermined coefficients, with
the guess37:

πt = cdg
π,tat. (41)

The sequence
{

cdg
π,t

}
must satisfy the non-linear, non-autonomous first order

difference equation:

cdg
π,t =

cdg
π,t+1

(
1− 1

t+1

)
−A12,t

A11,t − cdg
π,t+1

1
t+1

(42)

Of course, there exist infinite sequences that satisfy equation (42), one for each
initial value cdg

π,0. However, since the boundary conditions require πt to stay
bounded, we will concentrate on the solutions that do not explode.

Proposition 3. Let
{

cdg
π,t

}
be defined by (42), and assume it is bounded; then,

lim
t→∞

cdg
π,t exists, and is given by:

lim
t→∞

cdg
π,t =

αβ

α + κ2

Moreover, for any t < ∞, we have:

cdg
π,t <

αβ

α + κ2

Proof. See the Appendix.

Thus Result 2 holds during the transition: when the CB takes into ac-
count its influence on expectations it is optimal to decrease the effect of out-of-
equilibrium expectations on inflation compared to the myopic policy (see (6)),
in order to undercut future inflation expectations by a larger amount. This re-
laxes the future inflation-output gap trade-off embedded in the Phillips Curve.
The ALM for output gap is:

xt = cdg
x,tat cdg

x,t =
cdg
π,t − β

κ
(43)

If the private sector expects inflation to be positive, the optimal CB will contract
economic activity more than EH38 (using the interest rate instrument); the CB
is ready to pay a short-term cost represented by a wider current output gap in
order to contain future inflationary expectations.

37This guess corresponds to the unique solution under constant gain learning. A proof of
uniqueness of a bounded solution for decreasing gain learning is not worked out completely
yet.

38 From cdg
π,t < αβ

α+κ2 it follows that cdg
x,t < − κβ

α+κ2 . Compare with the ALM under EH (6).
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The nominal interest rate rule is as follows:

rt = rrt + δdg
π,tat + δdg

x bt + δdg
g gt (44)

where:
δdg
π,t = 1− σ

cdg
π,t−β

κ

δdg
x = σ

δdg
g = σ

Since cdg
π,t < β (see Proposition 3) δdg

π,t is always bigger than 1. In response to
a rise in expected inflation optimal policy should raise the nominal interest rate
sufficiently to increase the real interest rate. The following proposition pertains
to the characteristics of the optimal rule compared to the myopic EH rule (7):

Proposition 4. Assume that t < ∞; then, δdg
π,t > δEH

π . Moreover, we have:
- lim
t→∞

δdg
π,t = δEH

π .

Result 4 under CG is parallelled by our results under DG: the optimal inter-
est rate rule should react more aggressively to out of equilibrium expectations
than the EH rule. A CB that knows how its behavior affects private sector ex-
pectations should contain more inflationary expectations than a CB that takes
expectations as given.

An interesting result is that the coefficient on inflation expectations in the
interest rate rule (44) is time-varying, reflecting the fact that the Central Bank’s
incentives to manipulate agents’ beliefs evolve over time. This implies that
during the transition optimal policy should be time varying even in a stationary
environment.

In Figure 1, we show how this coefficient depends on time when the param-
eters are calibrated according to Clarida, Gali, and Gertler (2000): κ = 0.075,
α = 0.3, σ = 1/4. δdg

π,t is always above its limiting level (see analytical proof in
Proposition 4), moreover, it decreases over time. Numerical analysis on the grid
β = 0.99 and α ∈ [0.01, 2], κ ∈ [0.01, 0.5] shows that this decreasing behavior
of δdg

π,t is a robust feature of the model 39. We find that after the 4th period
(from the 4th to the 5th period and so on) δdg

π,t is always decreasing, while in
the first 4 periods δdg

π,t might be increasing (hump-shaped) for a combination of
low values of α and high values of κ (see Figure 3 ) 40. We summarize our new
results as:

Result 4. Optimal policy is time varying even in a stationary environment. It
is more aggressive initially, and as time evolves reacts less and less aggressively
to out of equilibrium expectations.

39We have chosen the grid to include typical calibrated values for the US and the EURO
area.

40In fact, δdg
π,t is always decreasing also for other calibrations widely adopted in the New

Keynesian Literature, like those taken from Clarida, Gali, and Gertler (2000) and McCallum
and Nelson (1999).
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To get an intuition, suppose that a structural break occurs. For example
there is a policy change because a new central bank governor is appointed,
agents know that monetary policy has changed and try to learn how this affects
the equilibrium. In this situation is convenient for the CB to react more ag-
gressively to out-of-equilibrium inflation beliefs in the first periods, when agents
pay more attention to new information and the CB’s possibilities of influencing
private expectations are greater. This behavior is beneficial even at the cost
of larger short-term losses in terms of output gap variability. As time passes,
the expectations will be influenced to a lesser extent by the last realization of
inflation, hence determining a CB reaction that closely resembles the optimizing
behavior when policymakers cannot manipulate expectations.

The asymptotic behavior of inflation beliefs is given by the following Propo-
sition:

Proposition 5. Let πt = cdg
π,tat, where cdg

πt is given by (42); then, at → 0.

Proof. See the Appendix.

Combining this result with the boundedness of cdg
π,t, the ALM for inflation

(41) and output gap (43) tell us that both these variables go to zero asymp-
totically, restoring the RE allocations. Optimal policy naturally chooses a non-
explosive solution (it is E-stable), and drives expectations to the rational expec-
tations equilibrium.

Note that the policy function does not depend on the period when the cb
optimizes, even if it is not time invariant. Thus, the optimal policy characterized
above is time consistent, in the sense of Lucas and Stokey (1983) and Alvarez,
Kehoe, and Neumeyer (2004).

4.2 With Cost Push Shock

In this section we introduce a cost push shock in the New Keynesian Philips
Curve.

Proceeding with the same analysis as before, we get the same optimality
condition (38). Substituting out xt using the Phillips Curve (25), and using the
evolution of inflation expectations (35) we can show that at the optimum the
economy evolves according to:

Et [πt+1] = A11,tπt + A12,tat + P1,tut (45)

where A11 and A12 are the same as in (39), and

P1,t ≡ − α

αβ(1 + β 1
t+1 ) + κ2β

.

Stacking together this condition, and the two learning algorithms (35) and (36),
we again have a trivariate system. We can guess and verify that the ALM for
inflation is of the form:

πt = cdg
π,tat + ddg

π,tut (46)
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which implies that Etπt+1 = cdg
π,t+1at+1; substituting this expression in (45),

and making use of the law of motion of inflation expectations (35), we obtain
that the sequence

{
cdg
π,t

}
is identical to (42) and

{
ddg

π,t

}
must satisfy:

ddg
π,t =

P1,t

cdg
π,t+1

1
t+1 −A11,t

. (47)

The solution of
{

cdg
π,t

}
is again characterized by Proposition 3. From Propo-

sition 3 and (47) it follows that 0 < ddg
π,t < α

α+κ2 , a positive cost push shock
increases inflation, but less than under myopic policy (compare with (27)). The
ALM for output gap and the nominal interest rate rule are given by:

xt = cdg
x,tat + ddg

x,tut (48)

rt = rrt + δdg
π,tat + δdg

x bt + δdg
g gt + δdg

ut ut (49)

where cdg
x,t, δ

dg
π,t, δ

dg
x , δdg

g are the same as in (44), and

ddg
x,t =

ddg
π,t−1

κ

δdg
ut = −σ

ddg
π,t−1

κ .

Since the cost push shock is a new state variable, it enters the interest rate rule.
δdg
ut is characterized by the following proposition:

Proposition 6. Assume that t < ∞; then, δdg
ut > δEH

u . Moreover, we have:
- lim
t→∞

δdg
ut = δEH

u .

The inequality δdg
ut > δEH

u is parallel to Result 5: during the transition the
optimal policy engineers more aggressive interest rate movements in response
to cost push shock variations than EH, and this way it accommodates less the
effect of noisy shocks on inflation compared to EH.

δdg
ut is positive and decreasing over time (see Figure 2)41. Thus monetary

policy should react to the cost push shock in a similar fashion as to out of
equilibrium expectations (see Result 4):

Result 5. Optimal policy reacts aggressively to cost push shocks initially, and
dampens its aggressiveness later.

In response to a positive cost push shock, the Central Bank raises interest
rate to contract the output and thus reduce inflation, and future inflationary
expectations.

41Since δdg
u,t < 1 from (49) it follows that the change of δdg

u,t through time is identical to that

of δdg
π,t and the numerical analysis of Section 4.1 also applies here.
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Table 4: Path of cumulative welfare loss ratios under decreasing gain, using OP
and EH

L̂ = LOP /LEH

T CCG W Mc
1 1.62 1.59 1.67
5 1.11 1.12 1.13
10 1.04 1.06 1.06
15 0.99 1.02 1.02
20 0.97 1.00 0.99
30 0.93 0.97 0.96
40 0.91 0.95 0.94
50 0.89 0.94 0.91
McCN: McCallum and Nelson (1999), W: Woodford (1996)

CCG: Clarida et al. (2000), a0 = 0

The asymptotic properties of the ALM (46),(48) depend on the limiting
behavior of at, which is given by the stochastic recursive algorithm:

at+1 = at + (t + 1)−1
(
(cdg

πt − 1)at + ddg
π,tut

)
(50)

We study its properties in the Appendix, where we use the stochastic ap-
proximation techniques42 to prove the following Proposition:

Proposition 7. Let at evolve according to (50); then, at → 0 a.s.

This result, together with the boundedness of cdg
π,t, implies that cdg

π,tat goes
to zero almost surely; moreover, it is easy to see that ddg

π,t → α
κ2+α , so that we

can conclude that πt → α
κ2+αv almost surely, where v is a random variable with

the same probability distribution as ut. The equilibrium corresponds to the
discretionary rational expectations equilibrium. Optimal policy ’helps’ private
agents to learn the rational discretionary REE43.

From Propositions 4 and 6 it follows that the optimal policy converges to
the myopic policy; since expectations converge to a constant it is intuitive that
in the limit OP behaves as if expectations were fixed.

The difference between OP and EH during the transition amounts to huge
welfare gains. To get a quantitative feeling of the welfare gains that the use of
rule (49) instead of the EH rule implies along the transition to RE, we perform
Monte Carlo simulations up to time T under the two interest rules an calculate
the ratio of the cumulative welfare losses similarly to Section 3.3).Results are
reported in Table 4.

The Table shows that in the first periods rule (49) yields ex-post cumulative
welfare losses higher than the EH rule; later, however, our rule starts generating

42For an extensive monograph on stochastic approximation, see Benveniste and P. (1990);
the first paper to apply these techniques to learning models is Marcet and Sargent (1989).

43Note that the PLM of private agents does not nest the commitment REE, only the dis-
cretionary REE, so agents have a ’chance’ to learn only the latter.
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smaller welfare losses44. These findings are consistent with our finding that
a CB that follows the optimal rule (49) reacts to out-of-equilibrium inflation
expectations more aggressively than in the EH case, in order to undercut more
future expectations, even if this means allowing a wider output gap in the short
run. This implies that in the first periods, when this more aggressive behavior
has not yet generated a pay-off in terms of a smaller |a| sufficient to offset the
costly output gap variability, our rule performs worse than the EH one; as soon
as inflation expectations become small enough, this initial disadvantage is more
than compensated. This pattern is magnified by the time-varying behavior of
δdg
π,t that we characterized above: the coefficient on inflation expectations in

(49) is particularly large in the first periods, hence determining large output
gap variations and large welfare losses in the short run, and large gains from
the contraction of |a| in the medium and long run. Table 5 shows, that in the
long run using the optimal rule dramatically reduces welfare losses: between 29
and 34 percent, depending on the calibration we use.

Both OP and EH are E-stable under learning, so guarantee that the economy
converges to the discretionary REE; what changes is the speed of convergence
to RE. In particular, Figure 645 shows a typical realization of the evolution
of expectations under OP and EH. We can observe that inflation expectations
converge faster with our rule than with the EH one. This is a consequence of the
result derived above: when the CB does take into account its influence on the
learning algorithm, it has an incentive to undercut future inflation beliefs more
than in the case when it does not. On the other hand, in the bottom panel of
Figure 6 we can see that output gap expectations converge more slowly with our
rule than with the EH one. It is due to the presence of the intertemporal tradeoff
described in Section 2 that the CB is ready to pay a short-term cost in order to
undercut future inflation expectations. This short term cost is represented by a
wider current output gap and, consequently, by a slower convergence of b to its
RE value.

Table 5: Ratio of welfare losses using OP and EH discretion under decreasing
gain learning

L̂ = LOP /LEH

McCN W CCG
Decreasing gain 0.660 0.766 0.719
McCN: McCallum and Nelson (1999), W: Woodford (1996)

CCG: Clarida et al. (2000)

Table 6 confirms that it is optimal to lower inflation’s deviation from the
target even at the cost of higher output gap variation. For decreasing gain
learning, when the Central Bank takes into account its influence on private
expectations it engineers an inflation variation 40-50 percent lower, even at the

44We report bLT only until period 50; over a longer horizon, the ratio gets smaller.
45To obtain Figure 3, we adopted the Woodford (1996) calibration, with the same initial

beliefs and the same realization of the cost-push shock process used to produce Table 1.
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cost of of allowing a 3-9 times higher welfare loss due to output gap variations.
Notice, that the higher is α, the weight on output gap in the welfare loss function,
naturally the lower is the additional variation in output gap, compared to the
EH rule.

Table 6: Ratio of welfare losses using OP and EH under decreasing gain learning
due to inflation and output gap variations

L̂ = LOP /LEH

McCN W CCG
π 0.55 0.67 0.61
x 2.80 8.97 6.46
McCN: McCallum and Nelson (1999), W: Woodford (1996)

CCG: Clarida et al. (2000)

In this section we have proved that our main results do not depend on what
type of learning algorithm private agents follow. Our new results are that under
decreasing gain learning optimal policy should be time varying: more aggressive
on inflation initially and less in subsequent periods. In the limit, expectations
converge to the discretionary rational expectations equilibrium, and optimal
policy will be equivalent to the myopic policy. Numerical simulations confirmed
that optimal policy under learning engineers dramatically lower welfare losses
compared to myopic policy. In the next section we direct out attention to
differences between optimal policy under the two learning algorithms, and argue
why it is of interest to examine both learning algorithms.

5 Consistent Policy Advice

In the previous sections we have seen that departing from rational expectations
and using adaptive expectations instead, has important implications for optimal
monetary policy: in general optimal policy should try to contain inflation more
than under rational expectations. In this section we argue how expectation
formation and accordingly the optimal monetary policy should differ in different
environments. We also aim to define consistent policy advice on a relevant set
of private agents’ expectation formation. In concrete, we ask the question how
monetary policy in the US should behave when it is uncertain about expectation
formation, but it’s uncertainty is restricted to a set which would be reasonable
given the economic environment.

The main idea is, that in different different economic environments private
agents would be likely to use different forecasting algorithms, and the Central
Bank should take this into account in its policy formation 46. Using a decreas-
ing gain algorithm is appropriate if agents confidently believe that the variable,

46In a full-fledged analysis the CB would also understand how its policymaking would affect
the private sectors expectation formation. Here, we do not address this issue.
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they are trying to forecast has a constant mean over time. On the other hand,
the use of constant-gain estimators to deal with structural changes is well known
from the statistics and engineering literature 47 and using a constant gain is also
optimal when the economy does not converge to REE48. In these environments
agents would be more likely to use a constant gain algorithm. Accordingly,
optimal monetary policy should be different when it operates in a stable envi-
ronment to when it operates in an environment prone to structural changes49.

Results in our paper suggest, that in economies with structural breaks opti-
mal monetary policy should try to contain inflationary expectations much more
compared to stable economies; in the sense that optimal policy should remain
aggressive towards inflation even in the steady state, while in stable economies
the Central Bank should be aggressive only during the transition.

During the transition relative aggressiveness of optimal policy under the two
learning algorithms changes through time. Under decreasing gain learning opti-
mal policy aims to drive inflationary expectations close to the equilibrium in the
first periods, because later its influence on expectations decreases; as a result
during the first periods optimal policy under decreasing gain learning is more
aggressive in breaking down inflationary expectations than under constant gain
learning 50. Figure 9 shows this difference: during the first periods optimal
policy under DG compared to CG has a smaller feedback coefficient of expecta-
tions in the actual law of motion of inflation (equations (46) and (32) ). As we
have seen in the paper this smaller feedback coefficient on inflation expectations
translates to a higher coefficient of expectations in the interest rate rule (49)and
(34).

Intuitively, if a structural break occurs in a stable environment the Central
Bank should raise the interest rate aggressively in response to out of equilibrium
expectations to speed up convergence of inflation expectations, even at the cost
of slower convergence of output gap expectations (See Graph 6).

On the other hand, initially a less aggressive interest rate increase is needed
when the economy is inherently characterized by structural breaks. The reason
is that in the latter economy an aggressive interest rate policy has two effects:
it implies a smaller volatility of inflation but a higher volatility in output gap
(even in the limit). Since expectations remain volatile even in the limit, the
Central Bank has to balance between these two effects, and spread the effect of

47See for example Benveniste and P. (1990), Part I. Chapters 1. and 4.
48The optimal choice of the gain parameter is nonlinear, it depends on the relative impor-

tance of tracking versus filtering the observed data. A high value of γ increases tracking, or in
other words the responsiveness of the forecasts to the structural change. On the other hand, a
high tracking parameter reduces filtering, i.e. the ability of the forecast rule to eliminate noise
in the data. Although the choice of the optimal gain parameter is subject to this trade-off,
the use of a constant gain is clearly indicated when the structure of the economy is subject to
changes.

49Recent research addressing the issue of choosing an optimal tracking parameter are Ben-
veniste and P. (1990), Evans and Ramey (2005) and Evans and Honkapohja (1993). Marcet
and Nicolini (2003) show that agents might also switch predictor use dynamically: use de-
creasing gain learning when forecast errors are low, and switch to constant gain learning when
forecast errors are high.

50This result holds true for all three calibrations used in our paper.
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its interest rate policy through time.

Now, the question arises, what is a relevant set of expectation formation?
Empirical evidence on this is relatively scarce, and mainly focuses on the US.
For the US the estimated γ is typically small. With Bayesian estimation of the
New Keynesian model Milani (2005) finds γ to be around 0.02, he also finds γ to
be stable through time. Orphanides and Williams (2005b) calibrate γ between
0.01 and 0.4 on the Survey of Professional Forecasters.

Let us conduct an experiment, and suppose that the FED is uncertain about
how private sector forms its expectations, but relying on the empirical literature
listed above it can define a relevant (but not exhaustive) set of expectations to
be: decreasing gain, constant gain with a small gain, and rational expectations.
This set of inflation expectations is relevant if private agents confidently be-
lieve themselves to be in a stable environment, or if they believe it is a stable
environment but, there is a small probability of regime change. We raise the
question, whether there is a consistent policy rule, that performs well on this
set of expectation formations.

Table (7) shows expected welfare losses 51. when private agents follow con-
stant gain learning with a small gain, and the Central Bank uses the optimal
rule, CG, or mistakenly uses another rule. CG denotes the optimal interest rate
rule under constant gain learning (34), CG with bad γ is the same interest rate
rule, but we assume the Central Bank misperceives γ. EH denotes the myopic
interest rate rule (28), derived in Evans and Honkapohja (2003b); this rule does
not take into account the feedback of monetary policy to private expectations
(but guarantees stability of learning). DG denotes the optimal rule derived for
decreasing gain learning (49). Table (8) shows similar welfare loss calculations
for decreasing gain learning and Table (9) for rational expectations52. For ex-
ample the first row in Table (7) shows that if private agents follow constant gain
learning with γ = 0.1 and the Central Bank uses the optimal rule, welfare loss
is 177.21. When the Central Bank mistakenly uses the optimal rule derived for
γ = 0.2 the welfare loss is 177.94, under the EH rule the expected welfare loss
is 218.16 and finally with DG rule it is 177.21.

Under learning optimal rules derived for learning perform robustly much
better that the myopic rule (EH), which does not take into account the central
banks effect on private expectations. In other words, when private agents are
learning the Central Bank should make active use of this knowledge, even if it is
unsure about the exact nature of learning (within the learning rules examined
here).

Under rational expectations all of these rules lead to a determinate equi-
librium. The myopic rule provides smaller welfare losses than optimal learning
rules, and the reason for this is that learning rules allow for too high volatility

51Monte Carlo simulations, with length 10,000, crossectional sample size 1000. All results
are with the CCG calibration, similar results hold with the W and McN calibrations.

52Rational expectations means, substituting the interest rate rule in the IS curve (1), and
then using the Phillips Curve (25) solving for the fixed point in expectations. Under all
interest rate rules listed above, this results Etπt+1 = Etxt+1 = 0.
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Table 7: Expected welfare losses when private agents are constant gain learners
Interest rate rule CG CG with EH DG

Tracking parameter bad γ
0.1 177.21 177.94 218.16 195.37
0.2 212.93 214.66 313.98 255.26

CCG: Clarida et al. (2000)

Table 8: Expected welfare losses when private agents are decreasing gain learners
Interest rate rule CG EH DG

Tracking parameter
0.1 200.13 223.01 160.24
0.2 201.50

CCG: Clarida et al. (2000)

in the output gap 53.

Table 9: Expected welfare losses when private agents have rational expectations
Interest rate rule CG EH DG

Tracking parameter
0.1 96.77 96.44 97.09
0.2 97.98

CCG: Clarida et al. (2000)

However, welfare losses under RE caused by mistakenly using an optimal
learning rule are much less severe than welfare losses due to using a myopic
rule when agents are learning. Let us consider the following simple exercise.
Assume, that the prior of the Central Bank is that with probability p private
agents follow decreasing gain learning, and with probability 1− p agents having
rational expectations. Then we can calculate the expected welfare loss of using
EH p times welfare loss under decreasing gain learning with EH rule, and 1− p
times welfare loss of using EH under RE. And similarly the expected welfare
loss of using DG. Then we can find a cut-off value of p: expected welfare loss of
using the DG rule is less than the welfare loss of the myopic rule (EH) even if
the Central Bank attributes only 2% probability (or higher) to agents following
learning 54.

53We would like to note, that since learning rules decrease volatility of inflation and allow
for higher volatility in the output gap, for small values of alpha (a small weight on output
gap in the welfare loss function) learning rules even outperform the discretionary rule under
rational expectations (EH)

54The same result holds for constant gain learning with γ = 0.1. For γ = 0.2 using the
optimal CG rule gives lower expected welfare loss then the EH rule when the Central Bank
hypothesizes there is a 10% or higher probability of learning.
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In sum, the worst case scenario is using a myopic interest rate rule (dis-
cretionary rational expectations rule) when agents are actually learning. Thus
when the Central Bank is insecure as to whether agents have rational expec-
tations or are learning, and tries to avoid huge losses it should use an optimal
learning rule. This holds true, even if the Central Bank attaches only very small
probability to agents following learning.

Our results show, that the ”safest” rule to is the DG rule, in the sense that
the Central Bank does not make a big mistake if it erroneously uses this rule
even if in reality private agents have rational expectations or when agents follow
constant gain learning with small gain.

6 Extensions

Up to now, we have supposed that the CB perfectly observes all the relevant
state variables of the system, namely the exogenous shocks and the agents’
beliefs. In this section we show that our main results extend to a more general
framework, where either the shocks or the expectations are not observable. In
particular, to make the problem non-trivial, throughout this section we modify
the structural equations (1) and (25) with the introduction of unobservable
shocks, so that the model is now given by:

xt = E∗
t xt+1 − σ−1(rt − E∗

t πt+1 − rrt) + gt + ex,t (51)

and:
πt = βE∗

t πt+1 + κxt + ut + eπ,t (52)

where we assume that the CB can observe πt and xt only with a lag, and that
ex,t and eπ,t are independent white noise that are not observable, not even with
a lag. The rest of the setup is identical to subsection 3.1.

6.1 Measurement Error in the Shocks

We start with the case in which the monetary authority can observe gt and ut

only with an error; in particular, we assume that it receives the noisy signals g∗t
and u∗t , where:

g∗t = gt + εt, εt ∼ N(0, σ2
ε )

u∗t = ut + ηt, ηt ∼ N(0, σ2
η)

To make the problem non-trivial, we also assume that the CB can observe πt and
xt only with a lag. Note that the shocks do not depend on the policy followed
by the CB; hence, the separation principle applies, namely, the optimization of
the welfare criterion and the estimation of the realizations of the shocks can
be solved as separate problems. As is well known, the above signal-extraction
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problem implies that the expected values of the shocks given the signals are55:

E [gt/g∗t ] ≡ ECB
t gt = σ2

g

σ2
ε+σ2

g
g∗t ≡ ζgg

∗
t

E [ut/u∗t ] ≡ ECB
t ut = σ2

u

σ2
η+σ2

u
u∗t ≡ ζuu∗t

Moreover, the separation principle implies that certainty equivalence holds in
designing the optimal interest rate rule, which turns out to be identical to (49),
with gt and ut replaced by ECB

t gt and ECB
t ut, respectively:

rt = rrt + δdg
π,tat + δdg

x bt + δdg
g ζgg

∗
t + δdg

ut ζuu∗t

= rrt + δdg
π,tat + δdg

x bt + δdg
g ζggt + δdg

g ζgεt + δdg
ut ζuut + δdg

ut ζuηt

We can combine the above equation with (51) and (52) to obtain the ALM for
inflation and output gap:

πt = µ1
atat + µ1

ggt + µ1
εεt + µ1

utut + µ1
ηtηt + κex,t + eπ,t

xt = µ2
atat + µ2

ggt + µ2
εεt + µ2

utut + µ2
ηtηt + ex,t

where:
µ1

at = cdg
π,t, µ2

at = cdg
x,t

µ1
g = κ (1− ζg) , µ2

g = 1− ζg

µ1
ε = −κζg, µ2

ε = −ζg

µ1
ut =

(
ddg

π,t − 1
)

ζu + 1, µ2
ut =

(
ddg

π,t−1

κ

)
ζu

µ1
ηt =

(
ddg

π,t − 1
)

ζu, µ2
ηt =

(
ddg

π,t−1

κ

)
ζu

As a consequence of the measurement error, inflation and output gap now de-
pend on a wider set of state variables; however, it is easy to see that the main
findings of the preceding section go through in this modified environment. First
of all, the separation principle trivially implies that when the CB takes into
account the effect of its decisions on future beliefs, the optimal policy is more
aggressive against out-of-equilibrium inflation expectations, compared to the
case in which the private sector’s expectations are considered as exogenously
given56; moreover, the analysis of convergence of learning algorithms to the
optimal discretionary RE equilibrium57 does not change in this modified envi-
ronment.

6.2 Heterogenous Forecasts

As argued in Honkapohja and Mitra (2005) (HM hereafter), the hypothesis that
the CB can perfectly observe private sector’s expectations is subject to several

55E.g., see Hamilton (1994).
56For a description of the optimal policy when the CB does not consider its effect on future

beliefs, and there is measurement error in the shocks, see Evans and Honkapohja (2003b)
section 4.2.

57Note that the optimal RE equilibrium is now different from the baseline case, since infla-
tion and output gap depend also on gt, εt, ηt, and the unobservable shocks ex,t and eπ,t.
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criticisms58; it is therefore natural to verify the robustness of our results when
this assumption is relaxed. In what follows, we assume that the optimal interest
rate rule takes the same form as (49), but the agents’ forecasts for inflation and
output gap, at and bt, are replaced by the CB internal forecasts, aCB

t and bCB
t

59;
in particular, we suppose that the CB and the private sector forecasts have the
same form, and are updated according to the same algorithm, which is given by
(35)-(36). The only difference is given by the initial beliefs. Note that this setup
corresponds to a situation where the CB, in solving its optimization problem,
knows the adaptive algorithm used by the agents to form their expectations,
but cannot observe the actual values of these expectations; instead, the CB
has a tight prior on a0 and b0

60, and forms its internal forecasts accordingly.
Plugging the interest rate rule into the structural equations (51) and (52), we
get the ALM:

πt = ν1
aat + ν1

aCBta
CB
t + ν1

b bt + ν1
bCBbCB

t + ν1
utut + κex,t + eπ,t

xt = ν2
aat + ν2

aCBta
CB
t + ν2

b bt + ν2
bCBbCB

t + ν2
utut + ex,t

(53)

where:

ν1
a = β + κσ−1, ν2

a = σ−1

ν1
aCBt = −κσ−1

(
1− σ

cdg
π,t−β

κ

)
, ν2

aCBt = −σ−1

(
1− σ

cdg
π,t−β

κ

)
ν1

b = κ, ν2
b = 1

ν1
bCB = −κ, ν2

bCB = −1
ν1

ut = ddg
π,t, ν2

ut = ddg
x,t

Again, our main results are unaffected by this change in the CB information
set, both for t < ∞ and for t →∞. In fact, since the parameters in the optimal
rule are the same as in rule (49), the results summarized in Propositions 4 and
6 are still valid. On the other hand, we can study E-stability of the system
extending Proposition 2 in HM to a time-varying environment. In particular, it
is easy to show61:

Corollary 1. Consider the model (53); it is E-stable if and only if the corre-
sponding model with homogenous expectations is E-stable.

Since E-stability of the homogenous expectations model is ensured by Propo-
sition 7, we conclude that also system (53) is E-stable, and it converges to the
optimal discretionary RE equilibrium62.

58For example, private expectations and their forecasts produced by different institutions
do not necessarily coincide.

59This approach is developed in HM, where it is applied to the EH rule and to a simple
Taylor rule. Evans and Honkapohja (2003a) use this method in a setup where the CB follows
the expectations based interest rule derived in Evans and Honkapohja (2002).

60In other words, it believes that a0 = aCB
0 and b0 = bCB

0 with probability one, where aCB
0

and bCB
0 are given.

61The proof is available from the authors upon request.
62In fact, the system we are analyzing falls into the class for which E-stability and conver-

gence of real time learning are equivalent, see Evans and Honkapohja (2001).
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7 Conclusions

In this paper we analyzed the optimal monetary policy problem faced by a CB
that tries to exploit its ability to influence future beliefs of the agents, when
they follow adaptive learning to form their expectations. We have shown that
monetary policy should be aggressive on inflation, and the reason for this is that
in this way private agents learn the true value of steady state inflation faster. We
have shown that optimal policy can be implemented by an aggressive interest
rate policy, and also that this behavior is optimal even at the cost of higher
welfare losses from output gap volatility. We conclude by describing several
areas where future research would be useful.

We have shown that learning introduces an additional tradeoff between in-
flation and output gap stabilization that is not present under rational expecta-
tions, namely an intertemporal tradeoff which is generated by the central banks
ability to influence future expectations. We analytically show that because of
this intertemporal tradeoff, during the transition optimal policy qualitatively
resembles the commitment solution under rational expectations. In this sense
the Central Bank’s desire to influence future expectations by its current action
acts as a commitment device.

Optimal policy naturally chooses an E-stable policy, but even though during
the transition optimal policy resembles the commitment solution under rational
expectations, in our setup it drives expectations to the discretionary rational
expectations solution. The reason for this is that agents expectation formation
does not nest the commitment solution under rational expectations. Under
rational expectations commitment calls for an ALM with a different functional
form than the discretionary case (see Clarida, Gali, and Gertler (1999)).

It would very interesting to explore the possibility of reaching the commit-
ment solution with adaptive learning algorithms. This question is particularly
interesting as from the backward looking nature of these learning algorithms it
follows that such policies are time consistent.

Our analysis was restricted to examining optimal policy given a certain learn-
ing algorithm. We have shown that optimal policy under decreasing gain learn-
ing performs robustly well both under rational expectations and under constant
gain learning with small gain parameters (i.e. using a rolling window regression
with a relatively large window). Which suggests that our rule would perform
well even if private agents were to switch expectations formation within this
set. It would be interesting to examine how monetary should be conducted
with endogenous expectation formation, in other words when private agents
would change their expectation formation depending on their perception about
the underlying economy. Endogenous expectation formation could be formu-
lated for example along the lines of Marcet and Nicolini (2003) where agents
dynamically switch between predictor use depending on the last forecast error.
An alternative way would be to to model expectation formation as in Molnar
(2005) where agents do not switch predictor use, but always a weighted av-
erage of predictor forecasts and adjust the weight on predictors dynamically
depending on the relative forecasting performance.
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A Constant Gain Learning

Lemma 1. Let the set of all the real bounded sequences be defined as follows:

M∞ ≡ {{zt} ∈ R∞ : {zt} is bounded}

and let:
G ≡

{
{πt, xt, rt, at+1, bt+1} ∈ M∞ ×M∞ ×M∞

+

}
If there exists a sequence

{
π∗t , x∗t , r

∗
t , a∗t+1, b

∗
t+1

}
∈ G that solves the problem:

min
{πt,xt,rt,at+1,bt+1}∈G

E0

∞∑
t=0

βt(π2
t + αx2

t ) (54)

s.t. (1), (2), (8), (9)
a0, b0 given

then
{
π∗t , x∗t , r

∗
t , a∗t+1, b

∗
t+1

}
solves also (10).

Proof. Let
{

π̂t, x̂t, r̂t, ât+1, b̂t+1

}
be an arbitrary unbounded sequence that sat-

isfies the constraints of (10), and such that:

V̂ ≡
∞∑

t=0

βt(π̂2
t + αx̂2

t ) < ∞ (55)

Let {π̂n
t } be defined as:

{π̂n
t } ≡ {π̂0, π̂1, ..., π̂n, π̂n, π̂n, ...}

and
{

x̂n
t , r̂n

t , ân
t+1, b̂

n
t+1

}
are defined accordingly to respect the constraints of

(10); clearly,
{

π̂n
t , x̂n

t , r̂n
t , ân

t+1, b̂
n
t+1

}
is bounded, so that:

V̂ n ≥ V ∗, ∀n

Since this is true for any n, it must be true also in the limit, i.e.:

lim
n→∞

V̂ n ≥ V ∗

if lim
n→∞

V̂ n exists. However, it is easy to see that lim
n→∞

V̂ n = V̂ ; since
{

π̂t, x̂t, r̂t, ât+1, b̂t+1

}
was arbitrary, it proves the statement 63.

Lemma 2. Let A11 be given by equation (21) in the text; then it has an eigen-
value inside and one outside the unit circle.

63Note that the condition (55) can be imposed without any loss of generality, since

any
nbπt, bxt, brt, bat+1,bbt+1

o
that does not respect it, for sure cannot do better than˘

π∗t , x∗t , r∗t , a∗t+1, b∗t+1

¯
.
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Proof. First of all, we recall a result of linear algebra that we will use in the
proof, i.e. that a necessary and sufficient condition for a 2 by 2 matrix to have
an eigenvalue inside and one outside the unit circle, is that64:

|µ1 + µ2| > |1 + µ1µ2|

where µ1, µ2 are the eigenvalues of the matrix; in the case of A11, the above
condition can be written equivalently:

κ2 + α + αβ2γ (1− γ (1− β))
κ2β (1− γ) + αβ (1− γ (1− β))

+ 1− γ >

1 +
κ2 + α + αβ2γ (1− γ (1− β))

κ2β (1− γ) + αβ (1− γ (1− β))
(1− γ) +

αβ (1− β (1− γ) (1− γ (1− β)))
κ2β (1− γ) + αβ (1− γ (1− β))

γ

where we have used the fact that the trace is equal to the sum of the eigenvalues,
and that the determinant is equal to the product. After simplifying the above
inequality, we get:

−γ > −γ

(
κ2 + α + αβ2γ (1− γ (1− β))− αβ (1− β (1− γ) (1− γ (1− β)))

κ2β (1− γ) + αβ (1− γ (1− β))

)
so that all we have to prove is that:

κ2 + α + αβ2γ (1− γ (1− β))− αβ (1− β (1− γ) (1− γ (1− β)))
κ2β (1− γ) + αβ (1− γ (1− β))

> 1

Some tedious algebra shows that this is equivalent to the following expression:

κ2 (1− β (1− γ)) + α (1− β) (1− β (1− γ (1− β))) > 0

which is always true, since β and γ are supposed smaller than one.

We now prove Proposition 1. First of all, we can guess that inflation fol-
lows the ALM (22)65 and use the optimality condition (18) and the method of
undetermined coefficients to verify that ccg

π must satisfy the following quadratic
expression:

p2 (ccg
π )2 + p1c

cg
π + p0 = 0

where:

p2 ≡ γ
[
κ2β (1− γ) + αβ (1− γ (1− β))

]
p1 ≡ (1− γ)

[
κ2β (1− γ) + αβ (1− γ (1− β))

]
−
[
κ2 + α + αβ2γ (1− γ (1− β))

]
p0 ≡ αβ (1− β (1− γ) (1− γ (1− β)))

The above polynomial can be equivalently rewritten as follows:

ccg
π = −p0 + p2 (ccg

π )2

p1
≡ f(ccg

π )

64LaSalle (1986).
65Which we showed in the text that is the functional form that inflation will have at the

optimum.
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We will prove that the function f(·), defined on the interval [0, 1], is a contrac-
tion, so that it admits one and only one fixed point; moreover, since the two
roots of the quadratic expression have the same sign (it is due to the fact that
both p2 and p0 are positive), it follows that the other candidate value for ccg

π is
greater than one, which is not compatible with the boundary conditions66.

First of all, we show that f(·), when defined on the interval [0, 1], takes
values on the same interval.

Lemma 3. f(ccg
π ) is strictly monotone increasing on the interval [0, 1].

Proof. Note that:

f ′(ccg
π ) =

2γ[αβ(1− γ(1− β)) + κ2β(1− γ)]
κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

ccg
π

which is positive if and only if the denominator is positive:

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))] ≶ 0

After rearranging:

κ2
(
1− β(1− γ)2

)
+ α[1− β(1− γ)(1− γ(1− β))] + αβ2γ (1− γ (1− β)) ≶ 0

which is always positive. Thus we have proved that f(ccg
π ) is strictly monotone

increasing on the interval [0,1].

Lemma 4. f(ccg
π ) : [0, 1] → [0, 1]

Proof. Since f(ccg
π ) is strictly monotone increasing it suffices to show that f(0) >

0 and f(1) < 1.

f(0) =
αβ (1− β (1− γ) (1− γ (1− β)))

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

where the denominator is positive (see the preceding proof), and also the nu-
merator is trivially positive. Thus f(0) > 0.

f(1) =
γ
[
κ2β (1− γ) + αβ (1− γ (1− β))

]
+ αβ (1− β (1− γ) (1− γ (1− β)))

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

After rearranging, we get:

f(1) ≶ 1 ⇐⇒ 0 ≶ κ2 (1− β (1− γ)) + α (1− β) (1− β (1− γ (1− β)))

but, as we argued above, the RHS of the last inequality is always positive; hence,
f(1) < 1.

66Since it would imply an exploding inflation.
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To show that f(·) is a contraction, it suffices to show that its derivative
is bounded above by a number smaller than one: in fact, by the Mean Value
Theorem, we now that for any a, b, there exists a c ∈ (a, b) such that:

|f(a)− f(b)| ≤ |f ′(c)| |a− b|

and if |f ′(c)| ≤ M < 1 for any c ∈ [0, 1], we have the definition of a contraction.

Lemma 5. For any x ∈ [0, 1], 0 < f ′(x) ≤ f ′(1) < 1.

Proof. First of all, note that:

f ′(x) =
2γ[αβ(1− γ(1− β)) + κ2β(1− γ)]

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
x

is positive and increasing in x, so that max
x∈[0,1]

f ′(x) = f ′(1); after some algebraic

manipulation, we get:

f ′(1) ≶ 1 ⇐⇒ (1− βγ) β (1− γ (1− β))+βγ (1− γ (1− β))−1 ≶
κ2

α

(
1− β

(
1− γ2

))
Since β, γ ∈ (0, 1), we have:

(1− βγ) β (1− γ (1− β))+βγ (1− γ (1− β))−1 < 1−βγ+βγ (1− γ (1− β))−1 < 0

so that f ′(1) will be smaller than one (κ2

α

(
1− β

(
1− γ2

))
is always positive).

Moreover, we prove the following result.

Lemma 6. Let f(·) be defined as above; then, f
(

αβ
κ2+α

)
≤ αβ

κ2+α .

Proof. Note that:

f

(
αβ

κ2 + α

)
=

αβ (1− β (1− γ) (1− γ (1− β)))
κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

+

+
γ
[
κ2β (1− γ) + αβ (1− γ (1− β))

]
κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

(
αβ

κ2 + α

)2

R
αβ

κ2 + α

if and only if:(
κ2 + α

)
αβ (1− β (1− γ) (1− γ (1− β))) + γ

[
κ2β (1− γ) + αβ (1− γ (1− β))

]
αβ

κ2+α

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
R 1

For γ = 0 it is easy to verify that f
(

αβ
κ2+α

)
= αβ

κ2+α . If γ > 0, since the
αβ

α+κ2 < β, the LHS of the above inequality is smaller than:(
κ2 + α

)
αβ (1− β (1− γ) (1− γ (1− β))) + βγ

[
κ2β (1− γ) + αβ (1− γ (1− β))

]
κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
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which is equal to one; in fact:(
κ2 + α

)
(1− β (1− γ) (1− γ (1− β))) + βγ[κ2β (1− γ) + αβ (1− γ (1− β))]

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
R 1

is equivalent to:

−
`
κ2 + α

´
β (1− γ) (1− γ (1− β))+(1− γ (1− β)) [αβ (1− γ (1− β))+κ2β (1− γ)] R αβ2γ (1− γ (1− β))

But the LHS can simplified as:

κ2 (β (1− γ) (1− γ (1− β))− β (1− γ) (1− γ (1− β)))+αβ (1− γ (1− β)) (1− γ (1− β)− (1− γ))

which is equal to:
αβ2γ (1− γ (1− β))

Summing up, we showed that (if γ > 0) the following holds:(
κ2 + α

)
(1− β (1− γ) (1− γ (1− β))) + βγ[κ2β (1− γ) + αβ (1− γ (1− β))]

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
= 1

which implies that:

f

(
αβ

κ2 + α

)
<

αβ

κ2 + α

We are now ready to prove the Proposition.

Proof of Proposition 1. Combining the Lemmas 4 and 5 we obtain that f(·)
is a contraction when defined on the interval [0, 1]; moreover, by Lemma 6 we
get that f , when defined on [0, αβ

κ2+α ], takes values on the same interval. This
result, together with Lemma 5 and with the inequality αβ

κ2+α < 1, implies that
f(·) is a contraction also when defined on the interval [0, αβ

κ2+α ] and, therefore,
that the optimal ccg

π must be between zero and αβ
κ2+α .

Finally, note that when γ = 0, f(ccg
π ) collapses to αβ

κ2+α , which proves also
the last statement of the Proposition.

B Decreasing Gain Learning

Proof of Proposition 3. To prove the first part of the statement; first of all,
note that if we solve forward the following difference equation:

cdg
π,t = βcdg

π,t+1 +
αβ

κ2 + α
(1− β)

we obtain one and only one bounded solution, i.e.:

cdg
π,t =

αβ

κ2 + α
∀t
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Moreover, we can rewrite the difference equation defining cdg
πt as:

A11,tc
dg
π,t − cdg

π,t+1 ≡ Gt = − 1
t + 1

cdg
π,t+1 −A12,t +

1
t + 1

cdg
π,tc

dg
π,t+1

If cdg
π is bounded, it is easy to show that G has a limit:

lim
t→∞

Gt = − lim
t→∞

A12,t =
α

κ2 + α
(1− β)

We can also show that the difference equation defined by G converges to:

β−1cdg
π,τ − cdg

π,τ+1

Summing up, in the limit we have that cdg
π evolves according to:

cdg
πτ = βcdg

πτ+1 +
αβ

κ2 + α
(1− β)

which, as we argued before, has one and only one bounded solution:

cdg
πτ =

αβ

κ2 + α

We prove the second part of the statement by contradiction. Assume that
there exists a T < ∞ such that cdg

π,t ≥
αβ

α+κ2 ; we show that this implies cdg
π,t >

αβ
α+κ2 for any t > T . First of all, we can write:

cdg
π,T+1

(
1− 1

T+1

)
−A12,T

A11,T − cdg
π,T+1

1
T+1

= cdg
π,t ≥

αβ

α + κ2

Rearranging and simplifying, this turns out to be equivalent to:(
1− 1

T + 1

(
1− αβ

α + κ2

))
cdg
π,t+1 ≥

αβ

α + κ2
A11,T + A12,T (56)

Note that the RHS is equal to:

αβ

α + κ2
A11,T + A12,T =

αβ

αβ(1 + β 1
t+1 ) + κ2β

[
β

(
1 + β

1
t + 1

)(
1− 1

T + 1

(
1− αβ

α + κ2

))]
=

αβ

α + κ2
(
1 + β 1

t+1

)−1

(
1− 1

T + 1

(
1− αβ

α + κ2

))

>
αβ

α + κ2

(
1− 1

T + 1

(
1− αβ

α + κ2

))
where the last inequality is due to the fact that

(
1 + β 1

t+1

)−1

< 1; putting
together the last inequality and (56), we get:

cdg
π,t+1 >

αβ

α + κ2
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Then, we can apply the above argument to cdg
π,t+2 as well and, proceeding by

induction, conclude that cdg
π,t > αβ

α+κ2 for any t > T . An immediate consequence
is that lim

t→∞
cdg
π,t > αβ

α+κ2 , which is a contradiction with the result stated in first

part of the Proposition, namely lim
t→∞

cdg
π,t = αβ

α+κ2 . Hence, we have shown that

there is no t < ∞ such that cdg
π,t ≥

αβ
α+κ2 .

Proof of Proposition 5. Recall that, as shown in Proposition 3, we have
lim

t→∞
cdg
π,t = αβ

α+κ2 ; since 0 < αβ
α+κ2 < 1, for any C with αβ

α+κ2 < C < 1, there

exists a T such that, for any t ≥ T we will have 0 < cdg
π,t < C; moreover, us-

ing the ALM for πt, the law of motion of inflation expectations after T can be
rewritten as67:

at+1 = at + (t + 1)−1(cdg
π,t − 1)at < at + (t + 1)−1(C − 1)at

where the RHS of the inequality converges to zero, as shown in Evans and
Honkapohja (2000). It is also easy to show that, ∀t ≥ T we have at+1 ≥ 0; thus,
invoking the Policemen Theorem, we conclude that lim

t→∞
at = 0, i.e. inflation

expectations converge to their RE value.

Finally, we prove Proposition 7. First of all, we will briefly describe some
results of stochastic approximation68 that we will exploit in the proof.

Let’s consider a stochastic recursive algorithm of the form:

θt = θt−1 + γtQ (t, θt−1, Xt) (57)

where Xt is a state vector with an invariant limiting distribution, and γt is a
sequence of gains; the stochastic approximation literature shows how, provided
certain technical conditions are met, the asymptotic behavior of the stochas-
tic difference equation (57) can be analyzed using the associated deterministic
ODE:

dθ

dτ
= h (θ(τ)) (58)

where:
h (θ) ≡ lim

t→∞
EQ (t, θ,Xt)

E represents the expectations taken over the invariant limiting distribution of
Xt, for any fixed θ. In particular, it can be shown that the set of limiting points
of (57) is given by the stable resting points of the ODE (58).

67Without loss of generality, we are assuming that aT > 0; if the opposite were true, a
similar argument applies.

68Ljung (1977), Benveniste and P. (1990) provide a recent survey.
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Proof of Proposition 7. Note that our equation (50) is a special case of (57),
where the technical conditions are easily shown to be satisfied; moreover, it is
also easy to see that:

h (a) = lim
t→∞

(cdg
π,t − 1)a =

(
αβ

α + κ2
− 1
)

a

which has a unique possible resting point at a∗ = 0. Since αβ
α+κ2 < 1, we have

that a∗ is globally stable, which proves the statement.

C Comparison with EH Rule

Proof of Propositions 4 and 6. First of all, note that:

δdg
π,t ≷ δEH

π ⇐⇒ σ
β − cdg

π,t

κ
≷ σ

κβ

α + κ2

where the second inequality can be rewritten as:

β

κ
− κβ

α + κ2
≷

cdg
π,t

κ

Rearranging the terms, we get:

δdg
π,t ≷ δEH

π ⇐⇒ αβ

α + κ2
≷ cdg

π,t

Since we have shown in Proposition 3 that t < ∞ implies cdg
π,t < αβ

α+κ2 , we
conclude that δdg

πt > δEH
π . Using a similar argument, it is easy to show that:

δdg
ut ≷ δEH

u ⇐⇒ α

α + κ2
≷ ddg

π,t

which implies, since

dcg
π =

α

κ2 + α + αβ2γ2(β − ccg
π ) + βγ (1− γ) (αβ − (κ2 + α) ccg

π )
<

α

α + κ2
,

that δdg
ut > δEH

u whenever t < ∞. Finally, note that Proposition 3 also showed
that lim

t→∞
cdg
π,t = αβ

α+κ2 , which trivially yields lim
t→∞

δdg
π,t = δEH

π and lim
t→∞

δdg
ut =

δEH
u .
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Figure 1: Interest rate rule coefficient on inflation expectations under decreasing
gain learning.
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Figure 2: Optimal versus myopic interest rate rule: coefficient or the cost push
shock
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