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Abstract
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In particular, this paper expands the flexibility of the DTSMs by applying
a fractional Brownian motion as the governing force of the state variable
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ing non defaultable bonds with offspring in the arbitrage free pricing of
weather derivatives based on fractional Brownian motions. By applying
fractional Itô calculus and a fractional version of the Girsanov trans-
form, a no arbitrage price of the bond is recovered by solving a fractional
version of the fundamental bond pricing equation. Besides this theoreti-
cal contribution, the paper proposes an estimation methodology based on
the Kalman filter approach, which is applied to the US term structure of
interest rates.

JEL Classification: C22, C51, E43.

Keywords: Fractional bond pricing equation, fractional Brownian motion,
fractional Ornstein-Uhlenbeck process, long memory, Kalman filter.

∗Valuable suggestions from Jesper Lund and Morten Ø. Nielsen are gratefully acknowledged.
We also thank participants at the ”Topics in Applied Economics and Finance” workshop 2005 at
University of Aarhus, and participants at the Annual CAF members’ meeting 2006 at Sandbjerg
for helpful comments.

1



1 Introduction

Since the works of Vasicek (1977) and Cox, Ingersoll & Ross (1985) the literature
devoted to estimating dynamic term structure models (DTSMs) has increased
considerably. To capture the rich dynamics of observed yields, researchers are
continually developing more complex models with greater flexibility.

Much of the literature of DTSMs focuses on the affine models as defined in e.g.
Duffie & Kan (1996). Here interest rates are governed by multiple factors (state
variables), and the affine models have the computational convenience that bond
yields are linear functions of these variables. Two simplifying assumptions have
been commonly used. First, the market price of risk was assumed to be a multi-
ple of the instantaneous interest rate volatility. Second, the state variables were
assumed to be independent, see Chen & Scott (1993), Pearson & Sun (1994),
Chen & Scott (1995), Duan & Simonato (1999), Duffee (1999), and Geyer &
Pichler (1999). However, Duffee (2002) showed that the restriction on the mar-
ket price of risk results in bonds’ excess returns exhibit unrealistic behaviour.
Furthermore, Dai & Singleton (2000) refute the assumption of independent state
variables based on empirical findings, and Äıt-Sahalia (1996), Pfann, Schotman
& Tschernig (1996), Conley, Hansen, Luttmer & Scheinkman (1997), and Stan-
ton (1997) find evidence of nonlinearities in the drift of the interest rate process,
which is inconsistent with the affine models.

In response to this, recent research has considered models with correlated
state variables (Dai & Singleton (2000)), nonlinear dynamics or more flexible
forms of the market price of risk (see, for example, Ahn & Gao (1999), Duarte
(2004), Leippold & Wu (2000), and Ahn, Dittmer & Gallant (2002)), quadratic
models (see Leippold & Wu (2000) and Ahn et al. (2002)), bond prices with
jumps (Johannes (2004), Zhou (2001), and Das (2002)), and regime shifts (Ang
& Bekaert (2002)).

This paper takes a different path. We expand the flexibility of the model
by applying a fractional Brownian motion (fBm) as the governing force of the
state variable instead of the usual Brownian motion, but still embed our model
in the settings of the class of affine DTSMs. In particular, we use the frac-
tional Ornstein-Uhlenbeck process, which is the fractional version of the classical
Vasicek model, since the volatility function is driven by an fBm. This is a new
direction in pricing non defaultable bonds with offspring in the arbitrage free pric-
ing of weather derivatives based on fBm, see Brody, Syroka & Zervos (2002) and
Benth (2003). Using fractional Itô calculus, (see Duncan, Hu & Pasik-Duncan
(2000), Hu & Øksendal (2003), and Benth (2003)) and a fractional version of the
Girsanov transform, we derive a no arbitrage price of the bond by solving a frac-
tional version of the fundamental bond pricing equation. Besides this theoretical
contribution, we propose an estimation methodology based on the Kalman filter
approach and apply it to weekly observations on US Treasury rates from 1991 -
2002. Compared to using the classical Vasicek model, we find that the fractional
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version implies that the instantaneous interest rate is fractionally integrated of
order d (I(d)) with d = 0.05 and mean reversion κ = 0.22. However, since κ
is relatively small, the predicted yields are difficult to distinguish from I(1.05)
processes using unit root type tests.1

This combination of d and κ allows a fairly precise prediction of all the bond
yields used in the analysis since the deviations to the observed yields are small for
all maturities. In particular, the average absolute bias for the fractional model is
4.72 basis points (bp) while it is 12.01 (bp) for the ordinary Vasicek model. This
improvement is obtained with only a minor increase in the average RMSE.

The remainder of the paper is organized as follows. In the next section we
present the concept of fBm and fractional Itô calculus. In section 3, we expand
the classical framework of arbitrage free pricing to cover the case where the state
variable is governed by an fBm, and section 4 presents the fractional Ornstein-
Uhlenbeck process (FOUP) as the natural extension of the Vasicek model. Section
5 recalls the one factor interest rate model and the classical bond pricing equation,
and in section 6 we expand the framework to fractionally integrated processes and
derive a fractional version of the arbitrage free bond price equation when the state
variable is an FOUP. In section 7, we propose an estimation methodology based
on the Kalman filter and describe its implementation. This setup is applied to
weekly observations on US Treasury rates in section 8, and finally, section 9 offers
some concluding remarks.

2 The Fractional Brownian Motion

The fractional Brownian Motion (fBm) is one of the simplest stochastic processes
that exhibits long range dependence (or long memory). Since its introduction by
Kolmogorov (1940, 1941), and its study by Mandelbrot & van Ness (1968), the
fBm has been widely used in various areas of applications such as turbulence,
finance, and telecommunication, see Mandelbrot & van Ness (1968), Brody et al.
(2002), Hu, Øksendal & Sulem (2000), Benth (2003). The successes of the ap-
plications are mainly due to the self similar nature of the Gaussian fBm and its
stationary increments, the fractional Gaussian noise.

The fBm is characterized by its Hurst exponent H ∈ (0, 1) or equivalently the
degree of persistence, d, where d = H − 1

2
. This parameter is often referred to as

the parameter of long range dependence or long memory. Given any d ∈ (−1
2
, 1

2
),

the associated fBm, W d, is a Gaussian stochastic process that can be defined on an
appropriate probability space (Ω,F , IP), where W d(0) = 0, with E

(
W d(t)

)
= 0

1Note that when κ is zero, the predicted yields from the classical Vasicek model will be
I(1). A general result, which we support in section 8, is that κ is generally found to be small
but significantly larger than zero. This implies that predicted yields are I(0) even though it
is difficult to distinguish the observed yields from I(1) processes using unit root type tests or
tests for stationary vs. non stationary long memory.
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for all t ≥ 0 and covariance

E
[
W d(t)W d(s)

]
=

σ2

2

[
t2d+1 + s2d+1 − |t − s|2d+1

]
, t ≥ s.

Here, E denotes expectation with respect to the probability measure IP. From
the covariance it is obvious that W d exhibits long memory for d > 0, in the sense
that

∞∑
n=1

E
[
W d(1)

[
W d(n + 1) − W d(n)]

)]
=

σ2

2

∞∑
n=1

[
(n + 1)2d+1 − 2n2d+1 + (n − 1)2d+1

]
= ∞.

When d < 0 the fBm exhibits intermediate or anti persistent memory. Note
that when d = 0, the correlation between increments is zero and we recover the
standard Brownian motion with variance σ2. Thus, the correlations of the fBm
extend to arbitrary long periods, independent of time, having a strong effect on
the evolution of the fBm.

In view of the usefulness of the fBm in mathematical finance, the recent focus
has been on developing stochastic calculus for the fBm, see Duncan et al. (2000)
and Hu & Øksendal (2003). However, for any bounded function f(t, η) (which
will be defined later on) and d ∈ (0, 1

2
), Biagini, Øksendal, Sulem & Wallner

(2004) showed that the integral which is defined pathwise with respect to the
fBm, ∫ b

a

f(t, η)dW d(t) ≡ lim
|Δtk|→0

∑
k

f(tk, η)
(
W d(tk + 1) − W d(tk)

)
,

leads to arbitrage in financial applications. This is an artifact of the property
that the quadratic variation of W d(t) over [0, 1] is zero for 0 < d < 1

2
, see Novaisa

(2000). However, an alternative integration theory based on the so-called Wick
product2 ♦ was introduced by Duncan et al. (2000),∫ b

a

f(t, η)dW d(t) ≡ lim
|Δtk|→0

∑
k

f(tk, η) ♦
(
W d(tk + 1) − W d(tk)

)
. (1)

These types of integrals are named fractional Itô integrals, because they share
many of the properties of the classical Itô integrals (where the integrator is the
usual Brownian motion). For instance, contrary to the pathwise definition, the
fractional Itô integral implies that

E

[∫
R

f(t, η)dW d(t)

]
= 0,

and it therefore shares this property with the standard Itô integral.

2See Hida, Kuo, Potthoff & Streit (1993) for details on Wick calculus.
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Using the definition in (1), Duncan et al. (2000) showed that if f(x) is a twice
differentiable function, then

f(W d(t)) = f(0) +

∫ T

0

f ′(W d(t))dW d(s) + (d +
1

2
)

∫ T

0

s2df ′′(W d(t))ds. (2)

Formula (2) can be expanded to cover more general situations. For instance, let
η(t) =

∫ t
0
a(u)dW d(u), where a(t) belongs to the Hilbert space L2

ϕ .3 Then

f (t, η(t)) = f (0, 0) +

∫ t

0

∂f

∂s
(s, η(s)) ds +

∫ t

0

∂f

∂η
(s, η(s)) a(s)dW d(s)

+

∫ t

0

∂2f

∂η2
(s, η(s))

∫ s

0

a(u)ϕ(s, u) du ds. (3)

Benth (2003) and Hu & Øksendal (2003) proved that this kind of fractional Itô
calculus leads to absence of arbitrage in a fractional Black-Scholes market. In
the following section we will explain this in more detail and how we apply this
result in our setting.

3 The Quasi-Conditional Expectation,

Quasi-Martingales and Absence of Arbitrage

Recent developments in fractional white noise calculus (or fractional Itô calcu-
lus) by Duncan et al. (2000) and Hu & Øksendal (2003) and the extensions con-
cerning quasi-conditional expectations by Benth (2003) allow us to introduce an
arbitrage free setup for bond prices governed by fractional Brownian motions. In
this section, we review the concepts of quasi-conditional expectations and quasi-
martingales, and use their properties to derive arbitrage free dynamics for the
bond price.

Let (Ω,F , IP) be a complete probability space supporting a fractional Brown-
ian motion, W d(t), with long memory parameter 0 < d < 1/2, where Fd

t is the
σ-field generated by {W d(t) : s ≤ t}, and introduce the weight function

ϕ(s, t) = 2d(d + 1/2)|s − t|2d−1, s, t ∈ IR.

3The Hilbert space L2
ϕ is defined as the set of functions f : IRn �−→ IR such that

|f |2ϕ,n : = 〈f, f〉ϕ,n

=
∫

IRn×IRn

f (s1, . . . , sn) f (t1, . . . , tn) ϕ(s1, t1) . . . ϕ(sn, tn)dsdt < ∞.
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Now for a symmetric function f ∈ L2
ϕ, we can define the iterated fractional

Wiener integral (see Benth (2003))

In(f) =

∫
IRn

fdW d
⊗n = n!

∫
s1<...<sn

f (s1, . . . , sn) dW d(s1) . . .dW d(sn).

From Benth (2003, Lemma 2.2) this definition allows us to write the fractional
Itô integral (1) as∫ t

0

f(s, η)dW d(s) ≡ lim
|Δsk|→0

∑
k

f(sk, η) ♦
(
W d(sk + 1) − W d(sk)

)
=

∞∑
n=0

In+1

(
1

n − 1
fI

⊗(n+1)
[0,t)

)
,

and state the fractional Itô formula in (3), see Duncan et al. (2000), Hu &
Øksendal (2003), and Benth (2003) for details.

Now if we assume that y has the expansion y = Σ∞
n=0In(f) and belongs to

L2(Ω,F , IP), the quasi-conditional expectation of y with respect to Fd
t is

Ê[y|Fd
t ] =

∞∑
n=0

In

(
fI⊗n[0,t]

)
,

where Ê[y|Fd
0 ] = E[y], and if y is Fd

t -adapted, then Ê[y|Fd
t ] = y. Note that

the quasi-conditional expectation operator satisfy the classical law of iterated

(double) expectations, Ê

[
Ê[y|Fd

t ]
]

= E[y]. From the above definition, Hu,

Øksendal & Salopek (2005) introduced the Fd
t -adapted stochastic process M(t) ∈

L2(Ω,F , IP) and named it a quasi-martingale assuming that Ê[M(t)|Fd
s ] = M(s)

for every 0 ≤ s ≤ t ≤ ∞, and Benth (2003) proved that

M(t) = M(0) +

∫ t

0

N(s)dW d(s),

where N(t) is defined by its expansion, see Benth (2003) for details. From this
quasi-martingale representation theorem, it is easy to see that the fractional
Brownian motion is a quasi-martingale. Furthermore, the stochastic exponential
with f ∈ L2

ϕ(IR),

ε(t) = exp

(∫ t

0

f(s)dW d(s) − 1

2

∣∣fI[0,t]

∣∣2
ϕ

)
,

is a quasi-martingale, and generally any stochastic process, x(t) ∈ L2(Ω,F , IP),
is a quasi-martingale if there exist Fd

t -adapted stochastic processes ε(t) and a(t)
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such that

x(t) = x(0) +

∫ t

0

ε(s)ds +

∫ t

0

a(s)dW d(s)

= x(0) +

∫ t

0

ε(s)ds + η(t),

where E

[∫ T
0

∫ T
0

a(s)a(t)ϕ(s, t)dsdt
]

< ∞, and η(t) is defined in (3). Hence

f
(
t, W d(t)

)
becomes a quasi-martingale by appealing to the fractional Itô for-

mula.
To derive arbitrage free dynamics of non defaultable bond prices, we need to

apply the fractional version of the Girsanov transform

W Q,d(t) = W d(t) +

∫ t

0

λ(s)ds,

where the fractional Brownian motion under IP, W d(t), is transformed into the
fractional Brownian motion, W Q,d(t), under the risk neutral probability measure
Q on (Ω,Fd

t ), which is equivalent to IP, see Benth (2003) for details.

If we define the stochastic process x(t) ≡ x(t, η(t)), where η(t) =
∫ t

0
a(u)dW d(u),

and define the price of the bond P (t) ≡ P (t, x(t)), then we can write the dy-
namics of dP (t) under the probability measure IP by applying the fractional Itô
formula in (3)

dP (t) =
(

∂P

∂t
+

∂P

∂x

∂x

∂t

)
dt +

∂P

∂x

∂x

∂η
a(t)dW d(t)

+
∂2P

∂x2

(
∂x

∂η

)2(∫ s

0
a(u)ϕ(s, u)du

)
dt

=

(
∂P

∂t
+

∂P

∂x

∂x

∂t
+

∂2P

∂x2

(
∂x

∂η

)2(∫ s

0
a(u)ϕ(s, u)du

))
dt +

∂P

∂x

∂x

∂η
a(t)dW d

t

≡ μ(t, P )dt + σ(t, P )dW d(t),

see Theorem 1 below.
To find the conditions under which we have absence of arbitrage, we follow

the classical numeraire inversion theorem (see e.g. Duffie (1996)), which implies
that the no arbitrage property of P (t) will hold if, and only if, it holds for the

normalized process, Z(t) = P (t)/B(t), where B(t) = exp
(∫ t

0
r(s)ds

)
is the risk

free money market/bank account. Using the fractional Itô formula we find

dZ(t)

Z(t)
=

dP (t)

P (t)
− dB(t)

B(t)
=

(
μ(t, P )

P (t)
− r(t)

)
dt +

σ(t, P )

P (t)
dW d(t),

and applying the fractional Girsanov transform we find

dZ(t)

Z(t)
=

(
μ(t, P ) − σ(t, P )λ(t)

P (t)
− r(t)

)
dt +

σ(t, P )

P (t)
dW Q,d(t). (4)
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Since dZ(t)/Z(t) = σ(t, P )P (t)−1W Q,d(t), this is a quasi-martingale under the
measure Q, if we define λ(t) =μ(t, P )/σ(t, P ), and if σ(t, P )P (t)−1 is bounded in
the sense that

E

[∫ T

0

∫ T

0

σ(s, P )P (s)−1σ(t, P )P (t)−1ϕ(s, t)dsdt

]
< ∞.

This relation reveals the arbitrage free dynamics of dP (t)

dP (t) = r(t)P (t)dt + σ(t, P )dW Q,d(t).

Combining this with applying the fractional Itô formula directly on P (t) and
using the fractional Girsanov transform, i.e.

dP (t) =

(
μ(t, P ) − ∂P

∂x

∂x

∂η
a(t)λ(t)

)
dt + σ(t, P )dW Q,d(t),

we find the general condition that

μ(t, P ) − ∂P

∂x

∂x

∂η
a(t)λ(t) − r(t)P (t) = 0. (5)

This is the fractional version of the fundamental bond pricing equation.
A less mathematical and more economically minded approach to understand-

ing the no arbitrage conditions is based on the concept of a self financing portfolio
strategy. A portfolio strategy {θ(t)P (t)} is said to be self financing if its value
changes only due to changes in the asset prices. Stated differently, except for
the final withdrawal, no additional cash inflows or outflows occur after the initial
time t = 0. This can be expressed as

θ(t)P (t) = θ(0)P (0) +

∫ t

0

θ(s)dP (s),

where P (t) is the fractional Itô price process (the bond price process) and θ(0)P (0)
is the initial value of the portfolio. The self financing portfolio strategy will be a
quasi-martingale after discounting under the risk neutral probability measure Q,
which is a well known result from the case of the standard Brownian motion.

From Benth (2003, Lemma 4.1) we know that if {θ(t)P (t)} is self financing,
then

θ(t)P (t)/B(t) = θ(0)P (0) +

∫ t

0

θ(s)d(P (s)/B(s)),

θ(t)Z(t) = θ(0)Z(0) +

∫ t

0

θ(s)dZ(s), (6)

where B(t) is defined above, and by the quasi-martingale representation theo-
rem the right hand side of (6) is a fractional Itô integral under Q since Z(s) =
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P (s)/B(s) is a quasi-martingale (see equation (4)). This result parallels the the-
ory for standard Brownian motions. Now, the portfolio strategy is said to be
an arbitrage if the value at time t = 0 is non positive while the closing value at
time T is non negative with positive probability. In fact this entails that the cash
inflows from the strategy are non negative in all states of nature.

Thus, the arbitrage free price of the non defaultable bond at time t is

P (t) = B(t)ÊQ[P (T )/B(T )|Fd
t ] = ÊQ[(B(t)/B(T ))P (T )|Fd

t ]

= ÊQ

[
exp

(
−
∫ T

t

r(s)ds

)
P (T )|Fd

t

]
= ÊQ

[
exp

(
−
∫ T

t

r(s)ds

)
|Fd

t

]
, (7)

since P (T ) = 1, where ÊQ is the quasi-conditional expectation under Q. Again
the parallel to the theory for standard Brownian motions is evident. From a com-
putational point of view equation (7) reveals that we can price a non defaultable
bond by taking the expected value of the discounted payoff, where the expecta-
tions are taken under the measure Q, and the discounting is made at the risk
free rate. This approach is equivalent to solving the fundamental bond pricing
equation in (5). We explore this in more detail in the next sections.

Before turning to the explicit derivation of the dynamics of the bond price
in the fractional setup, we note that Björk & Hult (2005) have criticized Hu &
Øksendal (2003)’s proposed solution to the problem of the admittance of arbitrage
in a fractional Black-Scholes market. Under the specific model and framework of
Hu & Øksendal (2003), Björk & Hult (2005) show that the methodology can lead
to a portfolio with a positive probability of a negative value, when the fractional
Brownian motion takes values in the range (1/2,3/2), and that the value of the
portfolio depends on time. This implies that one must know the entire path of
the portfolio components. Justified by this, Björk & Hult (2005) conclude that
the results are not economically meaningful. Note, however, that in order to
prove that the value of the portfolio can become negative, Björk & Hult (2005)
have to choose the number of risky assets as a linear function of the price of the
risky asset itself. Otherwise the critique does not hold. This is of course sensible,
but far from practice since traders often delta and/or vega hedge, which leads to
far more complex portfolio value dynamics. Together with the fact that Björk
& Hult (2005)’s critique is heavily based on the fractional Black-Scholes setup
and not directly applicable to our term structure model, we believe that our
setup excludes arbitrage possibilities based on the arguments of Benth (2003).
One point of Björk & Hult (2005) that carries through to our framework is that
the price of the bond depends more explicitly on time compared to the classical
framework, since the increments of the fractional Brownian motion is long-range
dependent. This is a standard feature of long-range dependent processes, which
of course also affects our model. We do not think this is a critical problem but
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just implies that one has to think of portfolio values in a slightly different manner
than usual.

4 The Fractional Ornstein-Uhlenbeck Process

In continuous time the analogy to the discrete AR(1) is the Ornstein-Uhlenbeck
process (OUP). Recall the Gaussian OUP

dx(t) = κ (θ − x(t)) dt + σdW (t) (8)

or

x(t) = x(0) +

∫ t

0

κ (θ − x(u)) du + σW (t),

where {W (t) : t ≥ 0} is a standard Brownian motion.
The natural extension to a long memory setting of this model is to apply a

fractional Brownian motion (fBm) and write the first order stochastic differential
equation (SDE) in (8) with respect to a fractional Gaussian noise

dy(t) = κ (θ − y(t)) dt + σdW d(t), (9)

where
{
W d(t) : t ≥ 0

}
is the fractional Brownian motion.

This SDE is the continuous time analogy of a discrete ARFIMA(1, d, 0)
process, and it is intuitively named the fractional Ornstein-Uhlenbeck process
(FOUP). Note that when d = 0 model (8) coincides with model (9) given x ≡ y.

In fact, it is known from Comte & Renault (1996, Proposition 9) that in the
general case of model (9), the d-derivative y(d)(t) is governed4 by the usual OUP

dy(d)(t) = κ
(
θ − y(d)(t)

)
dt + σdW (t). (10)

In the following, eq. (9) will be used as an example of a fractional model for the
instantaneous interest rate. First we consider a general setup.

5 A Diffusion Model for the Instantaneous In-

terest Rate

In the following, we base our derivations on a simple one-factor model. This is
done to enhance the exposition and to ease the introduction and understanding of
the fractional model. Note that the setup is readily extendible to involve multiple
factors, which could be correlated.

4The discrete time analogues of the OUP and FOUP processes are related via y(d)(t) =
(1 − L)dy(t).
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In our setup for a one factor model, we assume the instantaneous interest rate
r(t) follows an SDE with solution given by

r(t) = m(t) + g(t) η(t),

where η(t) is given by dη(t) = σ(t)dW (t), W (t) a Brownian motion. We assume
that m(·) and g(·) are differentiable.

From Itô’s formula we know that the SDE for the instantaneous interest rate
is

dr(t) = [m′(t) + g′(t) η(t)] dt + g(t)σ(t)dW (t).

Note that this is the usual approach turned upside down: Here we start with
the solution. The reason being that this is the way we generalize from the usual
term structure model to a fractional version.

We are considering a classical one factor term structure model, so the bond
prices, which we denote P (t, τ), end up being functions of r(t). Here τ = T − t
is the time to maturity, T is the maturing time. In the sequel we omit τ , as we
write P (t) for P (t, τ).

By making the no arbitrage assumption, we obtain a well known second order
partial differential equation (PDE) for P (t), thereby finding the bond pricing
formula. Since the methodology in the following is to be used also in the fractional
case, we do this in some detail.

The bond price P (t) is a function of t and η(t) in the following way. Let
f(t, η) = m(t)+g(t)η, then r(t) = f(t, η(t)). The bond price is a function of r(t),
and therefore a function of η(t). We write it as some function c(·, ·)

P (t) = c(t, f(t, η)) 5.

According to Itô’s formula we need the following derivatives

Pt(t, η) =
∂P

∂t
+

∂P

∂f
· ∂f

∂t
=

∂P

∂t
+

∂P

∂f
· (m′(t) + g′(t) η(t))

Pη(t, η) =
∂P

∂f
· ∂f

∂η
=

∂P

∂f
· g(t)

Pηη(t, η) =
∂2P

∂f 2
·
(

∂f

∂η

)2

=
∂2P

∂f 2
· g(t)2.

Again, according to Itô’s formula we get

dP (t) =

[
∂P

∂t
+

∂P

∂f
(m′(t) + g′(t) η(t)) +

1

2

∂2P

∂f 2
g(t)2σ(t)2

]
dt

+
∂P

∂f
g(t)σ(t)dW (t).

5For example c(t, x(t)) = exp(a(τ ) + b(τ )x(t)).
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Assuming dP (t) = μP (t)P (t)dt+σP (t)P (t)dW (t), and assuming the no arbitrage
condition μP (t) = r(t) + λ(r(t))σP (t), where λ(r(t)) is the market price of risk,
we obtain the partial differential equation

1

2

∂2P

∂f 2
g(t)2σ(t)2 +

∂P

∂f
[m′(t) + g′(t) η(t) − λ(r(t))g(t)σ(t)] +

∂P

∂t
− P (t)r(t) = 0.

(11)
This is well known for example in the Vasicek model where we have

m(t) = x0K(t) + κθK(t)

∫ t

0

K(s)−1ds, where K(t) = e−κt,

m′(t) = −κm(t) + κθ,

σ(t) = σK(t)−1,

g(t) = K(t),

g′(t) = −κK(t)

λ(r(t)) = λ.

Inserting these into (11) reveals the classical bond pricing equation

1

2

∂2P

∂f 2
σ2 +

∂P

∂f
[κ(θ − r(t)) − λσ] +

∂P

∂t
− r(t)P (t) = 0,

which, assuming the exponential affine relation,

P (t) = exp [a(τ) + b(τ)r(t)] , τ = T − t,

leads to the so-called Ricatti equations

a′(τ) = b(τ ) [κθ − λ] +
1

2
b(τ )2σ2

b′(τ) = −b(τ )κ − 1,

with solutions

a(τ) = −y∞ [τ + b(τ )] − σ2

4κ
b(τ )2 (12)

b(τ) =
1

κ

[
e−κτ − 1

]
,

where y∞ = θ − λσ/κ − σ2

2κ2 .
To develop a fractional version we make use of the fractional Itô formula

in eq. (3), which we generalize in the next section. In the sequel r(t) is a
completely different process (namely a fractionally integrated version) compared
to the classical setup above, where r(t) follows a continuous type AR(1).

12



What we do now is to replace the Brownian motion W (t) with a fractional
Brownian motion, named W d(t), and parameterized by the long memory para-
meter d .

As we have noted in sections 2 and 3, the process W d, for d �= 0, is nei-
ther a semimartingale nor a Markov process. Therefore standard techniques of
stochastic calculus cannot be applied in a straightforward manner. However, as
mentioned in sections 2 and 3, Duncan et al. (2000) have developed a stochastic
calculus based on fractional Brownian motion that is analogous to the standard
Itô calculus, which we investigate in the following.

6 The Fractional Itô Formula

Duncan et al. (2000, Theorem 4.3) have formulated and proved a fractional ver-
sion of Itô’s lemma. The result, which we reformulate below, generalizes Itô’s
lemma and states rules of calculus for stochastic differential equations generated
by fractional Brownian motions. See also the work by Brody et al. (2002, Ap-
pendix).

Theorem 1 (Duncan et al. (2000, Theorem 4.3))
Let

ϕ(s, t) = 2d(d + 1/2)|s − t|2d−1, where 0 < d < 1/2.

Given a deterministic function σ(t) such that∫ ∞

0

∫ ∞

0

σ(s)σ(t)ϕ(s, t)dsdt < ∞,

then the stochastic integral

η(t) =

∫ t

0

σ(s)dW d(s)

is well defined for all t ≥ 0.6 Furthermore given any twice continuously differ-
entiable (in the second argument) function G(·, ·) with bounded derivatives, the
following fractional Itô formula holds:

dG [t, η(t)] =

[
∂G

∂t
+

∂2G

∂η2
σ(t)

∫ t

0

ϕ(s, u)σ(u)du

]
dt +

∂G

∂η
σ(t)dW d(t).

6For example W d(t) =
∫ t

0
dW d(s), that is, σ(s) = 1.
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6.1 Application of the Fractional Itô Formula

As noted earlier we consider the one-factor model in order to show the implica-
tions of introducing the fractional Brownian motion as the governing force in a
simple and comprehensible manner. We are aware that for the model to be able
to fully capture the rich dynamics of the term structure, we need to expand its
complexity. However, the present section serves as an introduction to an exten-
sion of the classical setup, and thus is readily extendible to cover more complex
models with multiple and possibly correlated factors.

We consider the integrated fractional Gaussian noise with 0 < d < 1/2,

η(t) =

∫ t

0

σ(s)dW d(s), such that dη(t) = σ(t)dW d(t).

The fractionally integrated instantaneous interest rate process is given by r(t) =
f(t, η(t)), where

f(t, η) = m(t) + g(t)η,

and m(·) and g(·) are differentiable functions. The bond price is assumed to be
the function of t and η(t) given in the fractional Itô formula

P (t) = P (t, f(t, η(t))) = G(t, η(t)).

Then we have

dP (t) =

[
∂P

∂t
+

∂P

∂f
(m′(t) + g′(t) η(t)) +

∂2P

∂f 2
g(t)2σ(t)

∫ t

0

ϕ(s, u)σ(u)du

]
dt

+
∂P

∂f
g(t)σ(t)dW d(t).

The no arbitrage assumption leads to the fractional version of the fundamental
bond pricing equation,

∂2P

∂f2
g(t)2σ(t)

∫ t

0
ϕ(s, u)σ(u)du+

∂P

∂f

[
m′(t) + g′(t) η(t) − λ g(t)σ(t)

]
+

∂P

∂t
−r(t)P (t) = 0.

Inserting the parameter values for the Vasicek model given in section 5, we obtain
the PDE

∂2P

∂f 2
σ2 K(t)

∫ t

0

ϕ(t, u)K(u)−1du +
∂P

∂f
[κ(θ − r(t) − λσ] +

∂P

∂t
− r(t)P (t) = 0.

Inserting the derivatives of the bond price using the exponential affine form, and
setting terms equal to zero, reveals the following fractional Ricatti equations

a′(τ ) = b(τ )2 K(t) σ2

∫ t

0

ϕ(t, u)K(u)−1du + b(τ ) [κθ − λσ]

b′(τ ) = −1 − κb(τ).
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Obviously the solution for b(τ ) is the same as before, and inserting this solution
in the equation for a(τ ) reveals

a′(τ ) =
(
e−κτ − 1

)(
θ − λ

κ
σ

)
+

σ2

κ2
e−κT

[
e−κτ + eκτ − 2

] ∫ t

0

ϕ(t, u)K(u)−1du.

Integrating a′(τ), we can express

a(τ) = −(θ − λσ

κ
) (τ + b(τ )) +

σ2

κ2
e−κT

∫ τ

0

H(s)
[
e−κs + eκs − 2

]
ds, (13)

where

H(τ) = 2d (d +
1

2
)(T − τ)2d

∫ 1

0

eκ(T−τ )v(1 − v)2d−1dv,

and furthermore, integrating b′(τ) reveals

b(τ ) =
1

κ

[
e−κτ − 1

]
.

Now, in this fractional model, we write the exponential affine bond price

P (t) = ea(τ)+b(τ ) r(t), τ = T − t,

where the a(τ ) function defined in (13) certainly is different from the a(τ) in
equation (12), but the b(τ ) function is unchanged. b(τ ) just scales r(t) which in
contrast to the situation in section 5 is now driven by a long memory process.
Note that P (t) does indeed depend on past values of r, because r(t) is fractionally
integrated, see section 7.1 below. This implies that even if the a(τ) functions
were identical, we would still obtain different bond prices (or yields). This fact
is caused by the inclusion of the parameter of fractional integration d7.

Another advantage of using the fractional version of the classical Vasicek
model is that the realized bond return or yield variation exhibits long range
dependence, which is a salient feature of the observed series, see Andersen &
Benzoni (2005), Andersen, Bollerslev & Diebold (2005), and Nielsen & Frederik-
sen (2005). This implies that by expanding the complexity of the model by e.g.
introducing more factors, it should be possible to alleviate any harsh critique of
the affine model’s ability to capture the volatility dynamics of the term structure.
In the present paper we will not go into further details about this property but
leave it for future research.

7Note that Comte & Renault (1996, proof of Proposition 12) derive a similar expression for
the bond price. They base their derivation on the conditional expectation,

P (t, T ) = E
Q
t [exp(−

∫ T

t

r(s)ds)|Ft],

where Ft is the σ-field generated by the Brownian motion that governs r(t), exploiting that the
integral is Gaussian. We base our derivation directly on a fractional analogue of the classical
setup.
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7 The State Space Approach

In order to describe the evolution in zero coupon yields in a fractional setup,
and estimate the implied parameters, and also to extract the unobservable state
variable, we apply a state space formulation of the Vasicek model.

If the instantaneous interest rate process r(t) follows an OUP, it is known
that such a process can be written as the following transition

r(t) = e−κ(t−s)r(s) + θ(1 − e−κ(t−s)) + σ

∫ t

s

e−κ(t−u)dW (u),

where W (·) is a Brownian motion.
The exact state space formulation is based on the transition density, i.e. the

conditional density of r(t) given r(s). It is known from Vasicek (1977) that the
exact transition density is the product of normal densities, i.e. the equidistant
state process {r(t + Δ k)}k∈Z is a Markov process for any Δ > 0.

In case r(t) is an FOUP, then according to (10) the dth difference of r(t),
r(d)(t), may be written as

r(d)(t) = e−κΔ r(d)(s) + θ(1 − e−κΔ) + σ

∫ t

s

e−κΔdW (u), (14)

where t − s = Δ. In other words, r(t) sampled at equidistant time points is
an ARFIMA(1, d, 0) process. In this case {r(t + Δ k)}k∈Z is not Markov, and
to apply the Kalman filter in this case, we have to define the state variable (or
vector) differently than in the ordinary case.

If we let y(t) = (y(1, t), . . . , y(n, t))′ be an n-dimensional vector of yields
observed at time t, then the approach can be described as follows.

From the exponential affine relation, P (t) = exp [a(τ ) + b(τ )r(t)], the yields
can be expressed as

y(t) = − 1

τ
log P (t) = d(t) + z̃(t) r(t), (15)

where d(t) and z̃(t) are the n-dimensional vectors

d(t) =

⎛⎜⎝ −a(τ 1)/τ 1
...

−a(τn)/τn

⎞⎟⎠ , z̃(t) =

⎛⎜⎝ −b(τ 1)/τ 1
...

−b(τn)/τn

⎞⎟⎠ ,

respectively. Adding an error term to (15), we obtain a measurement equation
for the observed yields, where r(t) is an unobserved variable.

16



7.1 A Kalman Filter for the ARFIMA(1, d, 0)

Now let r(t) be an ARFIMA model according to (14). Then

r(t) = μ + ϕ r(t − 1) + η(d)(t), (16)

where μ = θ(1−e−κΔ), ϕ = e−κΔ, and η(d)(t) is integrated fractional white noise8

with parameters d and σ2. Then x̃(t) = (1 − L)dr(t) is the AR(1) process with
mean zero9

x̃(t) = ϕ x̃(t − 1) + η̃(t),

where η̃(t) is a white noise process with variance σ2(1 − e−2κΔ)/2κ.
To obtain a feasible version, we truncate the infinite polynomial

(1 − L)d =

∞∑
k=0

[
Γ(k − d)

Γ(k + 1)Γ(−d)

]
Lk

at the (m − 1)th power, thereby defining the following finite filtered variable

x(t) =
m−1∑
k=0

c
(d)
k r(t − k), (17)

where

c
(d)
k =

Γ(k − d)

Γ(k + 1)Γ(−d)
, k = 0, 1, 2, · · · , m − 1.

Then, according to (16)

x(t) = μ

m−1∑
k=0

c
(d)
k + ϕx(t − 1) + η(t). (18)

Here η(t) =
∑m−1

k=0 c
(d)
k η(d)(t − k), which converges to a white noise process for

m → ∞.
Consider the m-dimensional vector x(t) defined from equation (18) by

x(t) =

⎡⎢⎢⎢⎢⎢⎣
x(t)

x(t − 1)
x(t − 2)

...
x(t − m + 1)

⎤⎥⎥⎥⎥⎥⎦ .

8Fractional white noise is defined as a stationary ARFIMA(0, d, 0) process.
Note that stationarity requires −1

2
< d < 1

2
.

9Note that if 0 < d ≤ 1, then the mean (1 − L)d μ = 0 because
∑∞

k=0 c
(d)
k = 0.
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Then the following transition holds

x(t) = μ+ T x(t − 1) + η(t),

where μ, η(t) and T are the two (m×1) vectors and partitioned (m×m) matrix
given as

μ =

⎡⎢⎢⎢⎣
μ
∑m−1

k=0 c
(d)
k

0
...
0

⎤⎥⎥⎥⎦ , η(t) =

⎡⎢⎢⎢⎣
η(t)
0
...
0

⎤⎥⎥⎥⎦ , and T =

[
ϕ 0

′
m−1

Im−1 0m−1.

]
.

To be able to express the vector of observed yields as a function of the state
vector x(t), we derive from (17)

x(t) = A1 r(t) + A2 r(t − m),

where

r(t) =

⎡⎢⎢⎢⎣
r(t)

r(t − 1)
...

r(t − m + 1)

⎤⎥⎥⎥⎦ , and

A1 =

⎡⎢⎢⎢⎢⎢⎣
1 c

(d)
1 c

(d)
2 · · · c

(d)
m−1

0 1 c
(d)
1 · · · c

(d)
m−2

...
...

...
...

...
0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎦ , A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0

c
(d)
m−1 0 0 · · · 0

c
(d)
m−2 c

(d)
m−1 0 · · · 0

...
...

...
...

...

c
(d)
1 c

(d)
2 · · · c

(d)
m−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Since A1 is non singular with inverse

A−1
1 =

⎡⎢⎢⎢⎢⎢⎣
1 c

(−d)
1 c

(−d)
2 · · · c

(−d)
m−1

0 1 c
(−d)
1 · · · c

(−d)
m−2

...
...

...
...

...
0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎦ ,

where

c
(−d)
k =

Γ(k + d)

Γ(k + 1)Γ(d)
, k = 0, 1, 2, · · · , m − 1,

we obtain that
r(t) = A−1

1 x(t) −A−1
1 A2r(t − m),
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and the first row in this equation is

r(t) =

m−1∑
k=0

c
(−d)
k x(t − k) −

m−1∑
k=1

(
m−1∑
j=k

c
(−d)
j c

(d)
m+k−j−1

)
r(t − m − k) (19)

≈
m−1∑
k=0

c
(−d)
k x(t − k).

The second term in (19) is an artifact of the truncation of x̃(t) induced by the
finite filter defining x(t) in (17), and we omit it since if m → ∞ this term vanishes.

Returning to the relation in (15), we obtain the following

y(t) = d(t) + z̃(t) r(t)

≈ d(t) + z̃(t)

(
m−1∑
k=0

c
(−d)
k x(t − k)

)
= Z(t) x(t) + d(t), (20)

where10

Z(t) = z̃(t)
[
1 c

(−d)
1 · · · c

(−d)
m−1

]
.

Having defined the state space equations above, we have the usual Kalman
filter techniques available, see below in section 7.2.

7.2 The Econometric Procedure

Given the linear relation between the observed yields and the unobserved state
vector in (20), we can derive the conditional density y(t) | x(t). Furthermore, we
write the measurement equation corresponding to (20) for the observed yields as

y(t) = d(ψ)(t) + Z(ψ)(t)x(t) + ε(t), ε(t) ∼ NID
(
0,H(ψ)

)
, (21)

where ψ =(d, κ, θ, σ, λ)′ is the vector of parameters. Equation (21) includes an
error term ε(t) whereas the corresponding equation (15) of the affine yields does
not include any errors. This is actually not inconsistent with the applied expo-
nential affine term structure model. Suppose the fractional Vasicek model is the
true mechanism governing prices and yields, then the errors just account for the
possibility of bid ask spreads, non simultaneity of observations, errors in the data,
etc. The size of such errors is expected to be small compared to the variation in
yields.

For a Gaussian state space model, the Kalman filter provides an optimal
solution to prediction, updating and evaluating the likelihood function. The

10Note that z̃(t) is (n × 1), whereas Z(t) is (n × m).
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Kalman filter recursion is in its simplicity just a set of equations, which allows
an estimator to be updated once a new observation becomes available. The
Kalman filter first forms an optimal predictor of the unobservable state variable
vector given previously estimated values. This prediction is obtained using the
conditional distribution of the unobserved state variable, and is updated using
the information provided by the observed variables. The implied prediction errors
are then used to evaluate the likelihood function cf. Harvey (1989).

In deriving the log likelihood function to be maximized, we need the transition
equation, which is the exact discrete time distribution of the state vector x(t),

x(t) = μ+ Tx(t − 1) + η(t), η(t) ∼ N (0, σ2Q),

where the system matrices μ, T and Q, are functions of the parameters in the
stochastic process for x(t). The measurement equation (21) is linear in the state
variable and a standard Kalman filter method can by applied. This leads to the
following log likelihood function

log L =

T∑
t=1

− n

2
log (2π) − 1

2
log |Ft| − 1

2
ν ′
tF

−1
t νt, (22)

where νt is the n column vector of prediction errors with covariance matrix Ft.
The extraction of the parameters through (22) evolves in two steps. First, the

prediction step (in the following we suppress the dependence on the parameter
vector ψ for convenience)

x̂t|t−1 = T x̂(t − 1) + μ. (23)

When y(t) is observed, an updated estimate of (23) is computed, such that the
fit to the observed yields for the current date is optimal in the mean squared
error sense, where the mean square error (MSE) matrix is

Σt|t−1 = TΣt−1T
′
+ σ2Q.

Here Σt|t−1 is the prediction of the covariance matrix of the estimation error of
the state variable x(t), i.e. Σt|t−1 is the prediction of the covariance matrix of
x(t) − x̂(t), and

Σt = Σt|t−1 −Σt|t−1Z(t)′F−1
t Z(t)Σt|t−1

= (I −Σt|t−1Z(t)′F−1
t Z(t))Σt|t−1

= (I −K(t)Z(t))Σt|t−1.

Hence, the additional information contained in y(t) is used to obtain a more
precise estimator of x(t), namely

x̂(t) = x̂t|t−1 + Σt|t−1Z(t)′F−1
t ν(t),
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where

νt = y(t) − ŷ(t) = y(t) − (
d(t) + Z(t)x̂t|t−1

)
Ft = Z(t)Σt|t−1Z(t)′ + H.

8 The US Term Structure of Interest Rates

In this empirical illustration, we model the US term structure of interest rates.
We propose a one factor model where the state variable evolves according to a
fractional Ornstein-Uhlenbeck process, and propose estimating the implied para-
meters using the approach described above.

8.1 Data Description

We extracted weekly observations on US Treasury strips from the Bloomberg
database, which covers interest rates with 1,2,4,6,8 and 10 years of duration in
the period February 1991 to January 2002, a total of n = 558 observations.

To give a brief insight into the properties of the data, Table 1 shows descriptive
statistics including p-values for the Jarque-Bera normality test and long memory
estimates using the Gaussian semiparametric estimator of Robinson (1995).

Insert Table 1 about here

A pronounced feature of the data is that the shorter rates are more volatile,
and the fact that the mean increases with maturity indicates that the instanta-
neous interest rate has a long term mean less than 4.9%. More interestingly, we
find that the kurtosis is fairly close to 3. The negligible skewness for the inter-
mediate rates therefore implies that normality cannot be rejected. This is very
convenient since we let the state variable be described by the Gaussian FOUP,
which in the affine class of term structure models implies that the predicted yields
are normal.

Recall that in our model setup, we assume that the instantaneous interest rate
is governed by an fBm with 0 < d < 1/2. Since we assume that the (predicted)
bond yields are linear in the instantaneous interest rate, r(t), we know that the
long memory property of r(t) should project itself to the yields, see e.g. Dittmann
& Granger (2002) and the references therein. As a consequence, the observed
bond yields are assumed to be I(d). To evaluate this assumption, Table 1 also
presents long memory estimates, d̃, of the observed yields based on the Gaussian
semiparametric estimator (GSE) of Robinson (1995)11. Note that the estimates

11In the frequency domain the GSE estimates d̃ such that (1 − L)d̃y(t) is a white noise.
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are close to one with the tendency that d̃ > 1. These results are, however, not
in conflict with our model assumptions. In our model the memory in the yields
are parameterized through a combination of d and the mean reversion parameter
κ, where a small κ will make the predicted yields behave like I(1 + d) processes.
On the contrary, in the GSE, the memory in the yields enters the model only
through d̃, and as a consequence, it seems natural that d̃ ≈1 + d if the process
slowly mean reverts.

8.2 The Empirical Results

Table 2 shows the results for the implied parameters of the two one factor models,
i.e. the classical Vasicek model (OUP) and the fractional version (FOUP), and
Table 3 shows their fit in terms of bias and root mean square error (RMSE).

Insert Tables 2-3 about here

The results for the ordinary one factor model is well known in the field of term
structure modeling (see e.g. the references in the introduction). We confirm the
finding that in order to capture the long maturity bond yields, the speed at which
the instantaneous interest rate mean reverts is slow (κ = 0.0158). The very low
κ is an artifact of including the longer yields in the analysis, and implies that
the model predicts the yields of longer maturity bonds better. Nonetheless, the
other estimates seem slightly of target. For instance, the result for θ implies that
the long term mean is 5.29%, which is to high compared to the results in Table
1. Furthermore, the combination of the volatility parameter, σ = 0.0109, and
the market price of risk parameter, λ = −0.2700, implies that the excess return
on the bond with six years to maturity (D = 6) is −λσD = 1.77%, which is too
large if θ = 0.0529.

Turning to the fractional Vasicek model, we see that incorporating the fBm
matters. Even though the estimate of d is insignificantly larger than zero (d =
0.0418), this extension alleviates the deadlock of κ. Now, since the fBm helps
capturing the dynamics of the long maturity bond yields, the instantaneous in-
terest rate is allowed to mean revert (κ = 0.2188). Another plausible result of
the fractional Vasicek model is that the long term mean is estimated to be 4.16%.
Nonetheless, the increase in the market price of risk parameter (λ = −0.6034)
renders to high an excess return of 4.53% on the bond with six years to maturity.

As noted from Table 3, the gain from using the fractional model is noticeable
since the fit to the observed yields, in terms of bias is (much) improved for the
shorter maturities (1-2 years), while the model still fits the yields of bonds with
longer maturities with deviation ranging from two to eight basis points. The
average absolute bias for the fractional model is 4.72 basis points (bp) while it is
12.01 bp for the ordinary Vasicek model. This considerable improvement comes
with only a minor increase in the average RMSE since the numbers are 45.20 bp
and 41.55 bp, respectively.
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9 Conclusion

In this paper, we have proposed a new way of dealing with the limitations of the
classical affine dynamic term structure models (DTSMs). In particular, this paper
has expanded the flexibility of the DTSMs by applying a fractional Brownian mo-
tion as the governing force of the state variable instead of the standard Brownian
motion. This is a new direction in pricing non defaultable bonds with offspring
in the arbitrage free pricing of weather derivatives based on fractional Brownian
motions. By application of fractional Itô calculus and a fractional version of the
Girsanov transform, we derived a no arbitrage price of the bond by solving a
fractional version of the fundamental bond pricing equation. Besides this the-
oretical contribution, the paper proposed an estimation methodology based on
the Kalman filter approach, which applied to weekly observations of US Treasury
rates revealed that the instantaneous interest rate is fractionally integrated of
order 0.05, I(0.05), with relatively fast mean reversion, κ = 0.22. This combina-
tion allows a fairly precise prediction of all the bond yields used in the analysis,
since the deviations to the observed yields are small for all maturities. In par-
ticular, the average absolute bias for the fractional model is 4.72 basis points
while it is 12.01 basis points for the ordinary Vasicek model. This considerable
improvement were obtained with only a minor increase in the average RMSE.

An advantage of our setup, not investigated here, but left for future research, is
that the fractional version of the classical Vasicek model implies that the realized
bond return or yield variation is long range dependent, which is a well known
feature of interest rate series.

Hence our setup captures the properties that interst rates might be integrated
of order d, see Shea (1991), Backus & Zin (1993), Crato & Rothman (1994), Høg
(1997), Tkacz (2001), Iglesias & Phillips (2005), Nielsen (2006), and also that the
yield variation is long range dependent.
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Table 1: Summary Statistics for the US Treasury Zero Coupon Yields, 1991 - 2002
Maturity Mean Std. dev. Skewness Kurtosis p-value d̃ (m = [n0.5]) d̃ (m = [n0.7])
1-year 4.90 1.04 -0.76 2.91 0.00 0.93 1.04
2-year 5.25 0.98 -0.54 2.98 0.00 0.90 1.08
4-year 5.71 0.88 -0.03 2.74 0.44 0.95 1.10
6-year 5.97 0.86 0.19 2.65 0.05 1.03 1.09
8-year 6.19 0.86 0.26 2.48 0.00 1.09 1.07
10-year 6.35 0.86 0.26 2.32 0.00 1.11 1.06

The table shows summary statistics for the US Treasury zero coupon yields. The p-values are from
Jarque-Bera normality test and the long memory estimates are based on the Gaussian semiparametric

estimator of Robinson (1995).

Table 2: The Empirical Results for the One Factor Models.
The OUP The FOUP

Parameter Estimate Estimate
d − 0.0418

(0.0324)

κ 0.0158
(0.0059)

0.2189
(0.0159)

θ 0.0529
(0.2541)

0.0416
(0.2110)

σ 0.0109
(0.0002)

0.0125
(0.0002)

λ −0.2700
(0.0144)

−0.6034
(0.0392)

Note: The numbers in parenthesis are Whites heteroskedasticity consistent
standard errors.

Table 3: The Accuracy Measures for the One Factor Vasicek Model.
The OUP The FOUP

YTM Bias (bp) RMSE (bp) Bias (bp) RMSE (bp)
1 -41.60 95.24 -9.09 32.57
2 -21.02 64.93 -0.15 15.38
4 -1.81 26.38 3.79 37.76
6 -0.24 14.65 -2.00 53.29
8 -1.29 20.20 -5.04 63.36
10 -6.12 27.87 -8.26 68.84

Note: The table shows the two one factor models’ fit in terms of bias and
RMSE in basis points.
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