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Abstract 

We extend the vector autoregression (VAR) based expectations hypothesis test of 

term structure, considered in Bekaert & Hodrick (2001) using recent developments in 

bootstrap literature. Modifications include the use of wild bootstrap to allow for 

conditional heteroskedasticity in the VAR residuals without imposing strict 

parameterization, endogeneous model selection procedure in the bootstrap replications 

to reflect true uncertainty and the stationarity correction designed to prevent finite- 

sample bias adjusted VAR parameters from becoming explosive. 
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1. Introduction 

Interrelationship between interest rates of various maturities is a fundamental topic in 

economics and finance. One of the main theories that explain this relationship is the 

expectations hypothesis (EH) theory. According to the EH of the term structure, in 

equilibrium, investing in a succession of short-term bonds gives exactly the same 

expected return as investing in a long-term bond, when adjustment is made for the 

term premium. Various tests of this implication have yielded different results over 

various periods of time. Campbell & Shiller (1991), Campbell (1995), Rudebusch 

(1995) and Roberds & Whiteman (1999) note the EH works better at the short and 

long ends of the maturity spectrum and less well in the intermediate maturity range 

for a given short rate, thus creating a “U” shaped pattern. However, Thornton (2006) 

argues that analysis should not be based on the slope coefficient of the test equation 

only, since even under the alternative hypothesis where the EH does not hold, one can 

have slopes that are numerically close to the theoretical ones. 

Mankiw & Miron (1986) argues that the poor performance of the EH over 

certain periods is related to monetary policy pursued by the Fed, performing better in 

periods of monetary targeting than in periods of interest rate targeting (and even better 

before the foundation of the Fed). Rudebusch (1995), Roberds, Runkle & Whiteman 

(1996), and Balduzzi, Bertola & Foresi (1997) provide models that accommodate Fed 

behaviour and confirm Mankiw & Miron’s finding.  

Inconsistent conclusions about the EH has also been attributed to the small 

sample properties of various tests. Early studies use conventional regression 

framework (e.g. Shiller 1979, Mankiw & Miron 1986), volatility test (Startz 1984) 

and VAR based Wald (Campbell & Shiller 1987, 1991) and Likelihood Ratio (Driffil, 

Psaradakis & Sola 1997) tests. In their recent seminal paper, Bekaert & Hodrick 

(2001), B & H thereafter, suggest a LM test and examine its finite sample behaviour 

by a Monte Carlo study and argue that their test performs better than Likelihood Ratio 

based Distance Metric and Wald tests, the latter of which had been used almost 

exclusively in the previous literature.  The B & H methodology is fast gaining 

popularity and is adopted in Thornton (2004), Bekaert, Wei & Xing (2006), and 

Sarno, Thornton & Valente (2006).  
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However, recent developments in the bootstrap literature can usefully be 

employed to improve the B & H methodology. The asymptotic and small sample 

inferences from the LM test rely on either i.i.d. or factorized GARCH bootstrap of the 

VAR residuals. Goncalves & Kilian (2004) argue that i.i.d. re-sampling scheme is 

inaccurate in the presence of the conditional heteroskedasticity, which characterizes 

many financial time series and the latter type of bootstrap can suffer from 

misspecification problems, see e.g. Wolf (2000) and Belsley (2002). We therefore 

apply a wild bootstrap scheme, which does not require strict specification and keeps 

contemporaneous error correlation, and furthermore introduce stationarity correction, 

randomize the initial condition and endogenize lag length selection rule in the B & H 

methodology. As Sarno, et all (2006) find a structural break in the assumed data 

generating process at around 1982 using data that is used in our study and more 

importantly, to compare our result with theirs’ we consider two sub-samples. This will 

also enable us to assess if Campbell & Shiller’s (1991) claim that the EH performed 

better prior to 1978 is just because they included the Fed’s non-borrowed reserve 

targeting policy period in the latter period. Furthermore, one may also expect the EH 

performing better in the second sub-sample as the innovation in the communication 

industry and competition in the financial market must have shrunk the transaction 

cost, which is one of the main enemies of the theory.  

The paper is organised as follows. Section 2 examines the implications of the 

EH theory of the term structure of interest rates, Section 3 discusses how the theory is 

tested in VAR framework and outlines the B & H methodology. Suggested extensions 

are discussed in Section 4 and applied in Section 5. We also discuss our data in the 

latter section and Section 6 concludes. 

2. Expectations hypothesis theory of the term structure 

According to the EH, a long term interest rate equals the sum of a constant term 

premium and an average of current and expected future short term interest rates over 

the life of the long term interest rate. That is, in a linearized version of the EH (see 

Shiller 1979) 

∑
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where Rn,t and Rm,t are long and short rates at time t respectively, EtRm,t+mi , 

i=0,1,2,…k-1, is the expectation of  the short rates at t+mi formed at time t and mn,π  

is a term premium which can vary across maturities but not through time. Here k=n/m 

is defined to be an integer, m is the maturity of a shorter rate and n is the maturity of a 

longer rate. Since the EH places no restriction on mn,π , this term can be ignored by 

working with demeaned series.1 

Equation (1) is rarely tested directly, probably due to the empirical results that 

conclude the series are integrated, in which case conventional statistical theory is not 

appropriate. Rather, another implication of (1) is usually tested, which is based on the 

ability of the spread between long and short rates to predict future short rate changes 

after imposing rationality on the expectations. Rationality requires  

Rm,t+mi = EtRm,t+mi + vt+mi,        (2) 

where vt+mi has zero mean and is orthogonal to the information available at time t. 

Subtracting Rm,t from both sides of equation (1) and imposing rational expectations as 

in (2) yields probably the most commonly tested equation of the EH, which, after 

some rearrangement and parameterization, can be written as 

   tmntmnmn
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where ∆mRm,t+m= Rm,t+m- Rm,t,   S(n,m),t = Rn,t - Rm,t and e(n,m),t is a moving average 

process of order (n-m-1). 

Equation (3) says that the current spread predicts a cumulative change in 

shorter term (m-period) interest rate over n periods, and under the null hypothesis of 

the EH, α should be unity. 2  

                                                 
1 This assumption will simplify the derivation of restrictions on VAR parameters in what follows. See 
Melino (2001). 
2 Another implication of (1), that is less empirically supported, is that the yield spread predicts the m-
period change in the longer- term yield, which is tested (see e.g. Campbell & Shiller 1991) in 

ttmntnmtmn vS
mn

mRR +
−

+=−+− ),,(,, βγ ; under the null β  is unity.  
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However, there are several econometric difficulties with the conventional 

regression approach applied to this equation. Firstly, we lose n-m observations at the 

end of the sample period. This can be quite serious, as the data available for analysis 

are usually relatively small. Secondly, the error term e(n,m),t, is a moving average of 

order n-m-1, so standard errors have to be corrected, for example using the method 

described in Newey & West (1987). But these adjustments do not work well when n-

m is not small relative to the sample size (see e.g., Campbell & Shiller 1991). Thirdly, 

the regressor is serially correlated and correlated with lags of the dependent variable, 

and this can cause finite sample problems as well (Campbell, Lo & MacKinlay, 

1997). 

3. VAR Approach to testing the EH 

The problems associated with the single equation methods can be avoided using a 

VAR framework as suggested in Campbell & Shiller (1987, 1991).  Let us assume 

that there exists a stationary vector stochastic process for [ ]′Δ= tmntmt SR ),,(, ,y , where 

tmR ,Δ  is a change in short term rate and tmnS ),,( is a spread between long and short term 

rates. Assuming the process for ty  is represented by a demeaned VAR of order p, 

t

p

i
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1
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it can be written as a first order VAR in companion form such that ttt uAzz += −1 , 

where the companion matrix A is of dimension 2p×2p: 
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tz  has 2p elements, [ ]′′′′= +−− 11,...,, ptttt yyyz , and tv  is again a 2p vector equal to 

[ ]′0,...,0,0,, ,2,1 tt uu , uncorrelated over time. Thus the vector tz  is assumed to 

summarise the whole history of ty .  
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Now define vectors ie , i=1,2; each of dimension 2p, with unity in the ith position  and 

zeros everywhere else such that tmt R ,1 Δ=′ze  and tmnt S ),,(2 =′ ze . Using these 

definitions, restrictions imposed by the EH on VAR parameters can be shown to be 

1
2

1
22212 )]())(([ −− −−−−′=′ AIAIAIIAee mn

n
m .    (5) 

The next two sections describe how the B & H methodology is used to test this 

restriction.  

3.1. B&H Methodology: Asymptotic Inference 

The restrictions in (5) are highly non-linear and are predominantly being tested by 

asymptotic Wald test even though it has some undesirable properties in finite samples 

(see e.g. Gregory & Veall 1985 and Dagenais & Dufour 1991). The Wald statistic is 

not invariant to how one specifies the null hypothesis and possibly, unit of 

measurement. Shea (1992) provides a numerical example how one can reach different 

conclusions on testing algebraically equivalent EH restrictions using Wald tests.  

B & H (2001) suggest a Lagrange Multiplier test which employs restricted 

VAR parameter and argue the LM test has much better small sample properties than 

Wald test in terms of size and power using Monte Carlo simulations. They also 

consider Likelihood Ratio based Distance Metric test but they prefer the LM test. 

Since this methodology is relatively new, and is an important part of this study, it is 

summarised here.  

They derive the LM test statistic based on Hansen’s (1982) Generalized 

Method of Moments (GMM) estimator, which uses the orthogonality condition 

implied by (2). Let A  denote an estimate of the matrix of the restricted parameter 

satisfying (5) and define ],...,[ 1 ′= pAAA& . Then the vector of orthogonality condition 

can be written 

 [ ] 0θ),g(x =tE , where )z,y(x ′′′≡ −1ttt  and )(Aθ &vecr= .   

Estimation uses the corresponding sample moment conditions for a sample of size T, 

namely 
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It proceeds by selecting θ to minimize the GMM criterion function  

 ))) (θWg(θgθ ttT(J ′≡ ,       (6) 

where, assuming the VAR of (4) is correctly specified with tu  uncorrelated, the 

weighting matrix, W, is a consistent estimate of the inverse of 

 [ ])θ,θ)g(x,g(xΩ ′≡ ttE .       (7) 

Let the null hypothesis in (5) be expressed as: 

 0)c(θ =0:oH ,         (8) 

and define a Lagrangian for the constrained GMM maximization problem as 

 γ(θc(θgΩ(θgγθ, ))ˆ)
2
1)( 1 ′−′−= −

ttTtL ;     (9) 

where γ is a vector of Lagrange multipliers and TΩ̂  is a consistent estimate of 

Ω obtained from (7) using the sample mean in place of the expectation. Since direct 

maximization of (9) is difficult, B & H (2001) suggest extending an approach put 

forward by Newey & McFadden (1994) who demonstrate how to derive a constrained 

consistent estimator starting from an initial unconstrained consistent one. Using a 

Taylor’s Series expansion to the non-linear first order conditions for (9) yields 

 )θθ(G)(θg)θ(g 00 −+≈ TTT TTT ;            (10) 

 )θθ(C)(θc)θ(c 00 −+≈ TTT TTT             (11) 

where TG  and TC  are gradients, with respect to θ, of the sample orthogonality 

conditions and the vector of constraints, respectively, and under the null hypothesis,         

0θc =)(T . Substituting these into the first-order conditions, 

 )(θc)CD(CCD)(θgΩGDMDθθ //
0

111
0

12121
0

ˆ
TTTTTTTTTTTT

−−−−−− ′′−′−≈            (12) 
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 )(θc)CD(C)(θgΩGDC)CD(Cγ 0
11

0
1111 ˆ

TTTTTTTTTTTT
−−−−−− ′+′′−≈             (13) 

where TTTT GΩGD 1ˆ −′≡  and 211121 // DC)CD(CCDIM −−−− ′′−≡ TTTTTTTT . 

Let θ~  represent an initial consistent unconstrained estimate. Then constrained 

estimates, θ and γ , are obtained by iterating on equations (12) and (13), substituting 

θ~  for 0θ  to derive a second constrained estimate, and so forth until the constraint is 

satisfied, i.e. 0θc =)(T .3 

This yields the constrained estimate, together with the Lagrange Multipliers, 

which under the null hypothesis of EH and assuming i.i.d. disturbances has 

asymptotic distribution 

 [ ]1)CD(C0,Nγ −− ′→ TTTT 1 .               (14) 

The constrained parameter estimate is not equal to the unconstrained one when the 

constraints in (8) significantly affect the value of the GMM objective function (6). 

From (14), LM test statistic is 

 p)(χT TTT 221 →′′ − γ)CD(Cγ ,               (15) 

where p is the lag length of the VAR. Two other test statistics considered in B & H 

(2001) are DM test, p)(χT TTT 2)()( 21 →′ − θgΩθg  and Wald test, 

p)(χT TTTTT 2)~()~( 211 →′′ −− θc)CD(Cθc . Note that the Wald test is based on the 

unrestricted, while the former two are based on the restricted information.  

It is well known that estimated VAR parameter is, although consistent, biased 

in finite samples (see e.g. Tjostheim & Paulsen, 1983, and Bekaert, Hodrick & 

Marshall, 1997) and the bootstrap bias correction method used in Bekaert & Hodrick 

(2001) is as follows.  

Step 1.1. Estimate VAR parameter A .  

                                                 
3 Note that we update TTT GDC ,,  and TΩ̂  at each iteration step. In our application the tolerance level 
for convergence is 10-8. 
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Step 1.2. Generate an artificial data set of the actual sample size using first p actual 

observations, Â  from previous step and an i.i.d. bootstrap of the estimated residuals, 

then discard first p observations.  

Step 1.3. Estimate “Monte Carlo” or artificial VAR parameter, iM ,Â , using the data 

set obtained in Step 1.2.  

Step 1.4. Repeat Steps 1.2 and 1.3 a large number of times, say b.4 

Step 1.5. Estimate the bias, B , as the difference between the original VAR parameter 

estimate and the mean of the Monte Carlo parameters, i.e. ∑
=

−=
b

i
iMb 1
,

ˆ1ˆˆ AAB .  

Step 1.6. Estimate bias-corrected parameter by adding the estimated bias to the 

original VAR parameter estimate, i.e., BAA ˆˆˆ +=c .  

 To obtain bias-corrected parameter estimate that satisfies the null hypothesis, 

they use the bias corrected unconstrained VAR parameter and i.i.d. bootstrap of the 

residuals to simulate a very long series (70,000 observations plus 1,000 starting values 

that are discarded), which is then subjected to the iterative estimation scheme of (12) 

and (13). This bias corrected, constrained parameter is then used to derive the LM test 

statistics and corresponding asymptotic inference through (15). 

3.2. B&H methodology: Finite Sample Inference  

B & H also consider their methodology in a finite sample. Indeed, it has been well 

documented that large sample inference can be misleading for finite samples (see e.g. 

Mankiw & Miron 1986 and Horowitz 1997). The limiting distribution of the LM test 

statistic is asymptotically pivotal and it is proven that the bootstrap provides a first 

order asymptotic refinement, i.e. improved finite sample inference (see e.g. Horowitz 

2001, p.3184). The finite sample significance level associated with the null hypothesis 

of the EH in B & H (2001) is derived as follows: 

Step 2.1. Use an estimate of the bias-corrected constrained parameter A , after 

transforming θ  from (12), and an i.i.d bootstrap of the unrestricted residuals as a data 
                                                 
4 As in B & H (2001) and Sarno et al (2006) b is 100000 in our study. 
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generating process (DGP) to generate an artificial data set of the actual sample size 

plus 1000 observations that are discarded to attenuate the start-up effect. 

Step 2.2. Estimate a LM test statistic for the artificial data set, i.e., first 

estimate model (4), using the same VAR lag length p obtained from the actual data, 

and then iterate on (12) and (13) to obtain a LM statistic from (15).  

Step 2.3. Repeat Steps 2.1 and 2.2 a large number of times. 5 

Step 2.4. Calculate an empirical p-value, which is the proportion of LM test 

statistics from Step 2.3 that are larger than or equal to the sample statistic estimated 

on the actual data. 

When the conditional heteroskedasticity in the VAR residuals is allowed for 

they estimate a specific factor GARCH model for the residuals and derive residuals 

from that model rather than resampling with replacement in Step 2.1. 

4. Extensions to B & H Methodology 

In this section we suggest several modifications, which are motivated by recent 

developments in bootstrap literature, to the B & H methodology in order to 

encompass more general situations. Suggestions include stationarity correction and 

randomizing the initial condition in the bias correction procedure, endogenizing the 

lag order selection and the use of restricted residuals for the finite sample inference 

and finally, allowing for conditional heteroskedasticity in the residuals of the 

estimated model without imposing a priori parameterization, all of which are 

discussed in this section.  

4.1. On the bias correction 

We consider three modifications in the bias correction part of the B&H methodology. 

Firstly, we introduce stationarity correction. In contrast to much of the previous 

literature on term structure Bekaert & Hodrick (2001) assume interest rates are 

stationary. Sarno, Thornton & Valente (2006) also assume they are I(0) and provide 

some unit root test results that indeed support their assumption. But it is almost a 

stylized fact that interest rates are highly persistent. Therefore, eigenvalues of the 
                                                 
5 B & H (2001), Bekaert et al (2006), and Sarno et al (2006) replicate 25000 times. 
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estimated companion-form VAR parameter can be very close to unity if not more than 

that, which means there is no guarantee that bias corrected parameter to be stable, i.e. 

1)ˆ(max <cAλ ,  where maxλ  is the highest eigenvalue. This is the stationary correction 

issue, which, for example, is addressed in Kilian (1998b). He suggests to add an 

additional step: 

Step 1.7. If  1)ˆ(max ≥cAλ , let BB ˆˆ
1 = , 11 =δ  and define iii BB ˆˆ

1 δ=+  and 

001.01 −=+ ii δδ . Set icc ,
ˆˆ AA =  after iterating on iic BAA ˆˆˆ

, +=  i=1,2,… until 

1)ˆ(max <cAλ . 

The adjustment has no effect asymptotically and does not restrict the 

parameter space of the OLS estimator, since it does not shrink the OLS estimate Â  

itself, but only its bias estimate. 

Secondly, to attenuate the start up effect Bekaert & Hodrick (2001) discard 

first p observations in each of the 100000 bootstrap replications. As p can be one, for 

example, it might not fully account for the uncertainty associated with initial 

condition. We therefore follow an alternative suggested in Stine (1987), where the 

observed data are split into T-p+1 overlapping blocks of length p and one of them is 

selected randomly as a starting point.  

Finally, to bias correct the constrained VAR parameter, that is eventually used 

to generate empirical distribution of the test statistics, B & H (2001) use the i.i.d. 

bootstrap of the residuals and bias corrected unconstrained VAR parameter to 

generate 71000 observations, which are then subjected to the iterative process. But 

this procedure seems rather ad hoc, and is certainly not valid in the presence of the 

conditionally heteroskedasticity. We subject the actual data and the bias corrected 

unconstrained parameter to the iterative process directly since Newey & McFadden 

(1994) argue the consistency of the estimator is sufficient for their expansion to work.  

4.2. On the finite sample inference 

One can observe that there is an inconsistency in treating the lag order in the B & H 

methodology discussed in Section 3. When estimating (4) it assumes the lag order is 

unknown and estimates it but when obtaining an empirical p value it treats it as known 
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and uses the lag order estimated from the actual data in Step 2.2. But it is often 

emphasized that the bootstrap world should always reflect the actual world (see e.g. Li 

& Maddala, 1996). Incorrectly ignoring the uncertainty involved in determining the 

true lag order in finite samples can lead to spurious inference. Therefore we estimate 

the lag order for every bootstrap dataset in Step 2.2 employing the same criteria that 

used for the actual dataset. Asymptotically there is no difference between 

endogenizing or not since every consistent model selection criterion will be choosing 

the right lag length almost surely. The idea is formalized in Kilian (1998a) and was 

shown to improve the finite sample inference in impulse response analysis 

framework.  

 Moreover, by the same consistency argument when estimating model (4) on 

the artificial restricted data in Step 2.2 one has to bias-correct the resulting VAR 

parameter, following Steps 1.1-1.5. This approach essentially reduces to the usage of 

double bootstrap and is consistent with Hansen (2005). As computational cost of the 

bias correction at each bootstrap iteration is high we replicate 10000 times not 

100000, i.e. b=10000. Consequently, in the estimation of the finite sample 

distributions of the test statistics the number of bootstrap simulations is reduced to 

399 as opposed to 25000 that used in B & H (2001), Thornton (2004) and Sarne et al 

(2006).6 

As Davidson & MacKinnon (1985) and Godfrey & Orme (2004) suggest the 

use of the restricted residuals not the restricted ones provide improvements in the 

finite sample we use the former, 1−−= ttt zAyη & . Sarno et al (2006) also use restricted 

VAR residuals. 

4.3. Allowing for conditional heteroskedasticity 

The EH, itself, places no restriction on the distributions of the VAR disturbances. It is 

common that the residuals from the estimated models exhibit volatility clustering, 

especially when financial time series are used (see e.g. Bollerslev, Chou & Kroner 

1992). The bias correction method in B & H (2001) relies on i.i.d. residuals, although 

they do accept possible conditional heteroskedasticity in the residuals when deriving 

                                                 
6 Estimation of the finite sample distributions of test statistics in this way required minimum of 2 hours, 
longer than that when AIC is used as a model selection method, for each maturity pair on a Pentium 4 
H.T. 2.00 GHz machine.    



 13

finite sample inference. In particular, they estimate a VAR-GARCH model and 

generate the residuals in Section 3.2 through the resulting model. But there is no solid 

reasoning behind why this specific form of volatility clustering model is being used 

(Goncalves & Kilian 2004), and even if this class of GARCH models is appropriate 

the precise from of the GARCH model will be unknown, leading to different results 

for different specifications (Wolf 2000 and Belsley 2002).  

In general we can consider four cases, virtually only one of which is 

considered in B and H (2001) and can be referred to as the benchmark model or Case 

I. Three other cases are:  

Case II) disturbances are i.i.d. under the null and conditionally heteroskedastic under 
the alternative; 

Case III) disturbances are conditionally heteroskedastic under the null and i.i.d under 
the alternative;  

Case IV) disturbances are conditionally heteroskedastic under both null and 
alternative hypotheses. 

The way the finite sample distribution of the LM test statistic derived is no 

longer valid for Cases III and IV and the bias adjustment procedure based on an i.i.d. 

bootstrap of the unconstrained VAR parameter discussed in Section 3.1. may not be 

justified for Cases II and IV. 

To bias correct unconstrained VAR parameters for Cases II and IV and make 

finite sample inferences for Cases III and IV, we adopt a wild bootstrap developed in 

Liu (1988) following recommendations in Wu (1986) and Beran (1986). The 

particular form used is the recursive design wild bootstrap which is shown to be better 

in small samples than several other resampling schemes and is comparable with the 

i.i.d. bootstrap when the errors are indeed i.i.d., see e.g. Goncalves & Kilian (2004). A 

bootstrap sample, in this case, is generated  as ** ηzAy ttt += −1
& , ttt ηη* ω= , t=1,…,T, 

where A&  and tη are rearranged VAR parameter and a vector of residuals at time t 

respectively, 0)( =tE ω  and 0)( 2 =tE ω . Although Liu (1988) also suggested to have 

0)( 3 =tE ω , in our study tω  is assumed to have the Rademacher distribution, which 

takes negative and positive ones with equal probabilities, and is preferred in most 

recent Monte Carlo studies, including Davidson & Flachaire (2001), Godfrey & Orme 

(2004) and Godfrey & Tremayne (2005).  
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5. Empirical evidence on the EH 

In this section we describe the data used, explain why different model selection 

methods are employed in our study and provide empirical results from the modified 

B&H methodology. 

5.1. Data 

We use continuously compounded zero coupon yield curve data, as used in Sarno, 

Thornton & Valente (2006), which are update of famous McCulloch (1990) data. Its 

full coverage is from January 1952 to December 2003, but as there is significant body 

of evidence that the EH performed better prior to 1978 (e.g. Campbell & Shiller, 

1991) and as Sarno, et al (2006) find a structural break in the VAR parameters at 

around 1982, which roughly coincide with the abandonment of the Fed’s reserve 

targeting policy, we consider two sub-samples, Jan 1952- Dec 1978 and Jan 1982- 

Dec 2003.  Such sample splitting can also be motivated by a hypothesis that given the 

advent of cheap communication means and competition in the financial market, the 

transaction costs must have shrunk over time favouring the EH in the second sub-

period.  

5.2. Model selection method 

Sections 3 and 4 illustrate the inference on the validity of the EH depends on the lag 

length of the VAR, which is assumed to have generated the data. But there are various 

model selection criteria, the finite sample properties of which are unknown in the 

presence of conditional heteroskedasticity. But we know that a necessary condition 

for the validity of the residual bootstrap is the absence of autocorrelation in the VAR 

residuals. As different methods will potentially lead to different residual properties in 

finite samples, one has to be careful when choosing the model selection method. B & 

H (2001) use SIC as the model selection criterion, in contrast to Campbell & Shiller 

(1991) and Hardouvellis (1994) who assume that the data is known to be generated by 

VAR(4), and provide residual-autocorrelation test results for each equation of the 

VAR. Although there is some evidence of autocorrelation, they stick to the lag length 

of 1 that is chosen by the criterion. There is no consensus in the term structure 

literature over which model selection rule is appropriate to use. For example, Tzavalis 

& Wickens (1998) and Thornton (2004) also use SIC while Shea (1992), and Sarno et 
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al (2006) use AIC. However, recent results in econometrics literature seem to favour 

AIC or its modifications. Ng & Perron (2002, 2005) prefer modified AIC while 

Ivanov & Killian (2005) suggest using AIC when monthly data are used. It is 

therefore interesting to see how the final conclusion about the validity of the EH 

differs depending on a specific model selection method used. 

 Furthermore, the way B&H reaches their conclusion that there is no 

autocorrelation in the residuals is problematic. Firstly, the autocorrelation test used in 

their 5 equation VAR is asymptotic and it is known that the large and finite sample 

properties depart as the number of equations in a system grows, see e.g. Laitinen 

(1978). Secondly, the test is used for each individual equation of the VAR, potentially 

leading to the problem of mass significance, as discussed in Edgerton & Shukur 

(1999). In order to make sure that there is no autocorrelation in the residuals we 

employ multivariate autocorrelation test robust to conditional heteroskedasticity, that 

is studied in Bataa (2006) and some details of which are provided in the Appendix A. 

5.3. Empirical results 

In addition to the LM test we also use the DM and Wald tests to derive the finite 

sample inference. As discussed in Section 3.1, the finite sample distribution of the 

latter is poorly approximated by the first order asymptotic theory, but this does not 

necessarily mean the bootstrap approximation will be poor as well (see, e.g. Horowitz 

1997). One can also notice there is nothing in B & H methodology that controls the 

restricted VAR parameter to be stable, i.e. there is no guarantee that the finite sample 

distribution of the LM test statistic can always be estimated, which means the 

asymptotic Wald test can potentially be the only way to make any inference7.  

Since there is not much information on the relative performance of various 

model selection criteria in finite samples and in the potential presence of conditional 

heteroskedasticity, as discussed above, we provide all our empirical results based on 

AIC and SIC model selection criteria, the most popular ones in the term structure 

literature. All the inferences are made on the basis of 5% significance level. 

 
 

                                                 
7 In fact, the bias corrected, restricted VAR parameter in Panel A of Table IV in B & H (2001) is 
unstable, i.e. the maximum eigenvalue is 1.078. 
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Table 1. Multivariate ARCH test in VAR residuals  
 

 
Panel A.  AIC is used as model selection method 

 Jan 52- Dec 78 Jan 82- Dec 2003 

 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 

2 55.0         24.8         
 0.00         0.00         
 192.6         159.0         
 0.00         0.00         
 12         10         

3 102.4         47.8         
 0.00         0.00         
 159.9         41.5         
 0.00         0.00         
 9         9         

4 73.9 66.2        148.2 149.6        
 0.00 0.00        0.00 0.00        
 94.9 67.8        235.3 291.3        
 0.00 0.00        0.00 0.00        
 9 9        3 4        

6 38.4 28.7 53.2       130.2 131.0 176.9       
 0.00 0.00 0.00       0.00 0.00 0.00       
 34.6 82.6 79.7       214.9 251.9 145.7       
 0.00 0.00 0.00       0.00 0.00 0.00       
 9 14 14       3 4 1       

9 30.0  75.2       96.5  166.1       
 0.00  0.00       0.00  0.00       
 111.9  N.A.       171.4  145.6       
 0.00         0.00  0.00       
 9  14       3  1       

12 24.4 41.7 79.9 105.0 78.9     69.0 120.9 154.3 175.8 178.8     
 0.00 0.00 0.00 0.00 0.00     0.00 0.00 0.00 0.00 0.00     
 121.3 189.9 N.A. 96.7 139.1     154.7 143.3 139.0 138.0 133.8     
 0.00 0.00  0.00 0.00     0.00 0.00 0.00 0.00 0.00     
 9 14 14 9 9     4 1 1 1 1     

24 37.9 72.9 88.6 86.6 59.1  64.6   30.3 44.1 128.3 135.9 141.3  105.6   
 0.00 0.00 0.00 0.00 0.00  0.00   0.00 0.00 0.00 0.00 0.00  0.00   
 43.4 112.2 N.A. N.A. 17.7  34.2   78.3 99.1 117.5 114.0 113.4  99.7   
 0.00 0.00   0.04  0.00   0.00 0.00 0.00 0.00 0.00  0.00   
 8 12 15 15 15  3   4 4 1 2 2  2   

36 57.1 75.0 122.1 118.1 87.8 70.5 37.9   19.5 38.7 104.9 112.6 129.5 126.3 115.5   
 0.00 0.00 0.00 0.00 0.00 0.00 0.00   0.02 0.00 0.00 0.00 0.00 0.00 0.00   
 55.3 25.1 N.A. N.A. 59.4 39.4 32.6   62.1 65.4 107.7 99.7 101.6 118.8 111.6   
 0.00 0.00   0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 0.00 0.00   
 8 14 12 7 4 3 16   4 4 1 2 2 2 2   

48 58.4 71.4 112.7 92.1 69.1  36.2 30.9  16.1 30.0 80.8 100.1 134.7  117.6 45.0  
 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.07 0.00 0.00 0.00 0.00  0.00 0.00  
 51.4 63.1 99.5 N.A. N.A.  28.1 29.9  45.8 55.8 96.9 111.8 122.0  113.7 62.9  
 0.00 0.00 0.00    0.00 0.00  0.00 0.00 0.00 0.00 0.00  0.00 0.00  
 9 14 12 16 16  16 3  4 4 1 2 2  2 2  

60 50.7 63.9 102.1 83.2 61.9  30.4   14.4 28.0 72.0 99.0 138.4  115.2   
 0.00 0.00 0.00 0.00 0.00  0.00   0.11 0.00 0.00 0.00 0.00  0.00   
 45.6 64.5 104.7 N.A. N.A.  22.6   34.7 52.6 88.1 115.1 134.8  112.4   
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 0.00 0.00 0.00    0.01   0.00 0.00 0.00 0.00 0.00  0.00   
 9 14 12 16 16  16   4 4 1 2 2  2   

120 37.9 64.6 87.1 78.9 32.8  15.4 25.8 38.1 17.8 12.3 72.3 92.8 137.1  79.7 30.9 11.7
 0.00 0.00 0.00 0.00 0.00  0.08 0.00 0.00 0.04 0.20 0.00 0.00 0.00  0.00 0.00 0.23
 38.5 80.1 118.0 102.2 39.9  18.4 29.2 61.5 26.2 8.2 94.8 114.0 135.6  84.4 32.8 11.6
 0.00 0.00 0.00 0.00 0.00  0.03 0.00 0.00 0.00 0.52 0.00 0.00 0.00  0.00 0.00 0.24
 6 6 6 6 6  6 6 6 4 9 1 1 2  1 1 1 

 
Panel B.  SIC is used as model selection method 

 Panel A. Jan 52- Dec 78 Panel B. Jan 82- Dec 2003 

 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 

2 114.0         153.4         
 0.00         0.00         
 200.9         176.0         
 0.00         0.00         
 1         1         

3 157.5         184.2         
 0.00         0.00         
 208.2         193.4         
 0.00         0.00         
 1         1         

4 105.2 67.5        195.3 199.6        
 0.00 0.00        0.00 0.00        
 95.5 67.0        207.5 201.6        
 0.00 0.00        0.00 0.00        
 1 1        1 1        

6 31.3 63.1 149.4       178.6 174.6 176.8       
 0.00 0.00 0.00       0.00 0.00 0.00       
 28.9 173.3 291.2       201.0 176.1 145.7       
 0.00 0.00 0.00       0.00 0.00 0.00       
 1 1        1 1 1       

9 28.4  162.0       142.7  166.2       
 0.00  0.00       0.00  0.00       
 26.5  276.7       186.0  145.6       
 0.00  0.00       0.00  0.00       
 1  1       1 1       

12 25.2 116.7 172.5 171.2 102.5     110.6 120.8 154.0 175.7 178.8     
 0.00 0.00 0.00 0.00 0.00     0.00 0.00 0.00 0.00 0.00     
 27.1 224.8 255.3 236.5 117.5     168.0 143.3 139.0 137.9 133.8     
 0.00 0.00 0.00 0.00 0.00     0.00 0.00 0.00 0.00 0.00     
 1 1 1 1 1     1 1 1 1 1     

24 50.9 95.7 108.7 124.7 90.2  64.6   59.1 89.3 128.3 156.2 162.3  122.8   
 0.00 0.00 0.00 0.00 0.00  0.01   0.00 0.00 0.00 0.00 0.00  0.00   
 45.4 104.7 125.9 128.2 77.8  34.2   92.7 99.9 117.5 131.8 130.0  105.1   
 0.00 0.00 0.00 0.00 0.00  0.01   0.00 0.00 0.00 0.00 0.00  0.00   
 1 1 2 1 1  3   1 1 1 1 1  1   

36 60.2 80.4 104.0 99.6 84.5 70.5 54.4   43.6 72.9 104.9 122.5 129.6 118.1 103.3   
 0.00 0.00 0.00 0.00 0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 0.00 0.00   
 54.5 80.0 107.3 101.1 76.6 39.4 32.1   75.3 90.2 107.7 116.5 121.9 128.0 118.5   
 0.00 0.00 0.00 0.00 0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 0.00 0.00   
 2 2 2 2 1 3 3   1 1 1 1 1 1 1   

48 71.0 85.6 106.9 100.4 76.3  44.9 21.1  33.9 54.1 80.9 99.6 121.2  99.9 35.8  
 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00 0.00 0.00 0.00  0.00 0.00  
 65.3 83.6 106.6 98.7 72.7  30.0 20.7  54.3 74.6 96.9 112.1 130.4  113.4 41.9  
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 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00 0.00 0.00 0.00  0.00 0.00  
 1 2 2 2 1  3 1  1 1 1 1 1  1 1  

60 64.8 83.4 107.2 99.3 64.6  36.3   29.2 47.3 72.1 94.4 122.6  100.3   
 0.00 0.00 0.00 0.00 0.00  0.00   0.00 0.00 0.00 0.00 0.00  0.00   
 62.5 83.2 106.9 97.8 64.6  30.1   44.0 64.7 88.1 108.2 132.7  109.4   
 0.00 0.00 0.00 0.00 0.00  0.00   0.00 0.00 0.00 0.00 0.00  0.00   
 1 2 2 2 1  3   1 1 1 1 1  1   

120 31.7 67.9 97.8 91.5 37.9  12.7 31.7 46.3 27.9 47.9 72.4 92.9 115.1  79.7 30.9 11.7 
 0.00 0.00 0.00 0.00 0.00  0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.23 
 35.5 76.4 107.2 98.5 41.8  13.1 31.5 59.2 35.3 65.5 94.8 114.0 129.0  84.4 32.8 11.6 
 0.00 0.00 0.00 0.00 0.00  0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.24 
 1 1 1 1 1  2 1 2 1 1 1 1 1  1 1 1

Note: There are five numbers for each maturity pair. First and second numbers are ARCH-LM test 
statistic and its p value that there is no first order ARCH effect in the residuals of the unrestricted VAR. 
The third and fourth numbers provide the same information, but for the restricted VAR. Fifth number is 
the VAR lag order. N.A. indicates was not estimated either because of the instability of the constrained 
VAR parameter or non-convergence of the iterative process. 

Tables 1 provides evidence on the first order conditional heteroskedasticity in the 

VAR residuals, in particular multivariate ARCH-LM test statistics, described in 

Doornik & Hendry (1997), corresponding  p values that there is conditional 

homoskedasticity and the lag lengths of the VAR in italics8. Panel A is based on 

VAR’s that are selected by AIC while Panel B relies on SIC model selection method. 

There are two sets of results for each maturity pair, one for the unrestricted VAR and 

another for the restricted VAR. As expected the test always detects conditional 

heteroskedasticity in both restricted and unrestricted residuals, except for maturity 

pairs 12&120 and 60&120 months, suggesting that we are working with Case IV, as 

defined in Section 4.3. Therefore all the remaining analyses are based on the wild 

bootstrap rather than i.i.d. one.  

Table 2. Multivariate autocorrelation test  

 Panel A.  AIC is used as model selection method 

 Jan 52- Dec 78 Jan 82- Dec 2003 
 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 

2 4.77         3.20         
 0.31         0.52         

3 1.80         9.45         
 0.77         0.05         

4 0.50 1.50        1.82 6.67        
 0.97 0.83        0.77 0.15        

6 1.24 7.08 4.89       2.15 6.45 2.72       
 0.87 0.13 0.30       0.71 0.17 0.61       

                                                 
8 The maximum lag length used to select the VAR order is 

41

max 100
12 ⎟

⎠
⎞

⎜
⎝
⎛=

Tp which is more or less 

preferred in a Monte Carlo study of Schwert (1989). 
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9 1.33  3.39       2.66  3.93       
 0.86  0.50       0.62  0.42       

12 1.54 2.32 3.03 4.31 2.77     3.50 5.16 5.27 4.09 1.56     
 0.82 0.68 0.55 0.37 0.60     0.48 0.27 0.26 0.39 0.82     

24 6.96 4.52 1.42 1.77 3.88  2.87   3.64 3.22 11.35 3.45 1.57  6.88   
 0.14 0.34 0.84 0.78 0.42  0.58   0.46 0.52 0.02 0.49 0.81  0.14   

36 5.85 2.43 4.86 4.55 2.42 3.50 4.30   3.47 2.67 8.82 2.18 1.53 2.70 5.62   
 0.21 0.66 0.30 0.34 0.66 0.48 0.37   0.48 0.61 0.07 0.70 0.82 0.61 0.23   

48 5.08 2.68 4.74 4.18 3.10  4.77 1.05  3.69 1.75 6.59 2.05 1.75  6.32 5.12  
 0.28 0.61 0.31 0.38 0.54  0.31 0.90  0.45 0.78 0.16 0.73 0.78  0.18 0.28  

60 5.93 2.88 5.19 3.97 2.53  3.74   2.89 1.00 5.37 2.91 2.53  8.47   
 0.20 0.58 0.27 0.41 0.64  0.44   0.58 0.91 0.25 0.57 0.64  0.08   

120 3.14 2.71 2.99 3.14 3.33  3.57 3.96 4.22 6.54 1.91 1.46 1.12 3.33  1.29 3.29 3.42
 0.53 0.61 0.56 0.53 0.50  0.47 0.41 0.38 0.16 0.75 0.83 0.89 0.50  0.86 0.51 0.49

 
Panel B.  SIC is used as model selection method 

 Jan 52- Dec 78 Jan 82- Dec 2003 
 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 

2 11.74         1.81         
 0.02         0.77         

3 8.83         1.45         
 0.07         0.84         

4 7.35 0.83        1.02 2.14        
 0.12 0.93        0.91 0.71        

6 9.27 3.55 12.69       0.90 1.76 2.72       
 0.05 0.47 0.01       0.92 0.78 0.61       

9 9.61  8.41       2.40  3.93       
 0.05  0.08       0.66  0.42       

12 9.89 5.77 6.87 5.35 1.19     4.50 5.16 5.27 4.09 1.56     
 0.04 0.22 0.14 0.25 0.88     0.34 0.27 0.26 0.39 0.82     

24 14.26 8.92 3.95 6.98 5.82  2.87   8.15 10.25 11.34 10.67 8.69  6.93   
 0.01 0.06 0.41 0.14 0.21  0.58   0.09 0.04 0.02 0.03 0.07  0.14   

36 5.48 4.58 4.31 4.50 8.01 3.50 0.46   7.80 8.55 8.82 8.53 6.73 5.23 6.20   
 0.24 0.33 0.37 0.34 0.09 0.48 0.98   0.10 0.07 0.07 0.07 0.15 0.26 0.18   

48 12.92 3.69 3.89 4.57 8.77  0.84 10.71  5.80 6.46 6.59 5.90 4.42  4.27 7.63  
 0.01 0.45 0.42 0.33 0.07  0.93 0.03  0.21 0.17 0.16 0.21 0.35  0.37 0.11  

60 12.76 3.38 4.44 5.88 9.69  1.66   4.72 5.25 5.37 4.69 3.40  3.06   
 0.01 0.50 0.35 0.21 0.05  0.80   0.32 0.26 0.25 0.32 0.49  0.55   

120 12.61 10.66 12.18 12.89 13.43  11.53 12.01 8.91 1.93 1.65 1.46 1.12 0.90  1.29 3.29 3.42
 0.01 0.03 0.02 0.01 0.01  0.02 0.02 0.06 0.75 0.80 0.83 0.89 0.92  0.86 0.51 0.49

Note: Table provides first order autocorrelation test results for the VAR residuals. The first number, 
given in bold is the statistic followed by corresponding p value that there is no autocorrelation. The 
VAR lag length is given in Table 1 and the test is described in the Appendix A. 

Table 2 provides evidence on the first order autocorrelation in the VAR residuals 

using a test robust to conditional heteroskedasticity that is explained in the Appendix. 

Using AIC model selection method seems to be better than SIC in making sure that all 

the dynamic relationships are captured by the mean of the model, i.e. there is no 

autocorrelation in the residuals of VAR’s that are chosen by AIC but there is some 

evidence when SIC is used. But this conclusion must be treated with caution since 
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there is still a possibility that a model to be over-specified with AIC. More evidence 

on higher order autocorrelation and/or use of interactive model selection method and 

autocorrelation test is desirable but not attempted as this stage, because of the 

computational cost.  

Table 3. Number of iterations required in stationarity correction  

 Panel A.  AIC is used as model selection method 

 Jan 52- Dec 78 Jan 82- Dec 2003 
 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 

2 72         68         
3 63         65         
4 65 63        24 45        
6 66 75 75       0 35 0       
9 62  73       0  0       

12 62 73 72 63 63     1 0 0 0 0     
24 61 74 76 73 81  57   8 14 0 0 0  0   
36 62 72 75 72 60 59 85   8 17 0 0 0 0 0   
48 66 73 76 76 85  87 55 . 4 15 0 0 0  0 48  
60 66 75 77 75 85  87   6 19 0 0 0  0   

120 71 68 70 70 69  66 62 50 12 58 0 0 0  0 0 0 

 
Panel B.  SIC is used as model selection method 

 Jan 52- Dec 78 Jan 82- Dec 2003 
 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 

2 0         0         
3 0         0         
4 0 0        0 0        
6 0 0 0       0 0 0       
9 0  0       0  0       

12 0 0 0 0 0     0 0 0 0 0     
24 0 0 43 0 0  57   0 0 0 0 0  0   
36 48 50 50 50 0 59 60   0 0 0 0 0 0 0   
48 0 54 54 54 0  61 0  0 0 0 0 0  0 0  
60 0 56 56 55 0  61   0 0 0 0 0  0   

120 0 0 0 0 0  53 0 26 0 0 0 0 0  0 0 0 
Note: Table reports the number of iterations required to make the bias corrected unrestricted VAR 
parameter stable. Details of this procedure are given in Section 4.1. Step 1.7. 

Table 3 reports the number of iterations required to make the bias-corrected 

companion-form VAR parameters stable. When SIC is used Step 1.7 introduced in 

Section 4.1. seems to have no effect in the second sub-sample but we do use this step 

a lot in the first sub-period, especially for maturity pairs that are not at the short end of 

the term structure. It is interesting to note that for the VAR’s selected by AIC the 

introduction of this step proves to be more useful, again more often in the first sub-

sample. Perhaps this is due to the persistence in the interest rates.   
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The finite sample distributions of the DM and LM test statistics are almost the 

same, therefore all the interpretations below are made with respect to the LM and 

Wald tests only. Figures 1 to 4 in Appendix B illustrate asymptotic and estimates of 

the finite sample distributions of the test statistics along with the histogram of the 

endogenized VAR lag lengths. In line with B & H (2001), for most VAR’s the finite 

sample distribution of the LM test is being better approximated by the asymptotic chi-

squared distribution than that of the Wald test. But working with more maturity pairs 

than in B & H (2001) reveals that this is not uniformly true, in many cases differences 

are minor and we do encounter cases where such ordering is difficult to make, for 

example for maturity pairs 3&6, 3&24 and 6&12 months in the second sub-sample 

with AIC model selection method. One can also observe extremely bad 

approximations to both finite sample distributions, such as for the pair 12&48 months 

in the first sub-period with SIC. Based on this evidence it seems reasonable to 

reiterate the recommendation given in Sarno et al (2006), which is to avoid the use of 

the asymptotic distribution in making an inference based on either LM or Wald test 

statistic. 

When SIC is used as model selection rule, allowing the lag lengths determined 

in each bootstrap replication does not seem to alter much the conclusion that would 

have drawn from the exogenous lag length methodology. In fact, there is no single 

case in the second sub-sample where the dominant lag length, which is one, is chosen 

with less than 97% probability.  

Given a model selection method it is not obvious how endogenizing the lag 

selection rule affects the approximation provided by the asymptotic theory. But most 

extreme departures between the asymptotic and estimates of finite sample 

distributions seem to occur with AIC model selection method, probably because it is 

less certain about the assumed true lag order.  

Based on the figures one might hypothesize that the difference between finite 

sample distributions of the LM and Wald test statistics are decreasing functions of the 

distance between the short and long term interest rates that are included in the VAR. 

This seems quite plausible, especially in the second sub-sample. 
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Table 4. LM test of the EH of term structure  

 

 
Panel A.  AIC is used as model selection method 

 Jan 52- Dec 78 Jan 82- Dec 2003 
 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60
2 

57.72     56.17    
 0.00     0.00    
 0.00     0.00    
 201.75     152.91    
 0.00     0.00    
 0.00     0.00    
3 

47.54     29.59    
 0.00     0.04    
 0.00     U.S.    
 113.21     84.73    
 0.00     0.00    
 0.00     U.S.    
4 

45.64 33.20    18.15 16.22    
 0.00 0.02    0.01 0.04    
 0.00 0.06    0.04 0.16    
 92.81 65.68    31.45 41.00    
 0.00 0.00    0.00 0.00    
 0.01 0.05    0.07 0.23    
6 

46.40 44.19 38.04   14.26 12.48 7.86    
 0.00 0.03 0.10   0.03 0.13 0.02    
 0.00 0.01 0.05   0.14 0.24 0.15    
 69.33 120.07 99.56   23.73 29.79 13.52    
 0.00 0.00 0.00   0.00 0.00 0.00    
 0.02 0.01 0.01   0.22 0.28 0.20    
9 

36.36  31.066   12.60 6.17    
 0.01  0.31   0.05 0.05    
 0.05  N.S.   0.16 0.24    
 66.48  83.977   22.02 9.59    
 0.00  0.00   0.00 0.01    
 0.05  N.S.   0.22 0.34    

12 
32.62 31.80 31.20 25.82 24.95 11.45 6.15 5.88 5.66 5.83   

 0.02 0.28 0.3 0.10 0.13 0.18 0.05 0.05 0.06 0.05   
 0.06 N.C. N.S. 0.33 0.29 0.19 0.20 0.25 0.28 0.22   
 62.46 69.49 69.74 56.42 53.43 21.59 8.41 8.52 8.57 7.87   
 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02   
 0.08 N.C. N.S. 0.22 0.17 0.17 0.33 0.33 0.34 0.26   

24 
19.29 27.75 32.44 32.49 28.79 16.92 13.35 12.49 5.49 13.68 14.09  13.97 

 0.25 0.27 0.35 0.35 0.53 0.01 0.10 0.13 0.06 0.01 0.01  0.01 
 0.32 0.45 N.S. N.S. 0.53 0.32 0.10 0.29 0.19 0.11 0.06  0.03 
 38.50 59.90 46.55 76.75 53.19 16.52 18.55 18.84 7.45 24.50 16.33  13.82 
 0.00 0.00 0.03 0.00 0.01 0.01 0.02 0.02 0.02 0.00 0.00  0.01 
 0.21 0.33 N.S. N.S. 0.41 0.45 0.13 0.31 0.24 0.13 0.17  0.07 

36 
18.31 26.94 23.36615.03 8.34 10.37 42.75 12.86 12.24 6.27 12.28 11.87 11.30 9.71 

 0.31 0.52 0.500 0.38 0.40 0.11 0.10 0.12 0.14 0.04 0.02 0.02 0.02 0.05 
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 0.41 N.S. 0.688 0.40 0.64 0.43 0.02 0.11 0.29 0.18 0.14 0.11 0.07 0.09 
 30.91 60.45 42.61 16.56 4.11 7.06 208.12 17.47 18.14 7.40 21.60 13.03 10.25 8.14 
 0.01 0.00 0.01 0.28 0.85 0.32 0.00 0.03 0.02 0.02 0.00 0.01 0.04 0.09 
 0.33 N.S. 0.477 0.51 0.91 0.69 0.01 0.14 0.24 0.24 0.16 0.19 0.17 0.19 

48 
21.80 25.26 23.24 29.78  41.31 9.37 11.61 10.71 5.62 9.81 8.93  6.67 5.19

 0.24 0.61 0.51 0.58  0.13 0.15 0.17 0.22 0.06 0.04 0.06  0.15 0.27
 0.24 0.69 0.62 N.S.  0.03 0.39 0.11 0.26 0.18 0.12 0.14  0.23 0.40
 32.48 63.45 48.29 123.59  242.37 11.64 15.40 14.94 6.46 14.44 8.46  5.00 3.16
 0.02 0.00 0.00 0.00  0.00 0.07 0.05 0.06 0.04 0.01 0.08  0.29 0.53
 0.30 0.34 0.34 N.S.  0.01 0.39 0.14 0.26 0.26 0.16 0.24  0.38 0.64

60 
21.96 25.23 22.77 31.38  41.09 10.95 9.68 5.21 8.22 7.26  5.36 

 0.23 0.62 0.53 0.50  0.13 0.20 0.29 0.07 0.08 0.12  0.25 
 0.24 0.67 0.63 N.S.  0.01 0.10 0.26 0.23 0.15 0.18  0.27 
 30.72 68.17 55.70 147.36  273.74 13.75 12.41 5.50 10.67 6.37  3.91 
 0.03 0.00 0.00 0.00  0.00 0.09 0.13 0.06 0.03 0.17  0.42 
 0.37 0.24 0.30 N.S.  0.00 0.13 0.32 0.29 0.18 0.27  0.39 

120 
17.42 14.50 15.79 17.07 16.81 21.61 23.91 30.14 7.98 11.11 3.28 2.68 2.42  0.67 0.39 0.45

 0.13 0.27 0.20 0.15 0.16 0.04 0.02 0.00 0.44 0.89 0.19 0.26 0.66  0.71 0.82 0.80
 0.24 0.37 0.36 0.27 0.29 0.14 0.11 0.03 0.24 0.51 0.37 0.42 0.56  0.81 0.91 0.88
 15.80 13.48 14.84 16.32 15.79 22.61 26.14 82.80 11.78 14.09 2.08 1.44 2.03  0.55 0.53 0.32
 0.20 0.33 0.25 0.18 0.20 0.03 0.01 0.00 0.16 0.72 0.35 0.49 0.73  0.76 0.77 0.85
 0.47 0.56 0.54 0.51 0.48 0.35 0.29 0.02 0.17 0.45 0.54 0.64 0.57  0.84 0.87 0.90

 Panel B.  SIC is used as model selection method 

 Jan 52- Dec 78 Jan 82- Dec 2003 
 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 
2 

30.81 0.02    
 0.00 0.99    
 0.00 0.82    
 91.25 23.57    
 0.00 0.00    
 0.00 0.00    
3 

30.70 9.54    
 0.00 0.01    
 0.00 0.00    
 68.00 16.14    
 0.00 0.00    
 0.00 0.01    
4 

27.37 20.87 8.28 8.38    
 0.00 0.00 0.02 0.02    
 0.00 0.00 0.00 0.01    
 45.30 26.59 12.76 15.50    
 0.00 0.00 0.00 0.00    
 0.00 0.00 0.01 0.09    
6 

20.91 19.74 N.C. 7.56 7.87 7.86    
 0.00 0.00 0.02 0.02 0.02    
 0.00 0.00 0.01 0.03 0.00    
 23.88 16.46 10.41 12.23 13.49    
 0.00 0.00 0.01 0.00 0.00    
 0.00 0.01 0.04 0.07 0.03    
9 

13.10 8.09 6.70 6.17    
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 0.00 0.02 0.04 0.05    
 0.00 0.02 0.00 0.02    
 16.32 18.17 8.59 9.59    
 0.00 0.00 0.01 0.01    
 0.00 0.01 0.07 0.12    

12 
8.89 7.29 6.17 5.58 5.43 6.36 6.15 5.88 5.66 5.83   

 0.01 0.03 0.05 0.06 0.07 0.04 0.05 0.05 0.06 0.05   
 0.01 0.04 0.02 0.07 0.07 0.02 0.02 0.03 0.04 0.03   
 10.39 9.98 10.51 9.86 6.25 7.90 8.39 8.53 8.57 7.87   
 0.01 0.01 0.01 0.01 0.04 0.02 0.02 0.01 0.01 0.02   
 0.03 0.06 0.03 0.04 0.09 0.08 0.15 0.11 0.11 0.10   

24 
4.52 4.11 4.69 4.09 3.62 16.92 5.85 5.73 5.49 5.25 4.99  5.02 

 0.10 0.13 0.32 0.13 0.16 0.01 0.05 0.06 0.06 0.07 0.08  0.08 
 0.11 0.16 0.21 0.15 0.16 0.01 0.06 0.06 0.05 0.06 0.07  0.10 
 3.65 2.96 3.40 3.10 2.52 16.53 6.85 7.30 7.46 6.95 4.97  3.37 
 0.16 0.23 0.49 0.21 0.28 0.01 0.03 0.03 0.02 0.03 0.08  0.19 
 0.17 0.27 0.34 0.23 0.26 0.05 0.06 0.13 0.09 0.09 0.13  0.21 

36 
3.77 3.20 3.55 4.03 2.01 10.37 13.29 6.25 6.35 6.27 6.14 5.89 5.84 5.97 

 0.44 0.53 0.47 0.40 0.37 0.11 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 
 0.36 0.44 0.34 0.31 0.40 0.07 0.03 0.03 0.03 0.03 0.03 0.04 0.06 0.06 
 2.97 2.08 2.22 2.56 1.53 7.06 12.74 6.98 7.29 7.42 6.96 5.19 3.96 3.58 
 0.56 0.72 0.70 0.63 0.46 0.32 0.05 0.03 0.03 0.02 0.03 0.07 0.14 0.17 
 0.46 0.63 0.55 0.49 0.47 0.30 0.09 0.06 0.08 0.08 0.10 0.11 0.18 0.18 

48 
2.89 2.73 3.03 3.50 1.31 8.74 1.90 5.67 5.81 5.62 5.31 4.73  4.33 5.26

 0.24 0.60 0.55 0.48 0.52 0.19 0.39 0.06 0.05 0.06 0.07 0.09  0.11 0.07
 0.26 0.50 0.49 0.45 0.51 0.13 0.39 0.05 0.05 0.03 0.07 0.11  0.14 0.11
 2.36 1.72 1.82 2.09 1.05 8.50 1.86 6.48 6.72 6.49 5.52 3.80  2.52 3.20
 0.31 0.79 0.77 0.72 0.59 0.20 0.39 0.04 0.03 0.04 0.06 0.15  0.28 0.20
 0.33 0.72 0.68 0.62 0.60 0.25 0.40 0.05 0.09 0.09 0.14 0.18  0.30 0.23

60 
2.82 2.84 3.13 3.54 1.20 7.13 5.51 5.51 5.21 4.84 4.15  3.57 

 0.24 0.59 0.54 0.47 0.55 0.31 0.06 0.06 0.07 0.09 0.13  0.17 
 0.28 0.53 0.45 0.47 0.56 0.31 0.05 0.06 0.07 0.08 0.14  0.21 
 2.29 1.75 1.87 2.09 0.97 7.48 6.16 6.13 5.53 4.47 2.95  2.02 
 0.32 0.78 0.76 0.72 0.62 0.28 0.05 0.05 0.06 0.11 0.23  0.36 
 0.34 0.69 0.65 0.66 0.62 0.35 0.05 0.11 0.11 0.15 0.28  0.39 

120 
2.99 2.58 2.67 2.59 1.94 6.93 1.27 17.77 4.29 3.87 3.28 2.68 1.68  0.67 0.39 0.45

 0.22 0.28 0.26 0.27 0.38 0.14 0.53 0.00 0.12 0.14 0.19 0.26 0.43  0.71 0.82 0.80
 0.28 0.28 0.26 0.28 0.39 0.08 0.54 0.00 0.10 0.14 0.24 0.28 0.47  0.75 0.86 0.85
 2.11 1.49 1.53 1.53 1.30 5.49 1.13 25.48 4.12 3.13 2.10 1.45 0.88  0.55 0.53 0.33
 0.35 0.47 0.46 0.46 0.52 0.24 0.57 0.00 0.13 0.21 0.35 0.48 0.64  0.76 0.77 0.85
 0.34 0.44 0.40 0.44 0.52 0.14 0.56 0.00 0.13 0.24 0.40 0.49 0.67  0.77 0.80 0.87

Note: There are two set of results, one from the LM test, the other from the Wald test, for each maturity 
pair. First number in each set is the test statistic and second and third numbers are asymptotic and finite 
sample p-values. The cells, that are highlighted indicate the rejection of the EH at 5% empirical 
significance level. N.S. means instability of the restricted VAR parameter, N.C. means non-
convergence of the iterative procedure 

Results of the LM and Wald tests of the expectations hypothesis of term structure are 

provided in Table 4. As one can see the LM and DM tests are not always working, 

especially with AIC model selection method and/or in the first sub-sample. The 

reasons are instability of the restricted VAR parameter, and non-convergence. 
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However, our study is not the first one to point out this problem. The former problem 

is observed in Bekaert et al (2006) and the latter is present in Sarno et al (2006). In 

this case the asymptotic Wald test emerges as the only way to make an inference, 

which is very likely to be far off than that of the finite sample Wald test. It seems that 

the theory receives a strong rejection in either at the extreme short end of the term 

structure or the longest end. As hypothesized earlier the EH seems to be getting more 

support in the second sub-sample in contrast to Campbell & Shiller (1991)’s claim 

that it worked better prior to 1978. But notice that the second sub-sample does not 

include the Fed’s reserve targeting policy period.  

Another observation one can make is that most rejections occur where k is 

small, i.e. when the number of roll over investments are small. Together with more 

rejections at the short end of the maturity spectrum this results might be suggesting 

because of the transaction costs noise traders specifically concentrate on these 

portions of the term structure influencing the market to operate away from what the 

theory would predict.     

It is interesting to compare the LM test result of Panel A with its counterpart in 

Table 8 of Sarno et al (2006). If one ignores instability problem, which is non-existent 

in Sarno et al (2006), and marginal inferences, there seems to be pretty good 

agreement between 2 tables in that the EH is rejected at the short and longest end of 

the maturity spectrum in the first sub-sample, and only at the short end in the second 

sub-sample. Thus imposing not only the EH but also conditional homoskedasticity 

and exogenous lag order selection method to generate data under the null hypothesis 

does not seem to entail a large inferential difference. But as one would expect the EH 

receives more support in our study and more so in the second sub-sample. It is also 

relieving to note that this inference remains almost intact when SIC is used as the 

model selection method. 

Reflecting the poor approximation of the finite sample distributions provided 

by the first order asymptotic theory, the differences between asymptotic and finite 

sample inferences are non-negligible. Confirming B&H result, most extreme 

departures occur with the Wald test. When AIC is used there are 17 inferential 

differences in the first sub-sample and 27 differences in the second sub-sample at 5% 

significance level with the Wald test as opposed to 9 and 12 with the LM test. 
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However, when SIC is used the differences become much fewer, 2 and 19 with the 

Wald test and 1 and 11 with the LM test statistic.  

Interestingly, in terms of the inferential difference between the finite sample 

Wald and LM tests things are reversed, they meet more often when AIC not the SIC is 

used as a model selection method.  There are 1 and 2 differences with AIC as opposed 

to 4 and 16, in the first and second sub-sample respectively.  

 

4. Conclusion 

We extend the vector autoregression (VAR) based expectations hypothesis test of 

term structure considered in B & H (2001) using recent developments in the bootstrap 

literature. Firstly, we use wild bootstrap to allow for conditional heteroskedasticity in 

the VAR residuals without imposing any strict parameterization. Secondly, when 

making a finite sample inference, we endogenize the model selection procedure, 

employ the restricted not the unrestricted VAR residuals and randomize the initial 

condition in the bootstrap replications to reflect the true uncertainty. Finally, 

stationarity correction is introduced in order to take account of the possible explosive 

VAR parameters after they have been adjusted for the finite sample bias. 

When the modified B&H methodology is applied to an extensive US zero 

coupon term structure data ranging from 1 month to 10 years we find less rejections 

for the theory in the second sub-sample and when it is rejected it occurs at the very 

short and/or long end of the maturity spectrum. It is also relieving to note that this 

inference seems to be robust to both model selection methods used in this study. In 

terms of the conclusions made about the validity of the EH of term structure, the main 

difference between this study and its counterpart of Sarno et al (2006), which uses the 

original B&H methodology, is that we reject the theory less often than they do. This is 

probably as one would expect, since our null hypothesis includes only the EH, what 

we are interested in, not the conditional homoskedasticity and exogenous VAR lag 

length hypotheses on top that of the EH.   
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Appendix A. Multivariate autocorrelation test robust to  

conditional heteroskedasticity 

In this appendix we describe Godfrey & Tremayne (2005) autocorrelation test robust 

to conditional heteroskedasticity, generalized into multivariate framework in Bataa 

(2006). Consider a general dynamic system of n stochastic equations, the residuals of 

which are being suspected to have autocorrelation,  

0000 UBZY +=         (1) 

where [ ]′= ++
×

iTi
nT
i yyY ,...,1 , 

[ ]
[ ]′=

×+
ΠAAB ,,...,10 p

nmnp
,  [ ]′=

× TmT
xxX ,...,1 ,  

[ ]′= ++
×

iTi
nT
i uuU ,...,1 , 

[ ]
[ ]XYYZ ,,...,10 p

mnpT
−−

+×
= , yt and tu  are (n×1), xt is (m×1), Ai is 

(n×n) and Π is (n×m), and this system reduces to a VAR(p) without an intercept when 

Π=0 and to a static system when Ai=0, i=1,..,p. We assume all values of z satisfying 

0...2
21 =−−− p

p zzz AAAI  lie outside the Argond diagram and that observations 

y1-p to y0 are available for the lagged variables, leaving T number of observations to 

estimate (1).   

If there is autocorrelation of order g in 0U , it follows a VAR(g) without an intercept,  

 ∑
=

− +=
g

j
jj

1
0 ECUU  

A model dependent autocorrelation test is then performed by calculating the least 

squares residuals from (1) and evaluating the following auxiliary system, 

EZBY +=0          (2)  

where
[ ]

[ ]gpmkgnT −−−−
++×

= UUXYYZ ˆ,...,ˆ,,,..., 11)(
,   

[ ]
[ ]′=

×++
gpnmgpn

CCΠAAB ,...,,,,..., 11)(
 then the least squares estimator of (2) is 

YZZZB ′′= −1)(ˆ  as in familiar univariate case. If we let )ˆ(ˆ Bβ vec=  then it can be 

shown,  

),()ˆ( 11 −−⎯→⎯− WVV0Nββ dT ,      3) 

with ΓIV ⊗= n  and Tp /lim ZZΓ ′=  under suitable regularity conditions, see 

Bataa (2006).  
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Multivariate extension of Godfrey and Tremayne (2005) test is now performed 

by testing the null hypothesis H0: 0...1 === gCC . This test for residual 

autocorrelation in (1) is equavalent to the Wald test of the hypothesis testing  

H0: Rβ = 0 against Rβ ≠ 0,  

where R is a n2k× n2(p+k) selection matrix of zeros except a unity in each row that 

picks up the parameters of the lagged residuals in β one by one.  

When there is heteroskedsticity in the resuduals, eΣ  is no longer the same for 

all t, and White’s (1980) heteroskedsticity consistent covariance matrix estimator in 

the univarite framework is extended into the current setup by consistently estimating 

W as  

∑
=

′⊗′=
T

t
ttttT 1

ˆˆ1ˆ zzeeW ,        (4) 

where zt is tth row of Z. Note that the estimator reduces to the one suggested in White 

(1980, p.820) when n=1 and to the estimator in the previous paragraph under 

homoskedasticty. We also replace tê  by tû , which is found to improve finite sample 

inference in the univariate framework as discussed in Davidson and MacKinnon 

(1985) and Godfrey and Orme (2004). From (3) and (4), the multivariate GT test has 

the following asymptotic distribution   

[ ] )()ˆ()ˆˆˆ()ˆ( 22111 knTGT d χ⎯→⎯′′=
−−− βRRVWVRβR . 
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Appendix B. Selected empirical distributions of test statistics and  
lag length based on AIC 

Jan 1952- Dec 1978 
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Jan 1982- Dec 2003 
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Selected empirical distributions of test statistics and  
lag length based on SIC 

Jan 1952- Dec 1978 
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Jan 1982- Dec 2003 
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