
A new framework for firm value using copulas

Maria Elena De Giuli∗, Dean Fantazzini†, Mario Alessandro Maggi‡

Abstract

In this paper we present some contingent claim analysis’ models for the firm
value. We focus on two different approaches: the structural (Merton) approach and
a new one that treats the asset value as a claim on the firm’s securities. The non-
observability of the assets’ value in structural models can be overcome using the
bivariate contingent claim analysis and copula theory. First we consider the case of
the complete markets followed by the general case of incomplete markets. In the
latter we provide the lower and upper bound of the firm’s value, using no-arbitrage
arguments.
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1 Structural models

Structural models base the evaluation of firm related securities on the structural firm
variables, i.e. the firm’s Assets and Debt values. Those models date from the early
seventies. Both the classic papers by Black and Scholes [5] and by Merton [17] point out
that the liabilities of a corporate firm may be priced as plain vanilla options. Needless
to say, the straightforward use of the Black-Scholes valuation formulas requires some
basic assumptions on the behavior of Assets, no-arbitrage opportunities and continuous
hedging.

Definition 1 The value of a firm is the value of its Assets.

A very common assumption in structural models (e.g., see [18], [19], [15], [12]) is:
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Assumption 2 The value At of the firm follows a geometric Brownian motion

dAt = µAt dt + σAt dWt, (1.1)

where Wt is a Wiener process and the drift and volatility coefficients µ and σ do not

depend on the capital structure of the firm

qt =
Bt

Et

, (1.2)

i.e. on how the Assets’ value At is split into Equity value Et and Bonds value Bt:

At = Bt + Et. (1.3)

The independence of (µ, σ) on qt simply translates the Miller-Modigliani theorem
(see [21], [22]). Merton [16] obtains equation (1.1) starting from a general intertemporal
equilibrium model of the assets market and assumes “ the known net flows of the firm [. . .
such as ] dividends, coupon payments, sinking fund payments, and principal repayments

[. . . and ] the future issuance of new securities, e.g., equity or debt, where the timing,

terms, and proceeds are known for certain”have no value (e.g., see Merton [17], [18], [19],
and Mason and Merton [15]).

A crucial problem affects the structural approach: the Assets’ value At is a non-
observable variable (e.g., see Leland [14], Trigeorgis [32], Apabhai et al. [2], and Elizade [7]).

For the purpose of our analysis, we give an outline only of the early structural models:
the Merton and the Black & Cox. A review of the literature on structural models is
beyond our scope, therefore for a detailed analysis we refer to Ammann [1], Elizade [7],
and Bieleki et al. [3].

1.1 The Merton model

In the Merton [17] model, debts are assumed to be zero coupon bonds with a total face
value of D at a future expiration date T > t. Debts are risky, as their final value is
contingent on AT . Moreover, it is also assumed that the firm does not issue new debts
of equivalent or senior rank in period [t, T ] and does not make payments for dividends or
share repurchase. In this case we get the final values of equity and debt:

ET = max (AT − D, 0) , (1.4)

BT = min (D, AT ) = D + min (AT − D, 0) . (1.5)

The Equity value can be considered the value ct (At, D) of a European call written
on the Assets’ value, with expiration T and strike price D. In a similar way, the bond-
holders’ position is equivalent to the one of who have bought the firm outright from the
stockholders and have written to them an option to buy back the firm at T for D (similar
remarks may be found, e.g., in [31] and [11, sec. 6.14]). Given the instantaneous risk-free
interest rate r, the put-call parity relation allows to summarize all this as follows:

At
Firm’s value

= De−r(T−t)

Bonds value
as if risk-free

− pt (At, D)
value of the put written

by bondholders
︸ ︷︷ ︸

value of risky bonds

+ ct (At, D)
Equity value

(call hold by stockholders)

.
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This way, the total value of the risky bonds is the difference between their present value
De−r(T−t), computed as they were non-risky, and the value pt (At, D) of a European put
with the same underlying, expiration and exercise price of the call held by the stockhold-
ers. The Black-Scholes values of those vanilla options are

{
ct (At, D) = AtN(d1) − De−r(T−t)N(d2) ,

pt (At, D) = De−r(T−t)N(−d2) − AtN(−d1) ,
(1.6)

with

d1,2 =
ln

At

D
+

(
r ± 1

2σ2
)
(T − t)

σ
√

T − t
, (1.7)

N(·) being the standard normal distribution function.
Structural models are used to evaluate corporate bonds, accounting for the credit risk

linked to the default probability of the firms. As remarked above, the main problem is
we cannot observe the Assets’value At and hence neither its volatility σ. In order to
evaluate At and σ, different methods have been proposed. Following Ronn & Verma [26]
and Schellhorn & Spellman [29], we present the construction of a system of equations
that can be solved in At and σ, starting from observable variables. From the Itô’s lemma
the volatility function of Et (At, D) is σAt

∂Et

∂A
. If we suppose that the equity’s volatility

σE (t, Et) has the form σE (t, Et) = σEEt, with σE > 0, we can write the system

{
Êt = c (At, D)

σ̂EÊt = σAt
∂Et

∂A

(1.8)

in which all quantities but At and σ can be measured for a firm with traded equity. The
hat indicates the observed market values1. It is also common to use ρD, with ρ ∈ [0, 1],
as the final asset value that triggers the defaults. From Black & Scholes formula we can
compute the partial derivative ∂Et

∂A
= N(d1), with d1 as in (1.7). The system (1.8) has

no explicit solution, but it can be easily solved numerically.
Merton’s model has been extended in several ways. Some extensions deal with differ-

ent types of securities (e.g. coupon bonds, callable bonds, mortgages, convertible bonds,
variable rate bonds). Other extensions treat the valuation of claims with different ma-
turities, seniority or special properties. In the next section we present the Black & Cox
extension of the Merton model.

1.2 The Black & Cox model

The Merton model constrains the default to only happening at the final date T . In their
model, Black & Cox [4] introduce the bondholders’ right to bankrupt the firm at any
time t ≤ T : “if the value of the firm falls to a specified level, which may change over

time, then the bondholders are entitled to force the firm into bankruptcy and obtain the

ownership of the assets.”, see [4, p. 355]. This feature makes the Equity and Debt barrier
American derivatives written on the Assets’ value. Black & Cox assume the same asset

1The volatility value σ̂E can be estimated from the time series of stock prices or can be obtained from
the value of derivatives written on the stocks.
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value dynamics as the Merton model. Moreover, the bankruptcy level is Ce−γ(T−t) and
the dividend payout is aAt. In this case the debt evaluation formula is

BBC (t, At) = De−r(T−t)
[
N(z1) − y2θ−2N(z2)

]
+ Ate

−a(T−t)
[
N(z3) + y2θN(z4)

+yθ+ζea(T−t)N(z5) + yθ−ζea(T−t)N(z6) − yθ−ηN(z7) − yθ−ηN(z8)
]

, (1.9)

where the quantities defined in table 1 are functions of the following known parameters
and values:

• r, risk-free interest rate,

• a, dividend payout rate,

• γ, rate of evolution of the bankruptcy level,

• σ, assets’ volatility,

• At, Assets’ value,

• T , maturity.

y = Ce−γ(T−t)

At
, θ =

r−a−γ+1
2 σ2

σ2 ,

δ =
(
r − a − γ − 1

2σ2
)2

+ 2σ2 (r − γ) , ζ =
√

δ
σ2 , η =

√
δ−2σ2a

σ2 ,

z1 =
ln

At
D

+(r−a− 1
2 σ2)(T−t)√

σ2(T−t)
, z2 = z1 + 2 ln y√

σ2(T−t)
,

z3 = −
√

σ2 (T − t) − z1, z4 = z2 +
√

σ2 (T − t),

z5 = ln y+ζσ2(T−t)√
σ2(T−t)

, z6 = z5 − 2ζ
√

σ2 (T − t),

z7 = ln y+ησ2(T−t)√
σ2(T−t)

, z8 = z7 − 2η
√

σ2 (T − t).

Table 1:

From formulas (1.3) and (1.9) the equity value is EBC
t = At − BBC

t .
The Black & Cox model improves on the classical Merton model and better fits the

actual defaults behavior. The Black & Cox model (like the Merton Model), however, is
limited by the non-observability and volatility of the Assets’ value. As a solution to this
problem, we can adapt the Ronn & Verma approach to the Black & Cox framework. The
following system can be obtained:

{
Et = At − BBC (t, At)

σEEt = σAt

(

1 − ∂BBC

∂At

)
(1.10)

Even though these equations are more complex than (1.8), it is possible to write them
down in a more explicit form and to solve them numerically.
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2 Pricing the firm’s value as a bivariate contingent

claim using copulas

The basic assumption in structural approach is that the Assets’ value is exogenous, so
it can be treated as the underlying in an option pricing framework. This means that in
structural models the Assets’ value does not depend on the dynamics of the firm related
securities, and therefore the Equity has a residual value.

Some recent facts have shown that this approach can not fit actual situations . For
example, consider the Fiat-GM negotiation that took place in 2000 and 2004. In this case,
the value of Fiat’s plants and buildings did depend on how they were funded. See [25]
and [28] for details. Therefore, the value of physical assets can not be exogenous.

In this section, we propose a model that substantially changes the point of view with
regard to structural models. Owing to the financialization of the economy, it is worth
treating the market value of the Assets as a claim on the traded securities: stocks and
bonds. We thus model the dynamics of stocks and bonds and then endogenously evaluate
the Assets. We remark that this approach overcomes the problem of the non-observability
of the Assets’ value (and its volatility).

2.1 A bivariate contingent claim

In order to solve the observability issue, we propose treating the Assets as a bivariate
contingent claim written on the traded securities of the firm, i.e. stocks and bonds. Unlike
the structural approach, we now obtain the Assets value from the processes of traded,
i.e. observable, securities. This way the underlyings are observable, while the contingent
claim is not. Obviously this approach is suited for quoted firms only, but even structural
models resort to quoted firms to solve systems (1.8) and (1.10).

A contingent claim can be written in the general form as

G (g (S1(T ), S2(T )) ; T ) ,

where G (·) is a univariate pay-off function which identifies the derivative contract, g (·)
is a bivariate function which describes how the 2 underlying securities determine the
final cash-flows, Si denotes the price of the ith underlying security and T is the contract
maturity.

By using this framework, we can express the final value of the firm At as

AT = G (ET , BT ; T ) = max (ET + BT , 0) I[(ET≥0),(0≤BT ≤D)] , (2.11)

where I is the indicator function.
While this bivariate pricing problem is already quite complex in a standard Gaussian

world, the evaluation task becomes even more difficult when we consider the well-known
evidence of departures from normality, given by skewness, kurtosis, smile and term struc-
ture effects of volatility. Moreover, because of the limited liquidity of many financial
assets, such as risky bonds, the problem of incomplete markets arises. Given this reality,
jointly taking into account non-normality of yields, the yields’ dependence structure and
markets incompleteness, seems to be a very challenging mission.

A possible way out of this stalemate is to resort to copula theory, as first proposed
in the seminal work by Rosemberg [27] and generalized by Cherubini et al. [6]. We deal
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with a complex non-normal joint distribution by separating two issues: (i) we work with
non-Gaussian marginal probability distributions and (i) we use a copula to combine these
distributions in a bivariate setting. The bivariate pricing kernel can therefore be written
as a function of univariate pricing functions. Besides, copula theory can provide us with
upper and lower bounds that we can use when we deal with incomplete markets.

2.2 Copula theory: the mathematical background

In what follows, the definition of a copula function and some of its basic properties are
given. The reader interested in more detail can refer to Nelsen [23] and Joe [13]. Since
in the sequel we want to price the firm’s value as a bivariate claim, here we stick to the
bivariate copula: nonetheless, most of the results carry over to the general multivariate
setting.

A 2-dimensional copula is basically a bivariate cumulative distribution function with
uniform distributed margins in [0, 1]. If we consider X1, X2 to be random variables, we
have:

Definition 3 The copula of (X1, X2), where X1 ∼ F1, X2 ∼ F2, and F1, F2 are contin-

uous, is the joint distribution function of U1 ≡ F1(X1), U2 ≡ F2(X2).

The variables U1, U2 are the ‘probability integral transforms’ of X1 and X2, and follow
a Uniform(0, 1) distribution, regardless of the original distribution, Fi. Thus a copula is
a joint distribution of Uniform(0, 1) random variables.

Proposition 4 A bivariate copula is a function C of two variables u1 and u2, with the

following properties:

1. The range of C (u1, u2) is the unit interval [0, 1];

2. C (u1, u2) = 0 if any ui = 0, for i = 1, 2;

3. C (1, ui) = ui , for all ui ∈ [0, 1];

4. C (u1, u2) is 2-increasing in the sense that for

VCt
([u11, u12]×[u21, u22]) ≡ Ct(u12, u22)−Ct(u11, u22)−Ct(u12, u21)+Ct(u11, u21) ≥

0 for all u11, u12, u12, u22 ∈ [0, 1], such that u11 ≥ u12 and u21 ≥ u22.

The first three conditions provide the lower bound on the distribution function and
ensures that the marginal distributions are uniform. The condition that every rectangle
VCt

is non-negative ensures that the probability of observing a point in the region [u1, u2]×
[v1, v2] is non-negative. This definition shows that C is a bivariate distribution function
with uniformly distributed margins. Copulae have many useful properties, such as uniform
continuity and (almost everywhere) existence of all partial derivatives, just to mention
a few (see Nelsen [23], Theorem 2.2.4 and Theorem 2.2.7). Now we present the Sklar’s
theorem (see Sklar [30]), which justifies the role of copulas as dependence functions:

Theorem 5 (Sklar’s theorem, 1959) Let H denote a 2-dimensional distribution func-

tion with margins F1 and F2. Then, there exists a copula C such that for all real (x1, x2)

H(x1, x2) = C(F1(x1), F2(x2)).
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If all the margins are continuous, then the copula is unique. Moreover, the converse of

the above statement is also true2.

The latter statement is the most interesting for bivariate density modeling, since it
implies that we may link together any n = 2 univariate distributions, of any type (not
necessarily from the same family), with any copula in order to get a valid bivariate
distribution.

A copula is a function that, when applied to univariate marginals, results in a proper
bivariate pdf (probability distribution function): since this pdf embodies all the infor-
mation about the random vector, it contains all the information about the dependence
structure of its components. Using copulas in this way splits the distribution of a random
vector into individual components (marginals) with a dependence structure between them
(the copula) without losing any information.

For what follows in the paper, three specific copulas are of main interest: the product

copula, the minimum and the maximum copulas. As for the first, the copula representa-
tion of a joint distribution H degenerates into the so-called product copula C(u1, u2) =
u1 · u2, if and only if X1 and X2 are independent.

As for the others, they derive from the well-known Fréchet-Hoeffding result in prob-
ability theory, stating that every bivariate joint distribution function H is constrained
between the bounds

max(F1(x1) + F2(x2) − 1, 0) ≤ H(x1, x2) ≤ min(F1(x1), F2(x2)).

As a consequence of Sklar’s theorem, the Fréchet-Hoeffding bounds exist for copulas too:

max(u1 + u2 − 1, 0) ≤ C(u1, u2) ≤ min(u1, u2)

which are commonly denoted by Wand M . In correspondence of the extreme copula
bounds, there is perfect positive and negative dependence between the variables, and
every variable can be obtained as a deterministic function of the other (see Embrechts et
al. [9], [8] for a proof).

2.3 The case of complete markets

When the market is complete, it is common knowledge that a bivariate contingent claim
of the type given by (2.11) can be exactly replicated and its price is uniquely determined.
Moreover, there is a unique risk-neutral probability distribution Q(E, B|Ft), with density
function denoted by q(E, B|Ft), which represents the pricing kernel of the economy.

Remembering that G(ET , BT ; T ) is the bivariate claim pay-off, its pricing function
g(Et, Bt; t) can be expressed as

At = g(Et, Bt; t) = P (t, T )

∞∫

0

D∫

0

G(ET , BT ; T )q(ET , BT |Ft) dET dBT , (2.12)

where D is the bond face value, while P (t, T ) is the risk-free discount factor, which, for
the sake of simplicity, we assume deterministic or independent of ET and BT . However, a

2See Nelsen [23] for a proof, Theorem 2.10.9.
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more general extension is possible if we change the measure to the forward risk-neutral one,
as shown in Cherubini et al. [6]. Besides, the marginal conditional distributions QE(E|Ft)
and QB(B|Ft), with densities qE(E|Ft) and qB(B|Ft), can be derived as follows

qE(E|Ft) =

D∫

0

q(ET , BT |Ft) dBT ,

qB(B|Ft) =

∞∫

0

q(ET , BT |Ft) dET ,

so that a univariate contingent claim written on E or B , can be priced as

g(Et; t) = P (t, T )

∞∫

0

G(ET ; T )qE(ET |Ft) dET

g(Bt; t) = P (t, T )

D∫

0

G(BT ; T )qB(BT |Ft) dBT

Let’s now consider a digital option, which pays a fixed sum if the price of the underlying
asset is higher (or lower) than a strike level K, i.e. a call (put) digital option. We can
set this amount to one unit of currency without loss of generality. Given the risk-neutral
distribution QE or QB for assets ET or BT , their price are

DCE = Digital Call(ET , K1) = P (t, T )QE(ET > K1),

DCB = Digital Call(BT , K2) = P (t, T )QB(BT > K2).

Then this result follows:

Definition 6 In a complete market, the prices of univariate digital options are equal to

the discounted values of risk-neutral probability distributions.

In order to write the bivariate pricing function, the final step is to consider the exten-
sion of Sklar’s theorem to conditional distribution:

Theorem 7 For any bivariate conditional distribution function Q(E, B|Ft) with margins

QE(E|Ft), and QB(B|Ft), there exists a copula C(uE , vB) such that

Q(E, B|Ft) = C(QE(E|Ft), QB(B|Ft)).

Besides, given two conditional distributions QE(E|Ft), QB(B|Ft) and a copula function

C(uE , vB), the function C(QE(E|Ft), QB(B|Ftt)) is a bivariate conditional distribution

function3.

This theorem enables us to separate the effects of the marginal pricing kernels and
the dependence structure of the underlying assets.

3See Patton [24] for a proof.
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Now Consider the case of a bivariate digital option paying one unit of currency if both
assets ET and BT are higher than strike prices K1 and K2, respectively, and denote it
DEB.

By using the previous Definition 6 and Theorem 7, we can finally write the (discounted)
risk-neutral probability distribution Q(E, B|Ft) as a copula function taking the forward
values of univariate digital options as arguments:

DEB(K1, K2) = P (t, T ) Q(E, B|Ft) = P (t, T ) CEB

(
DCE

P (t, T )
,

DCB

P (t, T )

)

,

where CEB is a particular copula function, the survival copula4.
Coming back to our initial bivariate pricing function g(Et, Bt; t) given by (2.12), we

can write that integral representation using the relationship between the joint density and
the copula and marginal densities5

q(E, B|Ft) = cEB (QE , QB|Ft) · qE (QE|Ft) · qB (QB|Ft) ,

where cEB is the density associated with the copula function. With this result in hand,
the firm’s value price At = g(Et, Bt; t) can be expressed as

At = P (t, T )

∞∫

0

D∫

0

G(ET , BT ; T )cEB (QE, QB|Ft) qE (QE |Ft) qB (QB|Ft) dET dBT .

The above integral can be simplified according to the assumptions made within the
analysis. Since here we want to propose a general procedure to use as a building block
for a firm’s value, we leave possible extensions of this model to future research.

2.4 The case of incomplete markets

Market incompleteness is determined by the fact that options are not traded for a con-
tinuum of strike prices, so that the derivative cannot be directly estimated from option
prices observed on the market. In incomplete markets, a perfect hedge does not exist for
each and every contract

From the pricing viewpoint, this new dimension of risk implies the selection of a risk
neutral probability from among many possible candidates to compute the price. One
could resort to expected utility to give a preference rank for the probabilities in the
set, or one could select a range of prices consistent with the no-arbitrage assumption.
The replicating strategies corresponding to the bounds of this range are known as super-

replicating portfolios.
Similarly to what we did in the complete market case, we start with a bivariate digital

product. This is because recovering a contingent claim pricing kernel amounts to pricing
a digital option that pays one unit, if the two events take place. However, we now drop
any reference to Sklar’s theorem or any other probability theory argument, and focus our
attention on no-arbitrage pricing only.

4See Nelsen [23] for more details.
5Just take the first derivatives w.r.t. E and B. For more details see also Cherubini et al. [6] Joe [13]

and Nelsen [23].
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Here, we want to show that we can use univariate digital options to hedge the bivariate
one: since we focus on bivariate pricing, we assume that we may replicate and price the
two univariate digital options with exercise date T , underlying markets E and B, and
strike prices K1 and K2, respectively.

We now break the sample space into the four relevant regions, as shown in Table 2,
in order to facilitate the proofs of static arbitrage relationship. We present the payoffs of
the different assets and the relative prices observed in the market in Table 3.

State H State L

State H E ≥ K1, B ≥ K2 E ≥ K1, B < K2

State L E < K1, B ≥ K2 E < K1, B < K2

Table 2: Sample space bivariate digital option

Price HH HL LH LL

Digital Option asset E DCE 1 1 0 0
Digital Option asset B DCB 1 0 1 0

Risk Free Asset P (t, T ) 1 1 1 1
Bivariate digital option ? 1 0 0 0

Table 3: Prices and payoffs for different assets

The problem is to use no-arbitrage arguments to recover the price of the bivariate
digital option. In order to find the super-replication strategies leading to pricing bounds
for the bivariate digital option, one way is to compare its pay-off with the one portfolios
of the single digital options and the risk-free asset:

Theorem 8 The no-arbitrage price DEB(K1, K2) of a bivariate digital option is bounded

by the following inequality:

max(DCE + DCB − P (t, T )) ≤ DEB(K1, K2) ≤ min(DCE , DCB).

Proof We can immediately check that if max [DCE + DCB − P (t, T ), 0] > DEB (K1, K2)
there is an arbitrage opportunity, since I can invest in the bivariate digital option and
the risk-free asset, and fund the investment with univariate digital options. By the same
token, if DEB(K1, K2) > min(DCE , DCB) it will be possible to exploit arbitrage profits
by issuing the bivariate digital option and investing the proceedings in the cheaper of the
univariate digital options.

If we use the forward prices an interesting result emerges:

max
(

DCE

P (t,T ) + DCB

P (t,T ) − 1, 0
)

≤ DEB(K1,K2)
P (t,T ) ≤ min

(
DCE

P (t,T ) ,
DCB

P (t,T )

)

. (2.13)

The two bounds that constrain the range of the forward price of the bivariate digital
option are the Fréchet-Hoeffding bounds. We remark that these bounds simply emerged
from no-arbitrage considerations.

The forward price of this bivariate digital option represents the pricing kernel for a
bivariate contingent claim. The last step is to show that this kernel is indeed a bivariate
copula:
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Proposition 9 The bivariate pricing kernel
DEB(K1,K2)

P (t,T ) is a copula of the type

CEB

(
DCE

P (t,T ) ,
DCB

P (t,T )

)

,

since it must fulfil the following requirements to rule out arbitrage opportunities:

1. It is defined in I2 = [0, 1]× [0, 1] and takes values in I[0, 1];

2. For every v and z of I2, CEB(v, 0) = 0 = CEB(0, z), CEB(v, 1) = v, CEB(1, z) = z;

3. For every rectangle [v1, v2] × [z1, z2] in I2, with v1 ≤ v2 and z1 ≤ z2,

CEB(v2, z2) − CEB(v2, z1) − CEB(v1, z2) + CEB(v1, z1) ≥ 0.

Proof Since the prices of the digital options cannot be higher than the risk-free
asset B, the forward prices of both the univariate and bivariate digital are bounded in
the unit interval, and the first condition follows. The second condition follows from the
no-arbitrage inequality 2.13 by substituting the values 0 and 1 for v = DCE/P (t, T ) or
z = DCB/P (t, T ). The final condition can be shown by taking two different strike prices
K11 > K12 for the asset E, and K21 > K22 for asset B. Denote with v1 = DCE(K11) the
forward price of the first digital option corresponding to the strike K11, with v2DCE(K12)
that of the first digital option for the strike K12 and use an analogous notation for the
second asset B. Then, the third condition above can be rewritten as

DEB(K12, K22) − DEB(K12, K21) − DEB(K11, K22) + CEB(K11, K21) ≥ 0.

This implies that a spread position in bivariate options paying one unit if the two un-
derlying assets end in the region [K12, K11] × [K22, K21] cannot have a negative value.

As a result, the arbitrage free pricing kernel of a bivariate contingent claim is a copula
taking the univaraite pricing kernels as arguments, and super-replicating portfolios given
by the Fréchet-Hoeffding bounds.

max
(

DCE

P (t,T ) + DCB

P (t,T ) − 1, 0
)

≤ CEB

(
DCE

P (t,T ) ,
DCB

P (t,T )

)

≤ min
(

DCE

P (t,T ) ,
DCB

P (t,T )

)

.

With the previous results , we can now state this proposition:

Proposition 10 The super-replicating strategies for the firm’s value At in an incomplete

market for bivariate contingent claims, are given by the following inequality:

P (t, T )

∞∫

0

D∫

0

G(ET , BT ; T )
[

max
(

qE

(
DCE

P (t,T ) |Ft

)

+ qB

(
DCB

P (t,T ) |Ft

)

− 1, 0
)]

dET dBT ≤

≤ At = g(Et, Bt; t) ≤

≤ P (t, T )

∞∫

0

D∫

0

G(ET , BT ; T )
[

min
(

qE

(
DCE

P (t,T ) |Ft

)

, qB

(
DCB

P (t,T ) |Ft

))]

dET dBT ,

(2.14)

where qE(·) and qB(·) are the densities of univariate pricing kernels DCE

P (t,T ) and DCB

P (t,T ) .
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Proof Just take the densities of the previous bounds (2.14) and substitute them in
the pricing equation of the firm’s value (2.12).

3 Conclusions

In the first part of this paper we outline the early structural models, underlying that,
although it is possible to use them to compute the market Assets’ value, they do have
certain limitations. Primarily, the underlying process is not observable, so it may be
necessary to use an approach, such as Ronn & Verma like models, to evaluate the Assets’
value implied by stock and bond market prices. Moreover, as remarked by Eom et al. [10],
the empirical performances of structural models is quite disappointing. Overall, the in-
creasing financialization of the economy is undermining the basic structural assumption:
the exogeneity of Assets’ dynamics. As proposed in the second part of our paper, the
copula approach seems to be the most suitable way of overcoming the limits of structural
models. We therefore treat the Assets’value as a bivariate contingent claim with two
observable underlyings: the stock and bond market prices. In this way, we can evaluate
the firm value according to its capital structure. The copula approach also has another
advantage, we can use it in the case of incomplete markets as well, finding the no-arbitrage
bounds of the market Assets’ value. Therefore, as a building block of a new framework to
compute Assets values, able to model current capital structures taking into account more
realistic assumptions than standard structural models, we propose the copula approach.
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