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Abstract. We study the extent to which self-referential adaptive learning can explain

stylized asset pricing facts in a general equilibrium framework. In particular, we analyze the

effects of recursive least squares and constant gain algorithms in a production economy and

a Lucas type endowment economy. We find that recursive least squares learning has almost

no effects on asset price behavior, for either model, since the algorithm converges fast to

rational expectations. At the other end, constant gain learning may sometimes contribute

towards explaining the stock price volatility and the predictability of excess returns in the

endowment economy. However, in the production economy the effects of constant gain

learning are mitigated by the persistence induced by capital accumulation. We conclude

that, contrary to popular belief, standard self-referential learning alone cannot resolve the

asset pricing puzzles observed in the data.
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1. Introduction

It has often been argued informally that adaptive learning should be able to generate statistics

that can match stylized facts, in models where the traditional rational expectations paradigm

fails. The aim of the present paper is to examine to what extent this assertion is true for

asset pricing facts in a general equilibrium framework. To do this, we incorporate two pop-

ular adaptive learning algorithms, namely recursive least squares and constant gain, into two

workhorse asset pricing models. The first is a production economy that mimics the behavior of

the stochastic growth model. The second is an endowment economy of which the reduced form

resembles the standard Lucas Tree model. We deliberately restrict attention to standard mod-

eling frameworks and learning algorithms. In this way, we are able to isolate the pure effects of

standard self-referential adaptive learning and examine whether such a departure from rational

expectations can help explain stylized facts on asset returns.

The predictions of the two models with learning are compared to the data along several

dimensions, including the first and second asset return moments, the predictability of future

excess returns, the volatility of stock prices and the behavior of the price dividend ratio. Using
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a standard parameterization for the production economy, we find that adaptive learning gen-

erates almost no improvements for the statistics and numbers we are interested in. As in the

fully rational model, the model with learning performs very poorly with respect to asset price

behavior. Moreover, both recursive least squares and constant gain learning have a relatively

moderate effect on the first and second return moments in the Lucas type economy. However,

constant gain learning can generate the predictability of future excess returns that we observe in

the data. In addition, it generates considerably higher stock price volatility and approximately

matches the behavior of the price dividend ratio.

To get some intuition for these results, consider first the endowment economy. In this case,

adaptive learning can generate predictability of future excess returns through the following

mechanism. Since the actual law of motion for the stock price is an increasing function of the

stochastic dividend payment and of an estimated coefficient, a lower than average coefficient

estimate leads to a higher price and a higher price to dividend ratio. In turn, this implies lower

future expected returns, generating the negative correlation between the price to dividend ratio

and the future returns that is observed in the data. A similar argument can be made for higher

than average estimates. Moreover, these effects are reinforced with a higher shock variance and

a higher constant gain for the constant gain algorithm. In contrast, the estimated price elasticity

with respect to the lag that appears in the law of motion of the price in the production economy

has the opposite effect on prices, and it turns out that both effects cancel out irrespective of

the learning algorithm. In other words, adaptive learning does not generate any predictability

in the presence of capital accumulation.

Regarding the price variability, the elasticity of the price with respect to the shock is constant

in the fully rational models, but this may vary under adaptive learning. This implies that

learning has the potential of generating additional volatility, an effect that turns out to be

positive under constant gain learning and is almost negligible under recursive least squares

learning in both models. Finally, we find that the effect of learning on the consumption and

return elasticities that determine the equity premium is relatively small across models and

algorithms, implying that learning has no potential of generating a sizeable equity premium.

In summary, self-referential adaptive learning is not enough to explain the stylized asset pricing

facts that we observe in the data, particularly in models with capital accumulation.

The literature addressing asset pricing facts is very large and a detailed review of it is beyond

the scope of this paper. Kocherlakota (1996), Shiller (1981) and Campbell, Lo and MacKinlay

(1997) provide extensive surveys on these topics. Our work is closely related to the part of the

literature that attempts to explain asset pricing facts in the context of learning and bounded

rationality. This literature includes the work of Timmermann (1994, 1996), Brock and Hommes

(1998), Cecchetti, Lam and Mark (2000), Brennan and Xia (2001), Bullard and Duffy (2001)

and Honkapohja and Mitra (2003).

The work of Brennan and Xia (2001) focuses on explaining the equity premium puzzle in a
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general equilibrium pure exchange economy where non-observability of the exogenous dividend

growth process induces extra volatility. Timmermann (1994, 1996) assumes that the exogenous

dividend process is unknown and estimated by agents in the context of a present discounted

value asset pricing model. As the estimated dividend process is more volatile than the true

underlying process in the short run, this type of learning is able to account for some of the

excess volatility that we see in the data. A similar mechanism to the one described earlier

improves the predictability of stock returns. Brock and Hommes (1998) consider the same

present discounted value asset pricing model with heterogenous beliefs and show how chaotic

dynamics induce endogenous price fluctuations. Finally, Cecchetti et al. (2000) consider a

standard Lucas asset pricing model where agents are assumed to be boundedly rational and

have misspecified beliefs.

Our work differs from the previous papers in several important ways. First, we only consider

self-referential learning, i.e. learning on the endogenous variable, so that agents’ forecasts affect

the realization of the variable. In addition, we assume that the steady state is known and

that agents’ expectations about prices are correctly specified, in the sense that all relevant

variables are taken into account when forecasting. We do not allow for learning on the growth

rate of dividends, a mechanism that has proven useful for generating stock price volatility and

predictability in partial equilibrium models. Apart from the fact that we want to focus on self-

referential learning, the reason is that this would involve introducing some type of structural

learning in the production economy, where the dividends are endogenous. Given this, our

findings can be considered as a lower bound of what adaptive learning can explain, since any

additional features can only help to improve our results. In this sense, our work is closest

to that of Bullard and Duffy (2001), who study the effects of self-referential recursive least

squares learning in the context of a life cycle general equilibrium model. In contrast to this,

we study standard asset pricing models with infinitely lived agents. Finally, our work is also

closely related to the work of Honkapohja and Mitra (2003), who show that bounded memory

adaptive learning can induce extra volatility in the economy. Here, however, we study constant

gain learning, which is considered to be a variant of bounded memory adaptive learning, in the

context of richer reduced form models.

The paper is organized as follows. Section 1 presents the model economies and section 2

discusses the calculation of the rational expectations and adaptive learning equilibria. Section

3 presents the numerical results and section 4 summarizes and concludes.

2. The Environment

We start by describing two standard general equilibrium asset pricing models. For the first

model, which we call the production economy, we allow for capital accumulation, so that the

model mimics the features of the neoclassical growth model. The second, which we call the

endowment economy, does not allow for capital accumulation or depreciation of capital. The

second model can be viewed as a special case of the first and its log-linear approximation
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corresponds to the standard Lucas Tree model.

2.1. The Production Economy. The economy is populated by a large number of identical

and infinitely lived households and firms. Each period, the representative household maximizes

his expected lifetime utility subject to a sequential budget constraint

max Et

∞X
j=0

βju(Ct+j) (1)

s.t.

Ct + PtΘt + P b
t Bt = (Pt +Dt)Θt−1 +Bt−1 +WtNt, (2)

where

u(C) =

(
C1−γ

1−γ if γ > 1

lnC if γ = 1
. (3)

The parameters γ ≥ 1 and β ∈ (0, 1) represent the household risk aversion and time discount
factor respectively. The variables Θt and Bt are the holdings of equity shares and risk-free one

period bonds, Pt and P b
t represent the equity and bond prices, and Dt represents the equity

dividends. The supply of equity is assumed to be constant and is normalized to one, whereas

bonds are assumed to be in zero net supply.

Apart from their asset income, households receive labor income, equal to the aggregate

wage rate Wt times their labor supply Nt. Investors are endowed with one unit of productive

time, which they can allocate to leisure or labor. Given that leisure does not enter the utility

function, however, the entire time endowment is allocated to labor and Nt is therefore equal

to one. The first order conditions for the household’s problem give the usual Euler equations,

which determine asset prices

Pt = Et[Mt,t+1(Pt+1 +Dt+1)], (4)

P b
t = Et[Mt,t+1], (5)

where Mt,t+j = βj(Ct+j/Ct)
−γ . Alternatively, we can rewrite the equations in terms of the

gross asset returns as

1 = Et[Mt,t+1Rt+1], where Rt+1 =
Dt+1 + Pt+1

Pt
, (6)

1 = Et[R
f
t+1], where R

f
t+1 =

1

P b
t

. (7)

Each period, the representative firm combines the aggregate capital stock Kt−1 with the

labor input from the households to produce a single good Yt according to the following constant
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returns to scale technology

Yt = ZtK
α
t−1N

1−α
t , (8)

where Zt is a random productivity shock assumed to follow the stationary process

logZt = ρ logZt−1 + εt, εt ∼ iid(0, σ2ε). (9)

Investment It is entirely financed by retained earnings or gross profits Xt = Yt −WtNt and the

residual of gross profits and investment is paid out as dividends to the firm’s owners. Thus,

Dt = Xt − It. Furthermore, capital accumulates according to

Kt = It + (1− δ)Kt−1, (10)

where 0 < δ < 1 is the capital depreciation rate. The representative firm maximizes the value of

the firm to its owners, equal to the present discounted value of its nets cash flows or dividends

Dt = Xt − It, subject to (8), (9) and (10)

max Et

∞X
j=0

Mt,t+jDt+j . (11)

The first-order conditions are

Wt = (1− α)Yt, (12)

1 = Et

©
Mt,t+1

£
αZt+1K

α−1
t N1−α

t+1 + (1− δ)
¤ª

. (13)

Finally, market clearing implies that

Yt = Ct +Kt − (1− δ)Kt−1, (14)

Bt = 0, Θt = 1. (15)

To derive the system of equations that describe the equilibrium, we substitute for Nt = 1,

Bt = 0, Θt = 1 andWt = (1− α)Yt. The budget constraint can be omitted, since it is redundant

by Walras’ Law. Moreover, it can be shown that, in equilibrium, Kt = Pt, and we can therefore

omit the capital Euler equation. Finally, letting xt = log(Xt/X̄) for any variable Xt, where X̄

represents its steady state value, the original system of equations can be approximated by the
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following system of linear equations:

zt+1 = ρzt + εt, (16a)

yt = zt + αkt−1, (16b)

ct =
1− β (1− δ)

1− β (1− δ)− αβδ
yt +

(1− δ)αβ

1− β (1− δ)− αβδ
kt−1 −

αβ

1− β (1− δ)− αβδ
kt, (16c)

dt =
1− β (1− δ)

1− β
yt +

β(1− δ)

1− β
kt−1 −

β

1− β
kt, (16d)

pt = Et [−γ (ct+1 − ct) + (1− β)dt+1 + βpt+1] , (16e)

pbt = Et [−γ (ct+1 − ct)] , (16f)

kt = pt. (16g)

2.2. The Endowment Economy. In the endowment economy, the household sector is the

same as above. Capital is constant and does not depreciate over time. Therefore, the log-linear

system of equilibrium equations can be obtained by setting kt = 0 and δ = 0 in the previous

system of equations, resulting in the following log-linear model:

zt+1 = ρzt + εt (17a)

ct = dt = yt = zt (17b)

pt = Et [−γ (dt+1 − dt) + (1− β)dt+1 + βpt+1] (17c)

pbt = Et [−γ (dt+1 − dt)] (17d)

This economy can be viewed as an economy where a centralized technology or tree produces a

single good Yt using a constant amount of capital K and the labor supply from the households.

Labor is paid its marginal product. Furthermore, households can decide how much labor to

supply and how much to invest in the tree and in risk-free one period bonds, while the owners

of the tree receive as dividend payments the total output net of labor payments. Moreover,

the system of equations in (17a)-(17d) corresponds to the log-linear system of equations of a

standard Lucas Tree model with equity and risk free one period bonds, where log-linearized

consumption is equal to the log-linearized dividend payments of the tree, whereas the log-

linearized dividends follow the same law of motion as the AR(1) process zt. To see this, note

that the equilibrium consumption of a standard Lucas Tree model is given by Ct = Dt, and the

first-order conditions imply that the asset prices are equal to

Pt = βEt
D−γt+1
D−γt

(Dt+1 + Pt+1) (18)

P b
t = βEt

D−γt+1
D−γt

. (19)
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Moreover, if we assume the AR(1) specification logDt = ρ logDt−1 + εt, where εt ∼ iid
¡
0, σ2ε

¢
,

the log-linear system of the equations that describes the Lucas model is given by:

dt+1 = ρdt + εt+1, (20a)

ct = dt, (20b)

pt = βEtpt+1 + (1− β − γ)Etdt+1 + γdt (20c)

pbt = Et [−γ (dt+1 − dt)] . (20d)

3. Rational Expectations and Adaptive Learning

In order to calculate the rational expectations equilibria of the two models, we first rewrite the

system (16a)-(16g) in reduced form by eliminating all variables but the state variables kt and

zt in the Euler equation

pt = a1Etpt+1 + a2pt−1 + bzt, (21)

zt = ρzt−1 + εt, (22)

where the coefficients a1, a2 and b are given by (39a)-(39c) in the appendix. Similarly, the

reduced form for the endowment model is given by

pt = aEtpt+1 + bdt, (23)

dt = ρdt−1 + εt, (24)

where a = β and b = (1− β − γ) ρ+ γ.

3.1. Rational Expectations Equilibrium. With the equilibrium conditions in place, we

next solve for the rational expectations equilibria of the two models using the method of undeter-

mined coefficients. For the production economy, the (unique stationary) rational expectations

equilibrium is given by

pt = φ̄ppt−1 + φ̄zzt−1 + ηt, (25)

where ηt is some white noise shock and
1

φ̄p =
1

2a1

¡
1−
√
1− 4a1a2

¢
, (26)

φ̄z =
b

1− a1(ρ+ φ̄p)
ρ. (27)

1The log-linear system for the production economy has two solutions, corresponding to the so-called minimum
state variable (MSV) solutions. Moreover, it is known that this reduced form model is regular, i.e. it has a unique
stationary solution, if and only if |a1 + a2| < 1. In the present model, and given the parameter restrictions, it
can be verified that a1, a2 ∈ (0, 1) and that b > 0. It can further be shown that |a1 + a2| < 1. Therefore, the
solution with the minus is the unique stationary solution (see Evans and Honkapohja, 2001).
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For the endowment economy, the rational expectations equilibrium is given by

pt = φ̄dt−1 + ηt, (28)

where ηt is a white noise shock and

φ =
(1− β − γ) ρ+ γ

1− βρ
ρ. (29)

Note that this solution exists and is finite only under the assumption that βρ < 1.

If we compare the two models under rational expectations, the first difference is that the

solution for the production economy (25) contains a lag of the price, while the solution of

the endowment economy (28) does not. This means that, for an identical parametrization of

the exogenous shock, the price series in the production economy has an additional source of

persistence due to the lag. Second, it can easily be shown that the elasticity with respect to the

shock φ̄z in the production economy is smaller than the one in the endowment model for the

same parametrization. These observations imply that, under rational expectations, the amount

of exogenous volatility fed into the price series of the production economy can be considerably

smaller than that in the endowment economy. This is a well-known result which is attributed

to the fact that a production economy induces additional consumption smoothing via capital

accumulation. Therefore, there is a higher chance of matching the stylized facts of asset prices

under rational expectations in the endowment economy. These observations will prove to be

useful later on.

3.2. Adaptive Learning. Next, we make a small deviation from rational expectations, by

assuming that agents form expectations about future prices based on econometric forecasts. In

particular, since we want to keep the economies as close as possible to the rational expectations

framework, we make the following assumptions:

A1. Agents know the correct specifications of the models; in other words, they know the steady

state and they know which variables are relevant for forecasting prices (no omission or

inclusion of extra variables).

A2. Agents know the true parameters that characterize the exogenous shock, i.e. they know

ρ and σ2ε.

By making these assumptions, we aim in isolating the effects of self-referential learning on

the asset pricing statistics and examining if this type of learning alone can provide a better

match for the stylized facts. Given these assumptions, agents expectations for both models are

formed according to

E∗t pt+1 = x0tφt,
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where xt is the vector of state variables, i.e. xt = (pt, zt)
0 for the production economy and

xt = dt for the endowment economy. The vector φt is now an estimate of the true coefficients

which is obtained by the recursive algorithm2(
R1 = S0 + x0x

0
0

φ1 = φ0 +R−11 x0(k1 − x00φ0)
, (30a)(

Rt = Rt−1 + gt
¡
xt−1x0t−1 −Rt−1

¢
φt = φt−1 + gtR

−1
t xt−1

¡
pt − x0t−1φt−1

¢ for t ∈ {2, 3, ...} , (30b)

S0 and φ0 given.

The sequence {gt} is known as the gain and represents the weight of the forecasting errors when
updating the estimates. We consider two standard and broadly used specifications for the gain,

namely gt = 1/t and gt = g, 0 < g < 1. The former is a recursive least squares (RLS) algorithm,

whereas the latter is known as a tracking or constant gain (CG) algorithm.

A first difference between the two algorithms is that, when written in a non-recursive way,

RLS assigns equal weights to all past forecasting errors, while CG assigns weights that decrease

geometrically. As a consequence, the RLS can be interpreted as the forecasting method that

is used when the econometrician believes that all past information is equally important for

forecasting future prices. On the other hand, the CG can be interpreted as the method that

is used when the econometrician believes that recent realizations of the stock price are more

important in forecasting next period’s price.

Another difference between the two algorithms is related to their asymptotic behavior. Since

1/t → 0 as t → ∞, the contribution of the forecasting error in the estimate of φ under RLS
disappears in the limit and the forecasting algorithm eventually converges to the rational expec-

tations equilibrium φ̄. In contrast, the CG algorithm implies that there is always some non-zero

correction of the estimate (perpetual learning) which prevents the algorithm from converging

to a constant. Instead, the estimate from the CG algorithm converges to some stationary

distribution that fluctuates around the rational expectations solution.3

4. Stylized Facts

Table 1 presents the stylized asset pricing facts that we will use to compare the different models

under rational expectations and adaptive learning. The data set is the one used in Campbell

(2002).4 The quarterly stock market data set is obtained from the nominal CRSP NYSE/AMEX

Value Weighted Indices. The aggregate dividend series is extracted from these indices to con-

2See Carceles-Poveda and Giannitsarou (2005).
3Convergence to the rational expectations solution under RLS, for both models, is achieved under certain

conditions, which we omit here since these are always satisfied for all reasonable parametrizations. Convergence
under CG is achieved for small gains. The details for the derivations of these conditions can be found in Evans
and Honkapohja (2001), as well as in Carceles-Poveda and Giannitsarou (2005).

4The dataset is available at the author’s website.
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struct the quarterly dividend and stock return series. Following Campbell (2002), the price

dividend ratio is constructed as the stock price index associated with returns excluding divi-

dends, divided by the total dividends paid during the last four quarters. The nominal risk-free

rate is the three-month quarterly T-Bill rate. The nominal stock return is deflated using cur-

rent inflation and the nominal risk-free rate is deflated using the inflation next period. The

consumption series corresponds to real per capita consumption of non-durables and services.

< TABLE 1 HERE >

The first part of table 1 reports our estimates for the quarterly mean and standard deviation

of stock returns, the risk-free rate and the equity premium in percentage terms. The stock return

has been around 2.3 % per quarter against a risk-free rate of 0.2 %, leading to a quarterly

premium of around 2 % during the postwar period. We also see a much higher volatility for the

equity return and equity premium of around 7.6 %, in contrast to the volatility of around 1 %

for the risk-free rate. Replicating the first and second asset moments still represents a challenge

for standard rational expectations models.

The second panel of table 1 reports results from regressions of the k = 1, 2, 4 year ahead

equity premium on the current log price dividend ratio divided by its standard deviation. Thus,

the slope coefficients reflect the effect of a one standard deviation change in the log price dividend

ratio on the cumulative excess returns in natural units. The table reports the regression slopes,

the adjusted R2 and the t-statistic, adjusted for heteroskedasticity and serial correlation with

the Newey-West method.5 As reflected by the table, the predictive regressions exhibit the

familiar pattern of an increasing R2 and coefficient slope for longer horizons. The fact that

the log price dividend ratio predicts future excess returns was first documented by Fama and

French (1988) and Campbell and Shiller (1988) and it still poses a puzzle for standard rational

expectations models.

Finally, since the price dividend ratio is a crucial variable for addressing the predictability

puzzle, the third panel of the table displays its mean, standard deviation and first order auto-

correlation in levels. Furthermore, the last panel reports the standard deviation of consumption

and dividend growth. It is important to note that these two variables are the same in the

endowment economy, but they have a very different behavior in the data. Given this, we will

only be able to match one of them with a single calibration.

5. Numerical Results

This section presents the numerical results for the two models under rational expectations and

adaptive learning. For each of the two models, we calculate the same statistics as the ones

5For the truncation lag, we follow Campbell, Lo and MacKinlay (1997), who use q = 2 (k − 1). The results
are very similar if we use q = k − 1 or the default value of q = floor

³
4(T/100)2/9

´
suggested to Eviews by

Newey and West. Similar qualitative results can be obtained by regressing the k-period ahead stock returns on
the current log price dividend ratio.
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reported in table 1. Additionally, we report the ratio of the standard deviation of the price

under learning over the standard deviation under rational expectations, as a proxy for the stock

price volatility generated by adaptive learning.

We begin by describing the computing specifications. To implement the simulations we

have used the adaptive learning toolbox for Matlab that accompanies Carceles-Poveda and

Giannitsarou (2005). For each model, we run experiments with a number of T = 211 periods,

corresponding to the number of quarters available from our data set. Furthermore, the statistics

reported are the average statistics from replicating the experiments N = 1000 times. To make

all results comparable, shocks are generated from normal distributions with the same state value

for the Matlab pseudorandom number generator, which was set to 98.

As shown in Carceles-Poveda and Giannitsarou (2005), the initialization of adaptive learning

algorithms can have important effects on the model dynamics. We therefore use two different

initializations. In the first, the initial elasticity φ0 is drawn from a distribution around the

rational expectations equilibrium φ̄, with a variance which approximates the variance of an

OLS estimator of φ based on five observations. In the second, φ0 is set at a value that is below,

above and exactly at the rational expectations value. These three values correspond to different

initial priors of the households about the effects of the state variables on the current stock price.

Finally, for each set of experiments, we simulate series under RLS learning and CG learning

using gain coefficients of g = 0.02, g = 0.2 and g = 0.4. Our choice of these gain values

is based on the interpretation of CG learning. As explained earlier, the CG algorithm assigns

geometrically decreasing weights to observations across time, so that recent observations matter

a lot for the current estimate, even in the limit. In this sense, we can interpret the constant

gain algorithm as the tool of an econometrician that believes that recent observations are more

relevant for forecasting than observations that date very far back. Specifically, an observation

that dates i periods back is assigned a weight equal to (1− g)i−1.

The size of the gain g corresponding to a weight of approximately zero for observations

that date more than i years back is displayed in table 2.6 For example, if the econometrician

believes that only observations that date i = 15 years back are important for the forecast, the

corresponding gain is g = 0.46, or if i = 20 years, then g = 0.37. Since professional forecasters

typically use rather short and recent data series from the stock markets, we believe that a

constant gain learning (with a relatively high gain coefficient) is a more appropriate modeling

framework for asset pricing forecasting. Given this, we have calculated our results with gain

values of 0.2 and 0.4, corresponding approximately to using data from the last 20 to 50 years.

Furthermore, to get a sense of how our results depend on the size of the gain, we have also

calculated the results with a gain of g = 0.02, corresponding to approximately using data from

the last 400 years to make the forecasts.

< TABLE 2 HERE >

6To calculate the gains, we have used the default tolerance level of Matlab, as an approximation of zero.
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We first present the results for the endowment economy and then discuss the results for the

production economy.

5.1. The Endowment Economy. In the endowment economy, the risk aversion value is

set to γ = 1. Further, since use a quarterly time period, we set β = 0.99. As for the dividend

process, the benchmark calibration assumes that ρ = 0.95 and σε = 0.06, corresponding to the

estimated slope coefficient and error standard deviation of regressing the log of the seasonally

adjusted real dividend series in the data on its first lag. We also repeat the experiments

with ρ = 0.95 and σε = 0.00712 in order to make the findings comparable to those from the

production economy. Moreover, this last calibration approximately replicates the behavior of

logged consumption growth in the data.

Tables 3A-3C contain the results for the calibration with the lower variance, whereas tables

3D-3F report the same results for the higher shock variance. Tables 3A and 3D contain the first

and second asset moments. Tables 3B and 3E contain (a) the standard deviation of the stock

price under learning over the standard deviation of the stock price under rational expectations,

(b) the average price dividend ratio, its standard deviation and its first autocorrelation, (c) the

standard deviation of consumption growth and (d) the standard deviation of dividend growth.

Finally, tables 3C and 3F report the results for predictability. To obtain these, we run the same

regressions as with the true data. The table reports the average estimated slope coefficients,

the average adjusted R2 and the percentage of estimated coefficients that are negative and

significant out of 1000 replications of the experiment.

The first two rows of the tables display the numbers in the data and under rational ex-

pectations (RE). Furthermore, the last six rows display the results under learning when the

algorithms are initialized (a) from a distribution (DIS), (b) below the REE, with an elasticity

set to 0.9× φ̄ (AH-B), or (c) above the REE, with an elasticity set to 1.035× φ̄ (AH-A).7 For

each initialization, we report the results for the recursive least squares (RLS) and constant gain

(CG) algorithms with gains of g = 0.2 and g = 0.4. The case with g = 0.02 is omitted, since

the results are almost identical to the ones under RLS.

< TABLES 3A - 3F HERE>

Starting with the results under RE, we see that the model performs very poorly in all

dimensions. With the lower shock variance, the premium is only around 0.002 percent, while it

only increases to approximately 0.2 percent with the benchmark parameterization. Furthermore,

whereas the standard deviation and the autocorrelation of the price dividend ratio are far from

the data, this variable generates absolutely no predictability for the excess stock returns. This
7The percentage 1.035 above the REE has been chosen for both models, so that the stationarity condition

|φ0| < 1 is satisfied for the production economy. Although such a restriction is not necessary for the endowment
economy, we use the same number to keep the results comparable. Furthermore, the case where the initial
elasticity starts at the rational expectations value φ has been omitted, since it generates the same results on
average as when we initialize from a distribution.
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is not surprising, since it is well documented in the literature that the Lucas tree model with a

low risk aversion parameter value is unsuccessful in reproducing the asset pricing moments in

the data.

Turning to the results under adaptive learning, the first important observation is that they

are almost identical across the different initializations. In other words, different initial priors

for the elasticity of the stock price with respect to the stochastic dividend process do not alter

the results in the endowment economy. On the other hand, we do observe important differences

across the different learning algorithms and parametrizations. We discuss the results with each

algorithm in turn.

Starting with RLS learning, we see that the asset return moments are very close to those

generated by rational expectations. In general, the reason why RLS cannot generate any sig-

nificant improvements in the predictions of the model is that the algorithm converges relatively

fast to the rational expectations equilibrium. Therefore, any differences between the dynamics

under RLS and rational expectations disappear quickly. This is also reflected in tables 3B and

3E, illustrating that the standard deviation of the price under RLS learning over the one un-

der rational expectations is approximately one with both parametrizations. Finally, Tables 3C

and 3F illustrate that the model under RLS also performs very poorly regarding predictability.

Whereas the coefficients have the right sign and are higher in absolute value than the ones under

rational expectations, they are still far from the data under both calibrations. In addition, the

percentage of significant simulations is relative small.

It should be pointed out that if we had also assumed that agents estimate the exogenous

dividend process, some additional variation between RLS and rational expectations would be

present. However, we have chosen not to allow learning on the exogenous dividend process

for several reasons. First, since the dividend process is endogenous in the stochastic growth

model, this would involve introducing some form of structural learning, while we want to focus

on self-referential learning. Moreover, since the least squares estimates for the dividend process

would be reached quite fast, we conjecture that this addition would not provide any significant

variations, unless the assumed time horizon was very short.

With this discussion in mind, it should be clear that any improvements in the predictions

of the model can only come from some type of learning algorithm that does not converge to

the rational expectations equilibrium. Constant gain learning is such an algorithm, since its

dynamics fluctuate perpetually around the rational expectations equilibrium and the size of the

fluctuations depends positively on the size of the gain function. Indeed, turning to the results

generated by CG learning, the results appear to be quite different from those under RLS and

rational expectations.

Whereas the improvements regarding the asset return moments are again relatively modest,

we see a considerable improvement regarding the stock price volatility and predictability. Tables

3B and 3E reflect that the asset price under CG learning can be significantly more volatile than
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under rational expectations. In addition, with the benchmark parameterization and the higher

gain, the model matches the standard deviation of the logged dividend growth, whereas the

standard deviation of the price-dividend ratio is just about half of the one observed in the data.

Finally, tables 3C and 3F reflect that the model performs much better than under rational

expectations regarding predictability. As we see, the average slope coefficients, the percentage

of significant and negative estimates and the R2 display the increasing pattern with a longer

horizon that we see in the data. Furthermore, the slope coefficients are surprisingly close to

the ones in the data when the model is calibrated to dividend behavior (σ = 0.06) and the

gain is equal to 0.4. In this case, the number of significant estimates in this case ranges from

approximately 40% to 70%, a large improvement compared to the results under RLS and rational

expectations.

These improvements are smaller when the model is calibrated to consumption behavior

(σ = 0.00712). In this case, the model does not generate the right behavior for the dividend

growth or the price dividend ratio. Further, although this calibration leads to a higher stock

price volatility and generates a much higher predictability under learning than the rational

expectations version, the slope coefficients with a gain of 0.4 do not provide a satisfactory

match with the data.

Summarizing, RLS learning generates results that are very close to their rational expecta-

tions counterpart. On the other hand, CG generates some improvements when the model is

calibrated to dividend behavior, particularly with respect to the stock price volatility and the

predictability of excess returns. In what follows, we provide some intuitive comments to help

understand our findings.

Consider first the volatility of the stock price. It is easy to see that the variance of the price

under rational expectations is only affected by the variance of the shock, since it is equal to

V ar(pret ) = V (φ)2V ar(zt) = V ar(zt). (31)

On the other hand, under adaptive learning, the behavior of the estimated coefficient φ also

affects the price variance, which is given by

V ar(palt ) = a2V ar
¡
φt−1zt

¢
+ b2V ar (zt) + 2ab Cov(φt−1zt). (32)

The variance in (32) will be higher than variance of the shock in (31) if V ar
¡
φt−1zt

¢
>

V ar
¡
φzt
¢
, whereas the opposite will happen if V ar

¡
φt−1zt

¢
< V ar

¡
φzt
¢
. Our numerical

results show that V ar
¡
φt−1zt

¢
is on average very similar to V ar

¡
φzt
¢
under RLS, explaining

why the two prices have almost the same variability. For the case of CG learning, however, the

coefficients deviate more from the REE solution, and V ar
¡
φt−1zt

¢
is on average higher than

V ar
¡
φzt
¢
, explaining the higher price variability. Finally, since V ar

¡
φt−1zt

¢
is increasing with

the variability of φt−1, which increases with a higher gain, this would also explain the higher
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variance of the price with higher gain coefficients.

While learning may generate some extra volatility with a high gain, note that the mean

equity premium is very close to its value under rational expectations. To see why this is the

case, note that the expected equity premium under rational expectations is given by8

rrpt+1 = γηczηrez V ar (zt) , (33)

where ηcz and ηrez represent the elasticities of the unexpected consumption growth and the

unexpected equity return with respect to the shock. Moreover, these elasticities depend on

the deep parameters of the model and on the underlying elasticity φ̄. First, similar arguments

to the ones for volatility can be used to explain why more volatile estimated coefficients can

generate some extra excess return volatility through their effects on the two elasticities ηcz and

ηrez . However, since the estimated coefficients are on average close to their REE values, the

consumption and equity return elasticities will not be very far from the REE solution. We

therefore conclude that, unless some form of misspecification is introduced, standard adaptive

learning does not have a lot of potential for explaining mean returns in the present model.

Finally, to explain why self-referential learning can generate excess return predictability,

note that the actual law of motion for the price under learning is given by

pt = T
¡
φt−1

¢
zt−1 + V

¡
φt−1

¢
εt = V

¡
φt−1

¢
zt, (34)

where

T
¡
φt−1

¢
=

¡
aφt−1 + b

¢
ρ, (35)

V
¡
φt−1

¢
=

¡
aφt−1 + b

¢
.

Consider an estimate of φ that is below the "true" or rational expectations value. Since V
¡
φt−1

¢
is increasing in φt−1, the stock price will be low and this will generate a low price to dividend

ratio (or a high dividend to price ratio) which, in turn, will generate higher future returns. This

is because, first, a higher dividend to price ratio implies higher payoffs and, second, because

when the price re-adjusts upwards, it will lead to higher capital gains. A similar argument

would indicate that an estimate of φ that is above the true value will lead to a higher than

average price to dividend ratio and to lower future returns. This indicates that learning has

the potential of generating a negative correlation between the current price to dividend ratio

and the future excess returns. Finally, it is worth noting that φ and V (φ) are constant under

rational expectations. This implies that the effects we have just described are not present in

the fully rational setting, providing a possible explanation for its poor performance concerning

predictability.

8See Lettau (2003) or Carceles-Poveda (2005) for details.
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5.2. The Production Economy. For the production economy, we have used the standard

parametrization for US quarterly data. The risk aversion coefficient is again set to γ = 1.

Furthermore, the capital depreciation, the discount factor and the capital share are set to

δ = 0.025, β = 0.99 and α = 0.36 respectively. Finally, regarding the productivity shock, our

baseline parametrization is σε = 0.00712 and ρ = 0.95, as is usual in the real business cycle

literature.

Tables 4A-4C report the results for the production economy, organized in the same way as

the results for the endowment economy. In particular, table 4A contains asset moments, table

4B contains various statistics and table 4C reports the results for predictability.

< TABLES 4A - 3C HERE>

As with the endowment economy, the tables indicate that the rational production economy

performs very poorly in explaining the first and second asset moments.9 The implied equity

premium is approximately 0.005 percent, whereas the asset variabilities are very similar across

the two assets and very far from their counterparts in the data. Furthermore, the standard

deviation of the price dividend ratio is much lower than the one in the data, and it does not

have any predictive power for the excess stock returns.

Turning to the results under learning, we see that it has a very small effect on the different

asset moments. In particular, the equity premium only increases from 0.005 to 0.01 percent

and its variability only increases from 0.01 to 0.025 percent. In addition, constant gain learning

does induce stock price volatility, but this seems to be non-monotonic with respect to the gain

coefficient. Finally, although learning improves the behavior of the price dividend ratio, the

average regression coefficients are practically zero and rarely significant for all the horizons con-

sidered, as can be seen from table 4C. These findings suggest that, with a standard calibration,

adaptive learning does not seem to provide an explanation for the behavior of asset returns in

the production economy.

An interesting observation is that the results depend on the different initializations of the

learning algorithms, unlike in the endowment economy. In particular, starting above the rational

expectations value generates a premium that is ten times higher than the premium if we start

below rational expectations. This is also reflected in the relative variability of the stock price.

As can be seen in Table 4B, the variability of the stock price can be considerably lower than

under rational expectations if the initial coefficient is set below its rational expectations value,

while it is always higher if we start above. Thus, contrary to the common view that learning

can only generate higher volatility, we find that the size of the volatility actually depends on

the initialization of the algorithm in the stochastic growth model and may very well be below

the one generated by rational expectations.10

9See for example Rouwenhorst (1995), or Lettau (2003).
10An extensive discussion of the effects of different initializations of learning can be found in Carceles-Poveda

and Giannitsarou (2005).
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In what follows, we discuss intuitively why adaptive learnings fails to improve the predictions

of the model in the production economy. First, regarding the volatility of asset prices, it can

be shown that it is equal to the following expression under rational expectations:11

V ar(preet ) =
γ2(1 + ρφ̄p)

(1− a1ρ− a1φ̄p)
2(1− ρφ̄p)(1− φ̄

2
p)

(36)

Moreover, for our calibration, it is possible to show that the previous expression is increasing

in φ̄p. Using this result, we can then heuristically argue that the variance of the endogenous

state under learning will be lower than the variance under rational expectations if the estimated

coefficients φp remain well below φ̄p for a large number of periods.

If we initialize the algorithm using a distribution, RLS implies that these coefficients will

be relatively close to the REE, leading to a very similar variance between the two cases. On

the other hand, a gain of 0.2 makes them more volatile, so that they are more often above

the REE. Finally, increasing the gain coefficient above 0.2 also implies that the coefficients

violate the stationarity condition requiring that
¯̄
φp,t−1

¯̄
< 1, since the REE value φ̄p is very

close to one. Since it would not be sensible to allow the elasticity to be larger than one, the

learning algorithm is augmented with a projection facility, which simply resets φ to its last

value when this condition is violated. In this case, the projection facility generates a downward

bias that reduces the price volatility when increasing the gain from 0.2 to 0.4, explaining the

non-monotonicity in the results that is seen in the tables.12

On the other hand, if we initialize the algorithm above or below the REE, the estimated

coefficients will remain on average above or below the REE respectively. This happens because

of persistence, which due to the presence of a lag in the law of motion of the stock price. This

explains why the different initializations generate different results in the production economy,

while they do not matter in the endowment economy.

Finally, turning to the predictability results, note that the actual law of motion for the price

in the production economy is given by

pt = T (φt−1)pt−1 + V (φt−1)zt, (37)

where

T (φ) =
a2

1− a1φp
, (38)

V (φ) =
a1φz + b

1− a1φp
.

11See Giannitsarou (2005) for a derivation.
12For details on the projection facility and how it affects the behavior of the estimates see Carceles-Poveda and

Giannitsarou (2005). Note that we do not need to impose it in the endowment economy, where the equilibrium
is globally stable.
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Comparing to the case of the endowment economy, a lower estimate of φz,t−1 does not

directly translate into a lower than average price level anymore, since the T and V maps are

also affected by φp,t−1. In particular, our numerical results suggest that these two coefficients

move on average in opposite directions, whereas their variances are similar. Thus, while a lower

estimate of φz leads to a lower V (φt−1) and therefore to a lower price, a higher estimate of φp
has the opposite effect, since it increases V (φt−1) and T (φt−1). Moreover, as noted earlier, the

elasticity of the price with respect to the shock is much smaller than that in the endowment

economy. Based on these arguments, these findings suggest that any effects learning might

induce may cancel out for all algorithms when the variance of the shock is relatively small.

Yet, a higher shock variance could generate some better results in this respect, since it

will lead to a higher feedback of the estimate of φz,t−1 on the price through a higher second

term V (φt−1)zt. To get a sense of how big such an effect would be, we have also simulated

the production economy with a higher shock variance.13 In this case, we find that a higher

shock variance generates some predictability, especially with the initialization above the REE.

In particular, the estimated slope coefficients in this case can be around one half of their value

in the data. The number of significant simulations, however, is still considerably smaller than

in the endowment economy. In addition, we find that the model can generate a higher premium

and return volatility than under rational expectations, specially with the initialization above the

rational expectations equilibrium. As before, this can be explained by the persistence induced

by the lag in the law of motion of the price, which implies that the elasticities that affect the

equity premium are further away from their rational expectations value than in the endowment

economy. Of course, such improvements come at the expense of unrealistically high values for

the moments of the price dividend ratio and of the real macroeconomic variables. Given this, we

conclude that learning does not provide a satisfactory explanation for the asset pricing puzzles

in the presence of capital accumulation.

6. Conclusion

We studied the effects of self-referential adaptive learning on asset returns in the framework of

standard general equilibrium asset pricing models. In particular, we have considered recursive

least squares and constant gain learning, with a variety of specifications, in a production econ-

omy and a Lucas type exchange economy. Both models were evaluated with respect to the first

and second equity premium moments, the predictability of excess returns and the volatility of

stock prices. The main conclusions from our results are that (a) constant gain adaptive learning

has a chance of generating stock price volatility and predictability in the endowment economy,

when the gain coefficient is relatively high, (b) constant gain learning does not generate any

interesting improvements in the production economy framework and (c) recursive least squares

learning does not generate any improvements for any of the two models.

13To avoid the proliferation of tables, we do not report the results of these simulations but they can be provided
by the authors upon request.
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In general, standard adaptive learning has little potential of explaining the mean excess

returns in the data, since the average estimated coefficients from the law of motion of the

stock price fluctuate around the rational expectations equilibrium, which is known to fail in

generating a sizeable premium for reasonable parametrizations. As to the stock price volatility

and predictability of excess returns, we find important differences across models and across

learning algorithms. In particular, recursive least squares learning has relatively small effect

on the stock price volatility and it generates no predictability in the production economy and

almost no predictability in the endowment economy. The effects of constant gain learning with

a relatively small gain are very similar. Nevertheless, a higher gain coefficient, reflecting the

fact that forecasters give more importance to recent observations, generates considerably more

volatility and predictability in the endowment economy, especially when it is calibrated to match

the dividend behavior in the data.

In general, our findings suggest that tracking algorithms such as CG have more potential

than RLS to explain asset pricing facts in models where there is no inherent persistence in the

stock price, such as the Lucas Tree endowment economy. On the other hand, in the presence

of capital accumulation, where the endogenous variables exhibit more persistence and where

consumption smoothing plays an important role, adaptive learning is not sufficient to generate

any of the stylized facts in the data.

A. Reduced Form Coefficients

The coefficients of the reduced form for the production economy are

a1 =
−γ

γ (−2 + δ − αψ) + (δ − ψ) (1 + β (δ − 1− α2ψ))
, (39a)

a2 =
γ (δ − 1− αψ)

γ (−2 + δ − αψ) + (δ − ψ) (1 + β (δ − 1− α2ψ))
, (39b)

b =
ψ (γ (ρ− 1) + αβ (δ − ψ) ρ)

γ (−2 + δ − αψ) + (δ − ψ) (1 + β (δ − 1− α2ψ))
, (39c)

where ψ = (1− β + δβ) /(αβ).
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Asset Moments
Mean Std.

re 2.3454 7.7378
rf 0.2268 0.8719

re − rf 2.0341 7.6291
Predictability

Horizon Slope R2 t− statistic
1 -0.0533 0.0926 -2.3317
2 -0.1073 0.2044 -2.5135
4 -0.1856 0.3683 -3.2161

Moments for P/D
Mean Std. Autocor.
28.3065 9.0611 0.9654
Moments for ∆c and ∆d
Std(∆d) Std(∆c)
12.0599 1.0725

Table 1: Asset pricing facts 1947.2-1998.4

Y ears 400 200 100 50 25 20 15 10 5
Gain 0.02 0.04 0.09 0.17 0.31 0.37 0.46 0.60 0.85

Table 2: Gains for the CG algorithm
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  Equity Return Risk Free Rate Equity Premium 

 σ  = 0.00712 Mean St. Dev. Mean St. Dev. Mean St. Dev. 
Data  2.3454 7.7378 0.2268 0.8719 2.0341 7.6291 
RE  1.0123 0.7303 1.0106 0.1020 0.0017 0.7562 
DIS RLS 1.0122 0.7156 1.0106 0.1020 0.0017 0.7424 

 CG, g = 0.2  1.0128 0.7629 1.0106 0.1020 0.0024 0.7911 
 CG, g = 0.4 1.0146 0.8788 1.0106 0.1020 0.0043 0.9067 

AH-B RLS 1.0122 0.7143 1.0106 0.1020 0.0017 0.7459 
 CG, g = 0.2 1.0128 0.7646 1.0106 0.1020 0.0024 0.7928 
 CG, g = 0.4 1.0146 0.8810 1.0106 0.1020 0.0043 0.9089 

AH-A RLS 1.0122 0.7143 1.0106 0.1020 0.0017 0.7459 
 CG, g = 0.2 1.0128 0.7646 1.0106 0.1020 0.0024 0.7928 
 CG, g = 0.4 1.0146 0.8810 1.0106 0.1020 0.0043 0.9089 

 
Table 3A: Endowment Economy, Statistics for Returns 

 
 
 

 σ  = 0.00712 PAL / PRE Mean(P/D) STD(P/D) Corr(P/D) STD(Δc) STD(Δd) 
Data   28.3065 9.0611 0.9654 1.0725 12.0599 
RE   24.7521 0.1639 0.5395 1.4432 1.4432 
DIS RLS 0.9895 24.7531 0.1944 0.6554 1.4432 1.4432 

 CG, g = 0.2  1.1516 24.7542 0.2806 0.7909 1.4432 1.4432 
 CG, g = 0.4 1.4138 24.7631 0.4398 0.8642 1.4432 1.4432 

AH-B RLS 0.9949 24.7542 0.1903 0.6437 1.4432 1.4432 
 CG, g = 0.2 1.1544 24.7548 0.2805 0.7899 1.4432 1.4432 
 CG, g = 0.4 1.4180 24.7633 0.4415 0.8642 1.4432 1.4432 

AH-A RLS 0.9949 24.7542 0.1903 0.6437 1.4432 1.4432 
 CG, g = 0.2 1.1544 24.7548 0.2805 0.7899 1.4432 1.4432 
 CG, g = 0.4 1.4180 24.7633 0.4415 0.8642 1.4432 1.4432 

 
Table 3B: Endowment Economy, Statistics for Price Dividend Ratio, Consumption and Dividend Growth 

 
 
 

  BETAS R-SQUARE 
 σ  = 0.00712 1 year 2 years 4 years 1 year 2 years 4 years 

Data  -0.0533 -0.1073 -0.1856 0.0926 0.2044 0.3683 
  Aver. % Sig. Aver. % Sig. Aver. % Sig.    

RE  -0.0000 7.6 -0.0001 10 -0.0002 14.4 0.0046 0.0056 0.0057 
DIS RLS -0.0005 7 -0.0009 11.6 -0.0017 17.8 0.0066 0.0119 0.0205 

 CG, g = 0.2  -0.0234 16.4 -0.0477 31.8 -0.0083 45.2 0.0207 0.0432 0.0722 
 CG, g = 0.4 -0.0049 44.4 -0.0093 59.2 -0.0152 67.8 0.0561 0.0983 0.1424 

AH-B RLS -0.0004 6.8 -0.0008 12 -0.0015 16.4 0.0064 0.0106 0.0179 
 CG, g = 0.2  -0.0233 17.8 -0.0475 31.8 -0.0082 44.8 0.0205 0.0424 0.0713 
 CG, g = 0.4 -0.0049 43.8 -0.0093 60 -0.0153 68 0.0561 0.0982 0.1424 

AH-A RLS -0.0004 6.8 -0.0008 12 -0.0015 16.4 0.0064 0.0106 0.0179 
 CG, g = 0.2  -0.0233 17.8 -0.0475 31.8 -0.0082 44.8 0.0205 0.0424 0.0713 
 CG, g = 0.4 -0.0049 43.8 -0.0093 60 -0.0153 68 0.0561 0.0982 0.1424 

 
Table 3C: Endowment Economy, Predictability of Excess Returns 
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  Equity Return Risk Free Rate Equity Premium 
 σ  = 0.06 Mean St. Dev. Mean St. Dev. Mean St. Dev. 

Data  2.3454 7.7378 0.2268 0.8719 2.0341 7.6291 
RE  1.1940 6.1721 1.0185 0.8600 0.1769 6.3894 
DIS RLS 1.1984 6.0497 1.0185 0.8600 0.1813 6.2752 

 CG, g = 0.2 1.2389 6.4672 1.0185 0.8600 0.2226 6.7052 
 CG, g = 0.4 1.4244 7.7093 1.0185 0.8600 0.4088 7.8943 

AH-B RLS 1.1974 6.0808 1.0185 0.8600 0.1805 6.3049 
 CG, g = 0.2 1.2386 6.4812 1.0185 0.8600 0.2224 6.7188 
 CG, g = 0.4 1.4115 7.6763 1.0185 0.8600 0.3959 7.9095 

AH-A RLS 1.1974 6.0808 1.0185 0.8600 0.1805 6.3049 
 CG, g = 0.2 1.2386 6.4812 1.0185 0.8600 0.2224 6.7188 
 CG, g = 0.4 1.4115 7.6763 1.0185 0.8600 0.3959 7.9095 

 
Table 3D: Endowment Economy, Statistics for Returns 

 
 
 

 σ  = 0.06 PAL / PRE Mean(P/D) STD(P/D) Corr(P/D) STD(Δc) STD(Δd) 
Data   28.3065 9.0611 0.9654 1.0725 12.0599 
RE   24.7621 1.3805 0.5390 12.187 12.187 
DIS RLS 0.9895 24.7941 1.6589 0.6566 12.187 12.187 

 CG, g = 0.2 1.1516 24.8985 2.4223 0.7898 12.187 12.187 
 CG, g = 0.4 1.4138 24.4047 4.6046 0.8599 12.187 12.187 

AH-B RLS 0.9949 24.7995 1.6084 0.6432 12.187 12.187 
 CG, g = 0.2 1.1544 24.9028 2.4219 0.7887 12.187 12.187 
 CG, g = 0.4 1.4180 24.4083 4.6187 0.8528 12.187 12.187 

AH-A RLS 0.9949 24.7995 1.6084 0.6432 12.187 12.187 
 CG, g = 0.2 1.1544 24.9028 2.4219 0.7887 12.187 12.187 
 CG, g = 0.4 1.4180 24.4083 4.6187 0.8528 12.187 12.187 

 
Table 3E: Endowment Economy, Statistics for Price Dividend Ratio, Consumption and Dividend Growth 

 
 
 

  BETAS R-SQUARE 
 σ  = 0.06 1 year 2 years 4 years 1 year 2 years 4 years 

Data  -0.0533 -0.1073 -0.1856 0.0926 0.2044 0.3683 
  Average % Sig. Average % Sig. Average % 

Sig. 
   

RE  -0.0001 7.8 -0.0008 10.2 -0.0017 14 0.0045 0.0056 0.0057 
DIS RLS -0.0041 7.2 -0.0083 11.8 -0.0144 18 0.0066 0.0119 0.0205 

 CG, g = 0.2 -0.0198 16.6 -0.0403 32.4 -0.0701 45.9 0.0217 0.0430 0.0725 
 CG, g = 0.4 -0.0443 43.6 -0.0834 60.4 -0.1362 68.2 0.0578 0.1016 0.1449 

AH-B RLS -0.0035 7 -0.0071 12 -0.0127 17 0.0064 0.0106 0.0179 
 CG, g = 0.2 -0.0197 18.2 -0.0401 32.4 -0.0700 54.8 0.0215 0.0426 0.0716 
 CG, g = 0.4 -0.0442 43.4 -0.0831 64.2 -0.1357 68.6 0.0579 0.1006 0.1457 

AH-A RLS -0.0035 7 -0.0071 12 -0.0127 17 0.0064 0.0106 0.0179 
 CG, g = 0.2 -0.0197 18.2 -0.0401 32.4 -0.0700 54.8 0.0215 0.0426 0.0716 
 CG, g = 0.4 -0.0442 43.4 -0.0831 64.2 -0.1357 68.6 0.0579 0.1006 0.1457 

 
Table 3F: Endowment Economy, Predictability of Excess Returns 
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  Equity Return Risk Free Rate Equity Premium 
 σ  = 0.00712 Mean St. Dev. Mean St. Dev. Mean St. Dev. 

Data Data 2.3454 7.7378 0.2268 0.8719 2.0341 7.6291 
RE RE 1.0133 0.0622 1.0106 0.0568 0.0047 0.0088 
DIS RLS 1.0192 0.0703 1.0112 0.0625 0.0079 0.0174 

 CG, g = 0.2  1.0163 0.0672 1.0106 0.0568 0.0057 0.0072 
 CG, g = 0.4 1.0163 0.0675 1.0102 0.0574 0.0063 0.0185 

AH-B RLS 1.0112 0.0586 1.0099 0.0536 0.0012 0.0051 
 CG, g = 0.2 1.0144 0.0678 1.0101 0.0617 0.0043 0.0114 
 CG, g = 0.4 1.0146 0.0663 1.0100 0.0579 0.0046 0.0155 

AH-A RLS 1.0263 0.0915 1.0122 0.0852 0.0141 0.0186 
 CG, g = 0.2 1.0229 0.0750 1.0113 0.0640 0.0116 0.0249 
 CG, g = 0.4 1.0189 0.0697 1.0109 0.0568 0.0080 0.0246 

 
Table 4A: Production Economy, Statistics for Returns 

 
 
 

 σ  = 0.00712 PAL / PRE Mean(P/D) STD(P/D) Corr(P/D) STD(Δc) STD(Δd) 
Data   28.306 9.0611 0.9654 1.0725 12.059 
RE RE  24.809 1.7315 0.9762 0.4508 5.8688 
DIS RLS 1.0073 24.809 1.8862 0.9772 0.5931 5.7070 

 CG, g = 0.2  1.2457 25.914 2.5706 0.9690 1.1014 7.5479 
 CG, g = 0.4 1.0854 24.980 2.4780 0.9499 1.5785 8.7195 

AH-B RLS 0.6677 24.784 1.7315 0.9799 0.8716 3.3341 
 CG, g = 0.2 0.9849 24.870 1.8758 0.9696 1.1101 5.4975 
 CG, g = 0.4 0.9855 24.847 1.8692 0.9521 1.5292 7.6803 

AH-A RLS 1.3405 25.031 3.3826 0.9823 0.3638 8.7862 
 CG, g = 0.2 1.4361 25.303 3.8062 0.9681 1.1481 9.2412 
 CG, g = 0.4 1.2350 24.877 2.5207 0.9475 1.6857 10.443 

 
Table 4B: Production Economy, Statistics for Price Dividend Ratio, Consumption and Dividend Growth 

 
 

σ  = 
0.00712 

 BETAS R-SQUARE 

  1 year 2 years 4 years 1 year 2 years 4 years 

Data Data -0.0533 -0.1073 -0.1856 0.0926 0.2044 0.3683 
  Aver. % Sig. Aver. % Sig. Aver. % Sig.    

RE RE 0.0001 0.0 0.0003 0.0 0.0004 0.0 0.4741 0.3859 0.2583 
DIS RLS 0.0001 4.6 0.0002 4.8 0.0003 5.8 0.3683 0.2930 0.2025 

 CG, g = 0.2  -0.0001 6.8 0.0001 6.6 0.0002 9 0.1854 0.1553 0.1194 
 CG, g = 0.4 0.0000 7.4 0.0000 7.6 0.0000 9.4 0.0927 0.0835 0.0698 

AH-B RLS 0.0000 10.8 0.0000 3.2 0.0000 3.2 0.0883 0.0835 0.0935 
 CG, g = 0.2 0.0001 5.6 0.0001 6 0.0002 6 0.1895 0.1541 0.1150 
 CG, g = 0.4 -0.0000 8.8 0.0000 10 0.0001 10 0.0960 0.0832 0.0695 

AH-A RLS 0.0001 16.2 0.0002 17 0.0002 17 0.2945 0.2547 0.1967 
 CG, g = 0.2 0.0000 6.4 0.0000 9.6 0.0001 9.6 0.1695 0.1560 0.1358 
 CG, g = 0.4 0.0001 7.4 0.0000 13.2 0.0000 13.2 0.0957 0.0892 0.0799 

 
Table 4C: Production Economy, Predictability of Excess Returns 

 
 




