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Abstract

A group of developing countries bear high rates of financial dollarisation. Under
this circumstance, monetary-policy makers are uncertain about the presence and scale
of potentially harmful effects that might appear because of balance sheet mismatches
arising from high and unexpected depreciations of the domestic currency.

We build a setup whereby central bankers have two competing models in mind.
Model A is a standard model for a small open economy whereas Model B has a built-
in non-linear balance sheet effect. Whether the balance sheet mismatch problem exists
or not, a Bayesian optimization procedure that assigns a positive probability to Model B,
perpetuates model-indeterminacy. This happens because the optimal Bayesian regulator
does not allow sizeable exchange rate swings (dirty floating), and therefore blurs the
information to distinguish among models. We call this effect the Balance Sheet Trap.

We show that, given the presence of the Balance Sheet Trap, introducing the learning
dynamics into the central banker’s problem is optimal. Thus, we argue that intentional
policy experimentation is highly desirable since it provides for an escape to the Balance
Sheet Trap.

JEL Classifications: C11, C61, E52

Key Words: Balance Sheet Effect, Model Uncertainty, Monetary Policy, Policy Experi-
mentation
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1 Introduction

A country is financially dollarised whenever its inhabitants hold assets and liabilities
denominated in both; domestic and foreign currency. In turn, the existence of financial
dollarisation creates uncertainty about the presence and scale of potential harmful effects
arising from mismatches on the budget constraint of agents.

The harmful after-effects result from high and unexpected exchange rate depreciations. There
is a group of empirical and theoretical works1 that has documented contractionary effects
of exchange rate depreciations due to imbalances in the asset-liability positions of economic
agents. This occurs because non-tradable agents hold assets denominated in domestic currency
but liabilities denominated in US Dollars. Without insurance to cover financial losses arising
from the sudden mismatch in balance sheets, agents might enter default.

On the other hand, high unexpected depreciations might be beneficial to agents that produce
some fraction of their income in US Dollars2. The sudden shift in the value of the nominal
exchange rate translates to a sudden shift in the real exchange rate and therefore produces
beneficial wealth and competitiveness effects.

Both types of potential outcomes are not distinct though. It all depends on which type of agent
is affected most and how the sequence of effects unfolds. Moreover, it is very likely that the
effects will offset one another depending on the magnitude of the shock. Precisely, this is the
difficulty faced by policy makers in financially dollarised economies: being uncertain about
the latent overall effects underlying sizeable exchange rate movements.

The problem for the policy makers is therefore not trivial. AsGoodhart(2005) puts it, a central
bank is mostly concerned about three facets of stability: Domestic price stability, external
stability of the value of the currency, and overall stability in the financial system. Failure to
prevent or dampen the sources and effects of instability are costly to society.

Uncertainty about the potential financial instability underlying high rates of financial
dollarisation is therefore a major policy issue. However it has not been taken into account
in the literature even though it is essential for optimal policy analysis in small, financially
dollarised economies. The aim of this paper is precisely this, to tackle model uncertainty
through the presence of two rival models that deliver opposite effects from unexpected
exchange rate movements. Just as in a real world environment, the policy maker does not
know which of the two models drives the true data generating process.

If policy makers miss the true model, then the outcomes in terms of the data generating process
might render higher losses compared to informationally efficient outcomes. Thus, according
to Brainard (1967), policy makers will tend to optimize in a Bayesian fashion depending on
a priori beliefs about the validity of the two models at hand.

The problem with a Bayesian optimization procedure is that model prior probabilities will
finally depend on the policies behind. Since the distinction among models will only be clear
once large swings in the exchange rate are observed, a policy that does not allow them will

1 NotablyKrugman(1999), Calvo and Reinhart(2002), Céspedes et.al(2004) andFrankel(2005).
2 As exporters do in their regular business or agents holding assets in that currency.
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unintentionally render model indeterminacy. If model indeterminacy is caused by a fear of
floating policy we will say the economy faces a Balance Sheet trap.

In the paper we propose that if an economy faces a Balance Sheet trap, social welfare is
suboptimal since model certainty allows for correct policy decisions. In that sense, we argue
that intentional policy experimentation as proposed byCogley et.al(2005) may be desirable.
This experimentation will imply a monetary policy rule that deviates for the optimal Bayesian
because it will also weight the fact that exchange rate swings will provide information on what
the true model is. In this manner, policy experimentation will provide an escape to the trap.

Up to this point, the main goal of this paper is to highlight that a Monetary Policy that faces
Balance Sheet Uncertainty should involve intentional policy experimentation. For this reason,
in this initial version we keep the core models unrealistically simple (and static): because we
want to emphasize the benefits of policy experimentation in a non-linear world. Thus, the only
dynamics in this version of the paper are those of the learning mechanisms.

Regarding future versions of this paper, we have many tasks to still do. First, we have
purposely left the models as simple and as static as possible, precisely to capture the dynamic
benefits of policy experimentation. We still have work to do in terms of setting our experiments
with richer model dynamics capturing balance sheet effects. Having a better-suited structure
will allow us to take the model to real data. Additionally, we are aware of the fact that proper
loss function needs to be supported by this structure. We should be capable of collapsing this
loss into a single Bayesian loss function.

The paper continues as follows: In Section2, a block of exercises solve optimal policies
under the unrealistic assumption that the central banks knows with certainty either of the two
models A or B. Then in Section3, we solve a second block of models, in which the central
banks uses the wrong model. In Section4 we deal with model uncertainty and present the
optimal Bayesian policies. Section5 refers to the Balance sheet trap whereas in Section6
we explore the benefits of policy experimentation once the economy falls into the trap. We
introduce learning dynamics and solve for the dynamic problem in this section. Finally, we
conclude in Section6.

2 Monetary Policy under Model Certainty
{SEC2}

We start with an ideal case of certainty about the model that drives the path of an small
open economy. This case will serve as a benchmark for comparison to other informational
assumptions about uncertainty detailed in next sections. We depict two models, Model
A describes a standard mechanism of a small open economy whereby exchange rate
depreciations are expansionary. Model B describes an economy governed by a non-linear
exchange rate effect that works in the opposite direction than that of Model A.
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2.1 Model A: Standard model of the economy

This model is characterized by three equations which are perfectly known by policy makers.
The model describes the simple transmission mechanism of a small open economy3.

πt = γ1yt + γ2δt + επ,t (1) {PC}

δt =−it + εδ ,t (2) {UIP}

yt = θ1it +θ2δt + εy,t (3) {GAP}

Equation [1] describes the behaviour ofπt (in deviations from its target rate) as a function of
the output gap (yt), a cost-push factor determined by the exchange rate depreciation4 rateδt ,
and an iid disturbance (επ,t). Here, the parametersγ1 andγ2 are both positive.

Next, the depreciation of the currency is inversely affected by the position of the monetary
policy instrument relative to some neutral rate5. Variableδt is also affected by the shockεδ ,t
which is known to be an AR(1) process of the form

ε
δ
t = ρε

δ
t−1 + µt (4) {AR1}

with a gaussian noiseµt . This means that, up to some extent, the policy instrument can offset
exchange rate shocks.

Last, equation [3] describes how the output gap is determined as a function of the policy
instrument, the depreciation rate and a shock. Monetary policy can restrain the output gap via
θ1 ≤ 0 while in this economy, depreciations are expansionary (θ2 ≥ 0).

There is no intrinsic persistence in any of the main driving equations but the process for the
exchange rate shocks. This means that monetary policy only reacts to those shocks. In order
to properly characterize monetary policy, we introduce a standard optimality criterion: The
central bank sets the instrumentit to minimize an evenly weighted loss function

L = Et∑
s=t

β
s−t (

π
2
s +y2

s

)
(5) {LOSS}

3 The standard lagged endogenous and expectational variables featuring dynamic, rational expectation neo-
Keynesian models are omitted in this first version of the paper.

4 The nominal exchange rate is given by the domestic price of the US Dollar and a depreciation (δt ) of the
currency means a increase in this variable.

5 This neutral rate can be an exogenous comparable world interest rate or a domestic neutral interest rate.
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against the backdrop of the small open economy defined by equations [1-3]. The solution
procedure here is done in a discretionary fashion, namely, the central banks optimizes period
by period. As a result, given the information at any given time, the setting of the instrument is
as follows (See Appendix):

it = Λε
δ
t−1 (6) {RULE}

When the exchange rate shock unexpectedly hits, it propagates instantaneously to inflation
via both the cost-push factor and the expansionary effect on the output gap. This shock is
expected to have persistence, so in order to dampen further future loss-making deviations of
inflation and the output gap, the interest rate is raised (Λ > 0).

2.2 Model B: Introducing contractionary depreciations (Balance Sheet
Effect)

In this case, the inflation and the exchange rate equation behave in the same way as Model A.
However, the evolution of the output gap is driven by a function that behaves non-linearly to
exchange rate depreciations. For small exchange rate fluctuations the behavior is fairly linear
and similar to that of model A. Namely, exchange rate depreciations increase the output gap
for standard competitiveness reasons. The important change occurs when the shocks are large.
In this situation, a large exchange rate depreciation is indeed bad for the economy given that
it may lead to a financial collapse with real consequences.

Therefore model B captures the financial fragility consequences of exchange rate fluctuations
common in the policy debate of financially dollarised economies. The output gap equation in
this model is now

yt = θ1it +θ2δt +θ3δ
2
t + εy,t (7) {GAPD}

Here, the parameterθ3 is negative. Hence, a large enough variation inδt lowers the output
gap. Facing model B, what would an optimizing central bank do against an otherwise same
exchange rate shock as in model A? A large enough shock depresses the output gap but boosts
inflation. If the interest rate is increased to ameliorate future exchange rates then the output
gap cost is high, otherwise the inflationary cost is high.

In this case, there is no explicit form for the optimal solution given that the problem is not
linear-quadratic anymore. However, the solution is characterised in Figure1 where we depict
interest rate response and the resulting nominal exchange rate depreciation resulting from
exchange rate shocks. The continuous lines represent the certainty solution under Model A
whereas the discontinuous plots show the solution under Model B.

The optimal solution implies a smoother exchange rate equilibrium response but a greater
interest rate response to shocks. However, when the size of the exchange rate shock is small
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in absolute value, both types of model solutions are virtually unrecognizable from each other.
Another interesting insight of the solution to Model B is the underlying asymmetric optimal
rule. Large positive shocks elicit a stronger response on interest rates than large negative
shocks of the same absolute size6. This result is broadly in line with asymmetric rule proposals
outlined in recent literature related to Balance Sheet affected economies such usLahiri and
Vegh(2001) andMorón and Winkelried(2005). Furthermore, the optimal rule for this model
allows for greater appreciations than depreciations for shocks of the same absolute magnitude.
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Figure 1: Optimal Rule Comparison - Model A vs. Model B {Fig1}

3 Misspecification and Policy Outcomes
{SEC3}

This section performs the exercise of model misspecification. In this case, the central bank can
mistakenly believe that the economy accords to one model when in fact the true model is quite
different. As time evolves, there is no learning mechanism in place and so, the central bank
remains ever ignorant about the true model. The outcome of this extreme exercise is obviously
not optimal. However, the measured degree of sub-optimality serves also as a benchmark for
the more interesting case where learning is in place.

The first type of misspecification assumes that the central bank mistakenly believes that
the economy is financially dollarized and that there are balance sheet effects inducing

6 In real world situations, it is not the interest rate but other type of instruments such us FX interventions that
might react in this fashion.
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contractionary exchange rate depreciations7. The second exercise considers a central bank
that neglects the presence of a balance-sheet problem and thus, thinks that exchange rate
depreciations are always expansionary.

The exercise consists in simulating the economy under the respective true model but solving
for the policy instrument under either central bank misspecification. In Table3 we report the
standard deviations as ratios to the standard deviations obtained by simulating Model A with
exact certainty.

The exercise reveals that the volatility of the output gap is significantly greater when the true
model has a balance sheet mechanism. For this reason, the central bank’s loss is increased
significantly solely with the presence of this channel. More importantly, the exercise reveals
that neglecting the balance sheet effect is much more harmful than mistakenly assuming its
existence. Hence, this asymmetry in the loss will bias the monetary policy to behave as if the
true model does have a balance sheet effect.

Thus, in a first instance, we find a rationale to the fear of balance sheet effect. Moreover, it
is this characteristic that will bias a Bayesian policy towards behaving as the balance sheet
policy. We enter the Bayesian grounds to solving the problem in the following section.

4 Monetary Policy under Model Uncertainty (The Bayesian
Policy)

{SEC4}
In this section we introduce the fact that central bankers are uncertain about which the
actual model driving the economy. Therefore, they assign a probabilitypt to model A and
a probability(1− pt) to model B. This probability evolves according to the odds ratio, i.e, a
combination of model fit and their shocks and an initial prior beliefp0. Given no parameter
uncertainty within each model, and simply taking into account model uncertainty the expected
loss function for periodt becomes

Lt = ptLt|A +(1− pt)Lt|B (8) {BLOSS}

WhereLt|A andLt|B represent the losses that would occur conditional on central bank reacting
as if model A or B were true. Both loss functions can be represented in terms of the instrument
rate it and the observed lagged exchange rate disturbanceεδ ,t (See Appendix for details).
The expected loss function in [8] has all parameters which are allowed to vary in time if we
introduce parameter uncertainty, otherwise, they remain constant over time.

The first-order condition for optimality, conditional on the parameter values is:

7 Conversely, it thinks that exchange rate appreciations are expansionary
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pt

[
2(A2

1t +B2
1t)it +2(A1tA2t +B1tB2t)ρε

δ
t−1

]
+ (9) {BFOC}

(1− p1
t )

[
4λ4t i

3
t +3λ3t i

2
t +2λ2t it +λ1t

]
= 0

which is weighted average of two factors representing the optimal condition under each model
alone. If the probability for model A at timet is small, then policy instrument resulting in [9]
looks very similar to the one obtained in the exact certainty solution to model B. In fact,
regrouping [9] allows us to write the equation as a 3rd degree polynomial form similar to the
one that solves model B with certainty (See the Appendix for further details).
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Figure 2: Optimal Rule (Bayesian) Depending on Probabilities {Fig2}

In the left panel of Figure2 we show the optimal reaction of the interest for shocks of different
size. This figures represent fan charts. For each probabilitypt a colour is assigned. As the areas
in the graphs gain colour density, the probability leans towards the model with Balance Sheet
(tends to 0). One can observe the asymmetry in terms of the response given probabilities.
Each colour is equally spaced in terms of the probability, though the denser colours are tight
together in terms of the response. This means that for low model probabilities, the optimal
response is very similar. For high probabilities, marginal changes make greater differences
in terms of the optimal response. Something similar happens with the expected depreciation
(found in the right panel) since it is a linear combination of the movements in the interest rate.
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The updating of model A probability in the Bayesian approach depends on the odd’s ratio

pt = p
(

MA|Data
)

=
p
(
Data|MA

)
p
(
MA

)
p(Data|MB) p(MB)+ p(Data|MA) p(MA)

(10) {ODDS}

FollowingCogley et.al(2005) this ratio can be transformed dynamically into:

pt =
pt−1p

(
Datat |Datat−1,MA

)
pt−1p(Datat |Datat−1,MA)+(1− pt−1)p(Datat |Datat−1,MB)

(11) {ODDSU}

The intuition behind this ratio is that the probability that the policy maker will assign to a
given model for being true will depend on a weighted average (with weights given by the
previous periods model probabilities) of the likelihood of the data at periodt conditional to
each model and the data. It is key to perform simulations: we will show how this ratio evolves
in time in the following section. We will again pay attention to this dynamics later in Section
6 once we introduce the learning dynamics into the Policy Maker’s problem.

4.1 Model Comparisons

We need to simulate the model in order to compare the outcomes under uncertainty
and Bayesian updating of probabilities. The baseline parameter calibration used in these
simulations is given in Table 1. The parameters are calibrated in order to replicate the
behaviour of quarterly data. The simulations presented in figures3 and ?? are carried out
for 25 periods and averaged over 100 replications of the same exercise.

β = 0.995 γ2 = 0.15
θ1 =−0.5 σµ = 10
θ2 = 0.15 σy = 4
θ3 =−0.05 σπ = 4
γ1 = 0.3 ρ = 0.9

4.2 Evaluation of Central Bank’s Losses

We now discuss the outcome of the simulations carried out using the core calibration to
compare the characteristics underlying each policy for both, when the true models is A or
Model B. The initial prior for the Bayesian Policy is0.5. Probabilities are updated using [11].
In the top panel of Table 1 we depict the volatilities of all the variables in the models relative to
Model A volatilities under perfect certainty. At a first glance, one can compare the outcomes
of Models A and B. When comparing the volatility of the interest rates among the models
with certainty we find that the model with a balance sheet effect has at least4 times more
volatility. The variance of the depreciation rate is(3

4) of that of the model without the balance
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sheet effect. It is clear that in this context, the variance of output and inflation will be greater.
In particular, output is12 times more volatile while for the inflation rate the figures show the
doubleof the volatility. When the real model does not have the balance sheet channel but the
central bank believes it does, the volatility of output is increased by 150% whereas inflation is
maintained almost at the same level. In the table [reference] we can also find the implications
of missing what the right model is. In terms of losses, even though both policies imply perfect
information on what the true model is, the loss is reduced more than8 times if the balance
sheet mechanism is not present.

Given that, for this calibration, the worst possible case is to misbelieve the presence of the
Balance Sheet effect, it is clear how the optimal Bayesian policy will have a bias to act as
if the true model were B. Missing what the true model is if the real model is B could be
disastrous.

The Bayesian policy seems to be very efficient for both models. One can observe that, since
probabilities are updated (and in this case we assume no parameter uncertainty) the results are
similar to those found with full model certainty as opposed to the results with misspecification.

MOMENT COMPARISON AMONG MODELS WITH PARAMETER CERTAINTY

Relative Variance
(as % of the model without Balance Sheet Effect)

Welfare Comparison
(as % of the model without Balance Sheet Effect)

Variable Output Inflation Depreciation Interest Rate

(when the true model is Model A)

Policy with Certainty

Policy with Misbeleives

Bayesian Policy

(when the true model is Model B)

Policy with Certainty

Policy with Misbeleives

Bayesian Policy

(when the true model is Model A)

Policy with Certainty

Policy with Misbeleives

Bayesian Policy

(when the true model is Model B)

Policy with Certainty

Policy with Misbeleives

Bayesian Policy

100%

212%

99%

957%

1572%

9923%

100%

101%

105%

160%

225%

1587%

100%

83%

110%

83%

100%

124%

100%

412%

137%

412%

100%

632%

100%

165%

114%

717%

1189%

728%

Table 1: Moment Comparison

5 Balance Sheet Indeterminacy: The Balance Sheet Trap
{SEC5}

5.1 Evolution of Model Probabilities for both models

In the two panels of figure3 we plot the evolution of model probabilities when the true models
are Model A and Model B respectively. We find the evolution of Model probabilities given
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distinct initial prior probabilities for each model. We observe that regardless of the true model,
the odds ratio seems to stabilize for any initial prior probability. It seems as if the initial prior
is indeed important since after 25 periods it is still determinant of the final level that is reached
by the odds ratio. For both models, what the true model is relevant for the direction of the path
for several of the probabilities. For both cases, regardless of the starting point, probabilities
seem to converge to a given probability which is closer to the corresponding to the real model
but still, not close as to render identical policies. Though, it is worth noting how for several
threshold priors, the probabilities seem to change direction in the other direction.
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Figure 3: Evolution of the odds ratio for different priors (200 simulations) {Fig3}

It seems as if underlying the simulations, there is some convergence point. At this point we
can elucidate what we mean by Balance Sheet Trap: if the true model is Model A (no balance
sheet trap) the fact that there is a bias towards acting as if the real Model is B, does not allow
for great swings in the exchange rate. In that sense are indistinguishable. The same happens
when the true model is B.

Even though we argued that Bayesian policies are optimal under model uncertainty in a
static world, it is a dynamically suboptimal policy. The problem is that the policymaker is
not incorporating into his decision the fact that greater swings in the exchange rate allow
identification. If this were the case, is it probable that the convergence in probability could be
achieved at a point closer to the true model. In the short run, experimentation policies may
not be loss optimizing but they are all over the long run since they will tend to stabilize they
priors at a more certain point.
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5.2 Digression: The relevance of Parameter Uncertainty

Parameter uncertainty is fundamental. We can show how this issue may indeed distort the
results of the evolution of model probabilities. If central banks know what the true model is
after several periods, the data will sort out the real model. Since a wrong model has a constant
bias by definition, it is clear that it will retard the learning process.

The two plots in Figures4 capture precisely this feature when the true model is A and
B respectively. The colored areas represent the evolution of the prior probabilities with
parameter certainty starting from a 0.5 prior probability. The dashed lines show the same
sequence but in this case parameters are reestimated every period. The upper panel in Figure
4 shows that the prior with parameter uncertainty converges to its true value. What is actually
happening is that the prior is collapsing but since the parameter regarding the balance sheet is
equal to zero, Model B collapses to Model A when it is true.

When the true model is Model B, the learning process is retarded as previously discussed. We
observe this in the low panel.

Though qualitatively distinct, we want to argue that parameter uncertainty does not bring
significantly distinct results to the main argument of this paper.

6 Endogenizing the Learning Dynamics: an Escape to the
Trap

{SEC6}
In the previous sections we find how the learning dynamics of this model can lead to what we
can callbalance sheet trap. In this section we provide an escape to the trap. In order to do
so, we develop an exercise in the spirit ofCogley et.al(2005). The idea is to answer if policy
experimentation is desirable, in the sense that it not only provides an escape to the trap but a
significant reduction in the central bank loss.

So, we incorporate, the fact that policy decisions will affect model certainty in the future.
Relying in the core-Bayesian model, we now re-define the problem, in order to incorporate
the dynamics of the Prior probability into the central banker’s problem. This problem can be
re-formulated as:

L = Et

[
∑
s=t

β
s−t(π2

s +y2
s | Ps)

]
s.t.11

Which may be also expressed as the following Bellman equation

V(εδ ,t ,Pt) = min
{it}

E[(πt(it))2+(yt(it)/Pt)2]+βE[PtV(εδ
t ,P1

t+1)+(1−Pt)E[V(εδ
t ,P2

t+1)] (12) {VALUE}
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We solve this equation numerically as explained in the appendixA.3. The value function for
this problem is

If we take slices from the Model Probability axis in Figure5 we can observe the quadrature of
the loss function. The greater in magnitude the shocks, the greater the loss. Additionally, we
can also see how for the same shock, as probabilities tend to the model with Balance Sheet,
the loss function grows decreasingly (i.e. the Loss Function for this problem is concave in
probability).

The evolution of model probabilities should be faster with policy experimentation. We show
that this is true regardless of which is the true model. In figures6 and??we show the evolution
of model probabilities when the true model does not include a Balance Sheet Mechanism
and when it does. The solid areas represent the evolution of probabilities in the general
Bayesian Policy and the dashed lines show the same evolution when policy experimentation
is introduced. From the figures we can see how policy experimentation increases the speed of
learning.

6.1 Loss Evaluation in the Context of Policy Experimentation

[Section to be Completed after Revision]

7 Conclusions: Policy Experimentation and More to Come
{SEC7}

This paper has a strong policy recommendation: Monetary Policy Makers should take into
account their own learning when they are uncertain about the presence of a Balance Sheet
effect. In this paper we argue that there are chances that a dollarized economy may fall in
what we call as a Balance Sheet Trap. For the baseline calibration, an efficient way out of the
trap is policy experimentation which yields benefits in terms of reduced losses.

As mentioned in the introduction, we will add a richer model dynamics to better match the
data. This could let us reverse engineer the policies carried out in dollarized economies. We
could then build an idea of how model probabilities have evolved over time and capture trends.
We could then argue if countries have fallen into Balance Sheet traps or not.

On the other hand, several issues are still worth exploring further on. For instance the benefits
from Policy Experimentation may reduce loss substantially if agents rationally endorse what
the policymakers will do. If they are aware of the fact that policymakers will allow greater
swings in the exchange rate, perhaps this becomes a sufficient incentive to use hedging
mechanisms and develop the capital market in such a manner that the Balance Sheet effect
is reduced. Obviously, this would complicate significantly the study. Central banks would
have to estimate parameters that are endogenous (perhaps a micro-founded DSGE structure)
and incorporate this endogeneity into the dynamic problem. We have the feeling that in this
context, results would be very similar to the ones found inChang and Velasco(2004).
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A Appendix

A.1 Solution to the Model Without Balance Sheet
{APP1}

min
{it}

E
t ∑t

(πt)2 +(yt)2

we have for period t:

(γ1yt + γ2δt + ε
π
t )2 +(θ1it +θ2δt + ε

y
t )2

= (γ1(θ1it +θ2(−it + ε
δ
t )+ ε

y
t )+ γ2(−it + ε

δ
t )+ ε

π
t )2 +(θ1it +θ2(−it + ε

δ
t )+ ε

y
t )2

= ((γ1(θ1−θ2)− γ2)it +(γ1θ2 + γ2)εδ
t + γ1ε

y
t + ε

π
t )2 +((θ1−θ2)it +θ2ε

δ
t + ε

y
t )2

using the variable redefinitions from

A1 = (γ1(θ1−θ2)− γ2) = (γ1B1− γ2) < 0

A2 = (γ1θ2 + γ2) = (γ1B2 + γ2) > 0

B1 = (θ1−θ2) < 0

B2 = θ2 > 0

so the static problem is:

max
{it}

E
t
[(A1it +A2ε

δ
t + γ1ε

y
t + ε

π
t )2 +(B1it +B2ε

δ
t + ε

y
t )2]

= max
{it}

E
t
[(A1it)2 +(A2ε

δ
t )2 +(γ1ε

y
t )2 +(επ

t )2 + ...

...2A1A2itε
δ
t +2A1γ1itε

y
t +2A1itε

π
t +2A2γ1ε

δ
t ε

y
t +2A2ε

δ
t ε

π
t +2γ1ε

δ
t ε

y
t ...

...(B1it)2 +(B2ε
δ
t )2 +(εy

t )2...

2B1B2itε
δ
t +2B1itε

y
t +2B2ε

δ
t ε

y
t ]

or regrouping and taking expectations:

= max
{it}

E
t
[(A2

1 +B2
1)it

2 +2(A1A2 +B1B2)itρt−1ε
δ
t−1]

+(A2
2 +B2

2)(σ
2
µ +ρ

2
ε

2δ
t−1)+ γ

2
1σ

2y
t +σ

2π
t
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assuming the following about the stochastic processes:

ε
δ
t = ρε

δ
t−1 + µt ; µt˜N(0,σ2

µ)

ε
y
t ˜N(0,σ2

y )

ε
π
t ˜N(0,σ2

π )

we have that the first order condition takes the following form:

A2
1it +A1A2ρε

δ
t−1 +B2

1it +B1B2ρε
δ
t−1 = 0

−(A1A2 +B1B2)
(A2

1 +B2
1)

E
t
(εδ

t ) = it

−(A1A2 +B1B2)
(A2

1 +B2
1)

ρε
δ
t−1 = it

−(A1A2 +B1B2)
(A2

1 +B2
1)

ρε
δ
t−1 = it

where

A1 = (γ1(θ1−θ2)− γ2) = (γ1B1− γ2)
A2 = (γ1θ2 + γ2) = (γ1B2 + γ2)
B1 = (θ1−θ2)
B2 = θ2

This optimal rule minimizes the problem as long as:

A2
1 +B2

1 > 0;always true if it follows that

A2
1 6= 0

(γ1B1− γ2)2 6= 0

B1 6= γ2

γ1

θ1−θ2 6= γ2

γ1

and
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θ1 6= θ2

conditions that are, both, always true given the sign restrictions.on the parameters. The central bank
will always react to the shock for parameters:

A1A2 6= 0

which given the previous restriction only implies that:

θ2 6=−γ2

γ1

which is guaranteed given the sign restrictions on the parameters. Thus, under this assumption, a central
bank will always stabilize the exchange rate via its interest rate to optimize his problem.

A.2 Solution to the Model with Balance Sheet
{APP2}

Objective Function:

min
{it}

E
t ∑t

(πt)2 +(yt)2

were for period t we have:

(γ1yt + γ2δt + ε
π
t )2 +(θ1it +θ2δt +θ3δ

ψ

t + ε
y
t )2

= (γ1(θ1it +θ2(−it + ε
δ
t )+θ3(−it + ε

δ
t )ψ + ε

y
t )+ γ2(−it + ε

δ
t )+ ε

π
t )2...

...+(θ1it +θ2(−it + ε
δ
t )+θ3(−it + ε

δ
t )ψ + ε

y
t )2

= ((γ1(θ1−θ2)− γ2)it +(γ1θ2 + γ2)εδ
t +θ3(−it + ε

δ
t )ψ + γ1ε

y
t + ε

π
t )2...

...+((θ1−θ2)it +θ3(−it + ε
δ
t )ψ +θ2ε

δ
t + ε

y
t )2

Redifing variables:

A1 = (γ1(θ1−θ2)− γ2) = (γ1B1− γ2)
A2 = (γ1θ2 + γ2) = (γ1B2 + γ2)
B1 = (θ1−θ2)
B2 = θ2

g(it ,εδ
t ) = θ3(−it + ε

δ
t )ψ
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so the static problem is:

max
{it}

E
t
[(A1it +A2ε

δ
t + γ1g(it ,εδ

t )+ γ1ε
y
t + ε

π
t )2 +(B1it +g(it ,εδ

t )+B2ε
δ
t + ε

y
t )2]

= max
{it}

E
t
[(A1it)2 +(A2ε

δ
t )2 +(γ1g(it ,εδ

t ))2 +(γ1ε
y
t )2 +(επ

t )2 + ...

...2A1A2itε
δ
t +2A1γ1itε

y
t +2A1itε

π
t +2A2γ1ε

δ
t ε

y
t +2A2ε

δ
t ε

π
t +2γ1ε

δ
t ε

y
t ...

...2A1γ1g(it ,εδ
t )it +2A2γ1g(it ,εδ

t )εδ
t +2γ

2
1g(it ,εδ

t )εy
t +2γ1g(it ,εδ

t )επ
t

...(B1it)2 +(B2ε
δ
t )2 +(εy

t )2 +g(it ,εδ
t )2...

...2B1B2itε
δ
t +2B1itε

y
t +2B2ε

δ
t ε

y
t ...

...2B1g(it ,εδ
t )it +2B2g(it ,εδ

t )εδ
t +2g(it ,εδ

t )εy
t ]

assuming the following about the stochastic processes:

ε
δ
t = ρε

δ
t−1 + µt ; µt˜N(0,σ2

µ)

ε
y
t ˜N(0,σ2

y )

ε
π
t ˜N(0,σ2

π )

we have that the first order condition takes the following form:

0 = (A2
1 +B2

1)it +
(γ2

1 +1)
2

∂E
t
g(it ,εδ

t )2

∂ i
+(A1γ1 +B1)

g(it ,εδ
t )+ it

∂E
t
g(it ,εδ

t )

∂ i


...+(A2γ1 +B2)

∂E
t
g(it ,εδ

t )εδ
t

∂ i

+(A1A2 +B1B2)ρε
δ
t−1

for ψ = 0 we have:

E
t
g(it ,εδ

t )2 = E
t
θ

2
3 (−it + ε

δ
t )4

= θ
2
3 (i4t −4i3t ρε

δ
t−1 +6i2t (σ

2
µ +ρ

2
ε

2δ
t−1)−4it(3ρε

δ
t−1σ

2
µ +ρ

3
ε

3δ
t−1)+E

t

(
ε

δ
t

)4
)
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and

E
t
g(it ,εδ

t ) = θ3(i2t −2itρε
δ
t−1 +(σ2

µ +ρ
2
ε

2δ
t−1))

E
t
g(it ,εδ

t )εδ
t = θ3(i2t ρε

δ
t−1−2it(σ2

µ +ρ
2
ε

2δ
t−1))

so taking the derivatives with respect toit we have that:

∂E
t
g(it ,εδ

t )2

∂ i
= θ

2
3 (4i3t −12ρε

δ
t−1i2t +12(σ2

µ +ρ
2
ε

2δ
t−1)it −4(3ρε

δ
t−1σ

2
µ +ρ

3
ε

3δ
t−1))

∂E
t
g(it ,εδ

t )εδ
t

∂ i
= 2θ3(iρε

δ
t−1− (σ2

µ +ρ
2
ε

2δ
t−1))

∂E
t
g(it ,εδ

t )

∂ i
= 2θ3(i−ρε

δ
t−1)

The minimizing condition becomes:

0 = (A2
1 +B2

1)it +
(

γ2
1 +1

2

)∂E
t
g(it ,εδ

t )2

∂ i

+(A1A2 +B1B2)ρε
δ
t−1

+(A1γ1 +B1)

g(it ,εδ
t )+ it

∂E
t
g(it ,εδ

t )

∂ i

+(A2γ1 +B2)
∂E

t
g(it ,εδ

t )εδ
t

∂ i

= (A2
1 +B2

1)it +2θ
2
3

(
γ

2
1 +1

)
(i3t −3ρε

δ
t−1i2t +3(σ2

µ +ρ
2
ε

2δ
t−1)it − (3ρε

δ
t−1σ

2
µ +ρ

3
ε

3δ
t−1))

+(A1A2 +B1B2)ρε
δ
t−1 +(A1γ1 +B1)

(
θ3(i2t −2itρε

δ
t−1 +(σ2

µ +ρ
2
ε

2δ
t−1))+2θ3(i2t − itρε

δ
t−1)

)
+2θ3(A2γ1 +B2)(iρε

δ
t−1− (σ2

µ +ρ
2
ε

2δ
t−1))

regrouping in terms ofit :
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0 = 2θ
2
3 (γ2

1 +1)i3t ...
+(−6θ

2
3 (γ2

1 +1)ρε
δ
t−1 +3θ3(A1γ1 +B1))i2t ...

+((A2
1 +B2

1)+6θ
2
3 (γ2

1 +1)(σ2
µ +ρ

2
ε

2δ
t−1).

+2θ3(−2(A1γ1 +B1)+(A2γ1 +B2))ρε
δ
t−1)it ..

−2θ
2
3

(
γ

2
1 +1

)
ρ

3
ε

3δ
t−1 +(−6θ

2
3

(
γ

2
1 +1

)
σ

2
µ +(A1A2 +B1B2))ρε

δ
t−1...

+θ3(A1γ1 +B1−2(A2γ1 +B2))(σ2
µ +ρ

2
ε

2δ
t−1)

Checking

C1 = 2θ
2
3 (γ2

1 +1) > 0

C2 = θ3(A1γ1 +B1) < 0

C3 = θ3(A2γ1 +B2) > 0

D1 = 3(C2−C1ρε
δ
t−1)

E1 = (A2
1 +B2

1)+3C1(σ2
µ +ρ

2
ε

2δ
t−1)+2(−2C2 +C3)ρε

δ
t−1

F1 = −C1(ρ3
ε

3δ
t−1 +3ρε

δ
t−1σ

2
µ)+(A1A2 +B1B2)ρε

δ
t−1 +(C2−2C3)(σ2

µ +ρ
2
ε

2δ
t−1)

so the minimization condition may be re-written as

0 = i3t +a2i2t +a1it +a0

where

a2 =
D1

C1

a1 =
E1

C1

a0 =
F1

C1

Whenθ3 = 0.we have the solution to the model with no Balance Sheet.

The conditions for the solution to be a local minimum imply that::

0 < 3i2t +2a2it +a1
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Whena2
2−12a1 > 0, and, the minimizing root should fall out of the following interval:

it /∈

−1
3

a2−

√
a2

2−12a1

6
,−1

3
a2 +

√
a2

2−12a1

6


otherwise there is only one real root which minimizes the problem and we know this because this
polynomial is strictly increasing at its extremes. We know from the solution of the cubic equation that
in order to have two or more real roots, and hence evaluate the optimal solution we need to haved≥ 0;
where d is the polynomial discriminant of the cubic equation. The discriminant takes the form of:

d = Q3 +R2

Q =
(

3a1−a2
2

9

)3

R =
(

9a2a1−27a0−2a3
2

54

)2

The general solution to the cubic polynomium is:

−1
3

a2 +(S+T)

−1
3

a2 +
1
2
(S+T)+

1
2

ı
√

3(S−T)

−1
3

a2 +
1
2
(S+T)− 1

2
ı
√

3(S−T)

where

S =
3
√

R+ 2
√

D

T =
3
√

R− 2
√

D

If d > 0, because we know the function is strictly increasing at its extremes we can say that the solution
to the problem is:it = −1

3a2 +(S+T).Otherwise we have to evaluate the roots against the restriction
and the remaining two would have to be evaluated in the original function. To haved < 0 we need at

least to have that 3a1 < a2
2. This implies thatE1 <

D2
1

C1
which yields a very complicated set of parameter

rules that guarantee a unique solution for any shock size. We thus leave the general solution to the
problem to concentrate the attention in the economics of the problem.
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Aside to the analytical solution, we may evaluate the three roots in the expected objective function. In
order to so expand the expected objective function:

E
t
g(it ,εδ

t )2 = E
t
θ

2
3 (−it + ε

δ
t )4

= θ
2
3 (i4t −4i3t ρε

δ
t−1 +6i2t (σ

2
µ +ρ

2
ε

2δ
t−1)−4it(3ρε

δ
t−1σ

2
µ +ρ

3
ε

3δ
t−1)+E

t

(
ε

δ
t

)4
)

and

E
t
g(it ,εδ

t ) = θ3(i2t −2itρε
δ
t−1 +(σ2

µ +ρ
2
ε

2δ
t−1))

E
t
g(it ,εδ

t )εδ
t = θ3(i2t ρε

δ
t−1−2it(σ2

µ +ρ
2
ε

2δ
t−1))

(A2
1 +B2

1)i
2
t +(A2

2 +B2
2)(ρ

2
ε

2δ
t−1)+2(A1A2 +B1B2)itρε

δ
t−1...

+(γ2 +1)∗E
t
g(it ,εδ

t )2 +2(A1γ1 +B1)itE
t
g(it ,εδ

t )...

+2(A2γ2 +B2)E
t
g(it ,εδ

t )εδ
t

replacing the expected values and grouping the constants we have:

(A2
1 +B2

1)i
2
t +(A2

2 +B2
2)(ρ

2
ε

2δ
t−1)+2(A1A2 +B1B2)itρε

δ
t−1

+(γ2 +1)θ 2
3 (i4t −4i3t ρε

δ
t−1 +6i2t (σ

2
µ +ρ

2
ε

2δ
t−1)−4it(3ρε

δ
t−1σ

2
µ +ρ

3
ε

3δ
t−1)+(6ρ

2
ε

2δ
t−1σ

2
µ +ρ

4
ε

4δ
t−1))

+2θ3(A1γ1 +B1)(i3t −2i2t ρε
δ
t−1 + it(σ2

µ +ρ
2
ε

2δ
t−1))+2θ3(A2γ1 +B2)(i2t ρε

δ
t−1−2it(σ2

µ +ρ
2
ε

2δ
t−1))

+K

Which regrouped yield:

θ
2
3 (γ2 +1)i4t

2(−2θ
2
3 (γ2 +1)ρε

δ
t−1 +θ3(A1γ1 +B1))i3t

((A2
1 +B2

1)+6θ
2
3 (γ2 +1)(σ2

µ +ρ
2
ε

2δ
t−1)+2(−2θ3(A1γ1 +B1)+θ3(A2γ1 +B2))ρε

δ
t−1)i

2
t

2((A1A2 +B1B2)ρε
δ
t−1−2θ

2
3 (3ρε

δ
t−1σ

2
µ +ρ

3
ε

3δ
t−1)(γ

2 +1)

+(θ3(A1γ1 +B1)−2θ3(A2γ1 +B2))(σ2
µ +ρ

2
ε

2δ
t−1))it

(A2
2 +B2

2)(ρ
2
ε

2δ
t−1)+θ

2
3 (γ2 +1)(6ρ

2
ε

2δ
t−1σ

2
µ +ρ

4
ε

4δ
t−1)
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or in terms of the replaced variables:

C1

2
i4t

2
3

D1i3t

(E1)i2t
2F1it

(A2
2 +B2

2)(ρ
2
ε

2δ
t−1)+

C1

2
(6ρ

2
ε

2δ
t−1σ

2
µ +ρ

4
ε

4δ
t−1)

or a simple quartic equation:

λ4i4t +λ3i3t +λ2i2t +λ1it +λ0

where:

λ4 =
C1

2

λ3 =
2
3

D1

λ2 = E1

λ1 = 2F1

λ0 = (A2
2 +B2

2)(ρ
2
ε

2δ
t−1)+

C1

2
(6ρ

2
ε

2δ
t−1σ

2
µ +ρ

4
ε

4δ
t−1)

A.3 Solving the uncertainty case with Bayesian approach
{APP3}

The loss function

Pt
(
(A2

1t +B2
1t)i

2
t +2(A1tA2t +B1tB2t)itρεδ ,t−1

)
+(1−Pt)(λ4t i

4
t +λ3t i

3
t +λ2t i

2
t +λ1t i2t)

+(Pt)((A2
2 +B2

2)(σ
2
µ +ρ

2
ε

2
δ ,t−1)+ γ

2
1σ

2
y,t +σ

2
π,t)+(1−Pt)λ0t

the polynomial solution
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0 = 4χ4i3t +3χ3i2t +2χ2it + χ1

χ4 = (1−P1
t )λ4t

χ3 = (1−P1
t )λ3t

χ2 = (P1
t )(A2

1t +B2
1t)+(1−P1

t )λ2t

χ1 = (P1
t )2(A1tA2t +B1tB2t)ρε

δ
t−1 +(1−P1

t )λ1t

χ0 = P1
t ((A2

2 +B2
2)(σ

2
µ +ρ

2
ε

2δ
t−1)+ γ

2
1σ

2y
t +σ

2π
t )+(1−P1

t )λ0t

A.4 Solving the Bellman Equation

The Bellman equation for this problem is:

V(εδ
t ,P1

t ) = min
{it}

E[
t
(πt(it))2 +(yt(it)/P1

t )2]...

...+βE
t
[(P1

t )V(εδ
t ,P1

t+1)+(1−P1
t )E

t
[V(εδ

t ,P2
t+1)]

where probabilitiesP1
t implies the probability at periodt of believing that the true model is model 1

(i.e. no balance sheet) The discounted future value function is the interesting. It is composed by a the
waged sum of to future value functions. The first of these is the expected value function given the fact
that if the real model is the no balance sheet model there is an expected future probability of believing
that the real model is model one(P1

t+1). The second part of the equation is very similar, though the
probability P2

t+1is now equal to the expected probability of believing that the true model is model 1
once we take as given that the true model is model two. Thus given this formulation, the solution of
this problem takes into account, no only the current loss, as the static problems, but also the learning
process taking into account the fact that the their is an expected evolution for the model prior that will
finally depend on what the true model is:

The procedure for the numerical solution of this problem is:

1. First discretize the interest parity shock space using (Tauchen). We uniformly descretize the
model prior space and finally the interest rate space.

2. Use an initial guess for the Value Function.

3. Loop over all model prior probabilities and the depreciation shocks;

4. Then, use the vectorization of the interest rate space and compute the contemporaneous
component of the Bellman equation (we can do this since the model is static)

5. step5 For the discretization of the aggregate demand shock, we compute both, the expected
model prior if the true model is 1 and if the true model is 2.
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6. Compute Value Function for both models expected model prior probabilities with the use of the
initial guess

7. Once the loops are done, take the output value function as the initial guess.

8. We repeat steps (3)-(7) until convergence.
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Figure 4: nbs learning vs. no learning {Fig4}
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MOMENT COMPARISON − EXPERIMENTATION

Relative Variance
(as % of the model without Balance Sheet Effect)

Loss Comparison
(as % of the model without Balance Sheet Effect)

Variable Output Inflation Depreciation Interest Rate

(when the true model is Model A)

Policy with Certainty

Bayesian Policy

Policy Experimentation

(when the true model is Model B)

Policy with Certainty

Bayesian Policy

Policy Experimentation

(when the true model is Model A)

Policy with Certainty

Bayesian Policy 

Policy Experimentation

(when the true model is Model B)

Policy with Certainty

Bayesian Policy

Policy Experimentation

100%

113%

1110%

2167%

2153%

6125%

100%

110%

197%

283%

284%

197%

100%

108%

109%

78%

81%

109%

100%

128%

93%

419%

498%

109%

100%

113%

108%

895%

994%

3179%
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