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ABSTRACT

Recently, perturbation has received attention as a numerical method for computing an approximate solution

of a nonlinear dynamic stochastic model, which we call a nonlinear rational expectations (NLRE) model. To

date perturbation methods have been described and applied as single-step perturbation (SSP). If a solution

of an NLRE model is a function ϕ(x) of vector x, then, SSP aims to compute a kth-order Taylor approximation

of ϕ(x), centered at x0. In classical SSP, where x0 is a nonstochastic steady state of the dynamical system,

a kth-order approximation is accurate on the order of ||∆x||k+1, where ∆x = x - x0 and ||⋅|| is a vector

norm. Thus, for given k and computed x0, classical SSP is accurate only locally, near x0. SSP's accuracy can

be improved only by increasing k, which beyond small values results in large computing costs, especially

for deriving kth-order analytical derivatives of the model's equations. So far, research has not fully

solved the problem in SSP of maintaining any desired accuracy while freeing x0 from the nonstochastic steady

state, so that, for given k, SSP can be arbitrarily accurate for any ∆x. Multi-step perturbation (MSP)

fully solves this problem and, thus, globalizes SSP. In SSP, we approximate ϕ(x) with a single Taylor

approximation centered at x0 and, thus, effectively move from x0 to x in one step. In MSP, we move in a

straight line from x0 to x in h steps of equal length. At each step, we approximate ϕ at the x at the end of

the step with a Taylor approximation centered at the x at the beginning of the step. After h steps and

Taylor approximations, we obtain an approximation of ϕ(x) which is accurate on the order of h-k. Thus,

although in MSP we also set x0 to a nonstochastic steady state, unlike in SSP, we can achieve any desired

accuracy for any x0, x, and k, simply by using sufficiently many steps. Thus, we free the accuracy from

dependence on k and ||∆x|| and effectively globalize SSP. Whereas increasing k requires new derivations and

programming, increasing h requires only passing more times through an already programmed loop, typically at

only moderately more computing time. In the paper, we derive an MSP algorithm in standard linear-algebraic

notation, for a 4th-order approximation of a general NLRE model, and illustrate the algorithm and its

accuracy by applying it to a stochastic one-sector optimal growth model.
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  Introduction

• This paper is motivated by the desire to accurately compute the solution

of nonlinear rational expectations models.

• We describe and illustrate the Multiple Step Perturbation (MSP) method

for quickly and accurately computing the 4th-order polynomial (Taylor

series) approximation of the solution of nonlinear rational expectations

models.

• Plan of the presentation:

   1. Nonlinear Rational Expectations Models (NLREM).

   2. An Optimal Growth Example of NLREM.

   3. Single-Step vs. Multi-Step Perturbation (SSP vs. MSP).

   4. 2nd-Order MSP Solution Equations.

   5. MSP solution of the Optimal Growth Model.

   6. Conclusion.
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1. Nonlinear rational expectations models (NLREM).

•  First statement of NLREM:

  (1) Etc(yt+1, yt, yt-1, εt, εt+1) = 0n×1;

 yt = n×1 vector of endogenous variables;

   εt = n×1 vector of exogenous disturbances;

   c = nonlinear function which maps R5nx1 to Rnx1 and is k-times
             differentiable;

   Et = expectation w.r.t. probability distribution of εt+1, conditional
 on period t information, specified in terms of ε's moments;

   si = Et(εt+1 ⊗ ... ⊗ εt+1) = ith moment of εt+1, with k-1 Kronecker
             products.
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•  Second statement of NLREM:

 Want a solution in the form of a feedback decision rule:

  (2) yt = φ(xt),

φ = nonlinear solution function which maps R2nx1 to Rn and is k-times
differentiable;

 xt = ( T
1ty − , εt

T)T = 2n×1 state vector;

 Let θηt+1 = εt+1, where 0 ≤ θ ≤ 1 scales uncertainty, drop t everywhere,
and write Etc(⋅) = 0n×1 as

(3)   Ec(φ(φ(x), θη), φ(x), x, θη) = 0nx1.
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• Third statement of NLREM:

   φ depends on uncertainty scale θ, so φ is a function of θ and (3) becomes

  (4)   Ec(φ(φ(x, θ), θη, θ), φ(x, θ), x, θη) = 0nx1.

• What is a solution?

A function φ(x,θ) that satisfies (4) for θ = 1 at the given value of x.

• Suppressing θ, we approximate φ as a kth-order polynomial:

  (5)  φ(x) = φ0 + ∇φ0∆x + (1/2)(∆xT ⊗ In)∇2φ0 + ...

+ (1/k!)(∆xT ⊗ ⋅⋅⋅ ⊗ ∆xT ⊗ In)∇kφ0∆x,

  where ∆x = xh - x0,   φ0 = φ(x0),

        ∇φ0,..., ∇kφ0 = matrices of 1st- to kth-order derivatives of φ at x0,

        x0 = nonstochastic steady state.
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3. Optimal growth example of NLREM.

• Basic equations of the model:

  (6)   u(ct) = (1-γ)-1ct1-γ                (utility function),

  (7)   f(kt-1,τt) = τt α
−1tk                 (production function),

  (8)   τt = 
ρ
−τ 1t exp(ετ,t)                 (technology law of motion),

  (9)   kt = (1-δ)kt-1 + τt α
−1tk – ct + εk,t,  (capital law of motion),

    εt+1 = (εk,t+1, εθ,t+1)T ~ N(0,Σε),

    γ < 1, 0 < α, δ, ρ < 1.

•  Objective: maximize expected present value of utility:

  (10) max Et∑∞
= +0i it

i )u(cβ   w.r.t. {ct+i}i =
∞

0,  for 0 < β < 1.
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•  Optimal feedback decision rule:

   Eliminate c, so that k is the decision variable in y:

   (11) yt = φ(xt),

   where  yt = (kt,τt)T,  xt = ( T
1ty − ,εt)T,  εt = (εkt, ετt)T.

•  Model's structural equation:

   (12)  Ec(⋅) = E
⎥
⎥
⎥
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9

3. Single-step vs. multi-step perturbation (SSP vs. MSP).

• Previous work on SSP in economics:

Anderson, Chen & Zadrozny, Collard & Juillard, Judd, Kim & Kim,

Schmitt-Grohe & Uribe, Sims, ...

• Commonality between SSP and MSP:

SSP and MSP apply implicit function theorem k times:

Example: Compute 1st-order solution φ̂(x) = φ0 + ∇φ0(x-x0) at x0 for the
         model c(φ(x),x) = 0n×1:

 Solve c(x0,x0) = 0n×1 for nonstochastic steady state x0 and set φ0 = x0;

 Differentiate c to obtain n×2n Jacobian matrix of 1st-order partial
derivatives of c at x0: ∇c0 = [∇c1,0,∇c2,0];

 Compute  ∇φ0 = -(∇c1,0)-1∇c2,0.
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• Differences of error-properties of SSP and MSP:

a. SSP has local error properties:

 SSP error: εSSP = ≤ α|∆x|k+1, where α = |∇k+1φ(ξ)| and ξ = point in a sphere
centered at x0 with radius |∆x|.

 SSP error's order of magnitude: O(εSSP) = |∆x|k+1, for α ≤ 1.

b. MSP globalizes SSP's local error properties:

 SSP "moves in one big step" and is local because its error increases

quickly with |∆x|;

 MSP "moves in many small steps" and is global because its error can be

limited to any chosen size by making the steps sufficiently small.
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• Figure 1: SSP and MSP paths in state space.

SSP goes in 1 step from A to C along 450 diagonal and MSP goes in 2h steps
from A to B to C:

            x

B = (xh,0)       C = (xh,1)

h = no. of nonstochastic and
                                                              stochastic steps;

                                                          xi = x at end of nonstochastic
                                                               step i;

θi = θ at end of stochastic
                                                               step i;

                                                          A = (x0,0) = initial state;
       xi
 B = (xh,0) = state after h
                                                               nonstochastic steps;

 C = (xh,1) = final state after
    h stochastic steps.

A = (x0,0)
              θ1                θi                     θh = 1
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•  Figure 2: SSP vs. MSP accuracy

  SSP goes in one step from zo to z2, with error C1 - C = |φ(z2) – )z(ˆ
21φ |,

 for z = (xT,θ)T, and MSP goes in two steps from zo to z1 to z2, with smaller

 error C2 - C = |φ(z2) - )z(ˆ
22φ |.

       )(1̂ zφ

  )(ˆ
21 zφ                                          C1         )(ˆ

2 zφ

  )(ˆ
22 zφ                                              C2  )(zφ
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                                B
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• Table 1: εMSP = MSP order of magnitude of accuracy:

 |∆x| = 1 and kth-order approximation => O(εSSP) = 1.

 |∆x| = 1, kth-order approximation, h steps, h-1 stepsize => O(εMSP) = h-k.

 Table is based on: for given εMSP and h, O(εMSP) = h-k ≤ εMSP requires
   h = smallest integer ≥ ε-1/k.

ε k h-1 h

1 1.00×10-4 104

2 1.00×10-2 102

3 4.55×10-2 22
4 1.00×10-1 10
5 1.43×10-1 7

Semi-Single

Precision:

ε = O(10-4)
6 2.00×10-1 5
1 1.00×10-8 108

2 1.00×10-4 104

3 2.15×10-3 465
4 1.00×10-2 100
5 2.50×10-2 40

Single

Precision:

ε = O(10-8)
6 4.55×10-2 22
1 1.00×10-16 1016

2 1.00×10-8 108

3 4.64×10-6 215,444
4 1.00×10-4 104

5 6.31×10-4 1585

Double

Precision:

ε = O(10-16)
6 2.15×10-3 465
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•  MSP advantages over SSP:

 In SSP:

1)  O(εSSP) = |∆x|k increases quickly with |∆x|;

2)  |∆x| < 1 => O(εSSP) can be reduced to any size by increasing k, which

        costs much more derivation and programming time;

3)  |∆x| > 1 => O(εSSP) cannot be reduced below 1.

 In MSP:

1)  Given |∆x| => O(εMSP) = h-k can be reduced to any size by increasing h

   or k, preferably by increasing h.

2)  Nonstochastic and stochastic h can be different: may need stochastic
   h > nonstochastic h, to account for enough disturbance moments,

   hence, enough uncertainty.
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4. MSP solution equations.

• Definitions and rules of matrix differentiation:

 For x = m×1 and y = n×1, differentiate y = f(x), to obtain n×1 1st-order
differential vector of f(x),

  (13) dy = ∇f(x)⋅dx,

    where ∇f(x) = n×m matrix of 1st-partial derivatives of f(x).

 Differentiate dy = ∇f(x)⋅dx, to obtain n×1 2nd-order differential vector
of f(x),

  (14) d2y = d∇f(x)⋅dx = (dxT ⊗ In)⋅∇2f(x)⋅dx,

  where ∇2f(x) = nmxm matrix of 2nd-order derivatives of f(x).

 Continue and obtain the kth-order nmk-1×1 differential vector of f(x),

  (15) d(vec(∇k-1f(x))) = (dxT ⊗ ⋅ ⋅ ⋅ ⊗ dxT ⊗ In)∇kf(x)dx,

where ∇kf(x) = nmk-1×m matrix of kth-order partial derivatives of f(x).
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• Implications:

 ∇kf(x) is the Jacobian of the column vector of ∇k-1f(x):

 (16)  dj+ky = (dxT ⊗ ⋅ ⋅ ⋅ ⊗ dxT ⊗ In)dj∇kf(x)⋅dx,

  so we can use partial derivatives in a mixed differential-gradient form.

• Use 3 rules to derive MSP solution equations:

 Vectorization rule:

(17)  vec(ABC) = (CT ⊗ A)⋅vec(B).

 Product rule:

(18)  d[f(x)g(x)] = df(x)⋅g(x) + f(x)⋅dg(x).

 Chain rule:

(19)  ∇g[f(x)] = ∇g[f(x)]⋅∇f(x).
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• Overall steps of MSP computational algorithm.

 4 on-line steps:

1)  Start: Compute steady state x0, s.t. C(xo, xo, xo, εo, εo) = 0nx1

2)  Apply h nonstochastic steps to update )x(̂ iφ  and ))x((̂ iφγ ;

3)  Apply h stochastic steps to update ),x(̂ jh ηθφ  and )),x((̂ jh ηθφγ ;

4)  Finish: combine updated ),x(̂ hh ηθφ  coefficients.

 1 off-line step:

1)  Check solution accuracy at end of stochastic steps.
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• 2nd-order nonstochastic equations:

 *(20)   ∇c1∇ 2
1φ  + ∇c2∇φ1 + ∇c3 = 0n×n,

 *(21)   ∇φ2 = -(∇c1∇φ1 + ∇c2)-1∇c4,

  (22)   vec(d∇ci) = [(∇2ci,1∇φ1 + ∇2ci,2)∇φ1+2 + ∇2ci,3+4]dx,

 *(23) vec(d∇φ1) = -[ T
1φ∇ ⊗∇c1 + In⊗(∇c1∇φ1 + ∇c2)]-1

                    × vec(d∇c1 2
1φ∇ +d∇c2∇φ1+d∇c3),

 *(24)   d∇φ2 = -(∇c1∇φ1 + ∇c2)-1 × [(d∇c1∇φ1 + ∇c1d∇φ1) + d∇c2)∇φ2 + d∇c4],

  (25)   ∆φ1+2 = [∇φ1+2 + (1/2)d∇φ1+2]dx,

  (26)   ∆γ1+2 = [∇φ1∇φ1+2 + (1/2)(d∇φ1∇φ1+2 + ∇φ1d∇φ1+2)]dx,

  where  ∇2ci,3+4 = [∇2ci,3, ∇2ci,4], ∇φ1+2 = [∇φ1, ∇φ2],  d∇φ1+2 = [d∇φ1, d∇φ2].
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•  2nd-order stochastic equations:

 *(27)   d∇φ3 = -[∇c1(∇φ1 + In) + ∇c2]-1[(sT2 /h) ⊗ In]

                × [( T
2φ∇  ⊗ T

2φ∇  ⊗ In)vec(∇2c1,1) + (In ⊗ T
2φ∇  ⊗ In)vec(∇2c1,5)

                    + ( T
2φ∇  ⊗ In)vec(∇2c5,1) + vec(∇2c5,5)],

  (28)   ∆φ3 = (1/2)d∇φ3,

  (29)   ∆γ3 = (1/2)(In + ∇φ1)d∇φ3,

   where  s2 = E(εt+1 ⊗ εt+1).

• Final updates:

  (30)   ∆φ = ∆φ1+2 + ∆φ3,

  (31)   ∆γ = ∆γ1+2 + ∆γ3.
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• Check solution accuracy:

Have final approximate solution φ(x) = φ0 + ∇φ0∆x + (1/2)(∆xT⊗In)∇2φ0,
for θ = 1. Use Gauss-Hermite quadrature to evaluate the absolute n×1
error vector

  (32)  e = |Ec(φ(φ(x), η), φ(x), x, η)|,

  where |⋅| = vector of absolute values.

• Computational complexity:

 Nonstochastic equations:

1)  Solve 1 n-dimensional quadratic equation, (20);

2)  Solve 1 n2-dimensional linear equation, (23);

3)  Solve 2 n-dimensional linear equations, (21) and (24).

 Stochastic equations:

1)  Solve 1 n-dimensional linear equation, (27).
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5. SSP applied to an optimal growth model.

Table 2: Accuracy test of 2nd-order Taylor approximation: nonstochastic case.

Euler equation: C1 = β 1t,k
'

1t fu ++ - 
'
tu Technology l.o.m.: C2 = τt - t,

1t e θερ
−τ

h max min mean stdv. max min mean stdv.

1 5.09E-06 1.06E-08 1.17E-06 1.01E-06 1.01E-06 2.18E-09 2.26E-07 2.23E-07

10 3.07E-07 3.57E-10 7.74E-08 6.43E-08 1.24E-08 2.67E-11 7.17E-09 6.08E-09

100 2.94E-08 5.00E-11 7.17E-9 6.08E-09 3.51E-10 7.58E-13 7.86E-11 7.74E-11

1000 2.93E-09 5.66E-12 7.11E-10 6.04E-10 2.62E-11 5.77E-14 5.88E-12 5.78E-12

10,000 2.86E-10 5.54E-13 6.94E-11 5.89E-11 2.45E-12 0.00E+00 5.53E-13 5.44E-13

Et∑∞
= +0i it

i )u(cβ ,  u(ct) = (1-γ)-1ct1-γ,  f(kt-1,τt) = τt α
−1tk ,

 τt = 
ρ
−τ 1t exp(ετ,t), kt = (1-δ)kt-1 + τt α

−1tk  – ct + εk,t,

(β, γ, α, ρ, δ) = (.95, .5, .33, .95, .1),

(k*, τ*) = (.1771, 1.),  kt-1/k* ∈ {.9, 1.1},  τt-1/τ* ∈ {.9, 1.1}.
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Table 3: Accuracy test of 2nd-order Taylor approximation: stochastic case.

EC1 = β 1t,k
'

1t fu ++ - 
'
tu ,

⎥
⎦

⎤
⎢
⎣

⎡
=Σ

0001.00005.

00005.0001.
,|ηt+1|∈(.0001, .015)

C1 = β 1t,k
'

1t fu ++ - 
'
tu ,

⎥
⎦

⎤
⎢
⎣

⎡
=Σ

001.0005.

0005.001.
, |ηt+1|∈(.0005, .054)

h Max Min Mean Std. Max Min Mean Std.

1 1.33E-02 1.00E-03 6.12E-03 3.60E-03 1.20E-02 9.37E-04 5.66E-03 3.34E-03

10 1.33E-03 4.31E-05 5.93E-04 3.66E-04 1.25E-03 5.69E-05 5.55E-04 3.38E-04

100 1.35E-04 5.66E-06 5.99E-05 3.66E-05 1.43E-04 2.34E-05 7.43E-05 3.37E-05

1000 1.55E-05 2.51E-06 7.94E-06 3.66E-06 3.25E-05 2.06E-05 2.56E-05 3.38E-06

10,000 3.76E-06 2.13E-06 2.79E-06 4.60E-07 2.17E-05 2.02E-05 2.08E-05 4.24E-07

Et∑∞
= +0i it

i )u(cβ ,  u(ct) = (1-γ)-1ct1-γ,  f(kt-1,τt) = τt α
−1tk ,  Σ = EηηT,

τt = 
ρ
−τ 1t exp(ετ,t),  kt = (1-δ)kt-1 + τt α

−1tk  – ct + εk,t,  εt+1 = εt + θηt+1,

(β, γ, α, ρ, δ) = (.95, .5, .33, .95, .1),

(k*, τ*) = (.1771, 1.0),  kt-1/k* ∈ {.9, 1.1},  τt-1/τ* ∈ {.9, 1.1}.
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Figure 3.a: 2nd-order Taylor approximation of kt: nonstochastic case.
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Figure 3.b: 2nd-order Taylor approximation of kt: stochastic case.
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Figure 4.a: 2nd-order Taylor approximation of kt: stochastic case.
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Figure 4.b: 2nd-order Taylor approximation of τt: stochastic case.
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6.  Conclusions.

• We derived MSP equations for computing 4th-order approximate solutions of
NLRE models and illustrated 2nd-order MSP solutions equations and an
optimal growth model.

• For sufficient approximation order k, SSP provides good local accuracy,
but increasing k adds costly derivation and programming time. MSP
solutions are accurate on the order of h-k for h number of steps.
Increasing h requires only repeating preprogrammed loops of mostly linear
operations more times.  MSP cheaply extends SSP to be accurate over a much
larger region of the state space and, thus, effectively globalizes it.

• MSP is easy to program in a matrix oriented programming language because
all solution equations are expressed in standard linear-algebraic
operations of vectors and matrices. The linear-algebraic form also
facilitates analytical understanding of the solution equations.

• In addition to rational expectations models, MSP could be applied to
various dynamic economic, financial, and statistical models. For example,
it has been shown that MSP can be used to compute price indexes and
productivity indexes with high accuracy in models that are based on
explicit forms of functions to be maximized (Chen & Zadrozny, 2004).
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Dynamic programming

•  Bellman equation:

(1)  v(x) = max [u(φ(x),x) + βEv(f(x,φ(x),ε))] w.r.t φ,

     x = state vector of predetermined observed and unobserved variables;
     φ(x) = decision function to be computed; f(x,φ(x),ε) = state transition
     function; and ε = unobserved disturbance.

• First-order necessary conditions:

 Differentiate [⋅] in (1) w.r.t. φ:

(2)  u'(φ(x),x) + βEv'(f(x,φ(x),ε))f2(x,φ(x),ε) = 0.

 Differentiate (1) w.r.t. x:

(3)  v'(x) = u2(x) + βEv'(f(x,φ(x),ε))f1(x,φ(x),ε).

• Solution objectives:

 In general: Given u(⋅), f(⋅), β, compute φ and v' which solve (2) & (3).

 In MSP: compute polynomial approxs. of φ and v' which solve (2) & (3) at x.

 Comparison with NLREM: v'(f(φ(⋅))) in DP corresponds to φ(φ(⋅)) in NLREM.
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• Possible financial time-series application:

- Choose u(⋅) to represent a filtering criterion.

- Choose a model, f(⋅), and estimate its parameters.

- Solve (2) and (3) for filter φ(⋅), which estimates stochastic-volatility
  disturbances.


