
Persistence of Monopoly, Innovation, and R&D

Spillovers: Static versus Dynamic Analysis
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Abstract
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eventually leads to exit of the follower firm. The follower is assumed to benefit from
the innovative activities of the leader through R&D spillovers. The novel feature
of our approach is that we introduce explicit dynamic model and contrast it with
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1 Introduction

Is monopoly an environment conducive to innovation? Is there persistence of monopoly or

there is a change of the identity of innovating firm every while (leapfrogging in jargon)?

This kind of questions is not quite new among economists, but it seems to be actual

again. In a recent issue of the British The Economist (2004), the authors of already

celebrated rubric “Economics Focus” – that time dedicated to monopoly and innovation

– in the provocatively entitled text “Slackers or Pace-Setters: Monopolies may have more

incentives to innovate than economists have thought” noticed that monopolies may have

much more prominent role in generation innovations than have been previously thought.

The authors further express doubts about the predominant economic theory according

to which “monopolist should have far less incentives to invest in creating innovations

than a firm in a competitive environment.” Apparently, there is a controversial role of

market power and monopolies in creating innovations and the key to the answer lies

in the underlying incentives to undertake innovations. The recent empirical evidence

seems to support this Schumpeterian allegations from The Economist: there is a positive

relationship between market power and intensity of innovation (see, for instance, Blundell,

et al., 1999, Carlin et al., 2004, Aghion and Griffith, 2004). Commenting on this empirical

evidence, Etro (2004) noticed that it “is consistent with pre-emptive R&D investment by

the leaders.” As a consequence of such strategic behavior, there may be only one firm

at the end of the day, but this firm would display far more competitive behavior than

standard monopolist; it would respectively generate higher flow of R&D, charge lower

price and produce more.

There are many real-world examples of monopolistic or dominant firms that invest

more in innovation and R&D than their rivals (see Etro, 2004) and that persists over

long period of time. Here we could, for instance, refer to AT&T1 as an example of such

pattern. Founded in 1885, the company is one of the largest telephone companies and cable

television operators in the world. After becoming a first long distance telephone network

in the US AT&T made huge investments in research and development. As a result,

the company obtained near monopoly power on long distance phone services. Heavy

investments in R&D together with aggressive behavior on the market allowed AT&T to

1AT&T is a giant old American telecommunications company, publicly listed on the New

York Stock Exchange under the ticker symbol T. AT&T provides voice, video, data, and In-

ternet telecommunications services to businesses, consumers, and government agencies (source:

www.sciencedaily.com/encyclopedia/at t).
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obtain crucial inventions and to spread its near monopoly power on other markets. The

company was both buying patents for significant innovations2 and making innovations

itself3. Only after a suit against AT&T in 1982 followed by the breakup of the company

into several local independent units called “Baby Bells” in 1984 the US telephone industry

became competitive and other companies entered the market. While loosing part of its

market power on the long distance telephone services, the company has continued its

aggressive investments in R&D. For example, in 2004 AT&T introduced a facility allowing

businesses to securely run their private networks without any interruptions on AT&T’s

leading global Internet Protocol network. This innovation assures the company to remain

a leader in IP networking. Even AT&T characterizes itself as “backed by the research

and development capabilities of AT&T labs, the company is a global leader in local, long

distance, Internet and transaction-based voice and data services”.

The above observations concerning the relation between innovativeness, leadership

and market power motivate our paper in that we aim to describe and analyze a particular

setup in which the persistence of monopoly can arise in the long run. More specifically, we

study the situation in which the market leader undertakes pre-emptive R&D investment,

(or, in our words, adopts “strategic predation” strategy) that eventually leads to exit of

the follower firm or/and prevents or limits the entry of the new firms and we contrast this

situation with the one in which the leader (within the same setup) “accommodates” the

follower, that is, it co-exists with follower in a duopoly market structure. This comparison

will enable us to study both positive aspects of the two main strategies- accommodation

and strategic predation- (like, for instance, which strategy yields higher R&D intensity

or R&D stock) and normative aspect (social welfare implications) of the two resulting

market structures: duopoly versus (constrained or unconstrained) monopoly. The latter

aspect, as we will see, carries important policy implications.

The novel feature of our approach is that we introduce explicit dynamic model and

contrast it with its static (or quasi-dynamic) counterpart. This comparison can be con-

sidered as a topic per se of our paper. Since strategic innovations are inherently dynamic

phenomenon, we argue that suitable model aimed at capturing both accommodating and

the pre-emptive or predatory behavior of the dominant firm should be explicitly dynamic.

Furthermore, to emphasize the role of the leader we assume that he is the only one that

2During the early 1920s, AT&T bought Lee De Forest’s patents on the “audion”, the first triode

vacuum tube, which let them enter the radio business (cf. www.sciencedaily.com/encyclopedia/at t).
3AT&T commissioned the first commercial communications satellite, Telstar I in 1962 (source:

www.sciencedaily.com/encyclopedia/at t).
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invests in innovation while the follower imitates through R&D spillovers. The rationale

for introducing spillovers stems from the fact that innovations, in general, are subject to

R&D spillovers for which the recipients need to have so-called “absorptive capacity,” that

is, the “ability to identify, assimilate, and exploit knowledge from the environment and to

apply it to commercial ends” (Cohen and Leventhal, 1989 and 1990).4 The importance

of R&D spillovers, imitations and its economic implications seem to be well and broadly

documented (in both theoretical and empirical literature; see, for instance, Griliches,

1992). However, most of the theoretical models are static in nature and they focus on the

accommodation strategies. That is, strategic predation is simply ignored or precluded by

assumptions (so that it is never optimal). In such situations unilateral R&D spillovers

create disincentives to invest in R&D and consequently hamper innovations. However, as

we will see soon, in the case when strategic predation is optimal, the economic implication

of R&D spillovers is exactly opposite. They enhance the incentive to invest in R&D.

A static (or quasi-dynamic) simple two-stage duopoly model will serve as a bench-

mark for our subsequent dynamic analysis. This should come at no surprise since the

concept of two stage (or n-stage competition) use to be a standard tool to tackle the

above mentioned types of strategic interactions. That approach concentrates on identify-

ing “strategic effects” that influences the first-period behavior and aims to characterize

the resulting strategic rivalry. The concept has been proven successful in a way that

the same strategic principles (e.g. “overinvestment” or “underinvestment”) apply in so

many economic environments and the comparative static results from the static oligopoly

theory can be used to provide information about strategic behavior (see Fudenberg and

Tirole, 1984, Tirole,1990, Shapiro, 1989, and Etro 2004). However, the described idea

relies on the artificial time structure since the final (i.e., second or n-th) period is essen-

tially one of static oligopoly (see Shapiro, 1989). From the perspective of the full-fledged

dynamic model, it gives at best the “steady state values” of the true underlying dynamic

game. Thus, it is lacking the explicit motion of the strategic variables over time and its

accompanying comparative dynamics. More importantly, the set of strategies available

to the firms may be richer than in the corresponding static model. Also, the dynamic

adjustment process is neglected in the n-stage competition games.

In order to contrast the standard static two-stage competition approach with its dy-

namic counterpart, we first construct a specific two-stage game and then build its ex-

4For an alternative approach that focuses on the incumbent’s absorptive capacity see Wiethaus (2005).

Under certain plausible conditions, Wiethaus (2005) demonstrates that monopolist is able to retain its

persistence by strategically investing in excess absorptive capacity.
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plicit dynamic version. More specifically, the benchmark model is two-stage asymmetric

duopoly game in which one firm (say, Firm 1) has strategic advantage in a form of prior

(first stage) investment in R&D that leads to unit costs decrease while the second firm

benefits from the R&D spillovers. In the second stage the two firms compete in quantities.

Thus both firms are assumed to be initially sustainable in the market. We then construct

an explicit dynamic counterpart of that game. To concentrate on the strategic aspects

within the dynamic model we push the tactical decision (i.e. selecting the optimal quan-

tity) in the background and deal with so called reduced form profit function indicating

the firms flow profits as functions of unit costs. Unit costs of the firms serve as so-called

“state variables” that are governed through the “control” variable, namely R&D expen-

ditures. Another important feature here is that a passage from the two-stage model to a

dynamic model requires the introduction of a specific adjustment parameter that captures

the speed with which the R&D investments translate into the unit costs reduction (see,

for example, Fersthman and Kamien (1987) and Stenbacka and Tombak (1993) for usage

of a similar approach). This is at the same time more realistic due to the unavoidable

time delay between the R&D investment and corresponding R&D output. The dynamic

approach enables us also to study a behavior of the strategic variable over time and some

of its comparative dynamic effects as well as the importance of the adjustment process

that are missing in the simple two-stage framework. Finally, and most importantly, in an

explicit dynamic model we can analyze how the optimal strategy of the firm that possesses

strategic advantage may lead to the change in market structure over the time and thus

create persistence of monopoly. This phenomenon is not possible in the static 2-stage

game. In other words, the strategic advantage of the Firm 1 would enable it to exhibit

pre-emptive behavior (or strategic predation) on its rival turning initial duopoly market

structure into monopoly.

Our analysis provides the following new insights:

a) Strategic predation becomes ever more attractive strategy to pursue when the adop-

tion of the new technology accelerates. More specifically, the parameter space in

which strategic predation is optimal increases with the speed of adjustment param-

eter and soon becomes dominant part of this region. The intuition is that after

initial period (up to time T ), the firm might be willing even to incur losses in order

to enjoy monopoly profit till the end of time. Thus, unlike in a static game, in a

fully dynamic model the costs of predation last only for a limited period and have to

be contrasted to the infinite stream of the monopoly profit afterwards. As a conse-
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quence, Firm 1 displays more aggressive behavior compared with its behavior in the

two-stage game. Moreover, the innovative effort, and output are usually bigger (and

price lower) compared to the situation in which the leading firm adopts accommo-

dation strategy. This in turn results in a larger generated social welfare in monopoly

than in related duopoly setup. However, for the comparison of these two strategies

(accommodation versus strategic predation) to be possible, both strategies have to

be initially feasible, and that in turn requires the level of R&D spillovers not to

be “too large”. Thus, our model generates results that are consistent with recent

empirical findings reported in the “Economic Focus” (The Economist, May 2004).

Etro (2004) developed an alternative model that is also consistent with the above

stylized facts. In his model, the persistence of monopoly requires a large number of

potential entrants.

b) The underling dynamic optimization problem in the case of strategic predation is

rather different than in the case of duopoly where firms maximize their discounted

profit over infinite time horizon. In the case of the strategic predation Firm 1 aims to

minimize the time that leads to the expulsion of Firm 2 from the market. The idea

here is that Firm 1 may even bear temporary losses in order to enjoy the monopoly

position later on. Imposing an upper bound of the sustainable strategic losses that

Firm 1 is willing to sacrifice over period from zero till T , suffices to determine the

lower bound on the minimum time to force the exit. This approach formalizes the

“long purse” story.

c) The time pattern of the R&D investment crucially depends of the equilibrium strat-

egy: if accommodation is an optimal strategy, then Firm 1 commits to the R&D

path which steadily increases over time towards the unique steady state value. When

on the other hand the strategic predation is an optimal strategy, the time profile of

R&D is reversed: that is, the shorter the target time, T , at which Firm 2 is forced to

exit, the higher the ”predatory” level of R&D investment has to be. In other words,

the level of optimal R&D investment decreases with the increase in the target time.

(Note that to force an immediate exit of Firm 2 is not viable since it would require

an infinite amount of R&D, if the speed of adjustment is finite.)

d) As a finding of an independent interest, we show that the steady state values of

the R&D investment in a dynamic model can be interpreted as a generalized values

of the equilibrium values obtained in the two-stage approach. If the adjustment is
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instantaneous (meaning that there is no time delay between the R&D input and its

output) as implicitly assumed in a two stage game, or the rate of time preference

(or interest rate) is neglected, then these two sets of values coincide.

2 The Two-Stage Competition

The basic static model is a two-stage game (see, for instance, Žigič 1998, 2000). In the

first stage, Firm 1 chooses its R&D expenditure, x, that, at the same time, represents the

level of R&D investment. In the second stage, the firms compete in quantities. Firm 1

has unit costs of production (c1):

c1 = c0 −√gx, x ≤ c2
0

g
, (1)

where the parameters g and c0 describe the efficiency of the R&D process and pre-

innovative unit costs, respectively. The expression
√

gx is an “R&D production function”,

where, as in Chin and Grossman (1990), g ∈ (0, 4) (the upper bound of this interval is

determined by the required positivity of the monopoly output).

Firm 2 benefits through spillovers from the R&D activity carried out by Firm 1. Its

unit cost function is

c2 = c0 − β
√

gx, β ∈ [0, 1], (2)

where β denotes the level of spillovers (which, say, reflects the strength of intellectual

property rights (IPR) protection).

We assume the linear inverse demand function: P = A−Q. The parameter A captures

the size of the market (where A > c0), variables q1 and q2 denote the quantities of the

two firms’ production, and Q ≡ q1 + q2 represents the aggregate supply.

In the second stage, given Firm’s 1 R&D investment, the two firms engage in Cournot-

Nash competition. Firm 1 maximizes profit net of the R&D expenditures. The first-order

condition for a maximum yields A − 2q1 − q2 − c1 = 0. The optimization problem for

the firm 2 is similar yielding the analogous first-order condition: A − 2q2 − q1 − c2 = 0.

Solving the “reaction functions” yields the Cournot outputs and price as functions of

R&D investment:

q1(x) =
A− 2c1 + c2

3
, q2(x) =

A + c1 − 2c2

3
, P (x) =

A + c1 + c2

3
. (3)

Substituting expressions (3) into the profit function yields Firm’s 1 profit function ex-

pressed in terms of R&D investment:

π1(x) =
(A− 2c1 + c2)

2

9
− x = q2

1 − x. (4)
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In the first stage of the game, Firm 1 selects x to maximize its profit. By substituting

expressions (1) and (2) for c1 and c2 into (4) and maximizing with respect to R&D

investment,5 we obtain:

x∗ =
(A− c0)

2(2− β)2g

(9− (2− β)2g)2
(5)

It is straightforward to check that Firm’s 1 R&D effort decreases with an increase in

spillovers, that is, ∂x∗
∂β

< 0.

Since spillovers are in general imperfect (β < 1), there is a critical value of R&D

efficiency, gd (leading to critical unit cost asymmetry between two firms, that in turn lead

to zero profit of Firm 2), defined as a function of β by

gd(β) =
3

(1− β)(2− β)
, (6)

such that for g > gd duopoly ceases to exist (see Figure 1). Equivalently, for any given

g, there exist a critical value βd below which duopoly is not viable. This critical value is

simply obtained by inverting (6).

When R&D efficiency exceeds gd two possibilities may occur: unconstrained monopoly

and monopoly constrained by the credible threat of entry by Firm 2 (or shortened “con-

strained monopoly”). To see this, let us look first at the optimal quantity, R&D expen-

ditures and price if unconstrained monopoly emerges. Firm 1, which is now assumed to

be a monopolist, maximizes

max πm = (A− qm)qm − c1qm − x. (7)

The first-order condition for a maximum yields A− 2qm − c1 = 0. Solving for qm and

substituting in (7) yields πm(x). Substituting expression (1) for c1 into the πm(x) and

maximizing with respect to the R&D investment (x), we obtain

xm =
(A− c0)

2g

(4− g)2
(8)

with the corresponding price as:

pm =
A(2− g) + 2c0

4− g
(9)

(note that spillovers play no role in the case of monopoly).

5We assume that c0 is sufficiently large in all cases so that the non-negativity constraint on c1 does

not bind. The second-order condition is satisfied for all permissible values of parameters, so the optimal

expenditure, x∗ is always positive.
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To find the parameters values which allow for pure monopoly to exist, we have to

evaluate the reduced profit function of Firm 2, that is, π∗2(x), at Firm 1 optimal R&D in-

vestment level expressed in terms of parameters and determining the region of parameters

that leads to π∗2(xm) ≤ 0. Equivalently, for Firm 1 to acquire an unconstrained monopoly

position, it is necessary that pm ≤ c0 − β
√

gxm. Such a post-innovative situation is that

in which “drastic innovation” takes place (see Tirole, 1990). By substituting for pm and

xm in the above expression we obtain the critical efficiency, gp, as a function of β:

gp(β) =
2

1− β
(10)

such that for g > gp the equilibrium market form is unconstrained monopoly. The critical

spillovers level below which Firm 1 gains unconstrained monopoly position is labelled as

βp.

However, if we compare this critical condition with the one required to sustain an

asymmetric duopoly, we see that there is a region of parameters β and g where there is

neither pure monopoly nor sustainable duopoly (the area between gp and gd in Figure 1).

Insert Figure 1 HERE

If the degree of spillovers and the efficiency of cost reductions happen to be in this

region, Firm 1 exhibits so called “strategic predation,” (i.e. it chooses R&D expenditures

in such a way as to cause q∗2 = 0 in equilibrium and thus induces the exit of Firm 2).

Note that the efficiency parameter g in this situation is in the range of

3

(1− β)(2− β)
≤ g ≤ 2

1− β
(11)

whereas β stays below 1
2
. There are two useful corollaries resulting from the above dis-

cussion: Firm 1 can enjoy the monopoly position only if spillovers are “small” (β < 1
2
)

and the R&D efficiency is rather high, more specifically, g ≥ gp(β) has to hold. Second,

since strategic predation is an option always available to Firm 1, this strategy is optimal

only if spillovers and the R&D efficiency are in the region described by (11). Note that

the region is rather small. Furthermore, the optimal R&D level is given by

x∗p =
(A− c0)

2

(1− 2β)2g
, (12)

where subscript p stands for predation. Notably, in the region of optimality of predation

x∗p increases in β.
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3 The Dynamic Counterpart of the Static Model:

The Case of Duopoly

3.1 Setting of the Problem

We first consider the setup in which both firms operate over an infinite time horizon.

Firm 1 aims to determine its optimal R&D path that maximizes its discounted stream

of profit (or, equivalently, its market value) over time. In doing so it takes into account

the effect of R&D spillovers on its competitor’s unit costs. As already mentioned in the

introduction, it is convenient to analyze this issue by relying on the reduced form profit

function that depends only on the firms’ respective unit costs. The unit costs are in

turn the function of the central strategic variable R&D investment. In order to build the

genuine dynamic model, we assume that it takes time for R&D investment to transform

into unit costs’ decrease (otherwise the problem would be inherently static, see discussion

in footnote 12). Thus, there is a “speed of adjustment” coefficient that captures the above

mentioned time delay (more precisely, the inverse of it). In this respect our model closely

follows that of Stenbacka and Tombak (1993) (see also Fershtman and Kamien (1987) for

a similar approach).

Technically, the problem for Firm 1 is represented as an infinite horizon optimal control

problem with two state and one control variable. More specifically, the problem is given

by

max
x(t)

I(x(t)) =

∫ +∞

0

[Π1(c1(t), c2(t))− x(t)]e−rtdt, (13)

subject to

(a)
dc1

dt
= µ(c0 − c1(t)−

√
gx(t)),

(b)
dc2

dt
= µ(c0 − c2(t)− β

√
gx(t)),

with initial conditions c1(0) = c2(0) = c0, where x(t) is the control variable (R&D expen-

ditures), c1(t) and c2(t) are the state variables (costs of production).6,7

6Subscript 2 refers to Firm 2; subscript 1 refers to Firm 1 and will be omitted in what follows.
7Our model can be easily adopted to capture the effect of R&D subsidization by introducing a new

term, sx, in the objective function where s ∈ [0, 1] is the subsidization rate:

max
x(t)

I(x(t)) =
∫ +∞

0

[Π1(c1(t), c2(t))− x(t) + sx(t)]e−rtdt.

Qualitatively, little will change in our analytical approach (developed further in Sections 3 and 4) though.
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Note that the laws of motions (a) and (b) require sufficient perpetual investments in

order to prevent the costs from increasing. If the investment is not sufficient, the costs

tend to reverse back to its initial value c0. In particular, when there is no investment in

R&D, the costs will converge to c0. This can be interpreted as some kind of depreciation

of knowledge or skills.8

At each point in time, gross profit function (that is, R&D costs are not subtracted) is

given by

Π1(c1, c2) = (p− c1)q1 = (A− (q1 + q2)− c1)q1, (14)

with q1(t) and q2(t) denoting quantities of good produced, while constants c0 (pre-innovative

unit costs) and β ∈ [0, 1] (the level of spillovers) are equivalent to those in the static model.

New parameter is µ > 0 – the speed of adjustment, while g – the efficiency of R&D pro-

cess – now belongs to the interval (0, 4ρ) due to the requirement for monopoly output to

be positive in the dynamic context (see Section 4.4 or Vinogradov and Žigič, 1999). The

parameter ρ can be viewed as a so-called “generalized discount factor” and is defined in

the following subsections. Symmetrically to Π1, instantaneous gross profit function for

Firm 2, Π2 is defined as

Π2(c1, c2) = (p− c2)q2 = (A− (q1 + q2)− c2)q2.

If Πi are maximized at each point in time, we can obtain q1 and q2 as functions of c1 and

c2 from the first order conditions (which are the same as in the two-stage model):9

∂Π1

∂q1

= A− 2q1 − q2 − c1 = 0,

∂Π2

∂q2

= A− q1 − 2q2 − c2 = 0, (15)

which yield the quantities

q1 =
1

3
(A− 2c1 + c2),

q2 =
1

3
(A + c1 − 2c2) (16)

and price

p = A− (q1 + q2) =
1

3
(A + c1 + c2). (17)

8Then µ(c0 − ci(t)) corresponds to the depreciation rate (with i = 1, 2).
9Here we implicitly assume that Firm 1 and Firm 2 form a duopoly irrespective of the value of x.

However, later in Lemma 6 it will be shown that the duopoly is not necessarily sustainable.
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On the other hand, given (15) we can also express ci as functions of qi:

c1 = A− 2q1 − q2,

c2 = A− q1 − 2q2. (18)

Substituting (18) into (14), we get

Π1 =

(
1

3
(A + c1 + c2)− c1

)
· 1

3
(A− 2c1 + c2)

=
1

9
(A− 2c1 + c2)

2

= q2
1, (19)

thus the linear transformation (16) brings the optimal Π1 into symmetric diagonal quadratic

form in the (q1 − q2) plane.

Now we are in a position to re-formulate the initial problem. Applying transformation

(16), state equations (13(a),(b)) read as follows:

q̇1 =
1

3
(−2ċ1 + ċ2)

= µ(B − q1 + γ1

√
x), (20)

q̇2 =
1

3
(ċ1 − 2ċ2)

= µ(B − q2 + γ2

√
x), (21)

where B = 1
3
(A− c0), γ1 = 1

3
(2− β)

√
g, γ2 = 1

3
(2β − 1)

√
g. Similarly, the price pattern

can be described by the following differential equation

ṗ = µ ((B + c0) + p(t)− (γ1 + γ2)
√

gx) . (22)

With state equations (20)–(21), the optimal control problem (13) loses one state dimension

and takes the form

max
x(t)

I(x(t)) =

∫ +∞

0

(q2
1 − x(t))e−rtdt, (23)

subject to
dq1

dt
= µ(B − q1(t) + γ1

√
x(t)). (24)

3.2 Optimal Solution

3.2.1 The First Order Conditions

The Hamiltonian function associated with the above problem is set up as

H(q1, x, λ) = (q2
1 − x(t))e−rt + λ(t)µ(B − q1(t) + γ1

√
x(t)). (25)
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The first-order conditions (from now on we drop the subscript 1 for convenience) are

Hx = −e−rt +
λµγ

2
√

x
= 0, (26)

Hq = 2qe−rt − λµ + λ̇ = 0, (27)

and the transversality condition is

lim
t→+∞

λ(t)q(t) = 0. (28)

Equation (26) relates λ to x, so we can eliminate λ and λ̇ from the system (27), (24):

λ =
2
√

x

γµ
e−rt, λ̇ =

ẋ

γµ
√

x
e−rt − 2r

√
x

γµ
e−rt,

and thus equation (27) becomes

ẋ = 2(r + µ)x− 2γµq
√

x. (29)

Equation (29) determines the dynamics of the optimal R&D path. Let us introduce the

new control variable z ≡ √
x. Since ẋ = 2zż, the substitution x = z2 linearizes the

equation of motion of the control variable x (29); thus

ż = (r + µ)z − γµq. (30)

Finally, the joint dynamics of the state and control variable is given by the following

system of linear differential equations

ż = (r + µ)z − γµq, (31)

q̇ = µ(B + γz − q), (32)

which is investigated in detail in the remaining part of this section.

3.2.2 Existence of the Equilibrium (Steady State) in Duopoly

Let us define ρ as ρ = r
µ

+ 1. The parameter ρ can be interpreted as a generalized

discount factor, that is the interest rate corrected by the speed-of-adjustment coefficient:

given r, the higher the level of µ is, the faster R&D investment materializes, and the more

important the future becomes.

System (31), (32) has a unique equilibrium (steady state)

z∗ =
Bγµ

r + µ(1− γ2)
=

Bγ

ρ− γ2
=

(A− c0)(2− β)
√

g

9ρ− g(2− β)2
, x∗ = (z∗)2, (33)
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q∗ =
B(r + µ)

r + µ(1− γ2)
=

Bρ

ρ− γ2
=

3(A− c0)ρ

9ρ− g(2− β)2
. (34)

Since z(t) must be non-negative, the equilibrium may arise only in the positive quad-

rant (i.e., z∗ > 0, q∗ > 0). Therefore, the equilibrium exists if and only if γ2 < ρ, or,

equivalently, if and only if r + µ(1− γ2) > 0 or (2− β)2 < 9ρ
g
, or g < 9ρ

(2−β)2
.

It is straightforward to show that the values (33) and (34) coincide with the static

equilibrium values in the corresponding two-stage game10 if ρ = 1, what in turn requires

that either discount rate is zero or that the impact of R&D investment is instantaneous

(that is, the speed of adjustment is infinite, µ = ∞). This is more general result than the

one obtained by Kobayashy (2001) where in his somewhat different approach the steady

state values collapses to the corresponding two-stage game equilibrium only if discount

rate is zero.11 Moreover, the steady-state value of investment monotonically increases

with µ, since

∂z∗

∂µ
=

Bγr

(r + µ(1− γ2))2
> 0.

Note that similar to the two-stage game the equilibrium values of R&D expenditures

and the quantity of good produced by Firm 1 both are decreasing functions of spillovers

β:

∂z∗

∂β
=

∂

∂β

(
(A− c0)(2− β)

√
g

9ρ− g(2− β)2

)

=

(
−(A− c0)

√
g(9ρ + g(2− β)2)

(9ρ− g(2− β)2)2

)
< 0, thus

∂x∗

∂β
= 2z∗

∂z∗

∂β
< 0,

∂q∗

∂β
=

∂

∂β

(
3(A− c0)ρ

9ρ− g(2− β)2

)
=

(
−3(A− c0)ρ · 2g(2− β)

(9ρ− g(2− β)2)2

)
< 0.

3.2.3 The Dynamics of R&D and Output

The existence of a unique equilibrium also implies the existence of an optimal path of R&D

and output converging to this equilibrium (in particular, the existence of the “optimal

control” path for x), as we show below:

10E.g., see equation (5) for equilibrium R&D in a static version of our model.
11Kobayashy (2001) made a differential game version of the D’Aspremont and Jacquemin (1988) two-

stage game where the dynamics of the model stems from a depreciation of R&D stock rather than from

the speed of adjustment.
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Lemma 1 If γ2 < ρ (i.e. g < 9ρ
(2−β)2

) then there exists a unique optimal path of x,

converging to the steady state.

For proof of Lemma 1 see Appendix.

Let us assume now that in what follows the inequality γ2 < ρ always holds true. It

can be re-arranged as

β > 2− 3
√

ρ√
g

(35)

and has two important implications on the existence of the optimal control path indepen-

dent on γ:

Lemma 2 For any γ, the optimal control always exists if either (i) g < 9
4
ρ, or (ii) µ < 9

7
r.

For proof of Lemma 2 see Appendix.

Next we determine the analytical solution to system (31, 32). Straightforward com-

putations imply the following close-form solution for output and R&D (see Appendix for

technical details):

qopt(t) = − Bγ2

ρ− γ2
e

1
2

“
ρ−1−

√
(ρ+1)2−4γ2

”
µt

+ q∗, (36)

zopt(t) = − Bγ2

ρ− γ2
· 2γ

ρ + 1 +
√

(ρ + 1)2 − 4γ2
e

1
2

“
ρ−1−

√
(ρ+1)2−4γ2

”
µt

+ z∗. (37)

Then, the price pattern induced by investments zopt is

popt(t) =
Bγ(γ + γ2)

ρ− γ2
e

ρ−1−
√

(ρ+1)2−4γ2

2
µt + p∗, (38)

where

p∗ = (B + c0)− (γ + γ2)
√

gz∗ = A− (A− c0)
6ρ− g(2− β)(1− β)

9ρ− g(2− β)2
. (39)

Note that if an adjustment takes place instantaneously (µ = ∞), then

q(t) ≡ q∗, z(t) ≡ z∗,

as predicted by the static model.12 In this case, Firm 1’s maximal profit is
∫ ∞

0

[(q∗)2 − (z∗)2]e−rtdt =
(q∗)2 − (z∗)2

r
=

(A− c0)
2

(9− g(2− β)2)r
. (40)

12Alternatively, we can find the optimal solution under instantaneous adjustment scenario by applying

so-called Euler’s equation: See Appendix for details of derivation.
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Also note that the optimal R&D investment monotonically increases and the price

monotonically decreases over time towards their steady state values.13 As noted earlier,

the steady-state value of investments is higher with higher values of µ and coincides with

its static counterpart when µ →∞. In this case, the adjustment becomes instantaneous,

and the speed of convergence (as measured by the absolute value of the exponent in (36),

(37)) monotonically increases.14 The rationale is that a higher rate of transformation of

R&D inputs into lower unit costs (higher µ) decreases the time gap between the R&D

investment and its benefits expressed in terms of future profits. As a consequence, for

higher µ, the convergence of the R&D investments towards the steady-state is faster.

Figure 2 displays time paths of R&D levels, while Figure 3 plots the growth rates of R&D

expenditures (the speed of convergence of R&D to the steady state values), for different

µ.

Insert Figure 2 HERE

Insert Figure 3 HERE

3.3 Feasibility of Duopoly

Let us now address the issue of feasibility of a duopoly. In a duopoly scenario, quantities

of goods produced by both firms must be strictly positive: q(t) > 0, q2(t) > 0 for all

t ≥ 0. (Recall the initial conditions: q(0) = q2(0) = 1
3
(A− c0) = B.)

It can be easily shown, that Firm 1 always produces a positive quantity of goods:

Lemma 3 q(t) > 0 for all t ≥ 0 and all feasible β, g.

For proof of Lemma 3 see Appendix.

For Firm 2 to operate, however, it is sufficient (but not necessary) that β > 1
2
. In

other words, neither strategic predation nor unconstrained monopoly are viable in this

β-region: given the upper bound of technological efficiency (g < 4ρ) high technological

spillovers prevent the critical gap in unit costs for monopoly to occur.

13Obviously, the exponent is negative, since ρ > γ2.
14Note that due to the condition γ2 < ρ = 1+ r

µ , the inequality γ < 1 is necessary in order to have the

set of feasible values of µ unbounded.
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Lemma 4 If β ∈ (1
2
, 1) then q2(t) > 0 for all t ≥ 0 (no matter what the value of g is).

Proof:

Since γ2 > 0 for β ∈ (1
2
, 1), the proof repeats that of Lemma 3.

Q.E.D.

If the steady state value of q2 were non-positive, q∗2 ≤ 0, it would indicate that Firm

2 can not compete with Firm 1 in the long run. Thus the inequality q∗2 ≤ 0 implies that

the duopoly is not sustainable in the long run and strategic predation may become an

optimal strategy. In other words, if exists T such that q2(T ) = 0 then Firm 2 may not be

capable of survival after T (T can be either finite or infinite). If Firm 1 eliminates Firm

2 at T , we say that Firm 1 exhibits strategic predation.

Let us define

gd =
3ρ

(1− β)(2− β)
. (41)

Technically speaking, the condition of non-sustainability of duopoly can be formalized as

follows:

Lemma 5 For q∗2 to be non-positive, it is necessary that β < 1
2

and sufficient that g ≥ gd.

For proof of Lemma 5 see Appendix.

From Lemma 4 and Lemma 5 we conclude that Firm 1 coexists with Firm 2 if β > 1
2

and Firm 1 eliminates Firm 2 if g ≥ gd. Note that for g ≤ 4ρ these conditions cannot

hold simultaneously, since β > 1
2

implies gd > 4ρ (see also Figure 5). The border case

β = 1
2

requires an additional comment. If β = 1
2

then Firm 2 always produces the fixed

quantity (equal to B) of the good, with no respect to R&D activity performed by Firm

1. If g < gd and β ≤ 1
2

then constrained monopoly may emerge.

Summing up we obtain the following lemma.

Lemma 6 Let β ≥ 0. Then in the steady state the following statements hold:

1. The condition β > 1
2

implies that duopoly is sustainable.

2. The condition g ≥ gd implies that duopoly is not viable in the long run.
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The equality g = gd represents an upper boundary on values of g where duopoly is

feasible. It is easy to observe that gd decreases in µ and becomes 3
(1−β)(2−β)

as µ → ∞.

Interestingly, this is the same critical value as in the static model (see expression (6)).

Note also that condition g ≥ gd can be rewritten as a condition for β, in the form β ≤
1
2

(
3−

√
1 + 12ρ

g

)
. Furthermore, observe that viability of duopoly implies the existence

of the optimal control (but not vice versa) and that the range of parameters in which

dynamic duopoly is viable is broader than in its static counterpart due to the fact the

difference in unit cost of the two firms does not occur immediately and due to the fact

that discount rate is in general positive.

4 Achieving Monopoly Position

4.1 Phase I: Strategic Predation

Instead of dealing with an infinite-horizon problem, let us consider a time-optimal prob-

lem with a horizontal terminal line. The objective of Firm 1 now is to reach the target

of elimination of Firm 2 in the minimum amount of time and to gain a position of con-

strained monopolist. The time-optimal nature of the problem is conveyed by the objective

functional max
x(t)

∫ T

0

−1dt subject to the following constraints and terminal conditions:

q̇ = µ(B − q + γ
√

x), q(t) ≥ 0, q(0) = B, (42)

q̇2 = µ(B − q2 + γ2

√
x), q2(0) = B, q2(T ) = 0, T is free, (43)

given that the optimal control x lies within the interval [0, xu] (the value of xu is to be

computed later; this is the so-called big-bang control).

Since Lemma 3 implies that q(t) > 0 for all t, and q(0) = q2(0) = B, the constraints

in (42) do not bind. Therefore, on substituting z for
√

x, the time-optimal problem reads

as follows:

max
z(t)

∫ T

0

−1dt (44)

subject to q̇2 = µ(B − q2 + γ2z),

q2(0) = B, q2(T ) = 0, T is free, and z ∈ [0, zu].

The Hamiltonian associated with this problem is

H = −1 + λ(µ(B − q2 + γ2z)).
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If λ > 0 then the optimal zo = zu, if λ < 0 then zo = 0. The equation of motion is

λ̇ = −∂H
∂q2

= µλ,

which integrates to λ(t) = κeµt, κ is an arbitrary constant.

The transversality condition reads as [H]t=T = 0, i.e.

−1 + λ(µ(B + γ2z
o)) = 0. (45)

If λ < 0 then zo = 0 and (45) has no solution. Therefore, λ > 0, which yields κ > 0 and

zo = zu.

With zo = zu for all t we can express the equation of motion of the state variable as

q̇2 + µq2 = µ(B + γ2z
u),

which has the solution

qo
2(t) = (qo

2(0)−B − γ2z
u)e−µt + B + γ2z

u = B + γ2z
u(1− e−µt). (46)

Therefore, given qo
2(T ) = 0 we can find15 T from B + γ2z

u(1− e−µT ) = 0, i.e.

T = − 1

µ
ln

(
B + γ2z

u

γ2zu

)
(47)

Note that the positivity of T demands for the negativity of both the numerator and the

denominator: B + γ2z
u < 0 and γ2z

u < 0. Again, this observation is consistent with the

fact that predation can only take place with β < 1
2

and q∗2 ≤ 0.

We can also invert (47) and express zu as a function of T :

zu(T ) = − B

(1− e−µT )γ2

=
A− c0

(1− 2β)
√

g(1− e−µT )
. (48)

Once zu(T ) is known, it also becomes possible to evaluate optimal output in strategic

predation from the equation

q̇ = µ(B − q + γzu(T )) (49)

Equation (49) has a close-form solution (recall the initial condition q(0) = B):

q(t) = γzu(T )(1− e−µt) + B =
A− c0

3

(
1 +

2− β

1− 2β
· 1− e−µt

1− e−µT

)
. (50)

15For an alternative approach to the optimal predation problem, see Appendix.
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The output of Firm 2 can be obtained after substitution of (48) into (46):

q2(t) =
A− c0

3
· 1− e−µ(T−t)

1− e−µT
.

Interestingly this pattern is independent on parameters β and g. However, the optimal

predation time might depend on them (see part 5.2).

In particular, at time t = T , when Firm 2 is eliminated, we get

q(T ) = (A− c0)
1− β

1− 2β
(51)

and q2(T ) = 0. Note that q(T ) is positive if and only if β < 1
2
. Hence only β < 1

2
allows

for predation. On the other hand, if β ≥ 1
2
, the only feasible market structure is duopoly

(see also Lemma 6).

With q(T ) given by (51), the firms’ costs at time T are c1(T ) = A − 2q(T ) and

c2(T ) = A − q(T ). Interestingly, all these values do not depend on time T . Hence,

no matter at which time Firm 2 is eliminated, Firm 1 has the same starting point16 as

(constrained) monopolist.

Note that the optimal time profile of R&D investments is declining with T . The shorter

the desired time for the elimination of the competitor is, the larger R&D investment should

be. This functional relationship between zu and T can be depicted as in Figure 4. This

result deserves a special emphasis, for on the one hand (48) enables us to find the optimal

level of R&D expenditures needed to eliminate Firm 2 after any given point in time T ,

and on the other hand it establishes the relationship between the static model and its

dynamic counterpart, proving once again that the static model is in a sense just a limiting

case of the dynamic one.

Insert Figure 4 HERE

In particular, if the speed of adjustment is unlimited (µ → ∞), then for any T , zu

converges to the optimal value of R&D predicted by the static model (cf. Žigič, 1998):

x∗p = lim
µ→∞

(zu)2 =
(A− c0)

2

(1− 2β)2g
.

Finally, note that, contrary to the case of duopoly, we have now dzu/dµ < 0. That is,

the quicker the speed at which the R&D investment materializes in the unit cost reduction,

the lower the predatory expenditures that lead to expulsion of Firm 2.

16I.e., the unit costs and quantities of both firms are the same irrespectively of T .
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The above analysis can be read as formalization of the “long-purse” story (see, for

instance, Sherrer and Ross, 1990, and Tirole, 1990) in a distinctive way since the result is

not based on the information asymmetry nor imperfections on the financial markets (cf.

Tirole (1990), Telser (1966), Bolton and Scharfstein (1990), etc.).

In order for strategic predation to be feasible (in our model), it is necessary that

c1(T ) ≥ 0, which means that the costs do not become negative in the predation phase.

This condition can be equivalently formulated as

β < β̄ ≡ 1− A

2c0

. (52)

The above restriction is also supported empirically by Griliches (1992) who, in his sum-

mary of the empirical work on R&D spillovers, finds that typical values of β range between

0.2 and 0.4. Note that β̄ < 1
2

due to condition A > c0.

4.2 Constrained and Unconstrained Monopoly

Suppose that Firm 2 is eliminated at time T > 0. At this point, Firm 2’s unit costs

become equal to the equilibrium price. Since then, it will not be active in the market, if

Firm 1 sets price not exceeding Firm 2’s unit costs. Obviously, Firm 1 will either choose

price equal to Firm 2’s current unit cost c2 or the (unconstrained) monopoly price

pm =
A + c1

2
. (53)

This price comes from maximization of gross instantaneous profit Π1 = (p − c1)(A − p)

and correspond to setting the monopoly quantity qm = 1
2
(A−c1). Note that qm is actually

best response to q2 = 0.

If pm < c2, then Firm 1 is free to set the monopoly price pm which does not allow Firm

2 to re-enter the market. In this case we say that Firm 1 is an unconstrained monopolist.

On the other hand, if pm ≥ c2, Firm 1 can set c2 as the highest price that will keep Firm

2 out of the market.17 In this case, we say that Firm 1 is a constrained monopolist.

We will assume that, after time T , Firm 2’s costs c2(t) follow the standard equation

of motion ċ2 = µ(c0 − c2(t) − β
√

gx(t)) with no spillovers available any further, that is,

with β = 0, i.e.,

ċ2 = µ(c0 − c2(t)). (54)

17The profit of Firm 1 is increasing in p for p ≤ pm.
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This reflects the fact, that an inactive firm does not acquire any new technology via

spillovers and its costs behave as if there would be no spillovers, i.e., there is some de-

preciation of knowledge, skills, etc.18 As a consequence, Firm 2’s costs actually increase

after time T .

Since c2 is now independent on Firm 1’s R&D investments, we can solve the equation

(54) with the initial value c2(T ) = c2T = A− q(T ) = A− (A− c0)
1−β
1−2β

. The solution can

be written as

c2(t) = Ke−µt + c0, where K =
c2T − c0

e−µT
= − (A− c0)β

(1− 2β)e−µT
. (55)

Recall that c2(t) is increasing over time and converges to c0 as T →∞. Further note that

at time T we have c2(T ) = A− q(T ) = 1
2
(A+ c1(T )) = pm(T ), i.e., the unconstrained and

constrained monopoly prices are the same.19 At this point, if Firm 1’s R&D investments

are high enough, so that the monopoly pm price does not exceed c2 (or equivalently its

costs do not exceed 2c2−A), may set price pm and become unconstrained monopolist. On

the other hand, if the R&D investments are low, the monopoly price pm may be higher

than c2 and Firm 1 becomes a constrained monopolist.

4.3 Phase II: Constrained Monopoly Optimization Problem

If Firm 1 becomes a constrained monopolist, it sets price pcm(t) = c2(t), corresponding to

quantity qcm(t) = A− c2(t). Then its instantaneous gross profit function is

Πcm = (c2(t)− ccm(t))(A− c2(t)).

This yields the following optimization problem

max
x(t)

I(x(t)) =

∫ +∞

T

[(c2(t)− ccm(t))(A− c2(t))− x(t)]e−rtdt, (56)

subject to

18There are several other specifications how the unit costs of Firm 2 change after time T . The first

alternative would be that they do not change at all, i.e., c2(t) = c2(T ) for t ≥ T . This can be interpreted

as if the inactive firm is “freezed” and can enter the market in the same state as it exited in. Another

plausible specification would be to consider c2(t) following after time T the same equation of motion as

before (with unchanged spillovers), i.e., ċ2(t) = µ(c0− c2(t)− β
√

gx(t)). Such setting can be interpreted

as if Firm 2 still acquires new technology via spillovers at the same rate as before and “waits” for a right

time to enter the market again.
19Equivalently, qm(T ) = q(T ) since the monopoly quantity qm is the same as the best response to

rival’s quantity 0.
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dccm

dt
= µ(c0 − ccm(t)−

√
gx(t)),

dc2

dt
= µ(c0 − c2(t)).

Note that the post-predatory price, which is c2(t), is now increasing over time. This

is consistent with the empirical observation that the leader’s price increases after the

predation phase has been completed.

The solution to the above optimization problem is derived in the Appendix. As result

we get

zcm(t) =
(A− c0)µ

√
g

2

(
1

r + µ
+

βe−µ(t−T )

(1− 2β)(r + 2µ)

)
. (57)

Observe that xcm(t) = (zcm(t))2 is monotonically decreasing over time and converging to

x∗cm =
(A− c0)

2g

4(1 + r/µ)2
as t →∞.

4.4 Phase II: Unconstrained Monopoly Optimization Problem

If Firm 1 becomes an unconstrained monopolist, it sets the (unconstrained) monopoly

price. This price is equal pm(t) = 1
2
(A + cm(t)) and corresponds to quantity qm(t) =

1
2
(A− cm(t)). These yield Firm 1’s optimal instantaneous gross profit function

Πm = (pm(t)− cm(t))qm(t) = (qm(t))2.

This is to be maximized subject to the standard constraint dcm

dt
= µ(c0− cm(t)−

√
gx(t)).

Using the above transformations, the optimization problem can be rewritten into a form

identical to (23)–(24):

max
x(t)

I(x(t)) =

∫ +∞

0

(q2
m − x(t))e−rtdt, (58)

subject to
dqm

dt
= µ(Bm − qm(t) + γm

√
x(t)), (59)

with Bm = 1
2
(A − c0) and γm = 1

2

√
g. However, the initial condition is qm(T ) = q(T )

in this case. Proceeding in the same way as in Section 3.2 we obtain a system of two

differential equations analogous to (31)–(32). This yields the equilibrium values

z∗m =
Bmγm

ρ− γ2
m

=
(A− c0)

√
g

4ρ− g
,

q∗m =
Bmρ

ρ− γ2
m

=
2(A− c0)ρ

4ρ− g
.
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Note that in order for the equilibrium values to be positive, it is necessary and sufficient

that g < 4ρ. Under this condition we also have g < (ρ + 1)2 and λm < 0. Note that

the derivation of equilibrium values is independent on the initial conditions and even on

the predation time T . Therefore, the same equilibrium values would be obtained if Firm

1 has a monopolistic position from the beginning (see Section 3.1 and Vinogradov and

Žigič, 1999).

Finally, using the above initial condition, the optimal solutions are

qm(t) =
(A− c0)(2ρ− g(1− β))

(1− 2β)(4ρ− g)
eλmµ(t−T ) + q∗m, (60)

zm(t) =
(A− c0)(2ρ− g(1− β))

(1− 2β)(4ρ− g)
·

√
g

ρ + 1 +
√

(ρ + 1)2 − g
eλmµ(t−T ) + z∗m, (61)

where λm = 1
2

(
ρ− 1−

√
(ρ + 1)2 − g

)
. The resulting price can be then computed as

pm(t) = A − qm(t). Depending on the sign of 2ρ − g(1 − β), the R&D investment may

be decreasing or increasing over time. Then, the monopoly quantity qm(t) is moving in

the same direction, whereas the monopoly price pm(t) is moving in the opposite direction

reflecting the fact that higher R&D investments lead to lower unit costs for Firm 1 and

consequently to a lower the monopoly price.

4.5 Sustainability of Constrained and Unconstrained Monopoly

In order for unconstrained monopoly to be sustainable, it is necessary that Firm 2 does

not re-enter the market after time T . This is the case when pm(t) < c2(t). Note that the

unconstrained monopoly optimization problem does not take at all into account the path

of Firm 2’s costs. In order to prevent Firm 2 from entering the market it is particularly

necessary that the above inequality is satisfied for steady-state values, i.e., that A− qm ≤
c0. This can be equivalently rewritten as

g ≥ 2ρ. (62)

Thus for g ≤ 2ρ, Firm 1 by following the optimal path of investments gives Firm 2 a

chance to re-enter the market sometimes after time T (or eventually at time T ).

On the other hand, constrained monopoly is sustainable, when pcm(t) ≤ pm(t). Oth-

erwise, it is profitable for Firm 1 to lower the price to the unconstrained monopoly level,

which still prevents Firm 2 from entering the market. Again, it is necessary the above

inequality is satisfied for steady-state values, i.e., c0 ≤ 1
2
(A + c0 −√gx∗cm). After substi-

tuting the value of x∗cm derived in Section 4.3, we obtain equivalent inequality g ≤ 2ρ,
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which is the reverse inequality as in (62). The following lemma summarizes the above

results.

Lemma 7 Assume that Firm 2 is eliminated at time T . Then:

1. For unconstrained monopoly to be sustainable, it is necessary that g ≥ 2ρ.

2. For constrained monopoly to be sustainable, it is necessary that g ≤ 2ρ.

5 Accommodation versus Strategic Predation

5.1 Choosing Optimal Strategy

Finally, we are in a position to determine, what would be the best strategy for Firm 1. It

can opt for one of the two basic strategies:

1. Accommodation: Optimize its duopoly profit over time.

2. Strategic predation: In the first stage minimize the time needed to eliminate Firm

2 for good (which incurs losses of profit) and then in the second round enjoy (con-

strained or unconstrained) monopoly position.

The comparison is straightforward: in both situations it is technically feasible to

evaluate the overall profit and determine the optimal strategy. Note that for strategic

predation the profit consists from two parts corresponding to the predation phase and

constrained or unconstrained monopoly phase. However, depending on the underlying

parameters some of the strategies might not be sustainable.

5.2 Assessing Optimal Predation Timing

Since the equilibrium and the optimal paths in duopoly are discussed in details in Sec-

tion 3, we focus here on the second strategy of Firm 1. That is, the strategy that first

aims to eliminate the competitor (we assume that the duopoly is initial market structure)

and then Firm 1 enjoys the constrained or unconstrained monopoly position afterwards.

We start by evaluating the profit (loss) Ip(T ) associated with the first phase of the

competition:

Ip(T ) =

∫ T

0

[(q(t))2 − (zu(T ))2]e−rtdt. (63)
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When Firm 1 attempts to gain the position of a monopolist by given time T by setting

R&D expenditures at the (constant) level dictated by (48), and with q(t) defined by (49).

Substituting the closed form solution (50) together with (48) into the profit function (63),

we arrive at the explicit expression for Ip(T ):

Ip(T ) =

∫ T

0

[(γzu(T )(1− e−µt) + B)2 − (zu(T ))2]e−rtdt

= (γzu(T ))2 1− e−(2µ+r)T

2µ + r
−

−2γzu(T )(γzu(T ) + B)
1− e−(µ+r)T

µ + r
+

+((γzu(T ) + B)2 − (zu(T ))2)
1− e−rT

r
. (64)

The resulting expression is rather complicated and will not be listed here. All details

and results of computations (also for the following computations) can be obtained from

authors upon request. Note that when the adjustment is instantaneous (µ → ∞), the

optimal predation profit becomes

(A− c0)
2

(1− 2β)2rg
[(1− β)2g − 1](1− e−rT ). (65)

In constrained monopoly optimization problem discussed in Section 4.3 the optimal

R&D level was uniquely defined in equation (57). Thus the evolution of costs ccm(t) in

program (56) can be explicitly derived from the equation ċcm = µ
(
c0 − ccm(t)−√gxcm

)
,

with xcm = z2
cm, as given by (57). Using the boundary condition ccm(T ) = c1(T ), we can

obtain a close-form solution and, together with c2 as given by (55), substitute it into the

profit function:

Icm(T ) =

∫ +∞

T

[(c2(t)− ccm(t))(A− c2(t))− xcm(t)]e−rtdt.

This equation uniquely defines the optimal constrained monopoly profit as a function of

time T when the position of a constrained monopolist is gained. Since c2(t), zcm(t), and

also ccm(t) can be written as functions of (t − T ), the profit Icm(T ) can be written in

the form X · e−rT , with X being independent on T . This is a consequence of the fact

that the initial values in the second phase (i.e., at time T ) do not depend on T . Hence,

the constrained monopoly profit depends on T only through the discount factor and X

can be interpreted as the present value of all future profits at the time when Firm 2

is eliminated. Note that when the adjustment is instantaneous (µ → ∞), the optimal

constrained monopoly profit becomes

(A− c0)
2g

4r
· e−rT . (66)
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Finally, in order to find optimal T (if any) that maximizes total profit of Firm 1

pursuing predation strategy we have to solve the following univariate unconstrained op-

timization problem:

max
T

[Ip(T ) + Icm(T )]. (67)

The above maximization problem represents the trade-off between incurring high costs in

order to eliminate Firm 2 early, or delaying high constrained monopoly profits when Firm

2 is eliminated later. Recall that in the predation phase the optimal R&D investments

are decreasing in T . Hence, an early elimination (i.e., low T ) requires significant R&D

investments in the predation phase. This may even lead to instantaneous losses (i.e.,

the instantaneous profit is negative). These losses are compensated later when Firm 2

is eliminated. On the other hand, when elimination is delayed (i.e., T is high), Firm

1 invests less in R&D in the predation phase, but at the same time delays high profits

earned in the constrained monopoly phase (as noted above the present value of those

profits X is independent on T ). The optimal value of T can be computed from the first

order condition. However, the resulting equation (with T as unknown) is not solvable

analytically, unless µ →∞.

When µ →∞, from (65) and (66) we obtain that the profit from predation strategy is

decreasing in T whenever g < 2, i.e., constrained monopoly is sustainable20 (see Appendix

for details). Hence the optimal value of T is zero. This reflects the fact that when the

adjustment is instantaneous, Firm 1 eliminates the rival immediately. In this case it has

a profit given by (66) with T = 0.

Similarly we can proceed when Firm 1 becomes an unconstrained monopolist in the

second phase. In this case the profit from the second phase is

Im(T ) =

∫ ∞

T

[
(qm(t))2 − (zm(t))2

]
e−rtdt,

with qm(t) and zm(t) given by (60)–(61). Again, the above equation uniquely defines the

optimal unconstrained monopoly profit as a function of time T when the position of an

unconstrained monopolist is gained. Since qm(t) and zm(t) can be written as functions

of (t − T ),21 the profit Im(T ) can again be written in the form X · e−rT , with X be-

ing independent on T . When the adjustment is instantaneous (µ → ∞), the optimal

unconstrained monopoly profit becomes

(A− c0)
2

(4− g)r
· e−rT . (68)

20Note that ρ → 1 as µ →∞.
21In this case they are even linear functions of eλmµ(t−T ).
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In order to find the optimal predation time T that maximizes total profit of Firm 1

pursuing predation strategy with unconstrained monopoly in the second phase, we have

to solve the following univariate unconstrained optimization problem:

max
T

[Ip(T ) + Im(T )] (69)

The first order condition for this problem is an equation with T as unknown which is not

solvable analytically.

Again when µ → ∞, from (65) and (68) we obtain that the profit from predation

strategy is decreasing in T (see Appendix for details). Hence the optimal value of T is

zero, which reflects the fact that when the adjustment is instantaneous, Firm 1 eliminates

the rival immediately. Then its profit is (A−c0)2g
(4−g)r

, as given by (68) with T = 0.

5.3 Long-run Optimality

In order to asses the optimal strategy for Firm 1, we now compare its two possible payoffs:

accommodating strategy payoff (or duopoly payoff) defined by (13), and the payoff that

arise from the dynamic strategic predation, with either constrained or unconstrained

monopoly in the second phase. Lemma 7 implies that both constrained and unconstrained

monopoly cannot be simultaneously sustainable (with exception of g = 2ρ, which defines

a set of measure zero).

As g > gd yields clear-cut prediction of monopoly (Lemma 6), β > 1
2

yields clear-

cut prediction of duopoly (see Lemmas 4–6 and Section 4.1), we will further restrict our

comparison of the accommodation and predation strategies to the region

R = {(β, g) ∈ R2 : 0 ≤ β < 1
2
, 0 < g < gd}. (70)

Further denote Rcm = {(β, g) ∈ R : g < 2ρ} the region where only constrained

monopoly can be sustained and Rm = {(β, g) ∈ R : g > 2ρ} the region where only

unconstrained monopoly can be sustained. We then need to compare profit from duopoly

to the profit from strategic predation with constrained monopoly (given by problem (67))

in region Rcm and the profit from duopoly to the profit from strategic predation with

unconstrained monopoly (which is given by problem (69)) in region Rm. The regions

are illustrated on Figure 5.22 As indicated, the curve represents the equality g = gd,

which is the upper boundary for duopoly to be feasible. As mentioned in Section 3.3,

this boundary shifts downwards with increasing µ. Thus as speed of adjustment increase,

22Regions Rcm and Rm are labelled as “CM/D” and “UM/D”.
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the region below, at which duopoly is feasible, shrinks. This is intuitive since a larger

value of µ enables Firm 1 to attain cheaper and faster the critical unit cost difference that

eventually may lead to monopoly. The horizontal line represents the equality g = 2ρ,

which is the boundary between constrained and unconstrained monopoly. Again, this

line shifts downwards as µ increases. Thus, unconstrained monopoly becomes easier to

sustain compared to constrained monopoly (note that the upper boundary g = 4ρ shifts

downwards too). Note that the intersection of these boundaries, namely g = 2ρ and

g = gd, is given by equation β2−3β + 1
2

= 0, which implies β = β0 ≡ 1
2
(3−√7) ≈ 0.1771.

Insert Figure 5 HERE

As mentioned in Section 4.1, our model of predation is feasible only if β < β̄ as given

by (52). However, note that in all cases the optimal values of q, z, and price margins

(defined as the difference of price and unit costs) are homogeneous of degree 1 in (A, c0).
23

Moreover, they can be written in form (A − c0) ·X, where X is independent on both A

and c0. Therefore, in all cases the optimal profits, consumer surplus, social welfare, and

present value of R&D investment are homogeneous of degree 2 in (A, c0) and can be

written in form (A − c0)
2 · Y , with Y being independent on both A and c0. Hence, any

comparison of those variables does not depend on A and c0; it can depend only on β, g,

µ and r.24

Using the simulation technique, we compare predation and accommodation in regionR
(recall that duopoly is feasible in this region). We find that when the speed of adjustment

µ is small, accommodation is more profitable in almost everywhere in both regions Rcm

and Rm, as shown on Figure 6. However, with increasing speed of adjustment, predation

(with either constrained or unconstrained monopoly in the second phase) becomes likely;

see Figures 7, 8.25

23In the paper we do not provide the exact formula only for Firm 1’s price margin in constrained

monopoly. All details about its computation and resulting expression can be obtained from authors upon

request.
24Since β̄ depends on A/c0, in order to facilitate the comparison for all values of A and c0, we disregard

the feasibility condition β < β̄ and consider 1
2 as the upper bound for β (which is also the upper bound

of β̄).
25The simulations have been performed using the Mathematica 5.0 software. The program code can

be obtained from authors upon request. In all presented simulation results we used the values r = 0.05,

A = 1, and c0 = 0.8 (however, due to the discussion above, the results do not depend on values of A and

c0). Given the value of µ, Firm 1’s profits from duopoly and strategic predation (for optimal T solving

the problem (67) or (69)) were computed for values of (β, g) taken from a grid with density 0.0025×0.025
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Insert Figure 6 HERE

Insert Figure 7 HERE

Insert Figure 8 HERE

Insert Figure 9 HERE

In Figures 7 and 8, the lower boundary represents the equality between Firm 1’s

profits from accommodation strategy (duopoly) and strategic predation (with constrained

monopoly in region Rcm and unconstrained monopoly in region Rm). In the region above

the boundary (i.e., when R&D efficiency g is high), Firm 1 prefers strategic predation

whereas in the region below, Firm 1 prefers the accommodation strategy. With increasing

µ, this lower boundary shifts downwards as well, and apparently more than the upper

boundary, resulting in ever increasing parameter space for which strategic predation is

the optimal strategy. Figures 10 and 11 support this intuition.26 The figures show the

dependence of the area where strategic predation is optimal in regions Rcm and Rm,

respectively, on the speed of adjustment µ.

Insert Figure 10 HERE

Insert Figure 11 HERE

Figure 9 shows the set of parameters where predation is optimal, when adjustment

is instantaneous (i.e., µ → ∞). This can be obtained by comparing the duopoly profit

(40) with (66) and (68). As opposed to the previous cases, here it is possible to find an

explicit formula for the lower boundary and compute the area where predation is optimal.

We obtain that Firm 1 chooses strategic predation in the whole region Rm. In region

on the set [0, 1
2 ) × (0, 4ρ). Figures 6, 7, and 8 show the results for values µ = 0.2, µ = 2, and µ = 20

respectively.
26The simulations have again been performed using the Mathematica 5.0 software, for the same values

of parameters r, A, and c0 as before. For each µ from the grid with density 0.2 on [0.2, 25], we computed

the area as integral of a piecewise linear function approximating the lower boundary (in 100 points with

an absolute error lower than 10−4).
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Rcm, Firm 1 chooses strategic predation in about 71% (see below). The lower bound is

described by formula g = g∞ ≡ 9+
√

81−16(2−β)2

2(2−β)2
, which can be obtained by equating profits

(40) with (66).

It can be easily computed that with instantaneous speed of adjustment, region Rm

has area 0.2640.27 Figure 10 indicates that the area where predation is optimal converges

towards this value as µ →∞. Furthermore, the area of the whole region Rcm is 0.9524,28

whereas predation is optimal in Rcm in a domain with area 0.6773.29 The convergence is

again indicated in Figure 11.

6 Welfare analysis

In the previous section we have found that Firm 1 prefers in most cases accommodation

to predation when the speed of adjustment is small, but the relation becomes reversed

when the speed of adjustment is large. In this section we analyze the welfare effects of

predation. In particular, we are interested in comparison of consumers surplus and social

welfare for strategic predation and accommodation. From the viewpoint of competition

policy, strategic behavior is mostly prohibited since it eliminates the competing firm.

However, from economic perspective, one needs to take into account the effects on the

economy as whole. In particular, in case of predation, there may be significant gains

from large R&D investments, which are often disregarded by competition policies. We

therefore start the analysis by comparing the R&D investments.

6.1 R&D investment

Compared to the accommodation strategy, strategic predation requires a significantly

higher investment in R&D in the first phase. This way Firm 1 rapidly decreases its own

and due to spillovers also rival’s costs. Therefore, the quantities the firms produce increase

and the price decreases. However, as spillovers are imperfect, Firm 2’s decrease in costs

is less rapid and at time T its costs become equal to the equilibrium price. Firm 2 is not

able to compete with Firm 1 further, but it remains as a threat. The shorter the targeted

27The area of region Rm is
∫ 1/2

β0

[
3ρ

(1−β)(2−β) − 2ρ
]
dβ =

(
2−√7 + 3 log (4−√7)

)
ρ.

28The area of region Rcm is
∫ β0

0
3ρ

(1−β)(2−β) dβ +
∫ 1/2

β0
2ρ dβ =

(
− 2 +

√
7 + 3 log 4+

√
7

6

)
ρ.

29This area can be computed as difference of the area of region Rcm and
∫ 1/2

0
g∞ dβ = 1

4 (3 − 4
√

5 +√
17)− 2 arcsin 2

3 + 2 arcsin 8
9 .
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predation time T is, the more rapid decrease in unit costs and hence the higher R&D

investment is necessary.

As shown in Section 3.2.3, when Firm 1 follows the accommodation strategy, its

optimal R&D investment continuously increases over time and converges to the value

x∗ = (z∗)2, where z∗ is given by (33). On the other hand, when Firm 1 follows strategic

predation strategy, the R&D investment profile is rather different. In predation phase,

the R&D investment is constant over time and is equal to (zu(T ))2, whereas in the second

phase, it is xcm in constrained and xm in unconstrained monopoly.30

Comparing the investment levels in predation phase to the level for accommodation,

we obtain

zu(T )

z∗
=

9ρ− g(2− β)2

g(2− β)(1− 2β)
· 1

1− e−µT
>

1

1− e−µT
> 1 .

The inequality holds everywhere in region R. As we can see, the R&D investment in

predation phase is higher than the steady-state investment in duopoly. Moreover, the

gap is larger when targeted elimination time T is smaller. Since the R&D investment in

duopoly is increasing over time, then

zu(T ) > zopt(t), for t ∈ (0, T ]. (71)

On the other hand, the relation between the investment in duopoly and constrained

or unconstrained monopoly phase is ambiguous. A direct computation reveals that for

g → g−d the steady-state of R&D in duopoly is higher than the ones in constrained and

unconstrained monopoly (whatever is feasible). However, this relation becomes weaker,

when g becomes smaller. In particular z∗ < z∗cm, when g → 0+.

As the investment level in the second phase of predation may be lower than the steady-

state investment level in duopoly, we cannot make a clear-cut comparison of R&D invest-

ments between strategic predation and accommodation. Therefore, we compare their

present values. The present value of R&D investments for the accommodation strategy, is

equal to
∫∞

0
x(t)e−rtdt. The present value of R&D investments for the predation strategy

is defined analogously, but consists of two parts: the present value in the predation phase

and the present value in the constrained or unconstrained monopoly phase. As the ex-

pressions are rather complicated (we omit them here), for comparison we used numerical

simulations. We perform the simulations in the same way and for the same parameter

values as we do for comparison of profits. The simulations show that for small values of

30Following previous notation, we define zcm = (xcm)2 and zm = (xm)2.
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µ, the present value of R&D investment is always (i.e., in region R) larger when Firm 1

follows the predation strategy. This result is rather intuitive, since in the predation phase,

Firm 1 makes huge R&D investments in order eliminate the rival. Moreover, the result

conforms to the result by Etro (2004) that a leader may have greater R&D incentives in

order to defend his position. However, as the speed of adjustment µ increases, the present

value of R&D investments for accommodation strategy may be higher above the value

in predation. This occurs in a small region near the upper boundary, where significant

investments are profitable due to high R&D efficiency g; see Figures 12 and 13.31 As we

can see, this region does not increase significantly with increasing µ. Figure 14 shows this

region when µ →∞.32

Insert Figure 12 HERE

Insert Figure 13 HERE

Insert Figure 14 HERE

6.2 Consumer surplus

Now we turn our attention to the effects on consumers. As already mentioned above,

the intuition suggests that since investment in R&D decreases the cost of production, it

increases the quantity produced and hence lowers the market price. Therefore, intuitively

we can predict that the effect of higher investment in the predation phase on consumers

should be positive. When Firm 1 follows the predation strategy, the R&D investment

lowers the price rapidly in the first phase. If it becomes constrained monopolist in the

second phase, the price will increase and converge to c0. On the other hand, if Firm 1

becomes unconstrained monopolist in the second phase, the price will be monotone but

may be both increasing or decreasing, depending on parameters. Figures 15 and 16 show

the comparison of this time patterns to the price pattern for the accommodation strategy.

31The shaded area represent those values of parameters where the present value of R&D investments

in accommodation is higher than the one in predation.
32When µ → ∞, the present values of R&D investments have rather simple forms: (A−c0)

2(2−β)2g
[9−(2−β)2g]2r for

accommodation strategy, (A−c0)
2g

4r for predation with constrained monopoly, and (A−c0)
2g

(4−g)2r for predation

with unconstrained monopoly (recall that the optimal predation time is T = 0 in this case). Figure 14

was obtained directly by comparing those values.
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Insert Figure 15 HERE

Insert Figure 16 HERE

For a better exposition and in order to be able to evaluate the effects on social welfare,

we compare the present value of consumer surplus. First consider the instantaneous

consumer surplus which can be in any point in time t evaluated as

CS(t) =

∫ A

p(t)

(v − p(t))dv =
1

2
(A− p(t))2 =

1

2
(q1(t) + q2(t))

2.

This is a classical form of consumer surplus for linear demand. Then the present value

of the consumer surplus for accommodation strategy is CS∗ =
∫∞

0
CS(t)dt =

∫∞
0

(q1(t) +

q2(t))
2e−rtdt. The above formula shows that consumers surplus is negatively related to

the price. According to our intuition, we might expect the consumer surplus to be higher,

when Firm 1 follows the predation strategy.

Insert Figure 17 HERE

Insert Figure 18 HERE

Insert Figure 19 HERE

Indeed, strategic predation yields a lower price than accommodation at any (positive)

time in the predation phase. Moreover, if g ≤ 3ρ/(2 − β), then strategic predation also

yields a lower price at any time in the constrained monopoly phase. The proofs of both

these statements can be found in Appendix. As a consequence, if g ≤ 3ρ/(2−β), then the

consumer surplus from strategic predation is higher that the one from accommodation.

Conversely, if g > 3ρ/(2 − β) then p∗ < c0, which means that the price in strategic

predation raises the constrained monopoly price at some point in time. In this case we

cannot make a direct inference about consumer surplus.

The above results suggest that a higher level of R&D investments in predation phase

benefits consumers. It is necessary to point out that this is a consequence of how the

predation works. Firm 1 needs to significantly lower the price so that it is equal to

opponent’s marginal costs, which in result benefits the consumers.
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In order to complete the analysis, we again perform numerical simulations. They

show that for low values of µ, consumer surplus from predation is always larger than

the one from accommodation. However, similarly as for the R&D investments, as the

speed of adjustment µ increases, there is a small region where consumer surplus from

accommodation is higher, as shown on Figures 17 and 18.33 When µ∞, this region

covers a substantial part of region Rm, but only a small part of region Rcm, as shown on

Figure 19.34

6.3 Social welfare

The instantaneous social welfare is defined as the sum of consumers surplus and firms’

profits (by Firm 1’s profits we mean the net profit, i.e., after subtracting the R&D costs).

Drawing on previous results, it is not possible (with exception of small domains) to make

a clear comparison of social welfare for accommodation and predation strategies.

Hence similarly as in previous cases, we compare the social welfare using simulation

technique and perform the simulations in the same way and for the same parameter values

as we did for comparison of profits. The results for different values of µ are shown on

Figures 20, 21, and 22.35 The result when µ → ∞ is shown on Figure 23 (obtained

partially by numerical simulations).

The simulations show that the relation between the strategy chosen by Firm 1 and

the socially optimal strategy is ambiguous. There are regions where Firm 1 chooses its

strategy efficiently, i.e., where Firm 1’s choice and social welfare are higher for the same

strategy (accommodation or predation). However, there is a region, where accommodation

is the more desirable outcome from social point of view, but Firm 1 prefers predation.

This creates a need for appropriate anti-competitive remedies.

Surprisingly, there is also a region where Firm 1 chooses accommodation, but predation

is more efficient. This region is described by either small spillovers or high efficiency of

R&D and it shrinks with increasing speed of adjustment µ. Note that it disappears

33The shaded area represent those values of parameters where consumer surplus in accommodation is

higher than the one in predation.
34Again, when µ → ∞, the present values of consumer surpluses have rather simple forms:

(A−c0)
2[6−(1−β)(2−β)g]2

2[9−(2−β)2g]2r for accommodation strategy, (A−c0)
2

2r for predation with constrained monopoly,

and 2(A−c0)
2

(4−g)2r for predation with unconstrained monopoly (again recall that the optimal predation time

is T = 0 in this case). Figure 19 was obtained directly by comparing those values.
35The shaded area represent those values of parameters where social welfare in accommodation is higher

than the one in predation.
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when µ → ∞. However, this is an important remedy for competition policy. Although

predatory behavior is considered as anticompetitive act, from economic point of view, it

can lead to an increase in social welfare. The appropriate policy should then support

Firm 1’s predatory behavior (for example using subsidies; see also Footnote 7).

Insert Figure 20 HERE

Insert Figure 21 HERE

Insert Figure 22 HERE

Insert Figure 23 HERE

7 Conclusion

The empirical findings and stylized facts concerning the relation between innovativeness,

leadership and market power, have motivated out paper in that we aim to describe and

analyze a particular setup in which the persistence of monopoly is likely to arise in the

long run. More specifically, we study the situation in which the market leader undertakes

pre-emptive R&D investment (“strategic predation”) that eventually leads to exit of the

follower firm. It is also important to stress that we allow the follower to benefit via

R&D spillovers from the R&D activity of the leader. We then, within the same basic

setup, contrast the outcomes of strategy predation with the ones in which the leader

“accommodates’ the follower in a duopoly market structure. This comparison enables

us to study positive aspects of the two main strategies of the leader — accommodation

and strategic predation- as well as social welfare implications of the two resulting market

structures — duopoly and constrained monopoly.

In studying the above phenomenon, we first start with static analysis and then sub-

sequently develop a corresponding dynamic model. While the very comparison between

the static model and its dynamic counterpart is an insightful exercise per se, we argue

that, due to inherently dynamic phenomenon of innovation activity, a dynamic model is

better suited at capturing both accommodating and the pre-emptive or predatory behav-

ior of the leader, and consequently, it fits better with observed empirical findings about

persistence of monopoly and its high intensity of innovative activity.
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While monopoly appears marginal market structure in a static environment and is

therefore often excluded from the analysis by assumptions (e.g., by restrictions on param-

eters), in the dynamic setup when there is a fast adoption of the new technology, on the

contrary, this market structure becomes the prevalent one and strategic predation turns

out to be the dominant market strategy in general. The quicker the time of the innovation

adoption, the larger the range, in which the predation becomes the optimal strategy. Both

R&D intensity and R&D stock are likely to be larger in predation strategy compared to

accommodation strategy. Put together, these two facts yield a testable prediction in that

the most propulsive innovative firms, that commercialize their investment in innovation

quickly, are the ones likely to use the strategy predation through investing large sums of

money into innovative activity (cf. AT&T, Microsoft, etc.).

As for the social welfare considerations, strategic predation as dominant market strat-

egy may be socially preferable as well since it might lead to both higher consumer surplus,

and (even more often) to higher social welfare generated despite the fact that only one

firm (the leader) remains in the market in the long run. This all bears important com-

petition policy implications. First, the size of market share per se might not be sufficient

condition for a legal offence and, second, abuses of dominant positions may not even be

an issue in dynamic markets where competition takes place through investments in R&D

rather than through static pricing and where the very presence of competitors constrain

the behavior of market leaders. The challenge for the design of antitrust policy against

predation is related to the ability of the antitrust authority to distinguish between the

price that is low for other predatory purposes from a price that might be set very low

as part of an efficiency enhancing process that in turn results in enhanced competition

leading in the end to the exit of the competitors but also in the enhancement in the both

consumer surplus and social welfare. For instance, in the presence of network effects or

learning effects it would be legitimate and consistent with vigorous competition that firms

set very low prices when they are introducing new products, when they are targeting new

customer segments or rivals, installed bases, or when they are in the first phase of the

learning curve. Thus, the competition authority with limited knowledge of industry- and

firm-specific data faces a complex problem when attempting to identify those circum-

stances under which loss-inducing predatory prices cause harm to competition. For that

reason the antitrust authorities have to be fully aware of the risks of misclassification

when approaching a predation case. Nevertheless, our model clearly favors still controver-

sial proposition of the efficiency defenses of the dominant firms that allows for otherwise

abusive strategy for the dominant firm if it creates a net efficiency gains which benefits
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consumers.36

However, our results concerning both private and social optimality of strategic pre-

dation are obtained under the assumption of goods homogeneity. As we know (at least

from Dixit, 1979), product differentiation makes the strategic predation more difficult and

more costly for the leader. Moreover, strategic predation in this case leads to less product

varieties in the market, and this in turn harms consumers. However, by the continuity

argument, it is pretty safe to claim that all our findings would also hold in the situation

when the degree of product differentiation is not “large,” that is, when the goods are

“close” substitutes.

Another policy concern that can arise in the above setup might be that the policy

makers worry of having only one firm in the market as was recently the case with the

General Electric and Honeywell banned merger. This could be an issue if there is no

credible threat from entry of any other firm because the size of the entry barriers is high

but this again leads to Etro’s remark (2006) that the barriers to entry should be targeted

rather than market leaders. In the technical sense, our analysis could be further extended

in a several directions. The speed of adjustment could be “endogenized” as a function of

the R&D intensity or R&D stock, for instance. Furthermore, we could model the last,

quantity competition stage between the leader and follower explicitly by relying on the

concepts of state dependent strategies and Markov perfect equilibria. This approach can

make the game even more “dynamic” with possibly additional insights.

36Etro (2006) gives a nice summery of the controversy. See also Rey et al. (2005), and the discussion

paper on the reform of Art. 82 of the Treaty on exclusionary abuses by the European Commission, 2005.
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A APPENDIX: Proofs and Derivations

Proof of Lemma 1:

Introducing the new time scale dτ = µdt, in matrix notation system (31,32) reads as

dY

dτ
= ΓY + ∆, (72)

where Y =

(
z

q

)
, Γ =

(
ρ −γ

γ −1

)
, ∆ =

(
0

B

)
.

T r(Γ) = ρ − 1 = r
µ

> 0 – which implies that the sum of eigenvalues λ1, λ2 is always

positive.

Det(Γ) = −ρ + γ2 < 0 – which means that the product of the eigenvalues is negative.

D = (Tr(Γ))2 − 4Det(Γ) = (ρ + 1)2 − 4γ2 > (ρ + 1)2 − 4ρ = (ρ − 1)2 ≥ 0 – which

yields that the eigenvalues are real.

Therefore, if γ2 < ρ then the eigenvalues are real and of opposite sign (i.e. the

equilibrium is a saddle). The latter proves the existence of a unique trajectory converging

to the steady state (a stable arm of a saddle).37

Q.E.D.

Proof of Lemma 2:

(i) Since β is always positive, (35) holds true when the right-hand side of (35) is

negative, i.e. for g < 9
4
ρ.

Moreover, by construction the generalized discount factor ρ ≥ 1. As µ (the speed of

adjustment) tends to infinity, ρ monotonically declines to 1, and min ρ = 1. Therefore,

with g < 9
4
min ρ = 9

4
the RHS of (35) always remains negative for any constellation of β,

µ and r.

(ii) Since max γ = 4
3
, the condition µ < 9

7
r guarantees that ρ = r

µ
+ 1 > 16

9
= max γ2.

Therefore, for any γ, ρ > γ2.

Q.E.D.

37Loosely speaking, an equilibrium (z∗, q∗) is

1. unstable focus if D < 0 (λ1,2 are complex) and Tr(Γ) > 0 (Re(λ1,2) > 0); holds true for γ > ρ+1
2 ;

2. unstable node, if D ≥ 0 (λ1,2 are real) and Det(Γ) ≥ 0 (λ1, λ2 ≥ 0); holds true for
√

ρ ≤ γ ≤ ρ+1
2 ;

3. saddle, if D ≥ 0 and Det(Γ) < 0 (λ1 < 0 < λ2); holds true for γ2 < ρ.

However, in our model the first two options are ruled out due to non-negativity of z.
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Derivation of the analytical solution to system (31, 32).

The eigenvalues of Γ are

λ1,2 =
ρ− 1±

√
(ρ + 1)2 − 4γ2

2
=

1

2µ

(
r ±

√
(r + 2µ)2 − 4γ2µ2

)
, λ1 < 0 < λ2,

and the eigenvectors corresponding to λ1 and λ2 are evaluated as

U1 =




2γ

ρ+1+
√

(ρ+1)2−4γ2

1


 , U2 =




2γ

ρ+1−
√

(ρ+1)2−4γ2

1


 .

Therefore, the general solution to (72) becomes

Y (τ) = C1U1e
λ1τ + C2U2e

λ2τ + Yp,

where C1, C2 are arbitrary constants and the particular solution Yp is a constant solution

satisfying the equation ΓYp + ∆ = 0, i.e.

Yp =

(
z∗

q∗

)
.

The transversality condition demands for C2 = 0 (in other words, the optimal solution

must be bounded).

The constant C1 is determined from the initial condition q(0) = B, which implies

C1 = − Bγ2

ρ−γ2 .

Finally, we find the optimal control path as

qopt(τ) = − Bγ2

ρ− γ2
eλ1τ + q∗,

zopt(τ) = − Bγ2

ρ− γ2
· 2γ

ρ + 1 +
√

(ρ + 1)2 − 4γ2
eλ1τ + z∗,

or, restoring the original time scale,

qopt(t) = − Bγ2

ρ− γ2
e

ρ−1−
√

(ρ+1)2−4γ2

2
µt + q∗,

zopt(t) = − Bγ2

ρ− γ2
· 2γ

ρ + 1 +
√

(ρ + 1)2 − 4γ2
e

ρ−1−
√

(ρ+1)2−4γ2

2
µt + z∗.

Q.E.D.
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Optimal solution to (23), (24) with µ →∞ by applying Euler’s equation.

Under instantaneous adjustment scenario, as µ →∞, equation (24) becomes

q(t) = B + γz,

and the optimization problem (23) degenerates to

max
z2(t)

∫ ∞

0

((B + γz(t))2 − z2(t))e−rtdt.

Euler’s equation associated with this problem reduces simply to

∂

∂z
((B + γz(t))2 − z2(t))e−rt = 0

which has to be satisfied at each point in time. It yields

zopt =
Bγ

1− γ2
.

Therefore, in the limiting case the optimal level of R&D expenditures is constant over

time and coincides with the equilibrium value of z∗ in (33) evaluated at µ →∞.

Proof of Lemma 3:

q̇ = µ(B − q + γz).

Therefore q̇ + µq = f(t) with f(t) = µB + µγz(t) > 0 for all t ≥ 0.

The solution to the latter equation is

q(t) = e−µt

(
B +

∫ t

0

f(τ)eµτdτ

)
,

which is always positive.

Q.E.D.

Proof of Lemma 5:

Necessity follows from Lemma 4. To prove sufficiency, first note that q∗2 = B + γ2z
∗.

Thus non-positivity of q∗2 implies B + γ2z
∗ ≤ 0, that is equivalent to

B ≤ 1

3
(1− 2β)

√
g · B · 1

3
(2− β)

√
g

ρ− 1
9
(2− β)2g

.

The latter inequality simplifies to

1 ≤ (1− 2β)(2− β)

9ρ
g
− (2− β)2
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and can be further re-arranged as

3ρ

g
≤ (2− β)(1− β), or g ≥ 3ρ

(2− β)(1− β)
≡ gd. (73)

Given that ρ ≥ γ2 = 1
9
(2− β)2g, the latter inequality implies that

1

9
(2− β)2g · 3

g
<

3ρ

g
≤ (2− β)(1− β).

Therefore

1

3
(2− β)2 < (2− β)(1− β),

i.e., β < 1
2

is necessary for q∗2 to be non-positive.

Q.E.D.

An alternative approach to the optimal predation problem.

In order to eliminate Firm 2, Firm 1 must lower its price below the costs of production

of Firm 2, i.e. the following condition must hold:

A− q1(t) ≤ c2(t).

In other words, at the very moment the price of Firm 1 falls below the costs of Firm

2, Firm 1 becomes a constrained monopolist.

Therefore, the corresponding optimization problem for Firm 1 is very similar to that

elaborated earlier: the condition for becoming a constrained monopolist reads as

A− q1(T ) = c2(T ),

or, in other words,

q1(T ) + c2(T ) = A.

With two equations of motion of q1 and c2 in hand

q̇1 = µ(B − q1 + γ1z)

and

ċ2 = µ(c0 − c2 − β
√

gz)

we can introduce the new variable (say, ξ), ξ = q1+c2, which must satisfy the boundary

conditions

ξ(0) = q1(0) + c2(0) = B + c0, ξ(T ) = A,
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and is subject to the following equation of motion:

ξ̇ = µ(B + c0 − ξ + (γ1 − β
√

g)z).

Therefore – with a few modification – the optimization problem under consideration

replicates the problem (44):

maxz(t)

∫ T

0
−1dt (74)

s.t. ξ̇ = µ(B + c0 − ξ + (γ1 − β
√

g)z),

ξ(0) = B + c0, ξ(T ) = A, T is free,

and z ∈ [0, zu].

And there is little wonder that the solution of (74) will be identical to (47) and (48).

Derivation of optimal solution in constrained monopoly.

With c2(t) given by (55), the objective functional in (56) expands to the sum
∫ +∞

T

[ccm(t)(c2(t)− A)− x(t)]e−rtdt +

∫ ∞

T

[c2(t)(A− c2(t)]e
−rtdt

in which the second term integrates to a constant, say, K, that does not depend on the

control variable and thus can be discarded. For that reason the optimization problem

(56) reduces to

max
x(t)

I(x(t)) =

∫ +∞

T

[ccm(t)(Ke−µt + c0 − A)− x(t)]e−rtdt, (75)

subject to
dccm

dt
= µ(c0 − ccm(t)−

√
gx(t)).

In order to solve the above problem, we form Hamiltonian H = [ccm(t)(Ke−µt + c0−A)−
x(t)]e−rt +λ(t)µ(c0− ccm(t)−

√
gx(t)) with first order conditions Hx = 0 and Hccm = −λ̇

and transversality condition limt→∞ λ(t)ccm(t) = 0. These yield the equation of motion

of optimal control variable:

ẋ(t) = 2(r + µ)x(t) + (Ke−µt + c0 − A)µ
√

g
√

x(t)

or, in new variable z(t) =
√

x(t),

ż = (r + µ)z +
µ
√

g

2
(Ke−µt + c0 − A) (76)

Equation (76) has general solution

zcm(t) = Ce(r+µ)t +
(A− c0)µ

√
g

2(r + µ)
− Kµ

√
g

2(r + 2µ)
e−µt.
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The transversality condition demands for boundedness of the optimal solution. Therefore

C = 0 and

zcm(t) =
(A− c0)µ

√
g

2

(
1

r + µ
+

βe−µ(t−T )

(1− 2β)(r + 2µ)

)
. (77)

Derivation of optimal predation time when µ →∞.

First note that ρ → 1 as µ →∞. Therefore, the feasibility condition g < 4ρ becomes

g < 4 and sustainability condition g < 2ρ becomes g < 2.

In case of constrained monopoly, Firm 1’s profit from strategic predation becomes

(A− c0)
2

4(1− 2β)2rg

[
4
(
(1− β)2g − 1

)
+

(
(1− 2β)2g2 − 4(1− β)2g + 4

)
e−rT

]
,

when µ →∞. The coefficient at e−rT is positive if and only if

(1− 2β)2g2 − 4(1− β)2g + 4 > 0.

We will show that this inequality holds for all β ∈ [0, 1
2
] and g ∈ [0, 2]. Obviously it holds

for g ≤ 1, since then (1−2β)2g2−4(1−β)2g+4 ≥ −4(1−β)2+4 ≥ 0. On the other hand, for

g > 1, we rewrite the inequality in an equivalent form (2−g)2+4g(2−g)β−4g(1−g)β2 > 0,

which clearly holds when 1 < g < 2.

With unconstrained monopoly in the second phase Firm 1’s profit from strategic pre-

dation becomes

(A− c0)
2

(1− 2β)2rg

[
(1− β)2g − 1 +

(2− (1− β)g)2

4− g
e−rT

]2

,

when µ →∞. As g < 4, the coefficient at e−rT is positive. Hence the profit is decreasing

in T .

Comparison of prices in Section 6.2.

First we show that predation strategy yields a lower price in predation phase, i.e., for

t ∈ (0, T ]. Obviously, both prices are the same and equal to 1
3
(A+2c0) at time t = 0. For

t > 0, both are described by a differential equation of the form (22), or

ṗ = µ ((B + c0) + p(t)− (γ1 + γ2)
√

gz(t)) ,

where z(t) = zopt(t) for the accommodation strategy and z(t) = zu(T ) for predation

strategy. According to (71), the latter is higher, yielding a lower price. This is easy

do see, when we consider the difference d between the duopoly price and the predation

price, which follows the differential equation ḋ = µ[d(t) − (γ1 + γ2)(zopt(t) − zu(T ))],
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with initial condition d(0) = 0. Obviously d(t) > 0, since γ1 + γ2 = 1
3
(1 + β) > 0 and

zopt(t)− zu(T ) < 0.

Now it remains to show that predation yields a lower price in the constrained monopoly

phase. Since the price is decreasing in duopoly and increasing in constrained monopoly,

it is sufficient to show the inequality for their limits, i.e., p∗ ≥ c0. Substitution of (39)

yields an equivalent form g ≤ 3ρ/(2− β).

44



B APPENDIX: Figures
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Figure 1: Region of “Strategic Predation”
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Figure 2: R&D pattern for different values of µ: µ = 0.4, 2, 20
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Figure 3: Growth rates of R&D for different values of µ: µ = 0.4, 2, 20
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Figure 6: Strategic predation (simulation results for µ = 0.2)
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Figure 7: Strategic predation (simulation results for µ = 2)
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Figure 8: Strategic predation (simulation results for µ = 20)
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Figure 9: Strategic predation when µ →∞
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Figure 10: Dependence of area where predation is preferred to duopoly on µ, in region

Rcm (simulation results)
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Figure 11: Dependence of area where predation is preferred to duopoly on µ, in region

Rm (simulation results)
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Figure 12: R&D investment comparison (simulation results for µ = 2)
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Figure 13: R&D investment comparison (simulation results for µ = 20)
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Figure 14: R&D investment comparison when µ →∞
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Figure 15: Pattern of price over time with constrained monopoly (µ = 2, β = 0.33, g = 1)
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Figure 16: Pattern of price over time with unconstrained monopoly (µ = 2, β = 0.33,

g = 2.1)
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Figure 17: Consumer surplus comparison (simulation results for µ = 2)
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Figure 18: Consumer surplus comparison (simulation results for µ = 20)
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Figure 19: Consumer surplus comparison when µ →∞
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Figure 20: Welfare comparison (simulation results for µ = 0.2)
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Figure 21: Welfare comparison (simulation results for µ = 2)
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Figure 22: Welfare comparison (simulation results for µ = 20)
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Figure 23: Welfare comparison when µ →∞ (partially simulation results)
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