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Abstract

In this paper we establish a link between the volatility of oil price shocks and a positive
expected value of inflation in equilibrium (inflation premium). In doing so, we implement
the perturbation method to solve up to second order a benchmark New Keynesian model
with oil price shocks. In contrast with log linear approximations, the second order solution
relaxes certainty equivalence providing a link between the volatility of shocks and inflation
premium. First, we obtain analytical results for the determinants of the level of inflation
premium. Thus, we find that the degree of convexity of both the marginal cost and the
phillips curve is a key element in accounting for the existence of a positive inflation pre-
mium. We further show that the level of inflation premium might be potentially large even
when a central bank implements an active monetary policy. Second, we evaluate numeri-
cally the second order solution of the model to explain the episode of high and persistent
inflation observed in the US during the 70’s. We find, in contrast with Clarida, Gali and
Gertler (QJE, 2000), that even when there is no difference in the monetary policy rules be-
tween the pre-Volcker and post-Volcker periods, oil price shocks can generate high inflation
levels during the 70’s through a positive high level of inflation premium. As by product,
our analysis shows that oil price shocks along with a distorted steady state can generate
a time-varying endogenous trade-off between inflation and deviations of output from its
efficient level. The previous trade-off, once uncertainty is taking into account, implies that
a positive level of inflation premium is an optimal response to oil price shocks.
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1 Introduction

In an influential paper, Clarida, Gali and Gertler (2000, hereafter CGG), have advanced the
idea that the reduction of inflation in the US during the past two decades was explained mainly
by the improvement in monetary policy and instead oil price shocks have played a minor role.
CGG based their conclusions on the estimations of monetary policy reaction functions for two
periods: pre and post Volcker1. Their estimations show that during the 70s the FED, on
average, let the real short term interest rate to decline as anticipate inflation rose, whereas
during the post Volcker period the monetary policy of the FED became more active, raising
the real interest rate in response to an increase on inflation expectations. Similar evidence is
found by Cogley and Sargent (2002) and Lubik and Schorfhedie (2004).

However, these results are in contrast with recent contributions by Sims and Zha (2005,
SZ hereafter), Canova, Gambetti and Pappa (2005), Primiceri (2004), Gordon (2005) and
Leeper and Zha (2003) who find no evidence of a substantial change in the reaction function of
monetary policy after Volcker period2. Instead they find strong evidence of a sizable reduction
of the volatility of the main business cycle driven forces across these two periods. The previous
authors emphasize on the role of second moments of shocks in identifying changes in monetary
policy regime and the consequent inflation dynamics. In particular, SZ pointed out that the
fact that previous works did not allow for heteroskedasticity have biased their results towards
finding significant shifts in coefficients in the monetary policy rule.

The discussion of whether monetary policy or oil price shocks was the main driving force
of inflation dynamics goes vis-a-vis with the debate about the recessionary effects of either
monetary shock or oil price shocks. For example, Bernanke, Gertler and Watson (1997) argue
that monetary policy has played a larger role during 70´s in explaining the negative output
dynamics. In particular, if the monetary policy would not have reacted that much during
that period the negative effects over output could have been mitigated. On the other hand,
Hamilton (2001) and Hamilton and Herrada (2004) find out that the previous authors results
rely on a particular identification scheme, and on the contrary they find that a contractionary
monetary policy played only a minor role on the contractions in real output, being oil prices
the main source of shock3.

CGG (2000) downweight the role of oil price shocks on the grounds that changes in oil
prices can only generate temporary increases in the price level but not persistent increases in
inflation. They argue that supply shocks in order to generate persistent increases in inflation
should be accompanied by a accommodative monetary policy rule. However, as it was pointed
out by SZ (2005) the importance of shocks in explaining the dynamics of inflation relies to a
great extent on taking into account the second moments of shocks. Therefore, standard log-
linear approximations of general equilibrium models are not suitable to analyze the interaction
between monetary policy and second moment of shocks. For instance, CGG use a linear

1 It refes to the appointment of Paul Volcker as Chairman of the Federal Reserve System.
2Orphanides (2001) shows that when real time data are used to estimate policy reaction functions, the

evidence of a change in policy after 1980 is weak.
3Hamilton (2001), finds that the size of the effect that Bernanke, Gertler and Watson (1997) attribute to oil

shocks is substantially smaller than that reported by other researchers, primarily due to their choice of a shorter
lag length than used by other researchers.
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model where certainty equivalence holds and, therefore, the potential interaction between the
volatility of shocks and average level of inflation is neglected.

In this paper we try to reconcile these two streams of the literature in a tractable and unified
framework. In particular, we propose a set up that generates a link between the volatility of
oil price shocks and average level of inflation. Thus, we show that a standard New keynesian
model, in which oil price shocks is the only source of fluctuations and enters as non-produced
input in production, is capable to generate high persistent levels of inflation in response to oil
shocks. Although the model is very similar to the one analyzed by CGG, the main difference is
that we use a second-order solution for the rational expectations equilibrium, instead of a linear
one. The second order solution, by relaxing certainty equivalence, generates a link between the
volatility of shocks and the average level of inflation. This link permit the model to deliver an
extra higher level of inflation compared to the level of inflation obtained in a log-linear model.
We define this extra level of average inflation as the level of inflation premium4.

We implement, both analytically and numerically, the second-order solution by using the
Perturbation method in the line of Sims (2002), Schmitt-Grohé and Uribe (2004) and Kim
and Kim (2005). We propose a novel strategy in implementing the perturbation method to
obtain analytical solution for the level of inflation premium in equilibrium. Different from
other paper in which the perturbation method is applied directly to the non-linear system of
equations, we instead first approximate the model up to second order and then we apply the
perturbation method to the approximated model. This strategy permit us to disentangle the
key determinants of the inflation premium in equilibrium.

Our analytical findings provide a link between the volatility of oil price shocks and the level
of inflation premium. The mechanism through which this link is established works as follows:
first, since oil is used as an input in production, the volatility of oil prices affects expected
marginal cost of firms. When the marginal cost function is convex in oil prices, expected
marginal costs are increasing in the volatility of this shock inducing forward looking firms to
charge higher prices optimally. We show that the necessary condition for a convex marginal
cost is an elasticity of substitution between oil and labor smaller than one. Furthermore, the
smaller the elasticity of substitution, the larger the convexity of the marginal cost function
and consequently the larger the level of inflation premium. A second channel through which
oil prices affect inflation is by the convexity of Phillips curve with respect to output5. To the
extent that the Phillips curve is convex on output, higher volatility on output generated by oil
price shocks delivers a positive premium in inflation6. And third, we show that the overall level
of inflation premium in equilibrium depends crucially on the relative weight that the central
bank puts on output with respect to inflation. In particular, the larger the weight on output
fluctuations in the reaction function of the central bank (Taylor rule) the larger the level of
inflation premium.

4The extra level of inflation generated by volatility is similar to the effect of consumption volatility on the
level of average savings as in the literature of precautionary savings.

5Weise (1999) finds some evidence that indicates that the Phillips curve by the U.S might be convex. He
finds that inflation is more responsive to demand shocks when economy is in a boom than when it is in recession.

6Castillo and Montoro (2005) explain in detail the determinants of the convexity of the new phillips curve
under Calvo price-setting. They show that the convexity of the Phillips curve is cruciall in generating asymmetric
responses of output to demand shocks.
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For the numerical exercises we calibrate the model for the U.S. economy by considering
that oil prices shocks has exhibited a change in its mean and volatility across the pre and post
Volcker periods. Our results shows that oil prices are able to generate, through high levels of
inflation premium, the persistent increase in the level of inflation observed during the 70s even
when an active monetary policy is in place. Furthermore, we perform a counterfactual exercise
by fitting the historical values of oil prices shocks into the model by considering an active
Taylor rule for the whole sample. We find that the model can track fairly well the average
values of inflation during the 70s. Hence, our paper provides support to the empirical findings
of SZ (2005) that second moments of shocks might be important to understand the change in
macroeconomic behavior observed in the US economy without relying in an accommodative
monetary policy.

Additionally, we also perform robustness analysis by considering alternative specifications
of the model. In particular we introduce real rigidities as in Blanchard and Gali (2005 hereafter,
BG) and we find that these rigidities reduce the level of inflation premium. The main intuition
of this results is as follows: real rigidities tend to smooth marginal costs since today’s real wage
depends of the previous period wage rate. Smoother marginal costs reduce the uncertainty
that price setters face, therefore inducing them to set prices charging a lower premium. We
also include demand shocks to the model and the quantitative results do not change much, in
fact, demand shocks marginally increase the level of inflation premium.

Last but no least, we explore the implications of the level of inflation premium for the
design of monetary policy. We show that inflation premium might emerge as an optimal
response of the central bank to supply shocks. In particular, unlike BG, we find that when we
allow for a distorted steady-state and the production function exhibits a constant elasticity of
substitution, oil prices generate a meaningful endogenous trade-off between the stabilization
of inflation and output gap.7 This trade-off implies that is optimal for the central bank to
partially react to oil price shocks and to allow on average higher levels of inflation8. In fact,
the trade-off would imply that the behavior of inflation during the 70s might reflect not only
a perfectly consistent monetary policy but an optimal one.

Finally, other authors have introduced the second order approach in closed and open
economies, however, most of the work have mainly focused on welfare evaluations across dif-
ferent environments or stochastic processes but none of them have dealt with the implications
of second order solution for the determination of the inflation premium. Thus, Benigno and
Woodford (2004) implement the second order solution to evaluate optimal monetary and fiscal
policy in a closed economy. Benigno and Benigno (2005) have used the second order approach
to evaluate the optimal policy in a two-country model with complete markets9. Closer to our
work are the recent papers by Evans and Hnatkovska (2005) and Castillo and Montoro (2005).

7These authors find that with a Coob-Douglas production function supply shocks do not generate a trade-off
between the stabilization of inflation and output gap. In order to generate the trade-off, BG rely on some
reduced form of real rigidities in the labor market.

8Benigno and Woodford (2005) have shown that even under a distorted steady state it is possible to find an
accurate welfare measure in terms of output fluctuations with respect to an efficient level of output. Therefore,
a meaningful trade-off arises once a well defined measure of efficient level is considered.

9Also, Ferrero (2005) extends Beningo and Woodford (2004) to a two country open economy model. In a
similar direction, De Paoli (2004) evaluates welfare for the case of a small open economy model with home bias.
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The first authors evaluate the role of uncertainty in explaining differences in asset holdings in a
two-country model. The latter authors build up a model with non-homothetic preferences and
show how asymmetric responses of output and inflation emerges from the interaction of a con-
vex Phillips curve and a state dependent elasticity of substitution in a standard New keynesian
model. On the other hand, Obstfeld and Rogoff (1998) develop an explicit stochastic NOEM
model relaxing the assumption of certainty equivalence. Based on simplified assumptions, they
obtain analytical solutions for the level exchange rate premium. Different from Obstfeld and
Rogoff (1998) and the aforementioned authors in this paper we perform both a quantitative
and analytical evaluation of the second order approximation of the New Keynesian benchmark
economy in order to account for the level of inflation premium generated by oil price shocks.

The plan of the paper is as follows. Section 2 presents some stylized facts for the US
economy, in particular we focus on the mean level of inflation for different subperiods. In
section 3 we outline a benchmark New Keynesian model augmented with oil as a non produced
input. Section 4 explains the mechanism at work in generating the level of inflation premium.
In section 5 we report the numerical results. In section 6 we discuss the implications of the
second order solution for monetary policy and finally in the last section we conclude.

2 Oil Shocks and the US economy

In the paper we focus on the role of oil shocks at driving the mean and volatility in inflation in
the U.S. economy. Our hypothesis points out to the fact that changes in the data generating
process in oil shocks, basically, changes in the mean and volatility of these shocks, can account
for differences in inflation mean levels in the U.S. economy in two well known periods (see
CGG 2000)10. We would like to highlight the role of change in volatility of oil prices as adding
uncertainty in inflation and consequently higher means. Thus, in this section we report some
unconditional moments, in particular, mean and standard deviations for the following variables:
inflation, GDP gap11, the three months T-bill and oil prices. The data are quarterly time series
spanning 1970:1-2005:2. In order to calculate the moments we divide the 1970:1-2000:4 sample
in two main subperiods: 1970:01 -1987:2, which corresponds to the Pre-Volcker period. The
second period 1987:3-2000:4 corresponds to the Alan Greenspan´s one. Importantly, these sub-
periods are similar to the ones considered by CGG (2000) as a evidence of change in monetary
policy in U.S. CGG associate the first period to one in which the central bank has adopted an
accommodative policy and the second one in which the central bank responds more actively
to expected inflation.

We obtain the data from the Haver USECON database (mnemonics are in parentheses).
Our measure of the price level is the nofarm business sector deflator (LXNFI), the measure
of GDP corresponds to the nonfarm business sector output (LXNFO), we use the quarterly
average daily of the 3-month T-bill (FTB3) as the nominal interest rate, and finally our measure
of oil prices is the Spot Oil Prices West Texas Intermediate (PZTEXP). We express output in
percapita terms by dividing LXNFO by a measure of civilian noninstitutional population aged

10We interpret the mean level of inflation within each period as the level inflation premium.
11We measure GDP gap as the deviation of the log of output from a linear trend. We do this in order to be

consistent with the definition of output used in the model.
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above 16 (LNN) and oil prices are deflated by the nofarm business sector deflator.
In Figure 1 we plot the real oil prices against quarterly annualized inflation for the period

1970:1-2005:2. In the first sub-sample we observe a persistent initial increase in inflation vis-a-
vis and increase in oil prices following the oil price shock in 1974. From 1980 on we observe a
steadily decline in inflation accompanied by a persistent drop in oil prices. For the second sub-
sample, we observe also a close co-movement between inflation and oil prices, thus from early
nineties until 1999 it is observed a downward trend in both oil prices and inflation, whereas
from 2000 on we observe a markedly upward trend in oil and a moderate increase in inflation.
During the first sub-sample oil prices present larger and more persistent swings with respect
to the second sub-sample. Thus, in the first period oil prices exhibit high both volatility and
mean whereas in the second period the aforementioned moments have decreased significantly.
The previous observation is confirmed by the statistics in Table 1. The standard deviation
of real oil prices has decreased in half, from 0.57 to 0.20, similarly the mean in oil prices has
decreased from 0.29 to 0.2.
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Figure1 Inflation and oil prices

Now we turn to analyze which might be the empirical implications of the change in volatil-
ity and mean in the oil price. Notice that by comparing the sub-samples we observe an
important change in means and volatilities in inflation, GDP gap, and interest rates across
sub-samples. Quarterly inflation standard deviation has decreased from 0.8% to 0.3% and
the mean has moved from 1.4% to 0.5%, between the pre-Volcker and post-Volcker periods,
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respectively. Similarly, the three-month T-bill has decreased in both means and volatilities.
Finally, GDP gap has decreased in volatility (from a standard deviation of 4.3% to 2.8%) and
has experimented and increase in its mean (from -0.36% to -0.22%).

Table 1: Unconditional Moments
Mean Standard Deviation

Pre-Volcker Post-Volcker Pre-Volcker Post-Volcker
Inflation 1.38 0.53 0.80 0.29
GDP −0.36 −0.22 4.3 2.8
T-Bills 1.91 1.34 0.71 0.36
Oil Prices 0.286 0.198 0.57 0.20

Pre-Volcker and post-volcker correspond to the period 70:1-87-:2 and 87:3-2000:4

In a nutshell, it seems that the change in oil prices dynamics have had a key effect over
the mean of the main macroeconomic variables in U.S. from 70´s on. The numbers presented
here are consistent with our story, which emphasizes in the change in inflation premium and
uncertainty coming from oil prices as the main driving forces in explaining the level of inflation
premium in the U.S. In the next section we present a microfoundated model able to establish
the link between volatility and average inflation.

3 A New keynesian model with oil prices

The model economy corresponds to the standard New Keynesian Model in the line of CGG
(2000). In order to capture oil shocks we follow BG (2005) by introducing a non-produced
input M , represented in this case by oil. Q will be the real price of oil which is assumed to be
exogenous.

3.1 Households

We assume the following period utility on consumption and labor

Ut =
C1−σt

1− σ
− L1+νt

1 + ν
, (1)

where σ represents the coefficient of risk aversion and ν captures the inverse of the elasticity of
labor supply. The optimizer consumer takes decisions subject to a standard budget constraint
which is given by

Ct =
WtLt

Pt
+

Bt−1
Pt
− 1

Rt

Bt

Pt
+
Γt
Pt
+

Tt
Pt

(2)

where Wt is the nominal wage, Pt is the price of the consumption good, Bt is the end of
period nominal bond holdings, Rt is the nominal gross interest rate , Γt is the share of the
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representative household on total nominal profits, and Tt are transfers from the government12.
The first order conditions for the optimizing consumer´s problem are:

1 = βEt

"
Rt

µ
Pt
Pt+1

¶µ
Ct+1

Ct

¶−σ#
(3)

Wt

Pt
= Cσ

t L
ν
t =MRSt (4)

Equation (3) is the standard Euler equation that determines the optimal path of consumption.
At the optimum the representative consumer is indifferent between consuming today or tomor-
row, whereas equation (4) describes the optimal labor supply decision. We assume that labor
markets are competitive and also that individuals work in each sector z ∈ [0, 1]. Therefore, L
corresponds to the aggregate labor supply:

L =

Z 1

0
Lt(z)dz (5)

3.2 Firms

3.2.1 Final Good Producers

There is a continuum of final good producers of mass one, indexed by f ∈ [0, 1] that operate
in an environment of perfect competition. They use intermediate goods as inputs, indexed by
z ∈ [0, 1] to produce final consumption goods using the following technology:

Y f
t =

∙Z 1

0
Yt(z)

ε−1
ε dz

¸ ε
ε−1

(6)

where ε is the elasticity of substitution between intermediate goods. Then the demand function
of each type of differentiated good is obtained by aggregating the input demand of final good
producers

Yt(z) =

µ
Pt (z)

Pt

¶−ε
Yt (7)

where the price level is equal to the marginal cost of the final good producers and is given by:

Pt =

∙Z 1

0
Pt (z)

1−ε dz

¸ 1
1−ε

(8)

and Yt represents the aggregate level of output.

Yt =

Z 1

0
Y f
t df (9)

12 In the model we assume that the government owns the oil endowment. Oil is produced in the economy at
zero cost and sold to the firms at an exogenous price Qt. The government transfers all the revenues generated
by oil to consumers represented by Tt
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3.2.2 Intermediate Goods Producers

There is a continuum of intermediate good producers. All of them have the following CES
production function

Yt(z) =
h
(1− α) (Lt(z))

ψ−1
ψ + α (Mt (z))

ψ−1
ψ

i ψ
ψ−1

(10)

whereM is oil which enters as a non-produced input, ψ represents the intratemporal elasticity
of substitution between labor-input and oil and α denotes the share of oil in the production
function. We use this generic production function in order to capture the fact that oil has few
substitutes13, i.e ψ < 1. The oil price shock, Qt, is assumed to follow an AR(1) process in logs,

logQt = logQ+ ρ logQt−1 + εt (11)

Where Q is the steady state oil price. From the cost minimization problem of the firm we
obtain an expression for the real marginal cost given by:

MCt(z) =

"
(1− α)ψ

µ
Wt

Pt

¶1−ψ
+ αψ (Qt)

1−ψ
# 1
1−ψ

(12)

whereMCt (z) represents the real marginal cost, Wt nominal wages and Pt the consumer price
index. Notice that marginal costs are the same for all intermediate firms, since technology has
constant return to scale and factor markets are competitive, i.e. MCt (z) = MCt. On the
other hand, the individual firm´s labor demand is given by:

Ld
t (z) =

µ
1

1− α

Wt/Pt
MCt

¶−ψ
Yt(z) (13)

Intermediate producers set prices following a staggered pricing mechanism a la Calvo. Each
firm faces an exogenous probability of changing prices given by (1− θ). The optimal price that
solves the firm’s problem is given by

µ
P ∗t (z)

Pt

¶
=

µEt

" ∞X
k=0

(θβ)k ζt,t+kMCt,t+kF
−ε
t+kYt+k

#

Et

" ∞X
k=0

(θβ)k ζt,t+kF
1−ε
t+k Yt+k

# (14)

where µ = ε
ε−1 is the price markup, ζt,t+k = βk

³
Ct+k
Ct

´−σ
is the stochastic discount factor,

P ∗t (z) is the optimal price level chosen by the firm, Ft+k =
Pt+k
Pt

the cumulative level of

13Notice that when ψ = 1, the production function colapses to the standadard cobb-douglas function as the
one used by BG (2005). Yt(z) = (Lt(z))

1−αMα
t .
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inflation and Yt+k is the aggregate level of output. The optimal price solves equation (14) and
is determined by the average level of expected future marginal costs as follows14:µ

P ∗t (z)

Pt

¶
= µEt

" ∞X
k=0

ϕt,t+kMCt,t+k

#
(15)

Where:

ϕt,t+k =
(θβ)k ζt,t+kF

−ε
t+kYt+k

Et

" ∞X
k=0

(θβ)k ζt,t+kF
1−ε
t+k Yt+k

# (16)

Since only a fraction (1− θ) of firms changes prices every period and the remaining one keeps
its price fixed, the aggregate price level, the price of the final good that minimize the cost of
the final goods producers, is given by the following equation:

P 1−εt = θP 1−εt−1 + (1− θ) (P ∗t (z))
1−ε (17)

Following Benigno and Woodford (2005), equations (14) and (17) can be written recursively
introducing the auxiliary variables Nt and Dt :

θ (Πt)
ε−1 = 1− (1− θ)

µ
Nt

Dt

¶1−
(18)

Dt = Yt (Ct)
−σ + θβEt

h
(Πt+1)

−1Dt+1

i
(19)

Nt = µYt (Ct)
−σMCt + θβEt [(Πt+1) Nt+1] (20)

Equation (18) comes from the aggregation of individual firms prices. The ratio Nt/Dt repre-
sents the optimal relative price P ∗t (z) /Pt. These three last equations summarize the recursive
representation of the non linear Phillips curve.15

14 In order to write the optimal price in a recursive form, we use the following change of variables following
Benigno and Woodford (2005). We define Nt and Dt as follows:

Nt = Et

∞

k=0

(θβ)k µζt,t+kMCt,t+kF
−ε
t+kYt+k

Dt = Et

∞

k=0

(θβ)k ζt,t+kF
1−ε
t+k Yt+k

Therefore, the optimal price of a typical firm can be written as:

P ∗t (z)

Pt
=

Nt

Dt

15Writing the optimal price setting in a recursive way is necessary in order to implement numerically or
algebraically the perturbation method.
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3.3 Monetary Policy

The central bank conducts monetary policy by targeting the nominal interest rate in the
following way

Rt =

"
R

µ
EtΠt+1

Π

¶φπ
µ
Yt

Y

¶φy
#

(21)

The steady state values are expressed without time subscript and with and upper bar.

3.4 Market Clearing

In equilibrium labor, intermediate and final goods markets clear. Since there is no capital
accumulation nor government sector, the economywide resource constraint is given by

Yt = Ct (22)

The labor market clearing condition is given by:

Ls
t = Ld

t (23)

Where the demand for labor comes from the aggregation of individual intermediate producers
in the same way as for the labor supply:

Ld =

Z 1

0
Ld
t (z)dz =

µ
1

1− α

Wt/Pt
MCt

¶−ψ Z 1

0
Yt(z)dz (24)

Ld =

µ
1

1− α

Wt/Pt
MCt

¶−ψ
Yt∆t

where ∆t =
R 1
0

³
Pt(z)
Pt

´−ε
dz is a measure of price dispersion. Since relative prices differ across

firms due to staggered price setting, input usage will differ as well, implying that is not possible
to use the usual representative firm assumption and it will appears this price dispersion term
in the aggregate labor demand.

4 Inflationary Premium and Oil Price Shocks: The Mechanism

4.1 The second order solution and the inflation premium

In order to explain the determinants of the level of inflation premium we rely on a second order
log approximation solution of the model. The second order solution delivers a link between
volatility of price shocks and the means of endogenous variables16. As we mentioned in the
introduction we define level of inflation premium as the extra level of inflation that arises in
equilibrium once the second order solution is considered.17

16The model also delivers a premium in other endogenous variables, however, we focus on inflation.
17 It is important to remark that this extra level of average inflation is part of the dynamic rational expectations

equilibrium up to second order, and it can not be interpreted as a part of the steady state equilibrium. This
second order effect on the level inflation is similar to the effect of the volatility of consumption on savings that
is known in the literature as precautionary savings.
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We follow the perturbation method implemented by Schmitt-Grohe and Uribe (2004) (S-
GU, hereafter)18. This method permit us to solve the model algebraically and obtain closed
form solution for the equilibrium level of inflation. Up to second order inflation in equilibrium
can be written as quadratic polynomial in both the level and the standard deviation of oil
prices:

πt =
1

2
boσ

2
q + b1qt +

1

2
b2 (qt)

2 +O
³
kqt, σqk3

´
(25)

where the b́s are the unknown coefficients that we need to solve for and O
³
kqt, σqk3

´
denotes

terms on q and σq of order equal or higher than 3.19. Notice that the term b1qt corresponds
to the policy function that we would obtain using any standard method for linear models
(i.e. undetermined coefficients) whereas the additional elements of the policy function 1

2boσ
2
q+

1
2b2 (qt)

2 account for the level of uncertainty (premium)20. This extra level of inflation has two
components: 12boσ

2
q , which is constant and,

1
2b2 (qt)

2 which is time varying. We further express
the dynamics of oil prices as:

qt = ρqt−1 + ησqet (26)

where the oil shock has been normalized to have mean zero and standard deviation of one,
i.e. et iid ˜ (0, 1) . We set η =

p
1− ρ2 in order to express V (qt) = σ2q . Given the previous

policy functions the unconditional expected level of inflation is different from zero and positive
if bo + b2 > 0, and is given by the following expression:

E (π) =
1

2
(bo + b2)σ

2
q (27)

In order to find the determinants of the level inflation premium, in the next section we use
the algebraic solution of the perturbation method to express bo and b2 as functions of the deep
parameters of the model.

4.2 Second order expansion of the model

Different from other papers which apply perturbation methods directly to the non-linear sys-
tem of equations, we first approximate the model up to second order and then apply the
perturbation method21. Our proposed approach has the advantage that makes easier to obtain
clear analytical interpretation of the sources of the level of inflation premium.
18The perturbation method was originally develop by Judd (1998) and Collard and Julliard (2001). The

fixed point algorithm proposed by Collard and Julliard (2001) introduces a dependence of the coefficients of the
linear and quadratic terms of the solution with the volatility of the shocks. In contrast, the advantage of the
algorithm proposed by S-GU is that the coefficients of the policy are invariant to the volatility of the shocks
and the corresponding ones to the linear part of the solution are the same as those obtained solving a log linear
approximated model, which makes both techniques comparable.
19Smith-Grohe and Uribe (2004) show that the quadratic solution does not depend neither on σq nor on qtσq

i.e. they show that the coefficients in the solution for those terms are zero.
20Notice that these additional components also imply that the impulse response functions of inflation is

asymmetric.
21Since a second order taylor expansion is an exact approximation up to second order of any non-linear

equation, having the system expressed in that way would give the same solution as the system in its non-linear
form.

12



Up to second order the model can be written as a system of two equations, the aggregate
demand and the aggregate supply side. A detailed derivation is provided in Appendix B.

We denote variables in steady state with over bars (i.e. X) and the log deviations around the
steady state with lower case letters (i.e. x). The second order approximation of the aggregate
supply can be written as follows22:

vt = κmct +
1

2
κmct (2 (1− σ) yt +mct) +

1

2
επ2t + βEtvt+1 +O

³
kqt, σqk3

´
(28)

where we have defined the following auxiliary variable:

vt = πt +
1

2

µ
ε− 1
1− θ

+ ε

¶
π2t +

1

2
(1− θβ)πtzt (29)

vt is an auxiliary variable that simplifies the second order expansion of the Phillips curve.
The coefficient κ measures the standard linear effect of the marginal costs on inflation κ =
1−θ
θ (1− θβ). On the other hand, zt is a recursive auxiliary variable that comes from approx-
imating the equations of the auxiliary variables Nt and Dt and has the following first order
expansion

zt = 2 (1− σ) yt +mct + θβEt

µ
2ε− 1
1− θβ

πt+1 + zt+1

¶
+O

³
kqt, σqk2

´
(30)

We further can express the real marginal costs equation as the following second order equation
on output and oil prices23:

mct = χ (ν + σ) yt + (1− χ) qt + χv b∆t +
1

2
(1− χ)χ2

1− ψ

1− αF
((ν + σ) yt − qt)

2 +O
³
kqt, σqk3

´
(31)

where:

αF = αψ
³

Q

MC

´1−ψ
, χ = 1−αF

1+vψαF

we define αF as the share of oil in the marginal costs and χ is a parameter that measures
the impact of oil shocks over the marginal cost. b∆t is the log-deviation of the price dispersion
measure ∆t, which is a second order function of inflation (see appendix B3 for details). It
is important to note that even though the share of oil in the production function, α, can be
small, its impact on marginal cost,αF , can be magnified when oil has few substitutes (i.e. ψ is
low, in general ψ < 1) 24. Also, a permanent increase in oil prices, i.e. an increase in Q, would
make marginal cost of firms more sensitive to oil price shocks since it increases αF . In the

22We follow Benigno and Woodford (2005) strategy when writting the AS as a second order approximation.
23The marginal costs can also be expressed as a function of the output gap: xt = yt − yFt , where y

F is the
output under flexible prices.
mct = χ (ν + σ)xt +

1
2
(1− χ) (ν + σ) 1−ψ

1+νψαF
χ (ν + σ)x2t − 2xtqt

24For example, for the U.S. is estimated that oil share is in the order of 2%. However, it is estimated a
elasticity of substitution of 0.56, which gives, assuming Q = W/P = MC, αF = (0.02)0.56 = 11%. This share
would be even higher if we consider a high steady state value of oil,Q.

13



case when ψ = 1, the Cobb-Douglas production function, the importance of oil is diminished
since the amplifier effect of ψ is neglected 25.

Similarly, we approximate up to second order the aggregate demand and the monetary
policy rule. The details can be found in appendix B. In the next sub-section we work on a
tractable version of the model summarized in two equations on πt and yt.

4.3 Determinants of the Level of Inflation Premium

After combining the corresponding equations for the marginal costs, the policy rule, and the
auxiliary variables vt and zt, the model can be written as a system of two second order equations
on inflation and output:

πt = κyyt + κqqt + βEtπt+1 +
1

2
ωπσ

2
q +

1

2
κ (Ωπ +Ωmc) q

2
t +O

³
kqt, σqk3

´
(32)

yt = Et (yt+1)−
1

σ

¡
(φπ − 1)Etπt+1 + φyyt

¢
+
1

2
ωyσ

2
q +O

³
kqt, σqk3

´
(33)

where parameters κy, κq,Ωmc,Ωπ, ωπ, ωy are defined in the appendix B.
The parameters {Ωmc,Ωπ, ωπ, ωy} are the sources of the level of inflation premium and

capture the interaction of nonlinearities of the model and volatility of oil price shocks. Note
that if the aforementioned parameters were equal to zero the model collapses to a standard
version of a New Keynesian model in log linear form.

The first parameter Ωmc accounts for the convexity of marginal costs with respect to oil
prices and depends, crucually, on the elasticity of substitution ψ. In order to illustrate this
mechanism, a log quadratic approximation of the marginal cost function is useful:

mct =
¡
1− αF

¢
wt + αF qt +

1

2
αF
¡
1− αF

¢
(1− ψ) (wt − qt)

2 +O
³
kqt, σqk3

´
(34)

Notice that when ψ < 1(ψ > 1), the second derivative of equation (34 ) with respect to oil,
given by αF

¡
1− αF

¢
(1− ψ) , is positive (negative) and therefore the marginal cost function

is convex (concave) with respect to oil prices. Thus, the parameter Ωmc is positive (negative),
and everything else equal, a positive (negative) inflation premium should be observed. The
case when ψ < 1 captures the fact that when oil is difficult to substitute, an increase in the oil
price triggers a more than proportional increase in marginal costs. Hence, when the marginal
cost is convex in oil prices, the volatility of shocks induce forward looking firms to charge
optimally higher prices. In Figure 2, in order to ilustrate the previous mechanism, we plot the
relation between the level of inflation premium and the parameter ψ:

25Since oil has few substitutes an appealing functional form to capture this feature is the CES production
function. This function offers flexibility in the calibration of the degree of substitution between oil and labor.
Some authors that have included oil in the analysis of RBC models and monetary policy, have omitted this
feature. For example, Kim and Loungani (1992) calibrate a production function for the U.S. that is Cobb-
Douglas between labor and a composite of capital and energy, and they found that the impact of oil in the RBC
for the U.S. economy is small given that oil has a small share on output. However, we argue that considering
an elasticity of substitution lower than one would amplify the effects they found.
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Figure 2: Level of Inflation Premium and ψ

The parameter Ωπ accounts for the convexity of the Phillips curve with respect to output.
More precisely, when this parameter is positive, inflation is convex with respect to output and
it follows that higher volatility on output, generated by oil price shocks, delivers a positive
premium in inflation. As it is shown in appendix B, a necessary condition for the convexity of
the Phillips curve on output is that∙

2− κy

µ
ε− 1
1− θ

− εχv

¶¸
+ τν > (2− τ)σ (35)

Since for benchmark calibrations
h
2− κy

³
ε−1
1−θ − εχv

´i
tends to be positive, a sufficient condi-

tion for the convexity of the Phillips curve is v−σ sufficiently large since τ < 126. Then in our
model the convexity of the Phillips curve comes from the convexity of real wages with respect
to output. Our assumption on consumption and leisure preferences imply that households tend
to value more leisure as their income increases, making their labor supply less elastic. In this
case, changes in real wages would generate lower increases in labor supply since the income
effect dominates the substitution effect generated by the change in real wages27.

The parameter ωπ captures the direct effect of volatility on future expected inflation, which
is positive for any parametrization (ωπ > 0). Finally, ωy, is negative and accounts for the
standard precautionary savings effect.

The previous four parameters interact in general equilibrium to determine the overall level
of inflation premium. The analytical solution obtained by the perturbation method implies
the following expression for the overall expected level of inflation premium

E (π) =
1

2
(bo + b2)σ

2
q

26τ = χ 1 + (1− ψ) 1−χ
1−αF

27 In an economy without oil (i.e. χ = 1 and ψ = 1), the condition for the convexity becomes:

2− κy
ε−1
1−θ − εv + v > σ

15



where

bo + b2 =
φy (b2 + ωπ) + σκy (a2 + ωy)

∆0
(36)

b2 =
£
σ
¡
1− ρ2

¢
+ φy

¤ κ (Ωπ +Ωmc)

∆2
> 0 (37)

and ∆2,∆0 > 028. If bo + b2 > 0 the model will deliver a positive premium. Notice that in
order to warranty b2 > 0 we need the phillips curve to be convex Ωπ > 0 and the elasticity of
substitution between labor an oil to be less than one, which implies that Ωmc > 0. Then, it
follows from expression (36) that in order to obtain a positive level of inflation premium the
following condition must hold:

φy (b2 + ωπ) > −σκy (a2 + ωy) (38)

where a2,and ωy < 0.
29

Furthermore, from equation (38) a necessary condition for a positive inflation premium
(Eπ > 0) is φy > 0. Hence, even so there exist several sources to generate the inflation
premium, in general equilibrium, the policy of the central bank is key to determine the way
in which uncertainty is distributed between output and inflation premiums. Notice that the
larger φy the larger the level of inflation premium. Thus a central bank that cares only about
inflation, in equilibrium, it would not generate a positive inflationary premium, instead all
the uncertainty in the economy will be observed by a negative premium in output (reduction
in output). In figure 3, we depict the relation between the level of inflation premium an the
parameter φy.

28We define

∆2 = (φπ − 1) ρ
2κ1 + 1− βρ2 σ (1− ρ)2 + φy

∆0 = (φπ − 1)κ1 + (1− β)φy

then, ∆0,∆2 > 0 to the extent that φπ > 1, which it is interpreted as an active monetary policy rule.

29The parameter a2 is the coefficient of the quadratic part of the policy function of output.

a2 = − (φπ − 1) ρ
2 κ (Ωπ +Ωmc)

1

∆2
< 0
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Figure 3: Level Inflation Premium and φy

Remarkably, the existence of these inflation and output premiums depend crucially on
the existence of a trade-off between inflation and output. When the central bank does not
face this trade-off, it is always possible to find a policy rule where the inflation premium in
inflation is zero. The previous implication steams from the fact that the second order solution
depends upon the log-linear one30. Therefore, in order to observe a positive inflation premium
a necessary condition is the existence of an endogenous trade-off for the central bank. In section
6 we show how oil price shocks generate an endogenous trade-off which can make optimal for
a central bank to have a positive inflation premium in equilibrium.

5 Some Numerical Experiments

In this section we explore the ability of the model to generate changes in the level of premium
in the main variables of the model, in particular, in inflation. We use the Schimitt-Grohe and
Uribe (2004) code which provides second order numerical solutions to a non-linear system.

5.1 Calibration

To calibrate the model we choose standard parameter values in the literature. We set a quar-
terly discount factor, β, equal to 0.99 which implies an annualized rate of interest of 4%. For
the coefficient of risk aversion parameter, σ, we choose a value of 2 and the inverse of the
elasticity of labour supply, v,is calibrated to be equal to 3, similar to those used in the RBC
literature and consistent with the micro evidence. We choose a degree of monopolistic compe-
tition, ε, equal to 7.66. which implies a firm mark-up of 15%. The elasticity of substitution
between oil and labor, ψ, is set equal to 0.59 as suggested by Kim and Loungani (1992) and

30 In a log-linear solution, when the central bank does not face a meaningful trade-off between stabilizing
inflation and output, the optimal policy implies both zero inflation and output gap.
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we set α = 0.028 so that the share of oil prices in the marginal cost is around 13%31. The
probabilities of the Calvo lotteries is set equal to 0.66 which implies that the firms adjust prices
every four quarters. To be consistent with our analytical solution we used a standard active
taylor-type rule and we set φπ = 1.5 and φy = 0.5

32. Finally, the log of real oil price follows an
AR(1) stochastic process with ρq = 0.95 and standard deviation, σε = 0.14 for the first sample
and ρq = 0.82 and standard deviation, σε = 0.12 for the second one. These processes imply
standard deviations for real oil prices of 0.57 and 0.20 in each sample, respectively.

5.2 Explaining the U.S. Level of Inflation Premium with Oil Price Shocks

To clarify, the simulations that follow are a first step at exploring whether the mechanisms we
have just emphasized have potential for explaining the level inflation-premium. We interpret oil
as the main driven force of the level of inflation premium, although we are aware that in order
to closely match the moments of other macro variables, additional shocks might be necessary.
Thus, we intend to confront the data in line with the mechanism previously described. We do
so by generating the unconditional mean of inflation implied by the calibrated model for the
pre and post Volcker periods. The only difference in the calibration between these two periods
is the assumption on the data generating process of oil. We fit an AR(1) process for oil prices
in each period and find that both the persistence and the variance of oil price shocks have
fallen from the first to the second period.

The key result is that we are able to generate a positive level of inflation premium which
allows the model to mimic the average inflation level in the US in the pre-Volcker and post
Volcker periods without relying on different monetary policy regimes across periods as it was
suggested by CGG.

In this section we evaluate how the model does at capturing the conditional mean in the
key macro variables, and in particular in inflation. In Table 2 we report the means of inflation,
output gap and nominal interest rates for the two previously defined periods

Table 2: Unconditional Moments Generated by the Benchmark Model
Pre and Volcker Post Volcker

Simulated Observed Simulated Observed
π 1.29 1.38 0.26 0.53
y −1.30 −0.36 −0.27 −0.22
R 1.28 1.91 0.26 1.34
σq 0.57 0.57 0.20 0.20

We compare the simulated benchmark economy with the observed data. The key result to
highlight, is that the model can match very closely the mean of both inflation and output for
the two sub-periods. Thus, inflation mean during the first period is 1.38% while the model
31Leduc and Sill (2004) have assumed a higher share of oil in the production function (0.34).
32 Importantly, we have used the same taylor type rule for the overall sample. Values φπ > 1 and φy > 0 are

consistent with recent estimation using bayesian methods by Rabanal and Rubio-Ramirez (2005). Although the
previous authors find out by using a shorter sample, from 1982 on, that both parameters are estimated to be
higher with respect to the overall sample.
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delivers a value of 1.29%. Similarly, for the second period we observe a mean inflation of 0.53%
and the model predicts a value of 0.26%. The model is much less successful in matching the
moments of the nominal interest rate and to a less extent of output. This might reflect the
importance of productivity and demand shocks to account for the dynamics of these other
variables.

To check the robustness of our results we calculate the moments under two extensions.
First, we consider real rigidities in the line of BG (2005)33 to account for a smooth adjustment
of marginal costs. Second, we introduce demand shocks. The results are reported in the table
3, and show that our conclusions do not change much even when these additional features are
taken into account.

Table 3: Unconditional Moments Generated by Alternative Models
Pre and Volcker Post Volcker

Real rigidities Demand shocks Real rigidities Demand shocks
π 1.29 1.27 0.26 0.24
y −1.34 −1.34 −0.29 −0.28
R 1.32 1.23 0.26 0.22

Finally, we used a simple counterfactual exercise in order to factor the effect of the level
of inflation premium. We use the policy functions derived in the previous section for inflation
to simulate the inflation paths by fitting the historical sequence of oil price shocks into the
previously discussed policy functions. The sequence of oil prices is obtained as the residuals of
an AR(1) model for the period 1970q1 to 2000q434:

qt = 0.96
(39.0)

qt−1 + 0.13 t (39)

The simulate series of inflation using the second and first order approximated solutions and the
actual inflation series are plotted in figure 4. All series are expressed in annual rates. As it can
be notice, the second order solution of the model can track pretty well the historical evolution
of inflation. In particular, it can account for the sharp increase in inflation during the 70s
and the persistent high inflation levels observed afterwards. The picture also explains why a
linear approximated solution of the model might lead to conclude that oil price shocks can not
explain the observed pattern in inflation during the 70s. The linear solution by eliminating
any inflation premium component constantly underpredicts the mean level of inflation.

33We introduce real rigidities letting real wages to depend partially on the previous level of real wages as

follows: Wt
Pt

=
Wt−1
Pt−1

γ

MRS1−γt . See Felices (2005) and Rabanal (2004) for two different forms of micro-

formalizations of real wage rigidities. We set γ = 0.5 for the simulations.

34We are aware that there are some non-linearities in oil prices, but in order to keep simple the analysis we
have omitted any non-linear behavior in the data generating process of oil prices.
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Figure 4: Simulated Inflation Paths for the US

Moreover, it is striking how the model can not only account for the behavior of inflation
during the 70s, but also during second half of the 80s and the 90s, specially if we consider that
our model uses only oil shocks to simulate the series. Thus, the impact of oil prices shocks
does not depend on the change in the feedback monetary policy rules as it is suggested by
CGG. Our results show that in the context of our model a supply shock can indeed induce
higher levels of inflations under both periods. Therefore, contrary with CGG findings, the
accommodative or passive reaction of the monetary policy must not be considered as a critical
factor in the 1970´s period.

The only period where the simulated path of inflation and the observed one differs from
each other is during the Volcker administration. During this period it seems more likely that
negative monetary policy shocks were also in place in addition to the oil price shocks. Thus,
our findings suggest that in order to match the data during the Volcker period, it is required
a strong negative demand shock to compensate the high expected levels of inflation generated
by oil price shocks.

The main argument of CGG to disqualify high oil prices as an explanation for persistent
high levels of inflation during the 70s was that oil price shocks are only capable of producing
one time increase on the price level but not persistent higher inflation levels. However, this
intuition is only true in a world where uncertainty does not matter. Theoretically, as the
previous section shows, when uncertainty is high and the model exhibits no linearities, a first
order approximation to the rational expectations solution is very inaccurate since it omits the
effects of inflation premium in the equilibrium dynamics. Inflation premium emerges in general
equilibrium usually from the concavity of both the utility and the production functions. As
we have shown in the section 3, with a CES production function, expected marginal costs are
increasing on the volatility of wages and oil prices since the marginal cost is a convex function
of both wages and oil prices. Higher expected marginal costs induce firms to set higher prices
in a world where firms are forward looking.
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In order to check the robustness of our results for our assumption of the monetary policy
reaction function, we simulate the path of the short term interest rate using the same model
and sequence of oil price shocks used previously. We want to show that our result does not
depend critically on this assumption. In contrast with CGG and others who consider policy
reaction functions that generate indeterminacy of the equilibrium for the pre-volcker period,
instead we assume an active policy rule that guarantees determinacy. Moreover, our implied
policy function is able to generate a sequence of nominal interest rates that match closely
the observed one during the 70s. For the rest of the sample, the simulated interest rate
systematically underpredicts the observed one. This might reflect the fact that in order to
match the nominal interest rate additional sources of shocks are needed.

70Q1 75Q1 80Q1 85Q1 90Q1 95Q1 00Q1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Quadratic
Linear
observed

Figure 5: Simulated Nominal Interest Rate for US

As the previous pictures show the simulated inflation and interest rate paths follows closely
the observed ones for the USA. In table 4 we provide further evidence of the ability of the model
to capture de properties of the data showing that the means of the simulated series for inflation,
output gap and interest rate matches closely their analogs for US data.

Table 5: Conditional Moments Generated by the Benchmark Model
Pre and Volcker Post Volcker

Simulate Observed Simulated Observed
π 1.34 1.38 0.67 0.53
y −0.85 −0.36 −0.44 −0.22
R 1.33 1.9 0.651 1.3
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6 Oil prices and Endogenous Trade-off

As BG (2005) pointed out the lack of meaningful trade-off between stabilization of inflation
and the output gap is one of the drawbacks of standard New Keynesian models. Thus, the
problem faced by the central bank becomes trivial, since full inflation stabilization becomes
optimal regardless its cost in terms of output gap losses. This implication, denominated as
the "divine coincidence" by BG, implies as well that no inflationary and output premiums are
present35.

Fortunately, in contrast to a standard NK models and BG (2005) specification, our bench-
mark model exhibits an endogenous trade-off generated by oil price shocks without relying
on real rigidities. As it is shown in the appendix C, our economy can be written in terms of
inflation and deviation of output with respect to its efficient level as follows:

xt = Etxt+1 −
1

σ

¡
it −Etπt+1 − rEt

¢
(40)

πt = βEtπt+1 + κyxt + µt (41)

where

µt =
κq
κy

µ
1

(1− αE)αF

¶¡
αF − αE

¢
qt

xt = yt − yEt and yEt corresponds to the log deviations of the efficient level of output. The
parameters αE and αF account for the share of oil prices on the marginal cost under the
efficient and flexible price levels of output, respectively,

αE = αψ (Q)1−ψ (42)

αF = αψ (Qµ)1−ψ (43)

In our model the endogenous trade off emerges from the combination of a distorted steady
state and a CES production function. When the elasticity of substitution between oil and
labor is equal to one,ψ = 1, the Coob-Douglas case as in BG, the trade off disappears, hence
the flexible and efficient level of output only differ by a constant term, which in turn implies
that αE = αF . In addition, when monopolistic competition distortion is eliminated, using
a proportional subsidy tax, as in Woodford (2003), the trade-off is inhibited, since again
αE = αF 36.

The trade-off in variances in turns will deliver a trade-off in means. Therefore, in our
model the central bank also faces the dilemma of reducing the mean of inflation at the cost of
reducing the average growth rate of the economy. As we have discussed previously, the policy
rule of the central bank allows to split out the costs of high inflation and output premiums.

35Remember that the second order solution of the model depends upon the first order solution.
36Benigno and Woodford (2005) in a similar model but without oil price shocks have also found an endogenous

trade-off by combining a distorted steady state with a government expenditure shock. In their framework, is the
combination of a distorted steady state along with a non-linear aggregate budget constraint due to government
expenditure. What is crucial to generate the endogenous trade-off. Similarly in our paper, is the combination of
the distorted steady state and the non-linearity of the CES production function what delivers the endogenous
trade-off.
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The existence of this endogenous trade off implies that is optimal for the central bank to allow
higher levels of inflation in response to supply shocks. Thus our results imply that the inflation
behavior during the 70s no only might reflect a perfectly consistent monetary policy but an
optimal one.

Furthermore, this trade-off depends, among other things, on the steady state level of oil
prices, Q, and on the elasticity of substitution between oil and labor, ψ. As equations (42)
and (43) show, the trade-off is increasing (decreasing) on ψ, when ψ < 1 (ψ > 1)

αF − αE = αψ
³
Q
1−ψ ³

µ1−ψ − 1
´´

(44)

This results is particularly interesting since we can argue that during the 70s it was observed
a permanent increase in the mean value of oil prices, which it might explain why the FED
allowed unusual high levels of inflation.

We can then use our setup to show this latter point more formally. Let´s consider the
following lost function as the objective to the central bank, as in Clarida, Gali and Gertler
(1999),37

W = −1
2
E0

" ∞X
t=0

βt
¡

x2t + π2t
¢#

(45)

and the Phillips curve defined in terms of efficient output gap (equation (41)). As CGG (1999)
shows, the optimal policy under discretion implies a "lean against the wind" type of policy:

xt = −
κy

πt (46)

This type of policy implies a trade off between inflation and output gap since the variance of
output gap and inflation are proportional

var(xt) =
³κy ´2

var(πt) (47)

This trade-off allows to generate a policy frontier for the central bank that plots the optimal
levels of the standard deviation of output and inflation for different values of the preference
parameter . Notice that since κy depends on the elasticity of substitution of oil and labor,
ψ, the policy frontier changes as this parameter changes. In particular, when the ψ is smaller,
this is when oil and labor are very poor substitutes, the trade-off that the central bank faces
deteriorates. For each percentage point of inflation the central bank has to increase by more
the standard deviation of output.

37For a microfounded welfare function with oil prices and CES production function see Montoro (2005). For
this paper we consider as preferences parameter that do not depend on the structural parameters of the
model.
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Figure 6: Policy Frontier and oil price elasticity of Substitution
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7 Conclusions

Traditionally New Keynesian log-linear models have been used to match second order moments.
However, they have the limitation that their solution implies certainty equivalence neglecting
any role of uncertainty and volatility over the level of inflation. To the extent that uncertainty
is important in real economies, a second order solution of the New Keynesian model is required
to improve their fit of the data. In particular, this type of solution provides a link between
volatility of shocks and the average values of endogenous variables offering a non-conventional
way to analyze business cycles. In this paper we have taken this approach and show how the
interaction between volatility and the convexity of both the marginal costs and the phillips
curve improves the ability of a standard New keynesian model to explain the history of inflation
in the USA.

The second order solution allow us to provide an additional element to the explanation
suggested by CGG for the high inflation episode during the 70s. Our explanation puts at the
center of the discussion the volatility of supply shocks, in particular oil price shocks. Contrary
to what a linear solution implies, a second order solution establishes the link between volatility
of oil prices and expected inflation what we called inflation premium. In the paper we show
that a calibrated version of our model can match very closely the inflation behavior observed
in the USA during both the pre-Volcker and post-Volcker periods. In particular we show
that the high volatility of oil price shocks during the 70s implied an endogenous high level of
inflation premium that can account for the high average inflation levels observed in US during
that period . The analytical solution obtained by implementing the perturbation method
shows that the existence of this inflation premium depends crucially on, first, the convexity of
both the marginal costs and the Phillips curve and second, on the response of the monetary
authority. The reaction of the central bank determines in equilibrium how higher volatility
generated by oil price shocks is distributed between a higher average inflation and lower growth
rate. Moreover, in order to observe a positive inflation premium it is required that the central
bank partially reacts to supply shocks.

In addition, a standard result of the New Keynesian models is that they can not generate
an endogenous trade-off for monetary policy, therefore in those models zero inflation and zero
output gap is the optimal response of the Central Bank, consequently zero inflation premium
becomes optimal. In this paper, we show that this result, denominated by Blanchard and Gali
as the "Divine Coincidence" holds only under rather special assumptions: when the steady state
coincides with the efficient one (there is no a distorted steady state) or when the production
function has an elasticity of substitution equal to 1. Instead, we show that for the general
case, allowing for a distorted along with a CES production function, oil price shocks are able
to generate an endogenous cost push shock making the central bank problem a meaningful
one.

This endogenous cost push shock generates a trade-off in means for the central bank. In this
case the central bank can not reduce the average level of inflation without sacrificing output
growth. We show that the optimal policy implies to partially accommodate oil price shocks
and to let, on average, a higher level of inflation. Furthermore, this trade-off depends crucially
on the share of oil in the production function, on the elasticity of substitution between oil
and labor and on the average oil prices. Thus our results imply that the inflation behavior in
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the U.S. during the 70s not only might reflect a perfectly consistent monetary policy but an
optimal one.

Our results can be extended in many directions. First, it will be worth to explore the
effect of openness in inflation premium. Second, the analytical perturbation method strategy
proposed in the paper can be used to capture the effects of change in a monetary policy regime
over inflation. Finally, it will be worth also to explore the implications of other source of shocks
in the determination in the level of inflation premium.
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A Equations of the Model

A.1 The system of equations

Using the the market clearing conditions that close the model, the dynamic equilibrium of the
model described in section 2 is given by the following set of 8 equations:

θ (Πt)
ε−1 = 1− (1− θ)

µ
Nt

Dt

¶1−ε
(48)

Nt = µY 1−σt MCt + θβEt [(Πt+1)
εNt+1] (49)

Dt = Y 1−σt + θβEt

h
(Πt+1)

ε−1Dt+1

i
(50)

1 = βEt

"µ
Yt+1
Yt

¶−σ Rt

Πt+1

#
(51)

Rt = R

µ
EtΠt+1

Π

¶φπ
µ
Yt

Y

¶φy

(52)

MCt =
h
(1− α)ψ (Wt/Pt)

1−ψ + αψ (Qt)
1−ψ

i 1
1−ψ

(53)

Wt

Pt
= Y σ

t L
v
t (54)

Lt =

µ
1

1− α

Wt/Pt
MCt

¶−ψ
Yt (55)

The first three equations represent the Phillips curve, which has been written recursively using
the auxiliary variables Nt and Dt. The aggregate demand block is represented by the IS and
the taylor rule. the last three equations describe the labor market equilibrium. We use this set
of eight non-linear equations to obtaint numerically the second order solution of the model.

A.2 The deterministic steady state

The non-stochastic steady state of the endogenous variables is given by:

Inflation Π = 1
Auxiliary variables N = D = Y / (1− θβ)
Interest rate R = β−1

Marginal costs MC = 1/µ

Real wages W/P = τy
1
µ

¡
1− αF

¢ 1
1−ψ

Output Y = τy

³
1
µ

´ 1
σ+ν ¡

1− αF
¢ 1+ψν

σ+ν
1

1−ψ

Labor L = τ l

³
1
µ

´ 1
σ+ν ¡

1− αF
¢ 1−σψ

σ+ν
1

1−ψ
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where

αF = αψ
µ

Q

MC

¶1−ψ
= αψ

¡
µQ
¢1−ψ

αF is the share of oil in the marginal costs, τw and τy and τ l are constants38. Notice that
the steady state values of real wages, output and labor depend on the steady state ratio
of oil prices with respect to the marginal cost. This implies that permanent changes in oil
prices would generate changes in the steady state of this variables. Also, as the standard
new-keynesian models, the marginal cost in steady state is equal to the inverse of the mark-
up (MC = 1/µ = (ε− 1) /ε). Since monopolistic competition affects the steady state of the
model, ouput in steady state is below the efficient level (i.e. when MC = 1). We call to this
feature a distorted steady state.

A.3 The flexible price equilibrium

The flexible price equilibrium of the endogenous variables is consistent with zero inflation in
every period (i.e. .ΠFt = 1). In this case marginal costs are constant, equal to its steady state
value, and the other variables are affected by the oil shock.

Inflation ΠFt = 1

Interest rate 1/RF
t = Et

µ
1−αF (Qt+1/Q)

1−ψ

1−αF (Qt/Q)
1−ψ

¶−σγ
Marginal costs MCF

t = 1/µ

Real wages WF
t /PF

t = τy
1
µ

³
1− αF

¡
Qt/Q

¢1−ψ´ 1
1−ψ

Output Y F
t = τy

³
1
µ

´ 1
σ+ν

³
1− αF

¡
Qt/Q

¢1−ψ´ 1+ψνσ+ν
1

1−ψ

Labor LF
t = τ l

³
1
µ

´ 1
σ+ν

³
1− αF

¡
Qt/Q

¢1−ψ´ 1−σψσ+ν
1

1−ψ

Notice that the flexible price equilibrium is not efficient, since there are distortions from mo-
nopolistic competition in the intermediate goods market (i.e. MCF

t > 1).

38More precisely:

τw =
1

1−α

ψ
1−ψ

τy =
1

1−α

ψ
1−ψ

1+v
σ+v

τ l =
1

1−α

ψ
1−ψ

1−σ
σ+v
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A.4 The efficient price equilibrium

The efficient price equilibrium of the endogenous variables is consistent with zero inflation in
every period and the monopolistic distortions are eliminated, that is MCE

t = 1.

Inflation ΠEt = 1

Interest rate 1/RE
t = Et

µ
1−αE(Qt+1/Q)

1−ψ

1−αE(Qt/Q)
1−ψ

¶−σγ
Marginal costs MCE

t = 1

Real wages WE
t /PE

t = τy

³
1− αE

¡
Qt/Q

¢1−ψ´ 1
1−ψ

Output Y E
t = τy

³
1− αE

¡
Qt/Q

¢1−ψ´ 1+ψνσ+ν
1

1−ψ

Labor LE
t = τ l

³
1− αE

¡
Qt/Q

¢1−ψ´ 1−σψσ+ν
1

1−ψ

Where: αE = αψ
¡
Q
¢1−ψ

< αF is the share of oil in the marginal costs when the monopolistic
distortions are eliminated. Notice that the efficient equilibrium of wages, output and labor
differs from the flexible price equilibrium only through αE .

A.5 The linear system

The model economy up to a linear approximation is represented by the following system of six
equations:

πt = βEtπt+1 + κmct +O
³
kqt, σqk2

´
(56)

yt = Etyt+1 −
1

σ
(it −Etπt+1) +O

³
kqt, σqk2

´
(57)

it = φππt + φyyt +O
³
kqt, σqk2

´
(58)

mct = wt + αF (qt − wt) +O
³
kqt, σqk2

´
(59)

wt = σyt + vlt +O
³
kqt, σqk2

´
(60)

lt = yt + ψ (mct −wt) +O
³
kqt, σqk2

´
(61)

Equation(56) is the Phillips curve, the aggregate demand is represented by the IS (57) and the
taylor rule (58), and the last three equations describe the labor market equilibrium.
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B The second order approximation of the system

B.1 The AS equation

The Phillips curve with oil prices is given by the following three equations:

θ (Πt)
ε−1 = 1− (1− θ)

µ
Nt

Dt

¶1−ε
(62)

Nt = µY 1−σt MCt + θβEt (Πt+1)
εNt+1 (63)

Dt = Y 1−σt + θβEt (Πt+1)
ε−1Dt+1 (64)

B.1.1 The first order approximation of the Phillips Curve

The linear expansions of equations (62), (63) and (64):

πt =
(1− θ)

θ
(nt − dt) +O

³
kqt, σqk2

´
(65)

nt = (1− θβ) ((1− σ) yt + rmct) + θβEt (επt+1 + nt+1) +O
³
kqt, σqk2

´
(66)

dt = (1− θβ) ((1− σ) yt) + θβEt ((ε− 1)πt+1 + dt+1) +O
³
kqt, σqk2

´
(67)

To obtain the standard New-Keynesian Phillips Curve we need to solve for nt−dt as a function
of the real marginal costs and expected inflation. We substract equations (66) and (67):

nt − dt = (1− θβ)mct + θβEt (πt+1 + nt+1 − dt+1) +O
³
kqt, σqk2

´
(68)

Taking forward one period equation (65), we can solve for nt+1 − dt+1:

(nt+1 − dt+1) =
θ

1− θ
πt+1 +O

³
kqt, σqk2

´
(69)

Replace equation (69) in (68) and we obtain nt − dt as a function of the real marginal costs
and expected inflation:

nt − dt = (1− θβ)mct +
θ

1− θ
βEtπt+1 +O

³
kqt, σqk2

´
(70)

Replacing equation (70)in (62), we obtain:

πt = κrmct + βEt (πt+1) +O
³
kqt, σqk2

´
(71)

where κ = (1−θ)
θ (1− θβ) . This is the standard Phillips curve, inflation depends linearly on the

real marginal costs and expected inflation.
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B.1.2 The second order approximation of the Phillips Curve

Similarly to the previous subsection, we follow same steps as Benigno and Woodford (2005) to
obtain the second order expansion for equations (62), (63) and (64):

πt =
(1− θ)

θ
(nt − dt)−

1

2

(ε− 1)
1− θ

(πt)
2 +O

³
kqt, σqk3

´
(72)

nt = (1− θβ)

µ
at +

1

2
a2t

¶
+ θβ

µ
Etbt+1 +

1

2
Etb

2
t+1

¶
− 1
2
n2t +O

³
kqt, σqk3

´
(73)

dt = (1− θβ)

µ
ct +

1

2
c2t

¶
+ θβ

µ
Etet+1 +

1

2
Ete

2
t+1

¶
− 1
2
d2t +O

³
kqt, σqk3

´
(74a)

Where we have defined the auxiliary variables at,bt+1,ct and et+1 as:

at = (1− σ) yt +mct bt+1 = επt+1 + nt+1
ct = (1− σ) yt et+1 = (ε− 1)πt+1 + dt+1

Substract equations (73) and (74a), and using the fact that X2 − Y 2 = (X − Y ) (X + Y ), for
any two variables X and Y :

nt − dt = (1− θβ) (at − ct) +
1

2
(1− θβ) (at − ct) (at + ct) (75)

+θβEt (bt+1 − et+1) +
1

2
θβEt (bt+1 − et+1) (bt+1 + et+1)

−1
2
(nt − dt) (nt + dt) +O

³
kqt, σqk3

´
Plugging in the values of at, bt+1, ct and et+1 into equation (75), we obtain (89)

nt − dt = (1− θβ)mct +
1

2
(1− θβ)mct (2 (1− σ) yt +mct) (76)

+θβEt (πt+1 + nt+1 − dt+1) +
1

2
θβEt (πt+1 + nt+1 − dt+1) ((2ε− 1)πt+1 + nt+1 + dt+1)

−1
2
(nt − dt) (nt + dt) +O

³
kqt, σqk3

´
Taking forward one period equation (72), we can solve for nt+1 − dt+1:

nt+1 − dt+1 =
θ

1− θ
πt+1 +

1

2

θ

1− θ

(ε− 1)
1− θ

(πt+1)
2 +O

³
kqt, σqk3

´
(77)

replace equation (77) in (76) and make use of the auxiliary variable nt + dt = (1− θβ) zt

nt − dt = (1− θβ)mct +
1

2
(1− θβ)mct (2 (1− σ) yt +mct) (78)

+
θ

1− θ
β

∙
Etπt+1 +

µ
ε− 1
1− θ

+ ε

¶
Etπ

2
t+1 + (1− θβ)Etπt+1zt+1

¸
−1
2

θ

1− θ
(1− θβ)πtzt +O

³
kqt, σqk3

´
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Notice that we use only the linear part of equation (77) when we replace nt+1 − dt+1 in
the quadratic terms. Similarly, we make use of the linear part of equation (72) to replace
(nt − dt) =

θ
1−θπt in the right hand side of equation (78).

Replace equation (78) in (72):

πt = κmct +
1

2
κmct (2 (1− σ) yt +mct) (79)

+
θ

1− θ
β

∙
Etπt+1 +

µ
ε− 1
1− θ

+ ε

¶
Etπ

2
t+1 + (1− θβ)Etπt+1zt+1

¸
−1
2
(1− θβ)πtzt −

1

2

(ε− 1)
1− θ

(πt)
2 +O

³
kqt, σqk3

´
for κ = (1−θ)

θ (1− θβ) as defined previously.
Define the following auxiliary variable:

vt = πt +
1

2

µ
ε− 1
1− θ

+ ε

¶
π2t +

1

2
(1− θβ)πtzt (80)

where zt = (nt + dt) / (1− θβ) has the following linear expansion:

zt = 2 (1− σ) yt +mct + θβEt

µ
2ε− 1
1− θβ

πt+1 + zt+1

¶
+O

³
kqt, σqk2

´
(81)

Using the definition for vt, equation (79)can be expressed as:

vt = κmct +
1

2
κmct (2 (1− σ) yt +mct) +

1

2
επ2t + βEtvt+1 +O

³
kqt, σqk2

´
(82)

which is equation (29) in the main text.

B.2 The MC equation and the labor market equilibrium

The real marginal cost and the labor market is given by the following non-linear equations:

MCt =
h
(1− α)ψ (Wt/Pt)

1−ψ + αψ (Qt)
1−ψ

i 1
1−ψ

(83)

Wt

Pt
= Y σ

t L
v
t (84)

Lt =

µ
1

1− α

Wt/Pt
MCt

¶−ψ
Yt (85)

Which have the following second order expansion:

mct =
¡
1− αF

¢
wt + αF qt +

1

2
αF
¡
1− αF

¢
(1− ψ) (wt − qt)

2 +O
³
kqt, σqk3

´
(86)

wt = νlt + σyt (87)
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lt = yt − ψ (wt −mct) + b∆t (88)

Where wt and b∆t are, respectively, the log of the deviation of the real wage and the price
dispersion measure from their respective steady state. Notice that equations (87)and (88) are
not approximations, but exact expresions.

Solving equations (87) and (88) for the equilibrium real wage:

wt =
1

1 + νψ

h
(ν + σ) yt + νψmct + v b∆t

i
(89)

Plugging the real wage in equation (86) and simplifying:

mct = χ (σ + v) yt + (1− χ) (qt) + χv b∆t (90)

+
1

2

1− ψ

1− αF
χ2 (1− χ) [(σ + v) yt − qt]

2 +O
³
kqt, σqk3

´
where χ =

¡
1− αF

¢
/
¡
1 + vψαF

¢
.This is the equation (31) in the main text. This expression

is the second order expansion of the real marginal cost as a function of output and the oil
prices.

B.3 The price dispersion measure

The price dispersion measure is given by

∆t =

Z 1

0

µ
Pt (z)

Pt

¶−ε
dz (91)

Since a proportion 1− θ of intermediate firms set prices optimally, whereas the other θ set the
price last period, this price dispersion measure can be written as:

∆t = (1− θ)

µ
P ∗t (z)

Pt

¶−ε
+ θ

Z 1

0

µ
Pt−1 (z)

Pt

¶−ε
dz (92)

Dividing and multiplying by (Pt−1)
−ε the last term of the RHS:

∆t = (1− θ)

µ
P ∗t (z)

Pt

¶−ε
+ θ

Z 1

0

µ
Pt−1 (z)

Pt−1

¶−εµPt−1
Pt

¶−ε
dz (93)

Since P ∗t (z) /Pt = Nt/Dt and Pt/Pt−1 = Πt, using equation (8) in the text and the definition
for the dispersion measure lagged on period, this can be expressed as

∆t = (1− θ)

Ã
1− θ (Πt)

ε−1

1− θ

!ε/(ε−1)

+ θ∆t−1 (Πt)
ε (94)

Which is a recursive representation of ∆t as a function of ∆t−1 and Πt.
We can show that a second order approximation of the price dispersion depends solely on

second order terms on inflation. Take the second order taylor expansion to equation (91):

b∆t = −ε
Z 1

0
(pt (z)− pt) dz +

1

2
ε2
Z 1

0
(pt (z)− pt)

2 dz +O
³
kqt, σqk3

´
(95)
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similarly, take the second order taylor expansion to the definition of the price index, equation
(8) :

0 = (1− ε)

Z 1

0
(pt (z)− pt) dz +

1

2
(1− ε)2

Z 1

0
(pt (z)− pt)

2 dz +O
³
kqt, σqk3

´
(96)

Use equation (96) to eliminate the linear term in equation (95):

b∆t =
1

2
ε

Z 1

0
(pt (z)− pt)

2 dz +O
³
kqt, σqk3

´
(97)

From this expression we can see that the price dispersion measure is function only of second
order terms. Using the fact that a proportion 1− θ of individuals set prices optimally whereas
the other θ set the price last period, equation (97) can be expressed as:

b∆t =
1

2
(1− θ) ε (p∗t − pt)

2 +
1

2
θε

Z 1

0
(pt−1 (z)− pt)

2 dz +O
³
kqt, σqk3

´
(98)

The the first term of the RHS of equation (98) is:

1

2
(1− θ) ε (p∗t − pt)

2 =
1

2
ε

θ2

1− θ
(πt)

2 +O
³
kqt, σqk3

´
(99)

Where we have used the linear expansion of equation (17) in the text. Similarly, the second
term of the RHS of equation (98):

1

2
θε

Z 1

0
(pt−1 (z)− pt)

2 dz =
1

2
θε

Z 1

0
[(pt−1 (z)− pt−1) + (pt−1 − pt)]

2 dz (100)

= θb∆t−1 +
1

2
εθπ2t +O

³
kqt, σqk3

´
(101)

where we have made use of the equation (97) lagged one period for the definition of b∆t−1,
the linear expansion of equations (17) and (8). Considering both terms, we obtain the second
order approximation of ∆t is:b∆t = θb∆t−1 +

1

2
ε

θ

1− θ
π2t +O

³
kqt, σqk3

´
(102)

Moreover, we can use equation (102) to write the infinite sum:
∞X
t=to

βt−to b∆t = θ
∞X
t=to

βt−to b∆t−1 +
1

2
ε

θ

1− θ

∞X
t=to

βt−to
π2t
2
+O

³
kqt, σqk3

´
(103)

(1− βθ)
∞X
t=to

βt−to b∆t = θb∆to−1 +
1

2
ε

θ

1− θ

∞X
t=to

βt−to
π2t
2
+O

³
kqt, σqk3

´
Dividing by (1− βθ) and using the definition of κ :

∞X
t=to

βt−to b∆t =
θ

1− βθ
b∆to−1 +

1

2

ε

κ

∞X
t=to

βt−to
π2t
2
+O

³
kqt, σqk3

´
(104)

The discounted infinite sum of b∆t is equal to the sum of two terms, on the initial price dispersion
and the discounted infinite sum of π2t .
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B.4 The IS and the taylor rule

The non-linear equations for the IS and the taylor rule:

1 = βEt

"µ
Yt+1
Yt

¶−σ Rt

Πt+1

#
(105)

Rt = R

µ
EtΠt+1

Π

¶φπ
µ
Yt

Y

¶φy

(106)

which have the following a second order expansion:

yt = Etyt+1 −
1

σ
(rt −Etπt+1)−

1

2
σEt

∙
(yt − yt+1)−

1

σ
(rt − πt+1)

¸2
+
³
kqt, σqk3

´
(107)

rt = φπEtπt+1 + φyyt (108)

Replacing the linear solution of yt inside the quadratic part of equation (108):

yt = Etyt+1 −
1

σ
(rt −Etπt+1)−

1

2
σEt

∙
yt+1 +

1

σ
πt+1 −Et

µ
yt+1 +

1

σ
πt+1

¶¸2
+
³
kqt, σqk3

´
(109)

Where Et

£
yt+1 +

1
σπt+1 −Et

¡
yt+1 +

1
σπt+1

¢¤2
is the variance of yt+1 + 1

σπt+1.

B.5 The system in two equations

B.5.1 The AS

Replace the equation for the marginal costs (90) in the second order expansion of the Phillips
curve (109)

vt = κyyt + κqqt + κχv b∆t +
1

2
επ2t + (110)

+
1

2
κ
£
cyyy

2
t + 2cyqytqt + cqqq

2
t

¤
+ βEtvt+1 +

³
kqt, σqk3

´
where we have used the auxiliary variables: vt = πt +

1
2

³
ε−1
1−θ + ε

´
π2t +

1
2 (1− θβ)πtzt

The linear coefficients are given by

κy = κχ (σ + ν)

κq = κ (1− χ)

and the quadratic part is given by the coefficientes:

cyy = cπyy + cmc
yy

cyq = cπyq + cmc
yq

cqq = cπqq + cmc
qq
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We have separated the coefficientes from the source of the non-linearity, from the price setting
(π) or the marginal costs (mc), which are the following:

cπyy = χ (σ + ν) [2 (1− σ) + χ (σ + ν)] cmc
yy = (1− ψ) χ

2(1−χ)(σ+ν)2
1−αF

cπyq = (1− χ) [2 (1− σ) + χ (σ + ν)] cmc
yq = − (1− ψ) χ

2(1−χ)(σ+ν)
1−αF

cπqq = (1− χ)2 cmc
qq = (1− ψ) χ

2(1−χ)
1−αF

Equation (110) is a recursive second order representation of the Phillips curve. However, we
need to express the price dispersion in terms of inflation in order to have a the Phillips curve
only as a function of output, inflation and the oil price shock. Equation (110) can also be
expressed as the discounted infinite sum:

vt =
∞X
t=to

βt−to
½
κyyt + κqqt + κχv b∆t +

1

2
επ2t +

1

2
κ
£
cyyy

2
t + 2cyqytqt + cqqq

2
t

¤¾
+
³
kqt, σqk3

´
make use of equation (104), the discounted infinite sum of b∆t, vt becomes

vt =
∞X
t=to

βt−to
½
κyyt + κqqt +

1

2
ε (1 + χv)π2t +

1

2
κ
£
cyyy

2
t + 2cyqytqt + cqqq

2
t

¤¾
+

χvθ

1− βθ
b∆to−1+

³
kqt, σqk3

´
Which can be expressed in the following recursive way:

vt = κyyt + κqqt +
1

2
ε (1 + χv)π2t +

χvθ

1− βθ
b∆to−1 (111)

+
1

2
κ
£
cyyy

2
t + 2cyqytqt + cqqq

2
t

¤
+ βEtvt+1 +

³
kqt, σqk3

´
This is the second order expression of the Phillips curve as a function solely of ouput, inflation
and the initial price distortion, which without any loss of the generality it can be assumed
equal to zero for the analysis (i.e. b∆to−1 = 0).

Convexity of the AS The convexity/concavity of πt with respect to yt in equation (110)
is measured by the partial derivative ∂2πt/∂y2t :

∂2πt
∂y2t

=
κcyy −

³
ε−1
1−θ − εχv

´
(∂πt/∂yt)

2

1 +
³
ε−1
1−θ − εχv

´
πt

(112)

=
κcyy −

³
ε−1
1−θ − εχv

´
[κχ (σ + ν)]2

1 +
³
ε−1
1−θ − εχv

´
πt

Therefore, the AS equation is convex (concave) with respect to output if ∂2πt
∂y2t

> (<) 0.

Since the denominator is positive, the covexity condition is:

κχ (σ + ν)

∙
2 (1− σ) + χ (σ + ν)

µ
1 + (1− ψ)

1− χ

1− αF

¶¸
>

µ
ε− 1
1− θ

− εχv

¶
[κχ (σ + ν)]2

(113)
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This condition can be written such us:∙
2− κy

µ
ε− 1
1− θ

− εχv

¶¸
+ τν > (2− τ)σ (114)

where: τ = χ
³
1 + (1− ψ) 1−χ

1−αF
´
and κy = κχ (σ + ν) is the slope of the Phillips curve with

respect to output. In the case of a closed economy without oil in the production function (i.e.
χ = 1 and ψ = 1), this condition becomes:∙

2− κy

µ
ε− 1
1− θ

− εv

¶¸
+ v > σ (115)

Since for most calibrations 2− κy

³
ε−1
1−θ − εv

´
tend to be positive. A sufficient condition (but

not necessary) for convexity of the Phillips curve in the case without oil is that: v > σ.

The AS premium components Equation (110) can be written in the following form:

πt = κyyt + κqqt + βEtπt+1 +
1

2
ωπσ

2
q +

1

2
κ (Ωπ +Ωmc) q

2
t +O

³
kqt, σqk3

´
(116)

where we can express the quadratic terms as:

ωπσ
2
q + κΩπq

2
t = κ

£
cπyyy

2
t + 2c

π
yqytqt + cπqqq

2
t

¤
+ ε (1 + χv)π2t (117)

+

µ
ε− 1
1− θ

+ ε

¶¡
βEtπ

2
t+1 − π2t

¢
+ (1− θβ) (βEtπt+1zt+1 − πtzt)

and
Ωmcq

2
t = cmc

yy y
2
t + 2c

mc
yq ytqt + cmc

qq q
2
t (118)

Equation (117) and (118) describe the inflation premium components coming from the price
setting and the non-linear marginal costs, respectively. In equation (117) we have separated the
components in those coming from the variance of the oil price (ωπ) and from those comming
from the level (Ωπ). The inflation premium component from the marginal costs is affected only
for the level, but not for the variance of the shocks.

In order to solve for ωπ,Ωπ and Ωmc we can use the linear solution for output, inflation
and the auxiliary variable zt39

yt = a1qt +O
³
kqt, σqk2

´
πt = b1qt +O

³
kqt, σqk2

´
zt = c1qt +O

³
kqt, σqk2

´
Additionally, we have the transition process for the oil price:

39From the linear expansion of the definition of zt we can solve for c1, where c1 =
1

1−θβρ [2 (1− σ) + χ (σ + v)] a1 + (1− χ) + θβ 2ε−1
1−θβ ρb1
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qt = ρqt−1 + ησqet

where e˜iid (0, 1) andη =
p
1− ρ2

Using the undetermined coefficients method, we can solve for the inflation premium com-
ponents:

ωπ = β

∙µ
ε− 1
1− θ

+ ε

¶
b21 + (1− θβ) b1c1

¸
= βb21 > 0 (119)

Ωπ =
£
cπyya

2
1 + 2c

π
yqa1 + cπqq

¤
+

ε (1 + χv)

κ
b21 −

µ
1− βρ2

κ

¶ ∙µ
ε− 1
1− θ

+ ε

¶
b21 + (1− θβ) b1c1

¸
≷ 0

Ωmc = cmc
yy a

2
1 + 2c

mc
yq a1 + cmc

qq = (1− ψ)
χ2 (1− χ)

1− αF
[(σ + ν) a1 − q]2 > 0

From simple observation of the coefficients, we can see that ωπ is positive and Ωmc is positive
when the elasticity of substitution between factors is lower than one (i.e. ψ < 1), whereas Ωπ
can be either positive or negative.

B.5.2 The aggregate demand

Replace the policy rule (108) in the second order expansion of the IS (109). :

yt = Etyt+1 −
1

σ

£
(φπ − 1)Etπt+1 + φyyt

¤
(120)

−1
2
σEt

∙
yt+1 +

1

σ
πt+1 −Et

µ
yt+1 +

1

σ
πt+1

¶¸2
+O

³
kqt, σqk3

´
This can be expressed as:

yt = Et (yt+1)−
1

σ

£
(φπ − 1)Etπt+1 + φyyt

¤
+
1

2
ωyσ

2
q +O

³
kqt, σqk3

´
(121)

Where:

ωyσ
2
q = −σEt

∙
yt+1 +

1

σ
πt+1 −Et

µ
yt+1 +

1

σ
πt+1

¶¸2
(122)

Similar to the previous sub-section, the IS risk premium can be written as a function of the
linear solution of inflation and output:

ωy = −σ
µ
a1 +

1

σ
b1

¶2
< 0 (123)

Note that the risk premium component of the IS is negative, capturing precautionary savings
due to output and inflation volatility.
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B.5.3 The perturbation method

The policy functions of the second order solution for output and inflation can be written in
the following form:

yt =
1

2
aoσ

2
q + a1qt +

1

2
a2 (qt)

2 +O
³
kqt, σqk3

´
(124)

πt =
1

2
boσ

2
q + b1qt +

1

2
b2 (qt)

2 +O
³
kqt, σqk3

´
where the ás and b́s are the unknown coefficients that we need to solve for and O

³
kqt, σqk3

´
denotes terms on q and σq of order equal or higher than 3. We express the dynamics of the oil
price as:

qt = ρqt−1 + ησqet (125)

where the oil shock has been normalized to have mean zero and standard deviation of one, i.e.
e˜iid (0, 1) .Also, we set η =

p
1− ρ2 in order to express V (qt) = σ2q .

In order to solve for the 6 unknown coefficients, we use the following algorithm that consist
in solving recursively for three systems of two equations. This allow us to obtain algebraic
solutions for the unknown coefficients. We follow the following steps:

1. We replace the closed forms of the policy functions (124) and the transition equation for
the shock (125) in the equations for the AS (116) and the AD (121).

2. Solve for a1 and b1: we take the partial derivatives with respect to qt to the two
equations of step 1, then we proceed to evaluate them in the non-stochastic steady state
(i.e. when qt = 0 and σq = 0). Then, the only unknowns left are a1 and b1 for two
equations. We proceed to solve for a1 and b1 as function of the deep parameters of the
model.

3. Solve for a2 and b2: similar to step 2, we take succesive partial derivatives with respect
to qt and qt to the two equations of step 1 and we evaluate them at the non-stochastic
steady state. Then, we solve for the unknowns a2 and b2.

4. Solve for a0 and b0: similar to steps 2 and 3, we take succesive partial derivatives
with respect to σq and σq to the two equations of step 1 and we evaluate them at the
non-stochastic steady state. Then, we solve for the unknowns a0 and b0. The solution
for the coefficients is given by:

ao = − (φπ − 1) [(b2 + ωπ)− σ (1− β) (a2 + ωy)]
1
∆0

bo = −b2 +
£
φy (b2 + ωπ) + σκy (a2 + ωy)

¤
1
∆0

a1 = − [(φπ − 1) ρ]κq 1
∆1

< 0 b1 =
£
σ (1− ρ) + φy

¤
κq

1
∆1

> 0

a2 = −
£
(φπ − 1) ρ2

¤
κ (Ωπ +Ωmc)

1
∆2

< 0 b2 =
£
σ
¡
1− ρ2

¢
+ φy

¤
κ (Ωπ +Ωmc)

1
∆2

> 0

where we have defined the following auxiliary variables:

∆0 = (φπ − 1)κ1 + (1− β)φy
∆1 = (φπ − 1) ρκy + (1− βρ)

£
σ (1− ρ) + φy

¤
∆2 = (φπ − 1) ρ2κy +

¡
1− βρ2

¢ h
σ (1− ρ)2 + φy

i
where ∆0, ∆1, and ∆2 are all positive.
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C Endogenous Trade-off

From equation (90), we can derive linearly the marginal cost as function of output and oil price
shocks, as follows:

mct =

¡
1− αF

¢
(σ + v)

1 + υψαF
yt + αF

(1 + vψ)

1 + υψαF
qt +O

³
kqt, σqk2

´
(C.1)

This equation can be also written in terms of parameters κy and κq, defined previously in the
main text, as follows:

mct =
κy
κ
yt +

κq
κ
qt +O

³
kqt, σqk2

´
(C.2)

Under flexible prices, mct = 0. Condition that defines the natural level of output in terms of
the oil price shock :

yFt = −
κq
κy

qt +O
³
kqt, σqk2

´
(C.3)

Notice that in this economy the flexible price level of output does not coincide with the efficient
one since the steady state is distorted by monopolistic competition The efficient level of output
is defined as the level of output with flexible prices under perfect competition, we use equation
(53) to calculate this efficient level of output under the condition that µ = 1 as follows:

yEt = −
αE

(1− αE)

¡
1− αF

¢
αF

κq
κy

qt +O
³
kqt, σqk2

´
(C.4)

Where αE = αψ
¡
Q
¢1−ψ

. This parameter can be also expressed in terms of the participation
of oil under flexible prices as follows:

αE = αFµψ−1

Notice that when there is no monopolistic distortion or when ψ = 1 we have that αE = αF

and yEt = yFt .
Using the definition of efficient level of output, we can write the marginal costs equation

in terms an efficient output gap, xt. Where xt =
¡
yt − yEt

¢
in the following way

mct =
κy
κ

¡
yt − yEt

¢
+
1

κ
µt +O

³
kqt, σqk2

´
(C.5)

Where

µt = κy

Ã
1− αF

(1− αF )

¡
1− αE

¢
αE

!
yEt

Using equations (C.5) and (56), the Phillips curve can be written as follows:

πt = βEtπt+1 + κyxt + µt +O
³
kqt, σqk2

´
(C.6)

This equation corresponds to equation (41) in the main text. We can further write µt in terms
of the oil price shocks using the definition of the efficient level of output:

µt =
κq
κy

µ
αF − αE

(1− αE)αF

¶
qt

42



The dynamic IS equation can also be written in terms of the efficient output gap.

xt = Etxt+1 −
1

σ

¡
it −Etπt+1 − rEt

¢
+O

³
kqt, σqk2

´
(C.7)

where:
rEt = σ (1− ρ) yEt +O

³
kqt, σqk2

´
which in turn can be written as follows:

rEt = −σ (1− ρ)
αE

(1− αE)

¡
1− αF

¢
αF

κq
κy

qt +O
³
kqt, σqk2

´
Notice that when there is no monopolistic distortion or when ψ = 1 we have that αE = αF ,
which implies that there is no an endogenous trade off.

µt = 0 ∀t
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