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Abstract

In this paper we propose a new semiparametric procedure for es-

timating multivariate models with conditioning variables. The semi-

parametric model is based on the parametric conditional copula of

Patton (2005a) and nonparametric conditional marginals. To avoid

the curse of dimensionality in the estimation of the latter, we propose

a dimension reduction technique. The marginals are estimated us-

ing conditional kernel smoothers based on local linear estimator. The

semiparametric copula model is compared with the parametric DCC

model using predictive likelihood as a criterion. The comparison is

based on the recent conditional test for predictive abilities of Giaco-

mini & White (2005). We use various simulations and financial series
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to compare the methods and show when the proposed semiparametric

model is expected to be superior to the fully parametric DCC model.

Keywords: risk management, copula, correlation, multivariate time series,

nonparametric conditional distribution

JEL classification: G15, C51, C12, C13, C32

1 Introduction

Financial institutions have to address the important problem of quantifying

and hedging their exposure to market risk. This risk arises from a volatile

market environment, i.e. changing prices of equities, commodities, exchange

rates and interest rates. A popular measure for quantifying a market risk

as a single number is Value at Risk (VaR). VaR is the maximum expected

loss over a period of time, at a given confidence level. Statistically, the VaR

of a portfolio is a specific conditional quantile of the distribution function

of the portfolio’s value over a given future time period (refer to Engle &

Manganelli, 2004 for review and recent methodology). In this paper, we

reduce the methodological question of the VaR estimation to the prediction of

the portfolio value distribution. The latter is derived from the forecast of the

multivariate asset return distribution. We specify a flexible semiparametric

model for predicting the future multivariate asset return distribution. The

major question addressed here is whether the semiparametric model is able to

produce a more accurate forecast than a fully parametric multivariate model.

To specify a multivariate model we use the concept of copula. Copulas

can fully characterize the dependence structure of a multivariate time series.

They have proven to be a useful device in many financial applications; e.g. risk

management, portfolio aggregation, spillover effects (for an extensive review

of applications see Bouyé et al., 2000, Embrechts et al., 2003). The Basel

Committee on Banking and Supervision recognized copulas as one of the

important risk management techniques, which is reflected in the New Basel

Capital Accord (Basel II).

The copula approach allows for flexible modeling of marginal distributions
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and their mapping into a joint distribution through a copula function. The

marginals may be specified either parametrically (e.g. Patton, 2005b) or non-

parametrically (e.g. Genest et al., 1995). The latter approach is commonly

used in situations where research is focused on exploiting a dependence struc-

ture per se. Copulas themselves can be modeled nonparametrically, i.e. the

empirical copula of Deheuvels (1979), however the parametric approach for

a copula function is more common. The combination of the nonparametric

estimation of marginals and the parametric copula leads to a semiparametric

procedure for estimating dependence parameters. This procedure provides a

good balance between fully nonparametric and fully parametric models. The

former may suffer the curse of dimensionality in multivariate settings, while

the latter has to impose distributional assumptions on marginals.

Until recently copulas have been applied to model contemporaneous de-

pendence structure and, therefore, were of limited use in the case of mul-

tivariate processes with serial dependence. However, the stylized facts on

return series (see e.g. Tsay, 2002) suggest that these processes are of special

interest in financial econometrics. Fan & Chen (2002) started to fill this gap

by applying copulas to model serial dependence in the univariate time series

setting. Later, Patton (2005a) introduced the notion of conditional copula,

which allowed for using conditioning variables. This opened the way to an

even broader range of copula applications in finance, including prediction.

All known applications of conditional copulas (Patton, 2005a, Patton,

2005b and van den Goorbergh, 2004) apply a parametric specification for

their marginal distributions, conditional on past observations. To apply the

flexible semiparametric approach in the context of the conditional copulas, we

suggest a nonparametric procedure for estimating conditional marginal dis-

tributions. The major problem with the application of this procedure to con-

ditional copulas is the requirement for the use of the same set of conditioning

variables for all marginals. Conditioning on a large set of variables inevitably

will lead to the curse of dimensionality in the context of the nonparametric

estimation of conditional distribution function. We suggest several steps to

overcome this problem. First, we test nonparametrically whether a specific

variable may be excluded from the conditioning set. Then, we apply a di-
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mension reduction technique for the remaining conditioning variables. After

reducing the dimension of the conditioning variables to one, we make use

of the nonparametric procedure of Hansen (2004) for estimating a smooth

conditional cumulative distribution function (CDF). The parametric copula

is modeled using a Gaussian specification with time-varying parameters. The

semiparametric procedure may be summarized as follows:

1. Granger causality testing

2. If necessary, further dimension reduction to one conditioning variable

3. Nonparametric estimation of conditional marginal CDFs

4. Parameter estimation of a conditional copula

5. Predictive ability evaluation

Once a model is specified and estimated, the next important task is model

evaluation and comparison with a benchmark model. The benchmark is spec-

ified as a parametric copula model with parametric marginals. We will adopt

the recent methodology of Giacomini & White (2005) for testing conditional

predictive abilities. This methodology is specifically suitable in our case since

it allows for comparison of parametric and semiparametric techniques and ac-

knowledges estimation uncertainty and possible nonstationarities in data.

The rest of the paper is organized as follows. In Section 2 we provide

an outline of copula theory. In Section 3 we discuss the specification of

conditional marginals, concentrating on the nonparametric estimation and

dimension reduction technique. Section 4 describes the estimation procedure

for the copula parameters. Further, in Section 5 we discuss the conditional

predictive ability test and its application for selecting the best performing

model. Section 6 investigates the performance of the suggested semipara-

metric and parametric models under various data generating processes. In

Section 7 we apply the described methodology to the multivariate portfolios

of major US stocks, UK stocks and international stock indexes. Section 8

concludes.
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2 Copula theory

We start with a general overview of copula theory and provide basic defi-

nitions, major theorems and essential properties. For more information we

refer the interested reader to the monograph by Nelsen (1999).

2.1 Unconditional copula

The term copula was first introduced by Sklar (1959) to describe a func-

tion that “couples” univariate marginal distributions to a multivariate joint

distribution.

Definition 2.1 (Copula) The copula function C(u) is a joint cumulative

distribution function of a probability measure with support in [0, 1]N and uni-

form marginal distributions.

The following result is cardinal to the theory of copulas.

Theorem 2.1 (Sklar’s theorem) Given an N-dimensional distribution func-

tion F with marginal distribution functions F1, F2, . . . , FN , there exists an

N-copula C such that for all x ∈ R̄N

F (x1, x2, . . . , xN) = C(F1(x1), F2(x2), . . . , FN(xN)).

Moreover, if the marginal distributions are continuous the copula C is unique.

For the proof of Theorem 2.1 we refer a reader to Sklar (1996). The in-

verse of Theorem 2.1 provides one of the methods to construct a copula,

i.e. inversion method. This method is used to derive copulas from known

parametric multivariate distributions, e.g. the Gaussian copula.

Corollary 2.1 (Inversion method) Let F−1
1 , F−1

2 , . . . , F−1
N denote (quasi)

inverse of marginal distribution functions F1, F2, . . . , FN , respectively. Then,

for any u ∈ [0, 1]N

C(u1, u2, . . . , uN) = F (F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
N (uN)).
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One of the essential properties of copulas is their invariance under strictly

increasing transformations of Xn.

Theorem 2.2 (Invariance) Let X1, X2, . . . , XN denote continuous random

variables with copula C and let T1, T2, . . . , TN be strictly increasing transfor-

mation functions. Then transformed random variables T1(X1), T2(X2), . . . , TN(XN)

have exactly the same copula C.

The proof of Theorem 2.2 follows from Corollary 2.1 and the properties of

the distribution function. As a consequence of Theorem 2.2, the dependence

between random variables X1, X2, . . . , XN is completely captured by the cop-

ula regardless of the scale in which each random variable Xn is measured.

Therefore any dependence measure may be based directly on the copula.

Definition 2.2 (Copula density) Suppose C(u1, u2, . . . , uN) is a contin-

ues copula function, then its density c(u1, u2, . . . , uN) can be defined as fol-

lows

c(u1, u2, . . . , uN) =
∂NC(u1, u2, . . . , uN)

∂u1 · · · ∂uN

By taking partial derivatives of the distribution function F (x) and the cor-

responding copula representation (Theorem 2.1) with respect to x1 . . . xN , we

derive the following decomposition of the multivariate density function:

f(x) = c(F1(x1), F2(x2), . . . , FN(xN))
N∏

n=1

fn(xn), (1)

where fn(xn) is a density of the margin Fn(xn). This decomposition is of

a great importance for copula estimation using the maximum likelihood ap-

proach.

2.2 Conditional copula

Most of the variables of interest in economics and finance exhibit dependence

on past observations. Therefore, it is important to incorporate conditioning
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on the lagged variables in a quantitative analysis of economic and financial

data. Until recently, copulas have been used to model a contemporaneous

dependence structure. To extend the application of copulas to the case of

conditioning variables, Patton (2005a) introduced the notion of conditional

copula.

Definition 2.3 (Conditional Copula) The conditional copula of random

variables X|(Z = z) ∼ FX|Z(x|z) is the conditional multivariate distribu-

tion function of uniform random variables U , such that Ui ≡ FXi|Z(xi|z)

given Z = z.

Hereafter by referring to U or U we will mean conditionally uniform random

variable(s) without explicit remark regarding the set of conditioning vari-

ables, when the latter is clear from the context. For each z in the support of

Z the conditional copula satisfies the properties of the (unconditional) cop-

ula (Definition 2.1). Patton (2005a) showed that Sklar’s theorem (Theorem

2.1), its inverse (Corollary 2.1) and the invariance (Theorem 2.2) hold in the

case of conditioning. In this case, the unconditional multivariate distribu-

tions and unconditional marginals are replaced by conditional multivariate

distributions and conditional marginals respectively. It is required that the

set of conditioning variables Z is the same for every marginal distribution

and the copula and the corresponding joint distribution. Otherwise, Sklar’s

theorem may fail for conditional copulas. It may be the case that the set

of conditioning variables may be reduced for some marginal distribution,

i.e. FXi|Z1(xi|z1) = FXi|Z1,Z2(xi|z1, z2) for all xi, z1, z2. In this situation

Xi is conditionally independent of Z2 given Z1. To test for such condi-

tional independence, one may consider nonparametric tests for conditional

independence (e.g. Su & White, 2005).

For simplicity, we assume that multivariate stationary time series {X t}
has a Markovian property. Thus, the conditioning variables Zt include only

the recent past X t−1. Empirical applications suggest that this assumption

is reasonable for processes characterizing asset returns. Next, we apply the

pairwise nonparametric Granger causality test of Diks & Panchenko (2005) to
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reduce the conditioning set. This test is robust to conditional heteroskedas-

ticity which is likely to be present in financial data. In the case where the

conditioning set is not reduced to one variable, we adopt a further dimension

reduction technique (refer to Subsection 3.1).

3 Marginal distributions

Before specifying a copula model, it is necessary to specify the corresponding

marginal distributions. It can be done either parametrically or nonparamet-

rically. The former approach imposes restrictive distributional assumptions,

while the latter attempts to deduce the whole distribution entirely from the

data. The price to pay for the relaxation of the assumptions is the amount of

data necessary for estimation, at a reasonable precision level, and the speed of

the estimation procedure. The parametric approach has been widely used in

modeling asset returns, e.g. ARCH (Engle, 1982), GARCH (Bollerslev, 1986)

models in a univariate case, and dynamic conditional correlations (DCC) of

Engle (2002) in a multivariate case. Despite the variety of parametric spec-

ifications there is no general agreement on which particular model is to be

chosen in practice. To avoid this ambiguity the nonparametric specification

of marginals prevailed in the (unconditional) copula approach (see e.g. Genest

et al., 1995, Embrechts et al., 2003). However, this advantage of copula mod-

eling has not been exploited yet in the recent conditional copula approach of

Patton (2005a). With this in mind, we wish to fill the gap and use the non-

parametric specification for conditional marginals in the conditional copula

framework.

3.1 Dimension reduction

The major difficulty in implementing a nonparametric specification of marginals

for the conditional copula model is the requirement to condition on the same

set of conditioning variables for every marginal distribution. If the dimen-

sion of the conditioning set is greater than one, the nonparametric approach

is practically inapplicable mainly due to the bandwidth choice problem and
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the curse of dimensionality. Initially we reduced dimensionality using a pair-

wise nonparametric Granger causality test. However, if Granger causality is

not rejected for some variables, we have to apply the dimension reduction

technique described below.

Hall & Yao (2005) suggest to approximate conditional distribution func-

tion FX|Y (x|y) by FX|β′Y (x|β ′
y) using β

′
y as a one dimensional projection

of the K-dimensional conditioning variable Y . The parameter β is estimated

by minimizing the mean integrated square error over b∫ ∫ (
F̂X,β′X(x, b

′
y)− F̂X,Y (x,y)

)2

w(x,y)dydx,

where w(y,x) is a weighting function. The estimation procedure is based on

a local linear regression, which requires bandwidth selection and is compu-

tationally intensive.

We suggest an alternative procedure that is based on an ordinary linear

regression and therefore does not require bandwidth selection and is com-

putationally fast. The suggested estimator of β enjoys the same properties

as the estimator of Hall & Yao (2005), i.e. it is consistent and normally

distributed with
√
T -convergence rate. The technique we suggest is closely

related to the sufficient dimension reduction of Cook (2004).

Suppose {Xt,Y t} is a weakly dependent time series. In our subsequent

developments, we will operate in terms of the standardized predictor S =

Σ
−1/2
Y (Y − E(Y )), where ΣY is a positive definite variance-covariance ma-

trix. This monotonic transformation does not affect the conditional distribu-

tion of interest and is required for technical reasons. To ensure that sample

estimate Σ̂Y is a positive definite matrix, we employ the eigenvalue method

of Rousseeuw & Molenberghs (1993). Similarly to Hall & Yao (2005) our

central assumption is that the true conditional distribution function can be

approximated by FX|Z(x|z), where z = β′s and Z = β′S is a one dimensional

projection of the standardized K-dimensional conditioning variable S. Our

goal is to find an estimator of the parameter β. Since FX|Z is unknown, β

is identified up to a multiplicative scalar. Suppose L(x, ζ) is an arbitrary
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function convex in ζ. Consider the minimization problem:

(α∗, β∗) = arg mina,b EX,S[L(X, a+ b
′
S)]. (2)

The following theorem due to Li & Duan (1989) establishes an estimation

procedure for β.

Theorem 3.1 Parameter β∗ is proportional to parameter β under the fol-

lowing conditions:

(1) The criterion function L(x, ζ) is convex in ζ.

(2) There is a proper solution for the minimization problem (2).

(3) The conditional expectation E(b
′
S|β ′

S) exists and is linear in β
′
S.

A class of estimators defined by Eq. (2) includes ordinary least squares (OLS),

for which assumption (1) is satisfied. Existence condition (2) will hold for

OLS if the standardized predictor S is defined (non-multicollinearity). As-

sumption (3) is extensively discussed in Hall & Li (1993). They claim that

low dimensional projections (one dimensional in this case) of high dimen-

sional data are almost linear provided the standardized predictor S is de-

fined. Strong consistency and asymptotic normality with
√
T -convergence

rate of a sample estimator of β∗ is established by theorem 5.1 of Li & Duan

(1989) for the case of IID data. To establish the same results for weakly

dependent time series, one has to apply the central limit theorem (Doukhan

& Louhichi, 1999) and the law of large numbers (Birkel, 1992) for weakly

dependent processes. Relying on the above results we may summarize all

conditioning information in one variable Z = β
′
S.

3.2 Smooth estimation of conditional distribution func-

tion

Hall et al. (1999) present an extensive overview of recent techniques for esti-

mating a conditional distribution function. All the methods described there

are based on unsmoothed estimators. Hansen (2004) shows that it is possi-

ble (at least asymptotically) to increase the efficiency of the nonparametric
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procedure by using smoothed estimators. The analytical derivation of this au-

thor was supported by simulations for various data generating processes. An

analogous conclusion has been drawn by Chen et al. (2004) in the context of

unconditional nonparametric marginals. Considering the possible efficiency

gains we will follow the smooth method of Hansen (2004). We outline this

method and refer the reader to the work of Hansen (2004) and the references

therein for a more detailed exposition.

Suppose {Xt, Zt} is a strictly stationary time series with distribution

FX,Z(x, z). To make a connection with the previous notation, Xt is one

of the elements of multivariate series X t, the conditional marginal distribu-

tion U ≡ FX|Z(x|z) of which we are after. We drop the subscripts of F for

brevity. Element Zt summarizes the information about X t−1, its precise form

was discussed in Subsection 3.1.

In the context of (unsmooth) conditional distribution estimation, a local

linear estimator may achieve lower bias in comparison with Nadaraya-Watson

estimator. The same is true in the context of smooth estimation. Therefore,

the smooth estimator will be of the form of a modified local linear estimator

ensuring that it remains a valid conditional distribution function:

Û ≡ F̂h,b(x|z) =

∑T
t=1w

∗
tKh(x−Xt)∑T
t=1w

∗
t

, (3)

where Kh(s) = K( s
h
) with K(s) =

∫ s

−∞ κ(u) is the integrated smooth ker-

nel with bandwidth parameter h, we use Gaussian kernel, and w∗
t denotes

modified weights from local linear estimation

w∗
t =

{
0

wt(1− β̂(z − Zt))

β̂(z − Zt) > 1

β̂(z − Zt) ≤ 1
,

where wt = 1
b
w( z−Zt

b
) are kernel weights with kernel w (Gaussian in our

application) and bandwidth b and β̂ is the slope from the weighted least

squares
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β̂ =

(
T∑

t=1

wt(z − Zt)
2

)−1( T∑
t=1

wt(z − Zt)

)
.

Nonnegative weights w∗
t ensure that F̂ is a proper distribution function.

As in any kernel smoothing problem the bandwidth choice is the crucial

part of the analysis. In the present situation the bandwidths (b∗, h∗) are se-

lected by a plug-in method. The plug-in bandwidths minimize the estimated

asymptotic mean integrated square error (MISE). The following theorem of

Hansen (2004) defined the MISE for the smooth local linear estimator.

Theorem 3.2 Assume F (x|z) and marginal density of X, fX(x), are con-

tinuously differentiable up to fourth order in both x and z. If b = cT−1/5 and

h = O(b) as T →∞, then

∫ ∞

−∞
E
(
F̂h,b(x|z)− F (x|z)

)2

dx =
R

f(x)nb
(V−hψ)+

b4V1

4
−h

2b2V2

2
+
h4V3

4
+O(T−6/5),

where R =
∫∞
−∞(w(s))2ds denotes the roughness of weighting kernel w, ψ =

2
∫∞
−∞ sK(s)κ(s)ds > 0 and

V =

∫ ∞

−∞
F (x|z)(1− F (x|z))dx

V1 =

∫ ∞

−∞
(F (2)(x|z))2dx

V2 =

∫ ∞

−∞
f(x|z)f (2)(x|z)dx

V3 =

∫ ∞

−∞
(f

′
(x|z))dx.

The notation g(2) refers to second derivative of g. The parameters of the MISE

f(x), V, V1, V2, V3 are estimated using kernel smoothing and local polynomial

regression techniques (see Hansen (2004) for details). Plug-in bandwidths

(̂b∗, ĥ∗) are found by numerical minimization of the estimated MISE.
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It can be seen that estimators of the MISE parameters and, thus, band-

widths (̂b∗, ĥ∗) depend on the conditioning variable Z. Since the bandwidth

selection procedure is computationally involved, selection of bandwidths (̂b∗, ĥ∗)

for every Zt appears to be an infeasible task for reasonable sample sizes

(T ≥ 500). To reduce the number of computations, the conditioning vari-

ables Zt were grouped according to their ranks into I groups Gi:

Gi =

{
Zt : Φ

(
2.5

[
−1 +

2i− 2

I

])
<

rank(Zt)

T
≤ Φ

(
2.5

[
−1 +

2i

I

])}
,

where Φ denotes standard Gaussian distribution function. The plug-in band-

width for each group (̂b∗, ĥ∗)i is determined on the basis of observation Zt

with rank(Zt)/T = Φ(2.5[−1 + (2i− 1)/I]. Intuitively, the proposed group-

ing puts observations Zt with similar values into one group. Our simulations

showed that for sample size T = 1000, I = 5 provides good approximation,

i.e. its results are hardly distinguishable from the results of the full procedure,

when the bandwidths are computed individually for every observation.

Using the procedure described above, we transform each element of the

multivariate time series {X t} into corresponding conditional marginal and

group them together in the uniform series of conditional marginal transfor-

mations Û t.

4 Specification and estimation of copula

Similarly to the case of marginals, it is possible to specify a copula either

nonparametrically or parametrically. A nonparametric approach will lead

to the empirical copula of Deheuvels (1979). For simplicity, here we will

pursue the parametric copula approach. As an extension we plan to include

nonparametric copula analysis in the future.

There are many copula specifications suggested for the bivariate case (see

Nelsen, 1999 for extensive review). However, for most of the copulas, ex-

tensions to the higher dimensions are not feasible. Therefore, most of the

copulas considered for multivariate modeling are based on the inverses of the
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Gaussian distribution or more general Student’s t distribution. The former

will yield the Gaussian copula with a correlation matrix Σ as a matrix of

parameters, while the latter will result in Student’s t copula with Σ and an

additional parameter, the number of degrees of freedom ν. Several studies

(e.g. Chen et al., 2004, Panchenko, 2005) reported a poor fit of the Gaus-

sian copula with constant correlations to the multivariate asset returns data,

while Student’s t copula provided slightly better fit to the data. In the re-

cent past Engle & Sheppard (2001) and Engle (2002) suggested dynamical

conditional correlations (DCC) models for parsimonious specification of time-

varying correlation matrix Σ for multivariate GARCH models. Chen et al.

(2004) showed that the Gaussian DCC model provided a good fit to the data

in the context of the unconditional copula. Relying on these results, we sug-

gest using the DCC model to specify the time evolution of correlation matrix

Σ. It is important to notice that there are other, possibly better, ways to

model the time evolution of Σ. Recent work of Pelletier (2005) and Hafner

et al. (2005) suggest new promising nonlinear and semiparametric techniques

for modeling the correlation dynamics. We adopt the DCC of Engle (2002)

for simplicity and plan an extension of this paper to include other correlation

dynamics.

The Gaussian DCC (1,1) conditional copula model is defined as follows.

Using the inversion method (Corollary 2.1), we derive the Gaussian copula:

CΣ = ΦΣ(ξ1, ..., ξN), (4)

where ΦΣ denotes the multivariate standard normal distribution with lin-

ear correlation matrix Σ, and ξi = Φ−1(Ui), where Φ−1 is the inverse of

the univariate standard normal distribution. The time-varying conditional

correlation matrix evolves according to the following specification:

Σt = (1− α− β)Σ + αξt−1ξ
′

t−1 + βΣt−1, (5)
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where Σ is the unconditional correlation matrix. To ensure the positive def-

initeness of Σt, we require 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and α + β ≤ 1. The

correlation matrix Σ is computed by compounding pairwise correlation co-

efficients ρ. It may happen due to numerical problems that Σ fails to be a

positive definite. To avoid this situation, we use the eigenvalue method of

Rousseeuw & Molenberghs (1993). We estimate the parameters of the Gaus-

sian DCC copula model using semiparametric maximum likelihood method

introduced by Genest et al. (1995). The log likelihood function for the cop-

ula and marginals can be derived from the decomposition of the multivariate

density (1):

L(x) = log c(F1(x1), . . . , FN(xN))+
N∑

n=1

log fn(xn) = Lc(u)+
N∑

n=1

Ln(xn). (6)

The estimation procedure consists of two stages. First we perform a con-

ditional marginal CDF transformation and construct the uniform series of

transformations Û t. In the next stage, we estimate the parameters of the

copula by maximizing the log likelihood function of the copula using the

marginal transforms obtained from the first stage:

(α̂, β̂) = arg max
a,b

T∑
t=1

Lc(Û1t, . . . , ÛNt, (a, b)).

The following theorem, due to Genest et al. (1995), establishes desirable

properties of the semiparametric estimator

Theorem 4.1 Under suitable regularity condition, the semiparametric esti-

mator (α̂, β̂) is consistent and
√
T asymptotically normal.

Chen et al. (2004) indicate that by using the smooth procedure for estimating

the conditional marginals, we improve the efficiency of the semiparametric

estimator.

A Gaussian copula density is obtained by taking partial derivatives in Eq.

4:
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c = |Σ|−1/2 exp

(
−1

2
ξ

′
(Σ− I)ξ

)
,

where I is the identity matrix. Using the time-varying conditional correlation

Σt, we may specify the log likelihood function:

L = −1

2

(
T∑

t=1

log |Σt|+ ξ
′

t(Σt − I)ξt

)
.

Since there is no closed form expression for the derivatives of the log-likelihood

L, the optimization is conducted numerically. The optimization is performed

using the simplex method of Nelder & Mead (1965). This method is suitable

for our purposes since it does not require evaluation of the derivatives.

5 Comparing predictive abilities of alterna-

tive models

The major question of this paper is whether using the semiparametric ap-

proach can improve the accuracy of the forecast of the distribution of future

returns. Therefore, we need to specify a similar copula model, but with

parametric marginals.

5.1 The benchmark model

We use a slight modification of the commonly used DCC model as a bench-

mark. This model can be viewed as a copula model with conditional marginals

specified parametrically according to the GARCH(1,1) model:

Xt = φZt + εt, εt|εt−1 ∼ N(0, ht), (7)

ht = γo + γ1ε
2
t−1 + γ2ht−1. (8)
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Variable Zt compounds all conditioning variables of the copula. Here we have

to assume that Zt enters only the mean equation (7) and does not affect the

variance equation (8). Then, the copula takes the form of the Gaussian DCC

copula described in the previous section, see Eqs. (4, 5). The model is esti-

mated using a two stage maximum likelihood: first the GARCH(1,1) models

for marginals and then, the Gaussian DCC copula model. For the properties

of the estimators derived from this two-stage procedure we refer the reader to

Engle & Sheppard (2001). The optimization is performed numerically using

the Nelder & Mead (1965) algorithm.

5.2 Conditional test for predictive abilities

Once a benchmark and an alternative model are specified and estimated, we

need to determine whether the alternative model is superior to the bench-

mark. The accuracy of the out-of-sample prediction of the distribution of

future returns is used as a criterion. For brevity, we will focus on a one step

ahead forecast at time t + 1, though an extension is possible. The major

problem in testing density forecasts arises from the following fact. While

producing a forecast of the whole future distribution, we observe only one

(possibly multivariate) outcome from the true distribution. Various tech-

niques were suggested in the forecast evaluation literature to overcome this

problem (see Diebold et al., 1998 for review). Our attention will focus on

so-called predictive log likelihood or scoring rule (Diebold & Lopez, 1996)

defined as

Lt+1(f̂t,X t+1) = log f̂t(X t+1), (9)

where f̂t(·) is the density forecast of out-of-sample point of evaluation X t+1.

In the case of the copula, we observe the decomposition of L into copula part

Lc and the sum of marginal log likelihoods Ln according to Eq. (1). While

the former is a part of the estimation process, the latter is readily available

by differentiating smooth conditional distribution function (3) at the point

X t+1. Intuitively, the model producing the best density forecast will give

the highest average score. Predictive log likelihood is especially convenient
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in the case of multivariate forecast. In principle, any other suitable criterion

may be used, e.g. probability integral transform based criteria (Bao et al.,

2004, Chen et al., 2004).

Further, we adopt the recent conditional predictive ability test of Giaco-

mini & White (2005). Their test is based on the out-of-sample evaluation

using the rolling window scheme. The in-sample size T used for estimation re-

mains constant, while the sample itself and the point(s), at which the forecast

is evaluated, move with time. It is assumed that the number of out-of-sample

forecasts M tends to infinity while the in-sample size T remains finite. The

advantage of the conditional test vs. traditional unconditional methodology

of West (1996) is that it can be applied in a more general setting. The test

evaluates not only the model itself, but the whole forecasting method, which

includes the choice of the in-sample size T . The conditional methodology

can be applied for the comparison of a wide range of models, such as para-

metric, semiparametric, nonparametric and Bayesian models. Non-nested

and nested models can be treated in the similar way, while the test of West

(1996) is limited to the case of non-nested models. The conditional method-

ology of Giacomini & White (2005) is specifically applicable for our situation

since we want to compare the semiparametric and parametric methodology

for a fixed sample size T . In theory we would expect that semiparametric

procedure will always beat the parametric one, provided (1) stationarity and

(2) infinite sample size T . However, in practice achieving both (1) and (2) is

not realistic, and we have to find the sample interval of size T , on which the

sample is approximately stationary and T is large enough to ensure precision

of the estimates. Although being asymptotically superior, a semiparametric

model can actually be beaten by a parametric model for fixed T , since the

latter may require less data to achieve the same precision as the former.

Since we are interested in the VaR estimation, we focus on the forecast

concerning the left tail of the return density. To incorporate this in the

forecast evaluation we use the weighted likelihood ratio test of Amisano &

Giacomini (2005). Their test is designed for a univariate model. A slight

extension, in the way the weighting function w is defined, allows to it to be

used in multivariate settings. Define the weighted likelihood ratio as
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WLRt+1 = w(St+1)(Lt+1(f̂t

alt
,X t+1)− Lt+1(f̂t

bm
,X t+1)),

where f̂t

alt
and f̂t

bm
are predictive log likelihoods (9) of the alternative model

and the benchmark respectively, St+1 is a standardized realization (using

unconditional moments), i.e. S = Σ
−1/2
X (X −E(X)) with covariance matrix

ΣY , and weighting function w is defined as

w(St+1) = 1− Φ

(∑N
n=1 Sn,t+1

N

)
.

The suggested weighting scheme puts higher weights on the likelihood ratio

in the case of joint extreme events in the left tail of the distribution. The null

hypothesis is stated in terms of the expectation of the weighted likelihood

ratio over the number of evaluations M :

H0 : E[WLRt+1] ≤ 0,

HA : E[WLRt+1] > 0.

The null hypothesis states that on average the forecast produced by the al-

ternative method is not better than the forecast produced by the benchmark.

The test statistic TS takes the form:

TS =
1
M

∑T+M
t=T WLRt+1

σ̂M/
√
M

,

where σ̂2
M is a heteroskedasticity and autocorrelation consistent Newey &

West (1987) estimator of the asymptotic variance:

σ̂2
M =

1

M

T+M∑
t=T

WLR2
t+1+2

[
pM∑
j=1

(
1− j

pM + 1

)
1

M

T+M+j∑
t=T+j

WLR2
t+1WLR2

t+1−j

]
,

(10)

where pM is the number of nonzero autocorrelations taken into account, which
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is a parameter of choice. It is required that pM = o(T 1/4) for the consistency

of the estimator (10). Using the rule of thumb, we choice pM = integer(T 1/5).

Theorem 5.1 Under certain regularity conditions and for a fixed estimation

window T , test statistic TS converges in distribution to N(0, 1) as number

of evaluations M →∞.

For the proof of Theorem 5.1 we refer to Amisano & Giacomini (2005). This

authors also provide an extensive simulation study, which demonstrates good

finite sample properties of the test.

Here, we discussed the situation, when only two models are compared.

In practice, we may specify several alternative models and, then, test if the

best model among them beats the benchmark. To implement this test, we

could adapt the“reality check”test of White (2000) to the current conditional

methodology.

6 Simulations

We next investigate the performance of the proposed semiparametric model

and the parametric DCC model using various data generating processes

(DGPs). Since we apply the same specification for the conditional corre-

lation structure in both models, we will focus on the multivariate DGPs with

the same correlation structure, but various specifications for the marginals.

The correlation matrix is specified as in Eq. 5 with α = 0.1 and β = 0.6.

First, we sample uniform random variates uti from the Gaussian copula (4)

and transform them into i.i.d. (in terms of marginals, but not jointly!)

N(0, 1) marginals {εti}. For brevity, the same specification is applied for

each marginal and, therefore, subscript index i is dropped. Then, we use the

following DGPs for specifying conditional variance ht of the marginals:

DGP 0. ht = 2× 10−6 + 0.091ε2t−1 + 0.899ht−1.

DGP 1. ht = 2× 10−6 + 0.029ε2t−1 + 0.076ε2t−1I(εt−1 < 0) + 0.931ht−1.

DGP 2. ln(ht) = −1.001− 0.0794εt−1 + 0.2647|εt−1|+ 0.899 ln(ht−1).
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DGP DGP 0 DGP 1 DGP 2
TS -2.32 1.83 2.11

p-value 0.99 0.03 0.02

Table 1: Test statistic TS and the corresponding p-values of the predictive
abilities test for simulated DGPs.

DGP 0 is the GARCH(1,1) model of Bollerslev (1986), DGP 1 is the

threshold (T)ARCH(1,1) model of Zakoian (1994) and DGP 2 is the expo-

nential (E)GARCH(1,0) model of Nelson (1991). DGP 0 is symmetric in

lagged returns, while DGP 1 and 2 allow for asymmetries. The the parame-

ter values used are typical for the S&P 500 index (see e.g. Tsay, 2002, Engle,

2003). We set number of components N = 3, in-sample size T = 1000

and number of out-of-sample evaluations M = 5000. The values of the test

statistic TS and the corresponding p-values are reported in Table 1.

As anticipated, the null hypothesis of no better performance than a bench-

mark is not rejected for DGP 0. In this case, the functional form and the

distribution of marginals are equivalent to the parametric DCC model. Un-

der these conditions the parametric DCC will dominate the semiparametric

model because of the higher efficiency of the parameter estimators. How-

ever, this is not the case for DGP 1 and 2, where the null hypothesis is

rejected. The major reason for the rejection is the bias resulting from an

incorrect marginal specification in the parametric DCC model. A more de-

tailed analysis of the results in the case of DGP 1 and 2 showed that the

parametric DCC model misspecified not only the marginals, but also the pa-

rameters of the conditional correlation matrix equation (5). In practice the

true DGP is usually unknown. Therefore, we expect that a semiparametric

model will provide better forecasts in settings, where the marginals strongly

deviate from the benchmark GARCH(1,1). For brevity, we considered DGPs

with conditioning only on the lagged variable of the corresponding marginal,

which is to be extended in the future.
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Portfolio 5 US stocks 5 UK stocks 4 Int Indexes
TS -0.45 -0.93 2.29

p-value 0.67 0.82 0.01

Table 2: Test statistic TS and the corresponding p-values of the predictive
abilities test on asset return data.

7 Application to asset portfolios

Next, we evaluate the predictive abilities of the semiparametric model on

daily log-return series of three asset portfolios. Log-returns are defined as

Xt = ln(Pt/Pt−1), where Pt is the dividend-adjusted closing price (except for

international indexes) on day t. The whole sample covers the period 08/1990–

07/2005. For the sake of stationarity a few dates with extremely abnormal

returns, e.g. September 11, 2003, were eliminated from the sample. The

first portfolio consists of five major US traded stocks from different sectors

(INTERNATIONAL BUS.MACH., CITIGROUP, WAL MART STORES,

CHEVRON, VERIZON COMMS.); the second is comprised of five major UK

traded stocks (BARCLAYS, BP, BRITISH AIRWAYS, REUTERS GROUP,

VODAFONE GROUP); and the third consists of four international indexes

(S&P 500, FTSE 100, DAX and CAC 40) measured simultaneously at 16:00

hours London time. This avoids the non-synchronization problem (Martens

& Poon, 2001) for the third portfolio. The in-sample size is set to T =

1000. A lower sample size is generally not feasible either for the parametric

or for the semiparametric model, while a higher sample size might provide

worse forecasts due to nonstationarities. Given the available data-set and in-

sample size T , we set number of the out-of-sample evaluations to M = 2900.

Bivariate non-parametric Granger causality testing (Diks & Panchenko, 2005)

on an in-sample set and the consequent dimension reduction (Subsection 3.1)

was embedded in the procedure. Table 2 reports the values of the test statistic

TS and the corresponding p-values.

The test fails to reject the null of no better predictive performance of

the semiparametric model compared to the parametric DCC model for the

portfolios of US and UK stocks, while the test on the portfolio of four in-
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ternational indexes clearly rejects the null. A possible explanation is that

GARCH(1,1) model can adequately explain the dynamics of the considered

individual US and UK stocks, however is not fully applicable to the dynam-

ics of international stock indexes. Though, more evidence is needed to draw

stronger conclusions about the applicability of semiparametric models, we

may expect them to predict better in settings, where a portfolio includes

a range of various assets with qualitatively different dynamics, e.g. stocks,

bonds, foreign currencies, stock indexes.

8 Conclusions

In line with current developments in quantitative risk management we sug-

gested a flexible multivariate semiparametric model to forecast future asset

returns. The procedure heavily relies on the concept of conditional copula,

which was shortly reviewed. Motivated by the fact that until now condi-

tional copulas had been used in a fully parametric setting, our aim was to

construct a semiparametric copula model with nonparametric marginals. We

used conditional kernel smoothers based on local linear estimators for con-

ditional marginal CDFs. The major pitfalls in using a conditional copula

is the requirement of the same conditioning set for each marginal. This

would inevitably lead to the curse of dimensionality in the estimation of the

conditional marginals. To avoid this situation we suggested a dimension re-

duction technique. For simplicity, we applied the Gaussian copula with a

time-varying correlation matrix specified as in the DCC model. The cop-

ula specifications may be extended to include other multivariate copulas and

reacher correlation dynamics. Moreover, a nonparametric copula can be used

as an option.

To assess the predictive abilities of the semiparametric model we con-

fronted it with widely used fully parametric DCC model. We used the

conditional predictive abilities framework in conjunction with a predictive

likelihood as a loss function.

Simulations on various DGPs suggested better predictive performance of

the semiparametric model, when the marginals are misspecified relatively to
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the parametric model.

In an application to three asset portfolios, we found that the suggested

semiparametric model outperformed the fully parametric DCC model in the

case of the portfolio of four international stock indexes and did not show

evidence of better performance in the cases of the portfolio of five US stocks

and the portfolio of five UK stocks. Although, jointly with the simulations,

this shed some light on the setting where the semiparametric model is ex-

pected to forecast better, further investigation is necessary to draw stronger

conclusion regarding its practical applicability.
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