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Abstract

In this paper, we perform a Monte Carlo experiment to compare four
di¤erent Value-at-Risk (VaR) methodologies under �ve di¤erent Data
Generating Processes (DGPs). We show that the ARCH(1) Quantile
methodology is robust to DGP misspeci�cation. In an empirical exer-
cise, we use the four methodology to estimate VaR for returns of São
Paulo stock exchange index, IBOVESPA, in a period of market turmoil,
and we show that the ARCH(1) Quantile.VaR presents the least number
of violations.

1 Introduction

Every day, �nancial institutions (like banks) estimate measures of market risk
exposure, that are analyzed by the institutions�s decision makers. These esti-
mates are also analyzed by internal and external auditors and regulatory agen-
cies, who enforce that those institutions set aside enough capital to cover their
risk exposures. This concern about market risk exposure has been increasing
since the stock market crash in 1987, when 1 trillion of dollars (23% drop in
value) was lost in a single day, known as the Black Monday. The recent tur-
bulence in emerging markets, starting in Mexico in 1995, continuing in Asia in
1997, and spreading to Russia and Latin America in 1998, has further extended
the interest in risk management.
Imprecise measures of risk cause ine¢ ciencies: on one hand, if the measure is

too conservative, then too much capital, that could be used in a more pro�table
way, is set aside; on the other hand, if the measure is too risky, that is, if it gives
rise to a large number of violations, then there is a higher probability that a loss
may lead the institution to bankruptcy. Hence, researching for more and more
reliable and accurate measure of risk methodologies is an active and growing
literature.
Value-at-Risk (V aR) is probably the most used measure of risk since the

1996 amendment to the Basle Capital Accord proposed that commercial banks
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with signi�cant1 trade activity could use their own V aR measure to de�ne how
much capital they should set aside to cover their market risk exposure, and U.S.
bank regulatory agencies could audit the V aR methodology employed by the
banks. This amendment was adopted in 1998 (Lopez, 1999)2 . In Brazil, the
article 59 of the resolution No 2829, March 2001, of the Brazilian Central Bank
brings "Para os seguimentos de renda �xa e de renda variável deverá ser feito
o cálculo do Valor em Risco (VaR) ...", mandating the use of V aR to some
markets.
Value-at-Risk as the loss in market value over a given time horizon that is

exceeded with probability � . That is, for a time series of returns rt; �nd V aRt
such that

P [rt < �V aRtjIt�1] = � ; (1)

where It�1 denotes the information set at time t� 1. From this de�nition, it is
clear that �nding a V aR essentially is the same as �nding a 100�% conditional
quantile. Note that, for convention, the sign is changed to avoid negative num-
ber in the V aRt (�) time series. For regulatory purpose, � is generally set to
1%. It does not mean that the banks may not estimate V aRs under di¤erent
signi�cance levels for their risk managers.
Although V aR is a relatively simple concept, robust estimation of it is often

ignored in practice. Indeed, one popular approach to estimate V aR assumes
a conditionally normal return distribution. The estimation of V aR is, in this
case, equivalent to estimating conditional volatility of returns. Another popular
method is to compute the empirical quantile nonparametrically, for example,
rolling historical quantiles or Monte Carlo simulations based on an estimated
model3 .
However, these models are based on restricted assumptions about the distri-

bution of returns. There has been accumulated evidence that portfolio returns
(or log returns) are usually not normally distributed. In particular, it is fre-
quently found that market returns display structural shifts, negative skewness
and excess kurtosis in the distribution of the time series. This is particularly
true in periods of market stress such as the �nancial crises faced by the Brazil-
ian economy from 1997 to 2000. These market characteristics suggest that more
robust methods are needed to estimate V aR.
In this paper, we estimate V aR using a robust method based on quantile

regression model that allows for ARCH e¤ect, and compare it to several other
non-robust V aR methodologies that are based on GARCH type volatility mod-
els. It is important to mention that Engle and Manganelli (1999) consider a
di¤erent quantile regression based method. In particular, they consider an au-

1Any bank or bank holding company whose trading activity equals greater than 10 percent
of its total assets or whose trading activity equals greater than $1 billion must hold regulatory
capital against their market risk exposure.

2Not ony the American banks but also the Brazilian banks use VaR to measure their risk
exposure. For example: Unibanco S.A., HSBC Bank Brasil S.A., Banco Real ABN AMRO
S.A., Banco do Brasil S.A. and many others.

3This approach includes the weighted moving average method by J.P. Morgan´s Riskmet-
rics and the hybrid method by Boudoukh, Richardson, and Whitelaw (1998).
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toregression of the estimated V aRs. Our approach, however, has the advantage
of pursuing a well-developed distributional theory which facilitates statistical
inference and computational optimization.
We are not the �rst ones to compute V aR using a quantile regression model

that allows for ARCH e¤ect. In fact, Wu and Xiao (2002) used this model
to estimate V aR and left-tail measures that were next employed to construct
a risk-managed index fund. The performance of the ARCH Quantile method
were then evaluated according to the capacity of the risk-managed index fund
in tracking the S&P500 index.
There are, however, other ways to assess the quality of a V aR methodol-

ogy. In this paper, we follow Engle and Manganelli (2001) who compare V aR
methodologies using descriptive statistics of the distributions of violations ob-
tained via Monte Carlo simulations. Speci�cally, we simulate many trajectories
of the return time series assuming di¤erent innovation distributions, and com-
pute the number of violations4 using di¤erent V aR methodologies. For each
simulated trajectory of the return series, we save the amount of violations. At
the end of the experiment, we will have a distribution of violations for each V aR
methodology. Hence, we can compute descriptive statistics of the various distri-
butions of violations and evaluate the quality of a V aR methodology according
to these statistics.
Our Monte Carlo simulations indicate that the robust model based on quan-

tile regression dominates other models that requires distributional assumptions.
In particular, the distribution of violations generated from non-robust models
are right-skewed and presents excess kurtosis, meaning that these non-robust
models have high probability to predict implausibly high V aRs. We illustrate
our �ndings with an empirical application. We consider returns of the São Paulo
stock exchange index, IBOVESPA. and show that the V aR estimated by the
quantile regression approach tracks very well V aRs estimated from non-robust
models during normal market conditions. However, during market turmoils, the
robust method tend to predict V aRs more accurately.
The outline of this paper is as follows: In section 2, we describe the general

framework and present the competing models. We describe our Monte Carlo
experiment in section 3. An empirical illustration is provided in section 4 and
section 5 concludes.

2 The Competing Models

Most of the V aR methodologies are GARCH type models. Hence, they can
be described using a GARCH framework (Giot and Laurent, 2004). GARCH
models are designed to model the conditional heteroskedasticity in the time
series of returns yt, that is,

4The number of violations is de�ned as the number of losses greater than V aR(�)

3



yt = �t + "t; (2)

"t = �tzt;

�t = c (�j
t�1) ;
�t = h (�j
t�1) ;

where c (�j
t�1) and h (�j
t�1) are functions of the vector of parameters �
and of the information set 
t�1; zt is a independent and identically distributed
process, independent of 
t�1, with E [zt] = 0 and V ar [zt] = 1; �t is the condi-
tional mean for yt and �2t is its conditional variance. The volatility model (2)
encompass a family of methodologies used to predict V aRs. We next describe
some members of such family.

2.1 RiskMetrics5

RiskMetrics (J.P. Morgan, 1996) is the most simple analyzed methodology.
However, it is still one of the most used to compute V aR, and it is available for
free by J.P. Morgan. In fact, RiskMetrics is a gaussian Integrated GARCH(1,1)
model where the autoregressive parameter is set at a pre-speci�ed value of 0.94
(for daily V aR, in the United States) and the decay parameter (it can be viewed
as an exponential �lter in volatility) is set at 0.06, that is,

�2t = 0:06"
2
t�1 + 0:94�

2
t�1. (3)

The conditional mean �t is estimated by OLS, running yt against its own lags
6

and zt~N (0; 1).

2.2 Gaussian GARCH(1,1)

In spite of using RiskMetrics, we could use the same GARCH(1,1) model but,
instead of setting prespeci�ed values of the parameters, we estimate them. In
other words, we estimate the model

�2t = ! + �1"
2
t�1 + �1�

2
t�1, (4)

and zt~N (0; 1).
This is the second model to be analyzed in our Monte Carlo experiment. The

Gaussian (or Normal) GARCH(1,1) is expected to generate better forecasts than
RiskMetrics, because the parameters are estimated rather than prespeci�ed.

5RiskMetrics is a trademark by J.P. Morgan.
6The number of lags in the OLS regression can be choosen using Information Criteria. One

can also add other conditioning variables.
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Observe that these two �rst models do not capture neither the asymmetric
dynamics7 nor all the leptokurtosis that is generally present in macroeconomics
and �nancial time series, due to the fact that they assume normality for zt.
Indeed, in V aR applications, the choice of a appropriate distribution for the
innovation process zt is an important issue as it directly a¤ects the quality of
the estimation of the required quantiles. One way to weaken the assumption
on the distribution of zt is to consider the Skewed Student-t APARCH model,
which we describe next.

2.3 Skewed Student-t APARCH(1,1)

The APARCH (Ding, Granger and Engle, 1993) is an extension of the GARCH
model that nests at least seven GARCH speci�cations. It can be described as

��t = ! + �1 (j"t�1j � 1"t�1)
�
+ �1�

�
t�1, (5)

where !, �1, 1, �1 and � (� > 0) are parameters to be estimated. � plays
the role of a Box-Cox transformation of �t, while 1 (�1 < 1 < 1) re�ects the
so-called leverage e¤ect: the stylized fact that negative shocks impact volatility
more than positive shocks.
Giot and Laurent (2003) and Giot (2003) use the above model considering a

standardized version of the Skewed Student-t distribution - introduced by Fer-
nández and Steel (1998) - for the zt process. They show that such standardized
version provides more accurate V aR forecasts than the GARCH model. This
result is somehow expected, because the Skewed Student-t APARCH(1,1) nests
the Gaussian GARCH(1,1)8 .
According to Lambert and Laurent (2001) and provided that the degrees

of freedom � > 2, the innovation process zt is said to be standardized Skewed
Student-t distributed, i.e. zt � SKST (0; 1; �; �) if:

f (ztj�; �) =

8<:
2

�+ 1
�

sg [� (szt +m) j�] , if zt < �m
s

2
�+ 1

�

sg
h
szt+m
� j�

i
, if zt � �m

s

, (6)

where g [�j�] is a symmetric (unit variance) Student-t density and � > 0 is the
asymmetry coe¢ cient. The parameters m and s2 are, respectively, the mean
and the variance of the nonstandardized Skewed Student-t:

m =
�
�
��1
2

�p
� � 2

p
��
�
�
2

� �
� � 1

�

�
(7)

7Beaudry and Koop (1993) showed that positive shocks to US GDP are more persistent
than negative shocks, indicating asymmetric business cycle dynamics. More recently, Nam et
al. (2005) identi�ed asymmetric dynamics for daily return on the S&P 500 and used that to
develop optimal technical trading strategies. In 1992, Brock, Lakonishok and LeBaron showed
that two of the simplest and most popular trading rules - moving average and trading range
break - consistently generate buy signals with higher returns than sell signals, and further,
the returns following buy signals are less volatile than returns following sell signals.

8 Indeed, the GARCH(1,1) is an APARCH(1,1) with � = 2 and 1 = 0, and the Skewed
Student-t distribution with the asymmetry coe¢ cient � = 1 (no asymmetry) converges to the
Gaussian distribution when the degrees of freedom � tends to the in�nity.
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and

s2 =

�
�2 +

1

�2
� 1
�
�m2. (8)

In short, � models the asymmetry, while � accounts for the tail thickness.
See Lambert and Laurent (2001) for a discussion of the link between these two
parameters and the skewness and the kurtosis.

2.4 ARCH(q) Quantile

Koenker and Zhao (1996) introduced a quantile regression model that allows
for ARCH e¤ect. The ARCH(q) Quantile methodology uses OLS estimator to
estimate the conditional mean �t, but this is the only similarity with the �rst
three methodologies. The ARCH(q) Quantile does not assume any particular
distribution to the process zt. The model can be described as follows

yt = �t + "t; (9)

"t =
�
0 + 1 j"t�1j+ :::+ q j"t�qj

�
zt:

Thus, the ARCH(q) Quantile speci�cation assumes that the errors follow an
ARCH(q) type model9 , in which the fundamental innovation zt is drawn fro a
unknown distribution Fz:
In all the models presented in this paper, the V aR(�) is de�ned as the �th

conditional quantile of the return, that is

�V aRt (�) = �t +Q" (� j
t�1) ; (10)

where Q" (� j
t�1) is the conditional quantile function of "t.
Given a known distribution for the process zt, the computation of (10) is

straightforward. When the distribution of zt is unknown, we are led to the prob-
lem of quantile regression. The quantile regression method is an extension of
the empirical quantile methods. While classical linear regression methods based
on minimization sums of squared residuals enable one to estimate models for
conditional mean functions, quantile regression methods o¤er a mechanism for
estimating models for the conditional quantile functions, like the one appearing
in (10). Thus, quantile regression is capable of providing a complete statistical
analysis of the stochastic relationships among random variables.
Moreover, quantile regression method has the important property that it is

robust to distributional assumptions. This property is inherited from the ro-
bustness property of the ordinary sample quantiles. Quantile estimation is only
in�uenced by the local behavior of the conditional distribution of the response
variable near the speci�ed quantile. As a result, the estimated conditional
quantile function is not sensitive to outlier observations. Such a property is
specially attractive in �nancial applications since many �nancial data such as

9Observe both the similarities to and the di¤erences from the classical ARCH speci�cation
introduced by Engle (1982).
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IBOVESPA returns are usually heavy-tailed and thus are not (conditional) nor-
mally distributed

2.4.1 Quantile Regression

As we stated above, the idea of quantile regression provides a natural way of
estimating Value at Risk. Quantile regression was introduced by Koenker and
Basset (1978) and has received a lot of attention in econometrics research in the
past two decades. To introduce quantile regression, let Y be a random variable
with distribution function F (y), the � -th quantile of Y is de�ned by

QY (�) = inf fyjF (y) � �g . (11)

Similarly, if we have a random sample fy1; y2; :::; yng from the distribution F ,
the � -th sample quantile is:

Q̂y (�) = inf
n
yjF̂ (y) � �

o
; (12)

where F̂ is the empirical distribution function of the random sample. This
sample quantile may be found by solving the minimization problem:

min
b2R

24 X
t2ft:yt�bg

� jyt � bj+
X

t2ft:yt<bg

(1� �) jyt � bj

35 : (13)

Generalizing, if we consider the model:

yt = x
0
tb+ �t; (14)

where xt is a k x 1 vector of regressors including an intercept term. Then,
conditional on the regressor xt, the � -th quantile of y:

QY (� jxt) = inf fyjF (yjxt) � �g ; (15)

is a linear function of xt:

b1 + x
0
2tb2 + :::+ x

0
ktbk + F

�1
� (�) ; (16)

where F" (�) is the cumulative distributional function of the residual. The � -th
conditional quantile of y can be estimated by an analogue of equation (13):

Q̂Y (� jxt) = x0tb̂ (�) ; (17)

where

b̂ (�) = arg min
b2Rk

24 X
t2ft:yt�x0tbg

� jyt � x0tbj+
X

t2ft:yt<x0tbg

(1� �) jyt � x0tbj

35 (18)

is called the quantile regression. As a special case, the least absolute deviation
(LAD) estimator (or l1 regression) is the median regression, i.e., the quantile
regression for � = 0:5 10 .
10For more on quantile regression, see Koenker (2005).

7



2.4.2 Estimating the ARCH Quantile V aR

Given equation (9), we denote (1; j"t�1j ; :::; j"t�qj)0 as Xt and the corresponding
coe¢ cient vector as . Then,

Q" (� j
t�1) = X 0
t� (�) ; (19)

where
� (�) =

�
0Qz (�) ; 1Qz (�) ; :::; qQz (�)

�0
; (20)

and Qz (�) = F�1z (�) is the quantile function of z. By de�nition, V aRt (�), the
conditional Value-at-Risk at the � -th quantile is just

�V aRt (�) = �t +X 0
t� (�) : (21)

So we need to estimate b� (�)11 . It can be achieved by solving the problem:
b� (�) = arg min

2Rq+1

24 X
t2ft:ut�Z0tg

� j"t �X 0
tj+

X
t2ft:ut<Z0tg

(1� �) j"t �X 0
tj

35 :
(22)

In practice, we can replace "t by their OLS estimators b"t = yt�b�t. For example,
if �t = �o��1yt�1, then b"t = yt� b�o� b�1yt�1, where b�o and b�1 are estimated
by OLS. Under mild regularity conditions, Koenker and Zhao (1996) show thatb� (�) estimated based on b"t is still a consistent estimator of � (�) :
Before we move to the empirical section, it is important to mention that the

comparison of di¤erent V aR methodologies depends on the speci�cation of �t
(the conditional mean) and the speci�cations of the conditional volatility. In
the empirical example that follows, we consider �t = �o � �1yt�112 . As for the
number of lags present in the de�nition of "t in equation (9), we follow Wu and
Xiao (2002) and use a Wald test to determine the optimal lag choice13 . As for
the order of the GARCH and APARCH models, we follow Enders (2003, pp
136) and use adjusted information criteria.

3 Monte Carlo Simulations

The objective of this section is to compare the four aforementioned V aRmethod-
ologies. We perform Monte Carlo Simulations with 1000 replications for each
Data Generating Process (DGP) and 1250 observations for each generated time
series. We use a rolling window of 250 observations to estimate the parameters
of the four methodologies and forecast the V aR (1%) associated to the 251st

observation. The result is a 1-day-ahead V aR time series, one for each method-
ology. At the end, we will have1001 forecast observations for each methodology.

11Remember that b�t is estimated by OLS.
12First-order serial correlation in returns is not necessarily at odds with the e¢ cient market

hypothesis. See Campbell et al. (1997) for a detailed discussion.
13As all the codes used in this paper, the R code that computes the p-values of the Wald

tests in this general-to-speci�c modelling strategy with k = 1 is available upon request.
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We decide for a 250-observation window because it is the number of observations
required to compute the multiplication factor Ft in the capital charge formula
and because it is approximately 1 year, a reasonable time to be used by the
banks, containing enough information for the parameters estimation, without
loosing so many observations. To �nd the violations, we need to compare the
last 1000 observations of the generated series with the �rst 1000 observations of
the V aR forecasts14 . The choice for the V aR (1%) is due to regulatory purpose.
The DGPs used in this experiment are

yt = 0:5yt�1 + "t; (23)

"t = �tzt; (24)

�2t = 1 + 0:5"
2
t�1; (25)

where zt are independent and identically distributed fundamental innovations,
zt � i:i:d. There are �ve di¤erent innovation distributions and, therefore 5
DGPs that are described below:

DGP Distribution of zt
1 N (0; 1)
2 t(3)
3 �2(1) � �(1)
4 �(2) �Gamma (2; 1)
5 �2(1)If�t�0:2g +

�
�2(1) + �(�4)

�
If0:2<�t�0:8g + �(�4)If�t>0:8g

; (26)

where �(x0) is the Dirac�s Delta density, which distribution F�(x0) (x) which is
given by

F�(x0) (x) =

�
1;
0;

if x � x0
if x < x0

; (27)

If�g is an indicator function that values 1 if the condition inside the braces is true
and 0 otherwise, and �t is an independent and identically distributed standard
uniform distribution, �t � U [0; 1].
Therefore, DGP1 corresponds to the standard gaussian one. In the DGP2,

zt are drawn from student-t distribution with 3 degrees of freedom. The distri-
bution of zt in DGP3 is no longer symmetric. The distribution of zt in DGP4
and DGP5 are nonstandard, and they are considered to verify the robustness of
V aR methodologies against distributional misspeci�cation.

3.1 Computational Details

We use R and Ox to conduct this experiment. The former is an open source
computer-programming language, hence not only it can be freely downloaded
from the Internet15 but also its source codes under a GNU General Public
14Observe that the 1001-th observation is the V aR forecast for a day that there are no more

observation in the sample (in the returns time series).
15www.r-project.org
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License (GPL). This availability keeps R always updated to the most recent
techniques in Statistics, Econometrics and Computer Science. The latter can
be freely download from the Internet16 for research purpose.
The time series are generated in R because its default17 Random Num-

ber Generator (RNG) is the Mersenne-Twister (see Matsumoto and Nishimura,
1998), an impressive RNG with period 219937 � 1 and equidistribution in 623
consecutive dimensions (over the whole period). The RNGs available in Ox
are the Modi�ed Park and Muller (see Park and Muller, 1988, and for Box-
Muller Transformation, see Box and Muller, 1958), the Marsaglia-Multicarry
(see Marsaglia and Zaman, 1994, and Marsaglia, 1997) and the L�Ecuyer (see
L�Ecuyer, 1999), with approximate periods of 232, 260 and 2113, respectively.
Only the last one is not yet implemented in R, but the user can supply it as
well.
This Monte Carlo experiment is extremely computational intensive. For

each observation in the V aR forecast, there are three likelihood maximizations
- RiskMetrics, Gaussian GARCH(1,1) and Skewed Student-t APARCH(1,1) -
with 250 observations (the window length) each. The third maximization oc-
curs in a 7-dimensional hyperplane within a 8-dimensional space (5 parameters
for the APARCH(1,1) speci�cation and 2 parameters for the Skewed Student-t
distribution). The R is supposed to take some months to conclude all the Monte
Carlo, even in our server with 4 Intel Pentium IV Xeon at 2.8 GHz, a 4 GB RAM
and a 100 GB SCSI Hard Disk running Linux Debian as Operating System. R
is not so fast since it is an interpreted language: the interpreter executes the
code line by line, so the user can enter a single line and see the results, which
makes it more interactive and user-friendly. Ox is one order of magnitude faster
than R since it is a compiled language: the compiler analyses the code as a
whole, really optimizing it before executing it, which makes it much faster in
large computations.
However, the ARCH(1) Quantile V aR must be estimated in R because the

quantreg package for R, version 3.82, May 15, 2005, developed mostly by Roger
Koenker himself, is very complete and operational18 . Thus, we proceed as fol-
lows: R generates the time series, then it calls Ox to estimate the �rst three
V aR methodologies19 . Next, Ox returns these V aR forecasts to R that esti-
mates the ARCH(1) Quantile V aR, computes the descriptive statistics and saves
the results in the Hard Disk. R then generates another time series and the next
replication begins. Using this hybrid solution (Ox and R), all the Monte Carlo
experiment takes a couple of weeks. Every written code, for both R and Ox,
used in this paper are available upon request.

16www.doornik.com
17Alternatively, the user can select one of the eight RNGs available, or to supply another

one.
18Ox has also a code called rq to, at least, estimate quantile regression, but it is quite

incomplete. It was written by a Roger Koenker�s student, Daniel Morillo, but it has been
abandoned in its version 1.0, August 1999.
19Our Ox code uses some function from the package G@RCH 4.0, by Laurent and Peters

(see Laurent and Peters, 2005), for Ox.

10



3.2 Results

For each replication (with 1000 daily forecasts), the ideal number of violations
of a V aR (1%) is 10, but there are replications with more violations and there
are replications with less violations. Hence, we shall analyze the distribution of
violations. Since there are 1000 replications, such a distribution of violations
will have 1000 points (each point represents the number of violations that oc-
curred at a trajectory). Recall that there are four V aR methodologies labelled
as V aR i, i = 1; 2; 3; 4: Hence, V aR 1, V aR 2, V aR 3, and V aR 4 correspond
to the RiskMetrics, GARCH(1,1), APARCH(1,1), and ARCH(1) Quantile V aR
methodologies, respectively. We assess the performance of each V aR method-
ology under the 5 aforementioned DGPs. Table 1 and 2 presents location and
scale parameter estimates of the various distributions of violations

Table 1. Distributions of violations: mean, bias and variance

Methodology DGP1 DGP2 DGP3 DGP4 DGP5
Mean

V aR 1 19:4 19:8 19:8 19:7 20:0
V aR 2 12:7 13:2 12:9 13:2 13:4
V aR 3 12:8 13:5 13:3 13:5 13:5
V aR 4 14:7 14:7 14:6 14:8 14:6

Bias
V aR 1 9:4 9:8 9:8 9:7 10:0
V aR 2 2:7 3:2 2:9 3:2 3:4
V aR 3 2:8 3:5 3:3 3:5 3:5
V aR 4 4:7 4:7 4:6 4:8 4:6

Variance
V aR 1 62:1 72:0 72:5 66:6 69:0
V aR 2 88:1 105:4 103:3 102:7 102:1
V aR 3 80:5 102:2 100:1 93:6 98:7
V aR 4 7:4 7:5 7:5 7:3 8:1

(28)

On one hand, we notice in Table 1 that all four methodologies present posi-
tive biases. The RiskMetrics methodology is the most biased and the Gaussian
GARCH(1,1) has the least bias. However, as the distribution of zt becomes dif-
ferent from the Gaussian one, the non-robust methods (V aR 1, V aR 2, and V aR
3) tend to exhibit larger bias. This does not happen to the robust ARCH(1)
Quantile method, which exhibits a very stable bias across di¤erent innovation
distributions. On the other hand, Table 1 also shows that the variance is much
higher (one or two order of magnitude higher) in the �rst three methodologies
than in the ARCH(1) Quantile.
We compute in Table 2 the range of the distribution of violations, i.e., the

di¤erence between the maximum and the minimum amount of violations. We
notice that the fourth methodology has the lowest range. Indeed, its maximum
value never exceeds 27 violations, which can be considered a good performance
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in a V aR (1%). The non-robust methodologies have maximum number of vio-
lations at least three times as large as the ARCH(1) Quantile qmethod. This
excess dispersion invalidates the �rst three V aR methodologies, since they jeop-
ardize the bank or institution that use them to compute V aR measures. It is
not acceptable for a measure of risk be too risky, in the sense that its probability
of having trajectories with a large number of violations is too high, as a bank
may go belly-up if this trajectory is the true (realized) one.

Table 2. Distributions of violations: minimum, maximum and range.

Methodology DGP1 DGP2 DGP3 DGP4 DGP5
Minimum Value (Min)

V aR 1 6 7 8 7 6
V aR 2 2 3 3 1 3
V aR 3 3 3 2 2 2
V aR 4 7 7 6 7 3

Maximum Value (Max)
V aR 1 76 75 80 69 75
V aR 2 83 68 79 66 77
V aR 3 75 71 78 65 66
V aR 4 26 25 25 27 23

Range = Max - Min
V aR 1 70 68 72 62 69
V aR 2 81 65 76 65 74
V aR 3 72 68 76 63 64
V aR 4 19 18 19 20 20

: (29)

The ARCH(1) Quantile V aR exhibits the second greatest bias, but displays
the lowest variance and range. To assess the trade-o¤between bias and variance,
we adopt the Mean Squared Error (MSE), abiding by the formula (see Engle
and Manganelli, 2001)

MSE
�
X̂
�
:=

1

1000

1000X
i=1

(Xi � 10)2 ; (30)

whereXi is the number of violation in the i-th replication, 1000 is the total num-
ber of replications and 10 is the ideal number of violations, for a V aR(1%), at

each replication. It can be shown that theMSE
�
X̂
�
= V ar

�
X̂
�
+Bias

�
X̂
�2
,

where Bias
�
X̂
�
= �X � 10 and �X = 1

1000

P1000
i=1 Xi. The bias and the MSE are

show in the next table:

Table 3. Distributions of violations: Mean Squared Error
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Methodology DGP1 DGP2 DGP3 DGP4 DGP5
Mean Squared Error

V aR 1 150:7 168:8 168:0 160:9 169:3
V aR 2 95:3 115:4 110:9 112:7 113:5
V aR 3 88:1 114:6 110:9 106:1 111:0
V aR 4 29:6 29:5 29:0 30:3 29:2

: (31)

Notice that, even considering the bias, the ARCH(1) Quantile VaR method-
ology has, by far, the lowest MSE. Notice that the MSE of the non-robust
methods tends to increase as we consider innovations distributions that are dif-
ferent from the Gaussian one. This unpleasant property does not appear in
the robust ARCH(1) method since we can see that its MSE is pretty stable
across di¤erent distributions. For completeness, we show in Table 4 estimates
of skewness and excess kurtosis of the distributions of violations.

Table 4. Distributions of violations: skewness and excess kurtosis

Methodology DGP1 DGP2 DGP3 DGP4 DGP5
Skewness

V aR 1 2:8 2:6 2:7 2:6 2:6
V aR 2 3:2 2:8 3:0 2:8 2:8
V aR 3 3:3 3:0 3:1 2:8 2:7
V aR 4 0:3 0:3 0:3 0:3 0:1

Kurtosis
V aR 1 10:1 8:2 8:5 7:8 8:3
V aR 2 11:6 7:8 8:9 7:5 7:8
V aR 3 11:9 9:2 10:4 7:7 7:2
V aR 4 0:2 0:1 0:2 0:6 0:1

; (32)

We observe that the non-robust V aR methodologies give rise to distributions of
violations that are skewed to the right and possess excess kurtosis. Again, the
robust ARCH(1) Quantile method gives rise to an well-behaved distribution of
violations, with almost none skewness nor excess kurtosis.
In sum, our Monte Carlo experiment suggests that the robust method domi-

nates the other methods, since the former gives rise to a distribution of violations
that present very low MSE, almost none skewness and excess kurtosis. More
importantly, these nice properties are preserved over a wide range of innova-
tion distributions. This result is expected because the robust method does not
depend on distributional assumption.

4 An Empirical Illustration

4.1 The Data

We perform an empirical exercise using daily returns, in US dollars, of the
Brazilian São Paulo Stock Exchange Index (IBOVESPA) from 08/07/1996 to
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24/03/2000, summing up 920 observations. We choose this sample because we
want to check the performance of each V aR methodology during periods of
market turmoil, when market drops are followed by further drops or rebounds.
Indeed, the above sample period covers the Korean Crisis in 1997, the Russian
crisis in 1999, and the blast of the technology-stock market bubble in 2000.
Figure 1 displays the behavior of the IBOVESPA return over the above sample
period.

Figure 1

The above picture shows that during the considered sample period, market
drops are followed by further drops or rebounds, characterizing what we called
market turmoil. It is well known that GARCH volatility models tend to predict
implausible high V aR during periods of market turmoil. This happens because
GARCH models treat both large positive and large negative return shocks as
indicators of high volatility, which only large negative return shocks indicate
higher Value-at-Risk. In other words, volatility and V aR are not the same
thing, and this is not taken into account by the non-robust GARCH volatil-
ity models20 . In contrast, the robust ARCH Quantile, while predicting higher

20 It is true, however, that the APARCH model assigns di¤erent weights to negative and
positive shocks which helps avoiding estimation of high VaRs during periods of market stress.
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volatility in the ARCH component, assigns a much larger weight to a big neg-
ative return shock than to a big positive return shock and, thus, we expect
that the resulting estimated V aRs are closer to reality during periods of market
turmoil (see similar argument in Wu and Xiao, 2002).
We next examine the distribution of the Ibovespa return. It was argued

in this paper that, unlike the non-robust methods, the ARCH Quantile method
has no need to specify the distribution of the innovation process, zt. The impor-
tance of this robustness aspect is revealed by the Quantile-Quantile plots (QQ
plot). Recall that the QQ plot graphs the quantiles of the observed variable
(IBOVESPA return) against the quantiles of a speci�ed distribution. Hence,
if the returns are distributed according to that speci�ed distribution, then the
points in the QQ-plots should lie alongside a straight line. The next two graphs
show the QQ plots against all the 5 innovation distributions used in our Monte
Carlo experiment

Figure 2

Figure 2 indicates that it is primarily large negative and positive shocks that
are driving the departure from normality. In other words, the tail behavior of the
distribution of the IBOVESPA return are far di¤erent from the tail behavior of
a Gaussian distribution. Figure 3 exhibits the QQ plots against the 4 remaining
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distributions. It seems that the student-t distribution with 3 degrees of freedom
approximates the data distribution reasonably well, but there still be extreme
positive and negative observations that lie o¤ the straight line suggesting that
the student-t distribution with 3 degrees of freedom does not �t the tail of the
data distribution pretty well, what is particularly bad for risk measures. Figures
3 also shows that the data distribution departures from the other 3 distributions
considered in our Monte Carlo experiment, but they �t the data distribution
even worse than the previous two distributions.
Thus, given this uncertainty about the speci�cation of the innovation distri-

bution, how could we go about computing Value-at-Risk correctly? A natural
answer to it is to use a method robust against distribution misspeci�cation, such
as the method based on the ARCH Quantile model.

Figure 3

4.2 The Estimated VaRs

Notice that there is no V aR forecast for the �rst 250 observations, due to the
�rst temporal window. Hence, there are 670 1-day-ahead forecast observations
for each V aR (1%) methodology, ranging from 11/07/1997 to 24/03/2000. Since
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it is a 1% Value-at-Risk, we expect about 7 violations. Point estimates of the
violations are reported in the table below

4.3 Backtest

The Unconditional Coverage backtest was proposed by Kupiec (1995). Under
the null hypothesis that P [rt < �V aRt (�) jIt�1] = � , 8t, i.e., that the proba-
bility of occurrence of a violation is indeed � , the number of violations, X, in
a given time span, T , follows a binomial distribution: X � Binomial (T; �).
De�ne �̂ := X

T . Then, the likelihood ratio test statistic
21 is

LRuc = 2 ln

 
�̂X (1� �̂)T�X

�X (1� �)T�X

!
. (33)

Under the null hypothesis that � = �̂ , LRuc � �2(1).
The next table shows the results of the Unconditional Coverage Test:

Methodology V aR 1 V aR 2 V aR 3 V aR 4
Unconditional Coverage Test

Number of Violations 14 12 13 11
Test Statistic LRuc 6:115232 3:429641 4:693915 2:335267

P-Value 0:013402 0:064036 0:030270 0:126473

(34)

Note that the number of violations in the RiskMetrics methodology is the
greatest, while the ARCH(1) Quantile presents the greatest p-value in the Un-
conditional Coverage test, that is to say, we do not reject, even at a 10% signif-
icance level, the null hypothesis that the conditional probability of occurrence
of a violation in this 1% Value-at-Risk estimated time series is indeed 1%.

5 Conclusion

We perform a Monte Carlo experimet to compare four di¤erent Value-at-Risk
methodologies, RiskMetrics, Gaussian GARCH(1,1), Generalized Student-t APARCH(1,1),
and ARCH(1) Quantile, under �ve di¤erent data generating processes. The
ARCH(1) Quantile methodology does not assume any distribution for the re-
turns, and this robustness is shown to avoid trajectories with too many viola-
tions. The number of violations tends to be higher in the non-robust method-
ologies when the distribution di¤ers from the Gaussian one.
We also perform an empirical exercise applying the four Value-at-Risk method-

ologies to daily return of the IBOVESPA (measured in dollar values) in a period
of market turmoil (1996-2000), when happens the Korean crisis, the Russian cri-
sis and the blast of the technology-stock market bubble. We display that, again,
the ARCH(1) Quantile methodology dominates the non-robust methodologies,
in the sense that it presents the least number of violations.

21This is the uniformly most powerful (UMP) test for a given T .
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