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Abstract

A dynamic Tobit model with Time-varying parameters is proposed for the daily reaction

function of the Open Market Desk of the US Federal Reserve. Such a model o¤ers a more

realistic depiction of the Desk�s behavior than those of past contributions in the literature as it

allows for both possible dynamics in the Desk�s daily operations and for day-to-day time varying

responses of the Desk to changing conditions in the reserves markets and in the short-term

interest rates. Ensuing computational complications are overcome by employing Markov Chain

Monte Carlo techniques for the estimation of the model. The results reveal a rich pattern of

dynamic behavior by the Open Market Desk both inside the maintenance period and across

maintenance periods and point towards a Desk which is highly adaptable to evolving conditions

both in the economy in general and in the market for reserves in particular.
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1 Introduction

The historical evolution of US monetary policy has received substantial attention recently in the ap-

plied macroeconomic literature. A large portion of this literature estimates single equation reaction

functions of the Federal Reserve (typically linking the Fed�s policy instrument, the fed funds rate, to

various measures of in�ation and output) in an attempt to uncover structural breaks, regime shifts,

and, in general, important episodes in US monetary policy and to also characterize their impact on

the economy1.

While estimating such reaction functions2 allows us to quantify shifts in the broad direction of

monetary policy and to characterize the overall policy stance of the monetary authority at di¤erent

points in time, as this is decided upon by the Federal Open Markets Committee, this approach tells

us little, if anything, about the way the Fed goes about implementing its chosen policies on a daily

basis.

It is the task of the Open Market Desk of the Federal Reserve Bank of New York (henceforth "the

desk") to implement FOMC directives on the desired target level for the federal funds rate, through

open market operations. These open market operations (such as overnight repurchase agreements,

or RPs) ensure that the banks� (and other depository institutions�) demand for balances at the

Federal Reserve are close to the supply of such balances at an interest rate consistent with the

desired target level for the federal funds rate. Thus, the desk, by engaging in such OMOs on a daily

basis, carries out the FOMC directives on the target for the policy instrument, thereby essentially

ensuring that monetary policy is implemented in a way consistent with FOMC decisions3.

Examining the daily behavior of the desk and its reaction to relevant market variables (such as

reserve need levels, or the deviation of the fed funds rate from its target level) is of interest on its

own, and can potentially yield insightful answers to interesting questions. For instance, to what

1Some of the papers from this large literature that estimate such reaction functions include Boivin (2004), Clarida,
Galí, and Gertler (2000), Cogley and Sargent (2002), Dueker (1999), Monokroussos (2005), Orphanides (2004), Sims
(1999), Taylor (1993), etc.

2Typically such reaction functions (also known as Taylor rules) are estimated using quarterly or monthly data.
3Some excellent sources for further details on the New York Fed, its trading desk, and its open market operations

are, inter alia, Hamilton (1996), Meulendyke (1998) and Stigum (1989).
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extent did the Fed contribute, through its daily conduct of monetary policy, to the destabilizing

e¤ects of the October 1987 stock market crash on the US economy being relatively muted? Or, why

did the volatility of the federal funds rate decrease in the 1990�s, despite a substantial reduction in

the level of required reserve balances?

Nevertheless, and in contrast to the very extensive work that has been done estimating FOMC

reaction functions, the literature on desk reaction functions is very small. Two papers that propose

and estimate a reaction function for the desk are Feinman (1993) and Demiralp and Farley (2005).

They both use the maintenance-period-average4 reserve impact of daily open market operations as

the dependent variable, and they model that as a function of various variables capturing conditions

in the market for reserves (such as projected maintenance-period-average reserve needs, and the

measures of the intraperiod distribution of the reserve need).

Both Feinman and Demiralp and Farley (henceforth DF) are careful in noticing, however, that a

simple, linear-OLS framework using the above variables would not be appropriate as a model of the

desk reaction function: The explanatory variables are "continuous", in the sense that they change

daily, but despite these daily �uctuations of the explanatory variables, the desk very often abstains

from any action during the maintenance period. Indeed, and as DF point out, recently the desk

does not engage in even the most frequent type of open market operations, the overnight RPs more

than 50% of the time.

Feinman and DF thus propose and estimate a (censored) Tobit model5, where, in a standard

manner, there is a linear latent equation, and the observed dependent variable is di¤erent from

zero (and equal to the latent dependent variable) only when the latent variable is above (or below,

depending on whether we have open market operations that add or drain reserves from the system)

4The maintenance period is a fourteen day period starting on a Thursday and ending on a Wednesday. Banks and
other depository institutions are required to hold a certain average level of balances at the Federal Reserve, and this
average level is calculated over the 14-day maintenance period. For instance, banks can compensate for large reserve
de�ciencies on a given day by holding excess reserve surpluses on other days within the same maintenace period.

5This is a censored tobit as we do have observations for the explanatory variables when the dependent variable is
zero. The idea is that the dependent variable is subject to a constraint (there won�t be any open market operations
when only (relatively) small changes in reserve levels are called for), whereas the independent variables aren�t subject
to any constraints.
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a certain threshold value6.

However, and despite Feinman�s and DF�s judicious choice of a Tobit model for the desk�s

reaction function, there is arguably some substantial space for improvement. First, the model that

the authors propose is a static Tobit. This does not allow for the possibility of dynamics and inertia

in the desk�s behavior. It is likely that the case for inertia in the desk reaction function is not as

strong as that with the FOMC reaction function. After all, the desk, in its quest to implement

FOMC directives, responds to daily market conditions with less concern for reputational e¤ects,

that would, in the face of uncertainty about data used and about the economy, contribute to inertial

behavior and caution, as is the case with the FOMC; but this is still a possibility that ought to be

investigated.

However, and while dynamics in the form of lags of the dependent variable may not be of central

importance in the present context, there is little doubt that a di¤erent sort of dynamics ought to be

a central feature in any realistic attempt to model the desk�s behavior, namely dynamics in the form

of evolving responses of the Fed towards changing conditions in the markets for reserves, both within

each maintenance period, and across maintenance periods. Feinman and DF model such changing

responses of the desk through time by attempting to identify structural breaks and by estimating

reaction functions separately for each of the subsamples (determined by the structural breaks that

have been identi�ed). They model the desk�s changing responses within a given maintenance period

by introducing a host of dummy variables representing whether we�re early or late in the period

(Feinman) or di¤erent days and events inside the maintenance period (DF).

In this paper I propose and estimate a dynamic Tobit with time varying parameters that allows

for more complete modeling of the dynamics in both of the dimensions described above. However,

the addition of both dynamics and time varying parameters to a standard Tobit comes at the cost

6Feinman also proposes a multinomial logit model, where, in a similar fashion to the tobit model, the explanatory
variables include information related to reserves and short-term interest rates that are available to the desk each
morning, but the dependent variable is the type of open market operation conducted (rather than changes brought
about to average levels of reserves, as in the tobit model). As DF correctly point out, however, logits rely on very
restrictive distributional assumptions that may not be appropriate in the present context. Furthermore, I believe
that little, if any, additional insight on the economics of desk behavior can be gained from such a model, that is not
obtained from the estimation of the tobit model in the �rst place. Indeed, Feinman uses such estimated logit models
primarily in in-sample prediction experiments.
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of substantially increased computational complexity, if one attempts to estimate such a model in

a standard, maximum likelihood context. I overcome these computational challenges by adopting

a Markov Chain Monte Carlo framework that does not require computation of the likelihood and

that is also outside the extremum context.

My �ndings con�rm some of the Feinman and the DF conclusions and refute others. In partic-

ular, the results of this paper indicate that the desk exhibits inertial behavior only to a minimal

degree: past changes in maintenance-period-average levels of reserves are not a signi�cant determi-

nant of the desk�s actions during the present maintenance period. Furthermore, the paper�s results

broadly con�rm the DF �nding that the desk adjusted its behavior in the 1990�s in order to better

face the new environment created by lower reserve requirements in a way that contributed to lower

funds rate volatility. Similarly, the results here are compatible with the Feinman �ndings on the

desk�s response towards daily reserve surpluses/de�ciencies becoming weaker as the maintenance

period draws closer to its end. The desk is shown to be focusing more on maintaining a desired

maintenance-period average level of reserves and less on smoothing intra-period reserve �uctuations,

and this contrast is even more pronounced as we get closer to maintenance-period ends. Finally,

the results show that, in contrast to Feinman�s claim of a unique, stark structural break in the desk

response towards deviations of the fed funds rate from its target level during the stock market crash

of October of 1987, the break during that period was neither unique, nor the largest one.

The rest of the paper is organized as follows: Section 2 provides a more detailed depiction

of the desk behavior as a way of motivating the proposed model for the desk reaction function,

and a detailed description of the model (both the benchmark dynamic Tobit model, as well as

its extension that includes both dynamics and time varying parameters) and of the associated

computational challenges, as well as the econometric techniques adopted so as to overcome these

challenges. Section 3 describes the data used in the paper. Section 4 provides the results and their

discussion, and Section 5 gives some concluding remarks. The details of all the MCMC algorithms

employed in the paper are provided in the Appendix.
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2 A Dynamic Tobit Model for the Open Market Desk�s Daily Re-

action Function

The desk�s principal task is to intervene in the reserves market by engaging in Open Market Oper-

ations (OMOs) when this is called for so as to bring the demand for banks�and other depository

institutions�balances at the Fed close to their supply at a level for the federal funds rate that is

close to the target level dictated by the Federal Open Markets Committee, thus essentially imple-

menting FOMC directives on the desired target level for the fed funds rate, the Fed�s monetary

policy instrument.

These OMOs are usually temporary, and occasionally permanent (or "outright") purchases or

sales of US Government securities in the "open" market (also known as "secondary" market).

Temporary OMOs are purchases or sales of such securities by the desk that are going to be reversed

at a later point in time. They consist of operations that add reserves to the banking system or

drain reserves from the banking system. Temporary add operations are Repurchase Agreements

(or RPs), with which the Desk buys securities from dealers in the secondary market, who agree

to repurchase them on a speci�ed date at a speci�ed price. The most frequent type of such add

operations (and the most frequent type of OMOs in general) are overnight RPs, but the desk also

uses RPs that are longer in duration (short-term RPs, which last for thirteen days or less, or long-

term RPs, which last for fourteen days or more) in order to achieve its objectives for the availability

of funds in the reserves market. The desk also resorts occasionally to temporary draining operations

(Matched Sale-Purchase transactions, or MSPs, and Reverse Repurchase Agreements (or Reverse

RPs), which, however are not as common as RPs.

As the desk�s goal with all these OMOs is to bring the availability of reserves in the banking

system to a desired level (thus indirectly also controlling the fed funds rate (and thus other short-

term interest rates as well) according to FOMC directives), the natural candidate for a dependent

variable for a desk reaction function is the change in the (maintenance-period average) level of
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reserves brought about by such OMOs7. The desk reaches decisions each day on what (if any)

OMOs to conduct by reviewing all the relevant information that is available each morning and

that summarize the conditions in the reserves and federal funds markets. Thus, obvious choices for

important explanatory variables that ought to appear in a desk reaction function are the deviation

of the daily fed funds rate from its target level, and the projected reserve availability for the

maintenance period, probably in terms of both average levels over the maintenance period and of

the distribution of reserve availability (again over the maintenance period).

Further details on all the variables and the data used are provided in the following section.

There are three issues that are of central importance however and that motivate the speci�cation

proposed in this paper for the desk reaction function:

2.1 Model Speci�cation

First, it is crucial to notice, as both Feinman and DF did, that while all the explanatory variables

are "continuous" (in the sense that there are no constraints on the support space of these variables

and they do �uctuate daily), the dependent variable is constrained. As noted above, the dependent

variable is the changes in the (maintenance-period average) reserve levels brought about by OMOs.

However, these OMOs do not take place every day of the maintenance period, rather, they take

place relatively infrequently, as for instance, overnight RPs, which are the most frequent type of

operations, happen less than 50% of the time. Thus, the dependent variable is constrained in a

substantial way, as it is very often zero during the maintenance period. Given this structure, it is

clear that a linear-OLS estimation approach is inappropriate for the estimation of the desk�s reaction

function. So, the model adopted here is a censored Tobit, where there is a linear latent equation

(with a latent "change in maintenance period average level of reserves" being the dependent variable,

and the explanatory variables being as described above) and the observed dependent variable is

nonzero (and equal to the latent variable) only when the latent variable is above (for RPs) or below

(for reverse RPs and MSPs) a certain threshold value.

7 Indeed this is the dependent variable in both of the Feinman and DF speci�cations.
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The second issue is that a static censored Tobit (the model used by both Feinman and DF),

may be too restrictive a speci�cation, given that we are in a time series context. While the case for

inertia and dynamics for the desk reaction function may not be as strong as with the FOMC reaction

function8, we cannot rule out ex ante the possibility that the desk indeed exhibits such inertial

behavior in the way it conducts its daily operations. The dynamics are modeled by introducing lags

of the latent dependent variable as additional explanatory variables.

Thus, the benchmark speci�cation is as follows:

y�t = �+ �(L)y
�
t�1 +Xt� + "

�
t , where: (1)

8><>: yt = 0 if y�t � �

yt = y
�
t if y

�
t > �

, (2)

where, t = 1; :::; T indexes time, y�t is the latent dependent variable (latent "change in maintenance

period average level of reserves"), for period t, and similarly yt is the (constrained) dependent

variable for period t, Xt are the period-t explanatory variables (other than the latent lags), �, �

(� is a k � 1 vector, where, k is the number of explanatory variables) are the intercept and the

coe¢ cients of the explanatory variables, �(L) = �1 + �2L+ :::+ �nL
n�1, (where all of the roots of

the associated polynomial 1��1L��2L2� :::��nLn lie outside the unit circle), "�t � N(0; �2), and

� is the threshold value that determines the cuto¤ point beyond which there will be an operation9.

Note that, as is usually the case with censored Tobits, there are three alternative concepts for

conditional mean functions to consider, and thus three corresponding concepts of marginal e¤ects

of the independent variables on the dependent variable. First, we have the truncated mean, which

is the mean of the dependent variable conditioning on the truncation, with which we con�ne our

8After all, the desk reaches decisions every morning on what (if any) OMOs to conduct for the day mostly on the
basis of daily information related to the markets for reserves and for short-term interest rates. Thus, arguments such
as caution and reputational or signaling considerations on the part of the desk, that in the face of uncertainties about
data estimates available in real time or the conditions in the markets would induce inertial behavior (as they do with
the FOMC) do not seem to be that important in this context.

9The focus of the paper is exclusively on add operations (draining operations are very infrequent and are not
considered in this paper, due to data limitations).
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attention to uncensored observations only. Second, we have the mean of the latent variable, y�, and,

third, we have the censored mean, where the mean is taken over the entire distribution (including

both the censored and the uncensored parts). As is usually the case with such models, opinions

di¤er on which of the three concepts of means and corresponding marginal e¤ects are the useful

ones10, and of course the choice also depends on the context and on what question exactly the

researcher is interested in answering11.

In the present context, we wish to study the desk�s reaction function (to changing market

conditions), and thus we are primarily interested in the e¤ects that the changing conditions in the

markets (for reserves and for short-term interest rates) have on the desk�s desire to intervene by

a¤ecting the availability of reserves in the banking system. The desk�s urge to intervene �uctuates

in magnitude on a daily basis, and does not result in actual interventions unless this urge is big

enough12, but it�s always there in the �rst place; so the truncated means and corresponding marginal

e¤ects may be the least interesting of the three concepts. The censored mean and the mean of the

latent variable are both smaller than the truncated mean13, and the choice made in this paper is

the mean of the latent variable and its corresponding marginal e¤ects. The reason for this choice

is both its computational simplicity (indeed, the marginal e¤ects in the latent context are just the

coe¢ cients of the explanatory variables, and are thus easier to obtain than either the censored or

the truncated marginal e¤ects), and also the fact that the focus of the paper is policy analysis and

a historical description of the evolution of the desk�s reaction function, rather than, say, predicting

the desk�s next OMO (in which case the censored mean would be more appropriate)14.

The third important issue that ought to be considered in a realistic speci�cation for the desk�s

10 Indeed, in the present context, Feinman considers the mean of the latent variable, and DF choose to focus on the
truncated mean.
11See Greene (2002) for a very interesting discussion of the alternative concepts and their interpretations in various

applied contexts.
12Or, (using terminology from the tobit model), it does not result in actual interventions unless the latent dependent

variable is larger than the threshold value.
13That�s quite intuitive, as the truncation is from below in the present context, but the exact expressions and proofs

can be found in Greene (2002).
14Note that the latent and censored means (and corresponding marginal e¤ects) are unlikely to di¤er much in prac-

tice, and also that the ratios of di¤erent explanatory variables marginal e¤ects are identical for all three alternatives
(truncated, censored, latent), and equal to the ratios of the corresponding coe¢ cients of the explanatory variables
(for a proof, see Greene (2002) ).
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reaction function (and that is not being adequately addressed in the benchmark speci�cation of

equations (1) and (2)) is that of the changing responses of the desk towards �uctuating conditions

in the markets for reserves and for the fed funds rate, both within each maintenance period, and

across maintenance periods, and through time. For example, and as Feinman and DF point out, the

desk is more likely to let daily surpluses or de�ciencies persist as the maintenance period draws closer

to the end. An example of the desk�s possibly changing behavior through time is the a structural

break during the stock market crash of October 1987, for which Feinman provides evidence in his

paper.

Feinman and DF account for such changes by testing for structural breaks and by estimating

di¤erent reaction functions for each of the subperiods determined by such breaks and also by em-

ploying dummy variables for di¤erent days and events of the maintenance period. However, this

split sample/dummy variable approach may be too crude and insu¢ cient as a way of fully capturing

a richer pattern of dynamics that could be present in the desk�s reaction function.

Thus, the approach that this paper adopts in order to allow for a (possibly) rich pattern of

dynamic behavior by the desk is a dynamic Tobit with time varying parameters. This time-

varying parameter extension to the benchmark model is as follows:

y�t = �t + �t(L)y
�
t�1 +Xt�t + "

�
t , where: (10)

8><>: yt = 0 if y�t � �

yt = y
�
t if y

�
t > �

. (2)

The only di¤erence from the benchmark model is that now the coe¢ cients of the explanatory

variables are time varying as well: As we can see from (10) these coe¢ cients are �t, �t(L), and �t ,

t = 1; :::; T .

The dynamics of the time varying parameters are modeled using driftless random walks. This

is quite popular in the relevant time-varying parameter literature (see, inter alia, Boivin (2004)

and Cogley and Sargent (2002) ) as it allows for (possibly) very rich dynamic patterns without
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making restrictive assumptions on trends and stationarity. Speci�cally, the time varying parameter

speci�cation is as follows:

Let �t, t = 1; :::; T be an (n+ k+ 1)� 1 vector15 that includes the lags of the latent dependent

variable, the intercept, and the coe¢ cients of the explanatory variables. Then:

�t = �t�1 + !t; (3)

with

!t~N(0;H
�1);

where E("�t!js) = 0, for all t; s = 1; :::; T , and j = 1; :::; n+ k + 1.

While both the benchmark model and its time-varying-parameter extension arguably provide a

more realistic depiction of the desk�s reaction function (over the static Tobits that have been used

in the past), this comes at a cost as well, that of substantially increased computational complexity

associated with estimating such models. The remainder of this section provides a discussion of the

computational and estimation challenges and of the estimation strategy adopted to overcome these

challenges:

2.2 Estimation Strategy

Estimation of static Tobits is standard (see, for instance, Greene (2002) for the speci�cation of the

likelihood and the MLE approach). However, estimation of dynamic Tobits is substantially more

involved, computationally: The likelihood of Tobits is a mixture of discrete and continuous distri-

butions. The continuous part corresponds to the nonlimit observations (in the context of equation

(2), these correspond to time periods for which y�t > �), whereas the discrete part corresponds to

the censored observations (in the context of equation (2), these correspond to time periods for which

y�t � �).
15As can be seen from equations (1) and (10), n is the number of lags of the latent dependent variable, and k is the

number of explanatory variables.
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The continuous part is standard16. All the computational complications arise because of the

discrete part: The part of the likelihood that corresponds to each censored observation is a joint

event probability. More speci�cally, let�s say that the observation corresponding to period t0 is

censored. Then, the likelihood of that observation is a multiple integral, whose dimensionality is as

high as the length of the censoring (up to period t0) and whose integrand is a Gaussian pdf. The

functional speci�cation of the integrand, as well as the limits of integration for each of the multiple

integrals are determined by equation (2).

The computational challenge arises because there is no closed-form solution for each of these

multiple integrals, and such joint event probabilities are multiple integrals even when expressed as

products of conditional probabilities (with the conditioning being on past periods�information sets).

For more information on the multiple integral problem see, inter alia, Lee (1999), and Monokroussos

(2004, 2005).

The dimensionality of the multiple integrals is too high (in the present context, where we have

extensive consecutive periods with no OMOs, and thus, where we have extensive censoring) for

traditional numerical methods to be feasible17. One possible way to estimate dynamic Tobits, as

Lee (1999) demonstrates, is simulation-assisted estimation (in an extremum context, whereby the

mode of the simulated likelihood is sought with numerical methods). This paper adopts instead

a Markov Chain Monte Carlo18 approach of a particular type, namely Gibbs sampling with data

augmentation (see Tanner and Wong (1987), Albert and Chib (1993), Dueker (1999b), Dueker and

Wesche (2003) ). Indeed, there are several advantages to Gibbs sampling that are important in

the present context and that make it a convenient and e¢ cient estimation approach for estimating

dynamic Tobits.

First, the set of parameters to be estimated is broken into subsets that are chosen in a such

16 In the MLE context it corresponds to the classical, regression-style Gaussian likelihood. In a manner similar to
that of linear autoregressive models, and as is illustrated in Chapter 5 of Hamilton (1994), the pdf corresponding to
the continuous part can be expressed as a product of conditional pdfs.
17Traditional numerical integration methods, such as Gaussian quadrature can typically handle very low dimen-

sionalities (such as, up to four or �ve) of multiple integrals.
18Excellent introductions to simulations and MCMC-based estimation and inference are Chib (2001), Geweke and

Keane (2001), and Robert and Casella (1999).
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a way that we know how to sample from the conditional distribution of each of the subsets (the

conditional distribution is taken conditioning on the entire history of the data and on the other

subsets). Thus, we do not have to worry any longer about the joint pdf of the entire parameter set

and about the multiple integrals of the full likelihood.

Second, we are outside the extremum context, and thus we avoid the additional computational

challenge of having to numerically optimize a simulated objective function. The point estimates of

the parameters are taken to be the means of the simulated marginal posteriors of the parameters,

and the con�dence intervals are given by the quantiles of these posteriors19.

Finally, this approach enables us to implement the time-varying-parameter extension to the

benchmark model relatively easily, simply by adding additional blocks to those of the Gibbs sampler

for the benchmark model.

An important advantage of Gibbs sampling (when compared to, for instance, the Metropolis-

Hastings algorithm20) is that it is relatively easy to achieve convergence to the ergodic distribution of

the Markov Chain of the simulated draws21. The issue of detecting convergence is to a substantial

extent an open research question, as there is no consensus in the literature on what the best

way to detect convergence is. The approach adopted here is that of McCulloch and Rossi (1994)

whereby histograms or nonparametric estimates of the posteriors of the parameters are visually

examined and compared when the Gibbs sampler is initiated from di¤erent starting values, with

evidence of unimodality and of little e¤ect of the starting values on the posteriors serving to establish

convergence22.

The Gibbs sampler for the benchmark model has T + 2 blocks: First, there is a block for the

variance �2, and second, a block for the coe¢ cients of the explanatory variables, � and �. Fi-

19This is a valid way to construct the con�dence intervals given that the information equality holds in the present
context (see Chernozhukov and Hong (2003) and Monokroussos (2004) ).
20The Metropolis-Hastings algorithm is another MCMC technique that encompasses Gibbs sampling as a special

case.
21 In contrast to Gibbs sampling, the success of the Metropolis-Hastings algorithm depends on the (necessarily

arbitrary) choice of a candidate distribution. Achieving, and also detecting convergence may be substantially harder
(in practice) with Metropolis-Hastings than with Gibbs sampling and may thus o¤set any computational advantages
the non-extremum MCMC approach may have over, say, simulated Maximum Likelihood (which requires numerical
optimization of potentially very di¢ cult objective functions).
22For further details on this approach see also Monokroussos (2004, 2005).
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nally, there is the data augmentation step, which enables estimation of Limited Dependent Variable

models in an MCMC context by exploiting their latent-variable representation, and speci�cally by

generating (simulated samples of) these latent variables from their model-implied conditional distri-

butions (see Tanner and Wong (1987), and Albert and Chib (1993) ). The data augmentation step

is implemented here with a single-move Gibbs smoothing algorithm, where each latent variable is

generated in a separate block from its model-implied conditional distribution, with the conditioning

being on all the other parameters, including all the other latent variables, and also on the entire

history of the data. This conditioning on the entire history of the data necessitates the use of a

smoothing algorithm for the generation of the latent variables, and these single-move Gibbs steps

used here are a way of implementing the smoother without having to resort to nonlinear �lters (or

linear approximations of nonlinear �lters). Dueker (1999b), and Dueker and Wesche (2003) adopt

this approach for Probits of time series, and this paper adapts their approach to Tobits of time

series. The speci�cs of how the single-move Gibbs sampler for the latent variables is implemented

are provided in the Appendix (together with the details on the remaining blocks, namely for �2, �,

and �).

The time-varying-parameter extension to the benchmark model is implemented by adding a

single-move Gibbs sampling step, whereby all the time-varying parameters are generated in one

block. In contrast to the latent variables, the smoothing algorithm here can be implemented within

a linear state-space framework and the Kalman �lter (with the measurement equation being equation

(10) and the transition equation being equation (3) ). Finally the precision matrixH is also generated

in a separate block. All the additional details on these additional blocks are also provided in the

Appendix.
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3 Data

The data on reserves and the fed funds rate used in the paper are at the daily frequency, and the

period spanned is from January 1st, 1986 until June 4th, 199823. The dependent variable and the

explanatory variables constructed using this data (and used in the estimation of both the benchmark

model and its time-varying-parameter extension) are as follows:

The Dependent Variable

The obvious choice of time period for the reserves market and for the speci�cation of the desk�s

reaction function is the fourteen day maintenance period (starting on a Thursday and ending on

a Wednesday), as banks have to meet legislated reserve requirements not on a daily basis, but on

average over the maintenance period. Thus, quite naturally, the main focus of the desk�s attention

(in its quest to meet its objectives in the markets for reserves and for short term interest rates) is

the maintenance period average level of reserves. This is the quantity that the desk seeks to a¤ect

through open market operations, and so the dependent variable for the desk�s reaction function is

the change in the maintenance period average level of reserves brought about by the desk�s open

market operations.

This quantity is not the par value of an OMO, but rather the impact that a given OMO has on

the period-average level of reserves. Thus, and following Feinman and DF, to calculate the impact

of temporary OMOs, I multiply the par value of the OMO by the number of days (counting holidays

and weekends as well) spanned by the OMO and divide by fourteen. For outright transactions, I

multiply by the number of days remaining (including the delivery day) in the maintenance period

(and again divide by fourteen).

For instance, let�s say that the desk injects reserves on a Monday into the banking system via an

overnight RP of $14 billion. Then the dependent variable will be $1 billion. The same transaction

executed on a Friday would give us a dependent variable of $3 billion. A reverse RP of the same

23This time period corresponds to the subset of the reserves dataset that is publicly available (as there is a con�-
dentiality restriction on the reserve time series for the most recent years).
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magnitude spanning three days would result in a dependent variable of -$3 billion24. An outright

add transaction of $1 billion for securities delivered on day 8 of the maintenance period would result

in a dependent variable of $500 million.

The empirical results presented in the next section are restricted exclusively to overnight RPs25.

While this weakens to some extent the strength of the conclusions reached on the estimated reaction

function of the desk, the results are still quite informative as overnight RPs are the most frequent

operations conducted by the desk.

Explanatory Variables

Deviation of the federal funds rate from its target : As mentioned earlier, the desk conducts OMOs

in order to bring the fed funds rate close to its target level designated by the FOMC; so the �rst

explanatory variable is the deviation of the (morning26) fed funds rate from the target. Obviously,

large deviations of the morning rate from its target increase the likelihood of an OMO by the desk.

Estimated Maintenance-Period-Average Reserve Need : The banks�(and other depository institu-

tions�) demand for reserves is given by the reserves that the banks are required to have, augmented

by any desires the banks may have for excess reserves (on top of the minimum reserve require-

ments) minus deposits. The desk estimates every day an average demand for reserves over the

maintenance period. This estimate minus the reserves borrowed from the discount window gives

us the nonborrowed reserve path, which is the desk�s primary objective. That quantity, (minus any

nonborrowed reserves that are forecasted to exist for reasons other than the ones outlined above27)

is the desk�s Estimated Maintenance-Period-Average Reserve Need (henceforth, "the need"). This

is the (projected) amount of reserves that must be added or subtracted (on average every day of

the maintenance period) in order to reach the desk�s objective. Both the Board and the New York

Fed come up with estimates for the need, and the explanatory variable used in what follows is an

24Of course, in all these examples it is assumed that the transaction described is the only transaction of the day.
25The reason for this is data limitations; the present version of the data set available to the author does not include

any MSPs or reverse RPs, whereas short term RPs are often a¤ected by early withdrawals from the short-term RP
contracts, and accounting for such early withdrawals is not feasible (with the present version of the data set).
26That is, at the beginning of the day and before any transactions take place.
27For further details see Feinman and DF.
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average of these two estimates.

Distribution of Reserve Need over the Maintenance Period : The desk looks on a daily basis not

just at the average (for any given day of the maintenance period) need, but also at the distribution

of the need over the maintenance period, as it tries to smooth in general the daily reserves path

over the duration of the period.

One variable that captures such distributional aspects of the reserve need is simply the (desk�s

estimate of the) daily reserve de�ciency (or surplus). The daily reserve de�ciency is the projected

(nonborrowed) reserve availability for the day subtracted from the estimated maintenance period

average reserve objective; the variable used here is, again, an average of the Board and New York

Fed estimates. The estimated coe¢ cient of such a variable can shed some light to the extent to

which the desk tries to smooth the reserves path over the maintenance period. If the desk does

exhibit such behavior, then we would expect that it would be more likely (ceteris paribus) to engage

in an add OMO on a day in which reserves are projected to be de�cient than on a day in which the

desk expects a surplus.

Another aspect of the distribution of the reserve need over the maintenance period that the

desk is likely to take into consideration is the cumulative reserve de�ciency (or surplus) to date:

This is based on the desk�s estimates of available nonborrowed reserves that have accumulated since

the beginning of the maintenance period. So, if, for instance, there is a de�ciency in the amount

of nonborrowed reserves that have accumulated, relative to what was expected on the basis of the

desk�s estimate of the nonborrowed reserve path, then the desk is more likely to proceed to an OMO

that injects reserves into the system (again, ceteris paribus, and given the projected maintenance

period average reserve need in particular).
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4 Estimation Results and Discussion

The period examined is from January 1st, 1986 until June 4, 1998. However, there is a 1-year gap

in the reserves data (1993-1994)28. I thus consider two separate subperiods in all the estimation

exercises: The 1986-1992 period, and the 1994-1998 period29. The end of the �rst subperiod (which

comes at the end of 1992) coincides with a structural break in the volatility of the fed funds rate

detected by DF, and is thus further motivated on these grounds as well. However, I conducted

experiments estimating the Time Varying Parameter model using the entire sample (including, that

is, the 1993-1994 period) where the "possibility of a break (corresponding to the period 1993-1994)

is allowed for"30, and the results from these experiments are similar to those obtained from the Time

Varying Parameter Model estimated separately in each of the two subperiods. Furthermore, these

results are also similar to those obtained when the Time Varying Parameter model is estimated

using the entire sample with no break allowed for the 1993-1994 period. This robustness is quite

comforting and it suggests that the whole issue of a possible break in 1993-1994 is not an important

factor in the present context. In the paper I report the results from the Time Varying Parameters

for each of the two subperiods separately, mostly to facilitate the comparison with the results from

the benchmark model and from the existing literature.

An additional break that has been detected in the literature is the October of 1987 stock market

crash (further details on this break are available in Feinman). For the benchmark model, I account

for this break by dividing the 1986-1992 period in two parts and by estimating the benchmark model

separately for each of the pre- and post- crash subperiods. I allow for such a break in the Time

Varying Parameter model as well by allowing again for the possibility of a jump in the evolution

of the time-varying parameters. The details of this, as well as a discussion of the results from the

estimation of both models are provided in what follows:

28This is due to a gap in the datasets used by Feinman and by DF.
29This period starts on May 5, 1994 and ends on June 4, 1998.
30The meaning of this phrase will become more speci�c in the subsection on Time Varying Parameter Model that

follows.
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4.1 Benchmark Model

The �rst conclusion we reach upon examining the estimated benchmark dynamic Tobit model

(equations (1) and (2) ) is that the dynamics in the desk reaction function are very weak or almost

non-existent. Speci�cally, in experiments where both the (projected) daily reserve de�ciency and

the cumulative (to date) reserve de�ciency are included as explanatory variables, the �rst lag of the

latent dependent variable is not signi�cant in any of the three subperiods (that is, the period until

the October �87 crash, the period between the crash and through 1992, and the 1994-98 period). In

runs with the daily reserve de�ciency being the only explanatory variable (other than the average

need) accounting for the distribution of the reserve need over the maintenance period, the �rst lag

of the latent dependent variable is marginally signi�cant for the 1986-1987 period, signi�cant for

the 1987-1992 period31, and insigni�cant for the 1994-1998 period.

These results con�rm the prior expectation that the dynamics in the desk reaction function are

not as central a factor as they are in the case of the FOMC reaction function. For one thing, any

dynamics induced by possible inertia in the desk behavior are hardly there, because the desk has

much weaker incentives to resort to inertial behavior than the FOMC does. The FOMC�s moves are

heavily scrutinized by the �nancial markets and any signs of backtracking and policy reversals will

have reputational costs and will undermine the e¤ectiveness of the monetary authority. Faced with

such risks, and in the face of uncertainty in real time about the shape of the economy and about

the data summarizing current macroeconomic conditions, the FOMC has very strong incentives to

be extra cautious and to implement its policy stance in a series of slow, stodgy steps that are highly

(positively) autocorrelated, rather than instantaneously.

The desk�s task is much easier in that respect; its task is to make sure that the FOMC directives

are met on a daily basis by monitoring the reserves market and employing OMOs when interventions

are called for. This is just implementing policy decisions, rather than policy setting; thus any

signaling or reputational considerations (that would induce caution and inertia) are only of limited

31This possibly re�ects the desk�s tendency to resort to overnight RPs on consecutive days during the 1987-1992
period more often than in the other two periods.
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relevance in the context of the desk�s reaction function.

The results from estimating the benchmark model in each of the three periods (before and after

1992, and before and after October 1987) are presented in Table 132, and largely con�rm our prior

expectations.

Speci�cally, and as expected, the estimated coe¢ cient of the maintenance-period-average reserve

need is positive and signi�cant in all of the three periods. This implies that the desk has been

consistently monitoring the average reserve need within maintenance periods and across periods

and has been addressing the projected average need by injecting funds into the banking system via

overnight RPs.33.

The coe¢ cient of the daily reserve de�ciency however, is much weaker than the average-need

coe¢ cient, and signi�cant only during the 1994-1998 period. It does have the expected positive sign

however for all three periods. The positive sign implies that, ceteris paribus, and in particular, for

a certain deviation of the morning fed funds rate from its target, and given the maintenance period

average reserve need, the desk is more likely to resort to an overnight RP, thus adding reserves, on

days when it expects a reserve de�ciency than on days when it expects a reserves surplus. Thus,

there is some evidence that the desk tries to smooth the reserves path over the maintenance period;

however, the estimates suggest that such smoothing considerations may not be as important a

determinant of the desk�s behavior as one might have thought.

Note, however, that the estimated coe¢ cients of both the maintenance-period average reserve

need and the daily reserve de�ciency increase substantially as we move from the late eighties and

early nineties to the mid- and late nineties. This transition coincides with the regime change in the

market for reserves that DF document and discuss and suggest that, as DF claim, the desk changed

its reaction function in order to adjust to these changing conditions.

More speci�cally, there was a decline in the reserve requirements in the early nineties, which,

32These results are from a speci�cation without any lag of the latent dependent variable, because of the reasons
outlined above. The results change very little when the �rst lag is added to the benchmark speci�cation.
33Note that the magnitudes of the estimated coe¢ cients are lower than those of Feinman. Note however that

Feinman�s dependent variable is based on all transactions conducted by the desk (both temporary and outright),
whereas the results here are based only on overnight RPs.
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contrary to what one might expect, did not have a lasting impact on short-term interest rates. The

volatility in the federal funds rate increased at �rst, but then it actually declined. DF suggest that

it was changes in the desk�s reaction function that played a crucial role in controlling the volatility

of short term interest rates. The evidence provided here, which show a desk that adopts a more

pro-active behavior in response to changing conditions in the reserves market as we move from the

early nineties to the late nineties point towards conclusions which are similar to those of DF.

Finally, another interesting observation that can be made from Table 1 is the big jump in the

coe¢ cient of the deviation of the morning fed funds rate from its target (henceforth, the "fed funds

gap"), as we move from the pre-October �87 period to the post-stock-market-crash period. These

results are similar to Feinman�s �ndings, and possibly re�ect the monetary authority�s determination

to vigorously implement its policies, control short-term interest rates and stem any destabilizing

e¤ects on the economy in the period following the crash.

However, and while these results are interesting, this split-sample approach may be too crude

to capture possibly rich and complicated dynamics in the desk reaction function, both inside the

maintenance period (which are obviously completely ignored by the benchmark model) and through

the years. Thus, the remainder of this section discusses the results from estimating the time-varying

parameter extension to the benchmark dynamic Tobit model.

4.2 Time Varying Parameter Model

The Time Varying Parameter (henceforth, "TVP") model is estimated for two periods, namely the

1986-1992 period, and the 1994-1998 period. The �rst period contains the October �87 crash where

a structural break has been identi�ed by Feinman. Using a driftless random walk such as that of

equation (3) when in reality there is a structural break would be a misspeci�cation which could lead

to misleading conclusions. However, an additional advantage of the TVP approach is that such a

structural break can be allowed for inside the TVP context and thus splitting the sample can be

avoided. In the present context, this is done as follows:

The time varying parameters are generated as draws from a Normal distribution whose parame-
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ters are computed using the Kalman �lter34. A natural way to allow for the possibility of a jump

in the parameters during the stock market crash of October 19, 1987 is to draw the parameters for

that date from a distribution with a much higher variance than the variance that would be implied

by the updating equations of the Kalman �lter (for that date). Doing that however results in an

implausibly big spike for that particular date in the graphs of the time varying parameters.

This suggests that this setup is too restrictive; the break is insu¢ ciently modeled by allowing

for a large variance only on the exact day of the stock market crash, and the possibility of richer

dynamics with a higher amplitude ought to be allowed for a larger period around October 19,

1987. The obvious way to implement this is by drawing not just the parameters corresponding to

October 19, 1987, but also the parameters corresponding to many dates before and after October

19, 1987 from distributions with high variance. However, and as we can see from equation (3), the

parameters follow a random walk, and the time series dimension is relatively large in the present

context. If we use variances that are too high, or if the period over which the parameters are

drawn from high-variance distributions is too wide, then the variance covariance matrix of the

time varying parameters can become arbitrarily high. After some experimentation, I modeled the

structural break corresponding to the stock market crash by drawing the parameters for the month

of October, 1987 from distributions with variances that were ten times higher than the variances

derived from the Kalman �lter updating equations35.

The graphs of the time varying parameters for the 1986-1992 period are presented in Figures

1A-4A, and those for the 1994-1998 period are in Figures 1B-4B36. These �gures suggest a rich

pattern of dynamics for the desk reaction function that cannot be revealed by standard split sample

/ dummy variable speci�cations. While the TVP model (and the rich dynamics it usually implies

when confronted with the data in applied situations) is motivated ex ante for the context of the

34The details of the smoothing algorithm that generates the time varying parameters are described in the Appendix.
35 I also conducted the robustness checks for the possibility of a break corresponding to the 1993-1994 gap in the

data (discussed in the beginning of Section 4) following a similar approach. More speci�cally, I drew the parameters
for the month of May of 1994 from distributions with variances that were ten times higer than the variances derived
from the Kalman �lter updating equations.
36All the �gures present point estimates (solid lines), which are the means of the posterior distributions, and 90%

con�dence bands (dotted lines), which are constructed from the 5th and 95th percentiles of the posterior distribution.
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desk and of its operations because of the institutional reasons discussed in DF and Feinman, and

in Section 2 of this paper, it would still be interesting to see how the results obtained with the

TVP model compare with the respective ones of the benchmark speci�cation and of the existing

literature. The rest of this section takes up this task:

First of all, the �gures con�rm the �nding from the benchmark model that the maintenance-

period-average reserve need is a more important determinant of the desk�s behavior than the daily

reserve de�ciency. Indeed, as we can see from Figures 2A and 2B (that present the maintenance-

period-average reserve needs for the two subsamples) and from Figures 3A and 3B (the respective

�gures for the daily reserve de�ciency) the "need" estimates are around 10 times bigger than the

"de�ciency" estimates, and are also signi�cant much more often than the de�ciency estimates. This

again suggests that the desk may be less concerned with smoothing the reserves path over the

maintenance period than one might have thought, and more focused on meeting the average (over

the maintenance period) need.

Similarly, we see from Figures 3A and 3B that the coe¢ cient of the daily reserve de�ciency

slopes downwards quite more often, and much more gradually than it slopes upwards. Thus, there

is a downward sloping pattern most of the time, gradual downward movements that are interrupted

by (usually) abrupt upward movements, only to be followed again by gradual downward movements,

etc. The implication of this pattern is that the desk�s response towards daily reserve de�ciencies

becomes weaker as the maintenance period comes closer to its end and settlement day approaches.

This con�rms Feinman�s �ndings and is also compatible with our intuition, since, as the maintenance

period draws to a close it is less likely that high daily reserve de�ciencies (or surpluses) will lead

to a sustained pattern of high volatility in reserves and in the fed funds rate (simply because the

reserve path for most of the maintenance period has already been determined).

Thus, in a nutshell, there is evidence that the desk has been focusing primarily on maintaining

a desired average (over the maintenance period) level of reserves and not as much on smoothing

intra-period reserve �uctuations, especially as we get closer to the end of the maintenance period.

Furthermore, we can see by observing the volatility of the coe¢ cient of the daily reserve de-
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�ciency for the mid- to late nineties (Figure 3B) that is higher in the late nineties than earlier,

that in a manner similar to what is suggested by the results of the benchmark model and by DF,

the desk seems to have adopted a more agile and proactive stance towards the distribution of the

reserve need over the maintenance period. As discussed in DF and earlier in this paper, this more

interventionist approach of the late nineties in response to daily movements of the daily reserve

de�ciencies (or surpluses) possibly re�ects the desk�s adjusting behavior in the new environment of

lower reserve requirements of the mid- to late nineties

One interesting case of the Time Varying Parameter estimates leading to substantially di¤erent

conclusions than those reached with the benchmark model (and of the existing literature) is with the

coe¢ cient of the deviation of the morning fed funds rate from its target for the 1986-1992 period.

As we can see in Figure 4A, while there is a jump in the estimated coe¢ cients in October of 1987,

this jump is far from being unique. It is con�ned only to the immediate period subsequent to the

stock market crash, and is preceded and followed by jumps (and drops) of comparable magnitudes37.

Furthermore, there is evidence that the desk�s response towards the deviation of the fed funds rate

from its target moves to consistently higher average levels only in the early nineties, rather than

immediately after the crash (which is what is suggested by Feinman and by the benchmark results

discussed earlier).

5 Concluding remarks

This paper proposes and estimates a dynamic Tobit model with time varying parameters for the

reaction function of the Open Market Desk of the Federal Reserve that allows both for inertial

behavior and for changing responses of the desk to evolving conditions in the markets for reserves

and for short-term interest rates. The results reveal rich and complicated dynamics that are present

in the desk reaction function (both inside the maintenance period and across maintenance periods

37However, when the TVP model is estimated over the entire period, that encompasses the 1993-1994 gap, again
allowing for the possibility of a jump in the parameters for the month of October of 1987 (as discussed earlier), the
magnitude of the jump (during October �87) in the coe¢ cient of the deviation of the fed funds rate from its target
increases substantially (regardless of whether we model the 1993-1994 gap with a jump as well or not). However, and
even in that case, the October �87 jump is again neither the biggest one, nor is it unique.
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and over the years) and that cannot be adequately modeled by split sample / dummy variable

speci�cations.

The results of this paper indicate that the desk exhibits inertial behavior in the way it con-

ducts its open market operations only to a minimal degree, in the sense that lagged changes in

maintenance-period-average levels of reserves (brought about by past OMOs) are a weak and in-

signi�cant determinant of any changes in the respective average levels of reserves that the desk may

choose to bring about during the current maintenance period.

Furthermore, the �ndings with the time varying parameters point towards a desk that focuses

mostly on the maintenance-period average reserve need and is only moderately inclined to smooth

intraperiod distribution patterns of reserve availability, especially as the maintenance period draws

to a close.

Additionally, upon examining the evolution of the time varying parameters in the second half

of the eighties and in the nineties, we conclude that the desk did not respond to the October 1987

stock market crash in a unique and unprecedented way, as suggested by constant parameter / split

sample estimates. There was a jump in the desk�s response towards deviations of the fed funds rate

from its target, but only in the immediate aftermath of the crash, and this jump was neither the

biggest one nor the only one in the eighties and in the nineties.

Finally, there is evidence that the desk adjusted its behavior in response to a new environment

in the market for reserves (caused by lower reserve requirements) in the nineties by adopting a more

agile approach and by being more responsive towards daily reserve de�ciencies (than in the early

nineties).
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Appendix: MCMC Algorithms for the Benchmark Model and for

the Time Varying Parameter Model

A few words on notation and terminology for what follows �rst: � will be taken to mean in what fol-

lows all the variables other than the ones being generated in the particular block under consideration.

Furthermore, y; y�; X will denote the entire vector for the dependent variable, the latent dependent

variable, and the entire matrix of explanatory variables, respectively, (periods 1; :::; T ), and yt; y�t ;

Xt will denote the dependent variable, the latent dependent variable, and the explanatory variables

for period t, respectively. The word "conditional" will be taken to mean conditional on everything,

except of course for the variable(s) being generated in the particular block under consideration.

Algorithm for the Benchmark Model:

Generating the Variance: Inverted gamma distributions are convenient priors for the variance,

since when multiplied by the conditional likelihood, they result in conditional posteriors which are

also inverted gammas38, that we know how to sample from:

So, if the prior for �2 is IG(�02 ;
�0
2 ), where IG stands for inverted gamma, then the conditional

posterior is also IG(�12 ;
�1
2 ), where �1 = �0 + T , and �1 = �0 + "

�0"�, where "� is the T � 1 vector of

latent error terms of equation (1).

Generating the coe¢ cients of the explanatory variables: A �at prior for this block results

in a Gaussian conditional posterior from which I can sample easily: In particular, this conditional

posterior is, in a standard way, N((X 0X)�1X 0y�; �2(X 0X)�1). For a derivation of this, see, for

instance, Albert and Chib (1993).

The required stationarity constraints on the coe¢ cients of the lags of the latent dependent vari-

able are implemented with rejection sampling, whereby draws from the posterior for the coe¢ cients

are taken until the constraints are satis�ed, (and the draws are discarded when they do not satisfy

the constraints).

38See, for instance, Kim & Nelson (1999) for the derivation of this.
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Generating the latent dependent variables: I use a single-move smoothing algorithm here,

which entails simulating each y�t , t = 1; :::; T , one by one in separate blocks, while also conditioning

on all the data, and all the other parameters, including all the other latent variables, for each block.

The algorithm is derived as follows:

Let g(y�t j�; y;X) denote the conditional distribution of y�t , and let ey�t denote all the latent
variables for periods 1; :::; t, and let ey�6=t denote all the latent variables for all periods except for t,
and similarly let eyt denote all the dependent variables for periods 1; :::; t. The dependence on the
parameters other than the latent variables and on the explanatory variables is suppressed in what

follows for convenience. Furthermore, for expositional purposes, I present the case of one lag for

the latent variable. The proof for more than one lags is the same. So, we have that:

g(y�t jey�6=t; ey�T ) = g(y�t jey�6=t; eyt; yt+1; :::; yT )
=

g(y�t ; yt+1; :::; yT jey�6=t; eyt)
g(yt+1; :::; yT jey�6=t; eyt)

=
g(y�t jey�6=t; eyt)g(yt+1; :::; yT jey�6=t; eyt; y�t )

g(yt+1; :::; yT jey�6=t; eyt)
= g(y�t jey�6=t; eyt)
= g(y�t jey�t�1; y�t+1; :::; y�T ; eyt�1; yt)
=

g(y�t ; y
�
t+2; :::; y

�
T jey�t�1; y�t+1; eyt�1; yt)

g(y�t+2; :::; y
�
T jey�t�1; y�t+1; eyt�1; yt)

/ g(y�t ; y
�
t+2; :::; y

�
T jey�t�1; y�t+1; eyt�1; yt)

= g(y�t jey�t�1; y�t+1; eyt�1; yt)g(y�t+2; :::; y�T jey�t�1; y�t ; y�t+1; eyt�1; yt)
/ g(y�t jey�t�1; y�t+1; eyt�1; yt)
= g(y�t jy�t�1; y�t+1; eyt):

Note that the transition from the 3rd line to the 4th line is valid as yt+1; :::; yT do not depend

on y�t , given ey�6=t. Note also that the transition from the 5th line to the 6th line is valid (for the case

of models with one lag for the latent variable) because the denominator of the fraction of the 5th
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line does not depend on y�t .

The pdf of the resulting distribution, namely g(y�t jy�t�1; y�t+1; eyt) can be obtained from the joint

distribution of all the error terms where y�t appears. For the case with one latent lag, y
�
t appears

in the equations giving "�t , and "
�
t+1. The joint pdf of the error terms is Gaussian, and ignoring for

a moment the e¤ect of conditioning on eyt, it is easy to show39 that y�t is distributed (given y�t�1;
y�t+1) as N(

�0Xt+�1y
�
t�1+�1(y

�
t+1��0Xt+1)

1+�21
; �2), where �;Xt; Xt+1 are de�ned here to exclude the latent

lag and its coe¢ cient, and �1 is the coe¢ cient of the latent lag.

The e¤ect of conditioning on eyt is a truncation, and the form of the truncation is determined

by equation (2):

If �yt 2 category j, then y�t 2 (yt�1 + cj�1; yt�1 + cj);8j;8t:

Thus, the required sampling task is that of sampling from a (univariate) truncated normal. The

best way of doing that is a combination of sampling from a uniform and inverting the truncated

normal cdf. Speci�cally, I wish to simulate the latent dependent variable, which has a Normal

cdf F with mean � and variance �2, but that is truncated between a (being �1 in the context

of the Tobit) and b (in the context of the Tobit and of equation (2) b is the threshold coe¢ cient

�). Let Z � uniform(0; 1): Then F�1(Z) � F . Therefore, and since F (y�t ) =
�(

y�t��
�

)��(a��
�
)

�( b��
�
)��(a��

�
)
,

where � is the standard normal cdf, I simulate the latent dependent variable by sampling from:

���1fZ[�( b��� )� �(
a��
� )] + �(a��� )g+ �.

Additional blocks needed for the Time Varying Parameters:

Generating the Time Varying Parameters: In contrast to the case of the latent variables,

obtaining the smoothing algorithm for the Time Varying Parameters is standard because here we

can usefully employ a state-space representation, with the Measurement Equation being the latent

equation ((10)), and with the Transition Equation being the driftless random walk for the TVP�s

(equation (3)), together with the Kalman �lter.

Speci�cally, let e�T = [�1:::�T ]0. Let Y1; :::; YT denote the "data" (that is, the dependent variable,
39Just rewrite, in that joint pdf, each of the error terms as an expression of the latent variables that appear in the

latent equation that corresponds to that error term.
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the latent dependent variable, and the explanatory variables) for periods 1; :::; T , respectively, and

let eYt denote all the data up to period t; t = 1; :::; T . Let g(e�T j�;fYT ) denote the conditional
distribution of e�T . Then, following Kim and Nelson (1999) I employ a multimove Gibbs-sampling

approach, thus generating the entire e�T as a block from its conditional distribution, g(e�T j�;fYT ).
The Markov property of the �t�s ensure that convenient simpli�cations occur in g(e�T j�;fYT ), and
in particular:

g(e�T j�;fYT ) = g(�T j�;fYT )g(e�T�1j�;�T ;fYT )
= g(�T j�;fYT )g(�T�1j�;�T ;fYT )g(e�T�2j�;�T�1;�T ;fYT )
= :::

= g(�T j�;fYT )g(�T�1j�;�T ;fYT )g(�T�2j�;�T�1;fYT ):::g(�1j�;�2;fYT )
= g(�T j�;fYT )g(�T�1j�;�T ;]YT�1)g(e�T�2j�;�T�1;]YT�2):::g(�1j�;�2;fY1)
= g(�T j�;fYT ) T�1Y

t=1

g(�tj�;�t+1; eYt)
As suggested by this last expression, I �rst need to generate �T from g(�T j�;fYT ), and then,

given �t+1, generate �t from g(�tj�;�t+1; eYt); t =; :::; T � 1. Thus, I �rst generate �T from

g(�T j�;fYT )~N(�T jT ; PT jT ), and then �t; for t = T�1; ::; 1 from g(�tj�;�t+1; eYt)~N(�tjt;�t+1 ; Ptjt;�t+1),
where �T jT = E(�T j�;fYT ); PT jT = Cov(�T j�;fYT ); �tjt;�t+1 = E(�tj�; eYt;�t+1) = E(�tj�;�tjt;�t+1);
Ptjt;�t+1 = Cov(�T j�;fYT ;�t+1) = Cov(�T j�;�tjt;�t+1). The updating terms �T jT ; PT jT ; (and also
all �tjt; Ptjt; t = 1; :::; T ) can be derived in a standard way using the Kalman �lter40. The same

holds true for the terms �tjt;�t+1 , and Ptjt;�t+1 since they can also be viewed as updating terms in

which the updating is done not with Yt, but with �t+1, which has been generated, and thus can be

considered as observed data.

The initial values, �0j0 are arbitrary, with P0j0 having large diagonal elements (so that large

uncertainty is attached to �0j0).

The re�ecting barriers imposing the stability condition on the coe¢ cients of the lags of the

dependent variable are implemented with rejection sampling, done separately for each time period

t = 1; :::; T:

40See Hamilton (1994), and Kim and Nelson (1999).
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Generating the precision matrix H: The prior for H is Wishart, W (�0;H0), where I set

�0 = 0;H�1
0 = 0, and then the conditional posterior for H is also Wishart, W (�1;H1), where

�1 = T + �0; H1 = [H
�1
0 +

TX
t=1

(�t � �t�1)(�t � �t�1)
0
]�1.

A note on the computer code: All of the computer code for this paper was written in Gauss,

Version 3.2.34. The seed was always �xed at 180303.
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variable mean std. dev. median 2.5% qntl. 5% qntl. 95% qntl. 97.5% qntl.
intercept 33.4187 9.2532 33.1875 15.3603 18.1268 49.0429 51.2051

need 0.2404 0.0291 0.2406 0.1815 0.1923 0.2859 0.2945
deficiency 0.0047 0.0034 0.0048 -0.0017 -0.0009 0.0101 0.0113

fed funds dev 85.1683 33.9127 84.713 23.6575 31.1884 141.0264 152.4317

variable mean std. dev. median 2.5% qntl. 5% qntl. 95% qntl. 97.5% qntl.
intercept 26.761 4.6468 26.7344 17.4182 19.0165 34.501 35.7401

need 0.0823 0.0144 0.0824 0.0534 0.0578 0.1062 0.11
deficiency 0.0016 0.0017 0.0016 -0.0019 -0.0013 0.0044 0.005

fed funds dev 589.321 19.7663 589.9061 552.3822 558.1365 621.9905 626.8735

variable mean std. dev. median 2.5% qntl. 5% qntl. 95% qntl. 97.5% qntl.
intercept 21.3196 7.8402 21.3046 6.6183 8.2462 33.6368 36.4431

need 0.2474 0.0166 0.2478 0.2136 0.2202 0.2737 0.2812
deficiency 0.0104 0.002 0.0103 0.0062 0.0069 0.0135 0.0143

fed funds dev 586.884 31.1361 585.9598 526.6569 535.4788 639.6612 646.931

Note: This is the benchmark specification (excluding the 1st lag of the dependent variable and the
         cumulative reserve deficiency).
        The three panels correspond to the three subperiods of the benchmark specification.
        The first column is the mean of the posterior distribution.
        The last 5 columns are quantiles of the posterior distribution.

1986-1987

1987-1992

1994-1998

Table 1: Results from the Benchmark Model
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