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1 Introduction

Many papers are devoted to the question of stability. Mathematics studies the ques-

tion of stability when studying systems of di¤erential equations. Those mathemat-

ical results have been extensively used to study the behavior of dynamic economic

models. The question of stability of a dynamic economic model is closely related to

the question of the model�s behavior around an equilibrium point and also to the

question of equilibrium selection if we have multiple equilibria.

Until some time ago, stability issues were studied in models assuming rational

expectations of agents. However, the need to study models under bounded ratio-

nality of agents was well argumented in Sargent (1993). Later this approach was

also adopted (among others) in works of Evans and Honkapohja, and a standard

argument in defense of bounded rationality can be found in Evans and Honkapo-

hja (2001), as well as in Sargent (1993). The rational expectations (RE) approach

implies that agents have a lot of knowledge about the economy (e.g., of the model

structure and its parameter values). However, in empirical work economists, who

assume RE equilibria in their theoretical model, do not know the parameter values

and must estimate them econometrically. According to the argument of Sargent,

it appears more natural to assume that agents in a given economy face the same

limitations. It is then suggested to view agents as econometricians when forecasting

the future state of the economy. Each time agents obtain new observations, they

update their forecast rules. This approach introduces a speci�c form of bounded

rationality captured by the concept of adaptive learning.

Besides, the bounded rationality approach can serve other purposes. For ex-

ample, it can be used to test the validity of the RE hypothesis by checking if a

given dynamic model converges over time to the RE equilibrium implied by the

model (under RE hypothesis). Another role for the bounded rationality approach is

that it can be used for equilibrium selection: some models have multiple equilibria

under rational expectations, while the same models under bounded rationality do

not because learning algorithms used by agents lead the model to select only one

equilibrium.

Two possible algorithms that can be used to re�ect bounded rationality of agents

are generalized recursive least squares (RLS) and generalized stochastic gradient
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(SG) algorithms1. Description of them can be found, for example, in Evans and

Honkapohja (2001), Giannitsarou (2003), Evans, Honkapohja.and Williams (2005),

Honkapohja and Mitra (2005). In fact, both algorithms are used by agents to up-

date the estimates of the model parameters. RLS algorithm (non-generalized) can

be obtained from OLS estimation of parameters, rewriting it in recursive form. Gen-

eralized RLS is derived from RLS by substituting gain sequence 1/t used in updating

of regression coe¢ cients with any decreasing gain sequence. Thus, generalized RLS

algorithm has an equation for updating parameters that enter the model equations

and also an equation for updating the second moments matrix. In contrast, (gener-

alized) SG algorithm assumes the second moments matrix �xed2.

At �rst, papers taking the bounded rationality approach of Sargent implied ho-

mogeneity among agents in the sense that all were assumed to follow the same

updating algorithm (be it RLS or SG). One part of recent papers in the area of

adaptive learning introduces heterogeneity in the updating procedure. For example,

Giannitsarou (2003) introduces heterogeneous learning in order to check whether

analysis of the model with heterogeneous learning is equivalent to the analysis of

the same model under the hypothesis of a representative agent (implied by homoge-

nous learning). Agents were assumed to be homogenous in all respects (including

the structure of the equations they used for estimation) but the way they learned

(updated the parameters of these equations). Honkapohja and Mitra (2005), on the

other hand, introduce structural heterogeneity setup which includes types of hetero-

geneous learning considered by Giannitsarou (2003) as a special case. Both these

papers study stability conditions of the economy in a given setup.

In both of these papers, agents di¤er not only in types of algorithms they used,

but also in the relative weight they put on the updating term in the learning al-

gorithm. First, an updating algorithm means that each period agents update the

parameters of interest in the following way: the updated parameter estimate is equal

to the previous estimate plus the most recent forecasting error (or some function of

1Both algorithms are examples of econometric learning. One more type of econometric learning
is Bayesian learning. See Honkapohja and Mitra (2005) for references of other forms of learning
�like bounded memory rules and non-econometric learning (including computational intelligence
algorithms).

2Amore detailed description of di¤erences between the two algorithms can be found in Honkapo-
hja and Mitra (2005).
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it, in general) of the estimate multiplied by the gain parameter. The gain parameter,

then, captures how important is the forecasting error for the agent. So, the gain

sequence is said to re�ect the degree of inertia of the agent in updating. See, e.g.

Giannitsarou (2003) or Honkapohja and Mitra (2005) for more. Constant relative

ratios between gain sequences in learning algorithms of any two di¤erent agent types

constitute in the simplest case (as in Giannitsarou (2003)) relative degrees of inertia

of updating.

In our paper we are solving the following open question posed by Honkapohja

and Mitra (2005) � to �nd conditions for stability under structurally heteroge-

neous mixed RLS/SG learning with (possibly) di¤erent degrees of inertia. Though

Honkapohja and Mitra (2005) have formulated a general criterion for such a sta-

bility and were able to solve for su¢ cient conditions for the case of a univariate

model, they did not give an answer for conditions (necessary, and/or su¢ cient) on

the structure of the model that would guarantee such a stability for the multivariate

case with arbitrary number of agent types case.

As, in essence, the criterion for stability (in its su¢ ciency part) by Honkapo-

hja and Mitra (2005) implies looking for su¢ cient conditions for D-stability of a

particular stability Jacobian corresponding to the model, we use di¤erent sets of

su¢ cient conditions for D-stability of this Jacobian and simplify them using par-

ticular structure of the model, trying to provide the derived conditions with some

economic interpretation.

Speci�cally, in this paper we attempt to conduct a systematic analysis of the

problem of deriving su¢ cient conditions for stability of the economy under struc-

turally heterogeneous mixed recursive least squares/stochastic gradient (RLS/SG)

learning for any (possibly di¤erent) degrees of inertia of agents. First, we ana-

lyzed what has been done so far in mathematics on deriving su¢ cient conditions

for stability of a matrix in the most general setup of a matrix di¤erential equation:

_x = Ax+b, where A has the form D
, whith D being a positive diagonal matrix. It

has turned out that the most general results can be grouped according to the point

from which the problem was approached. One group of results is based on Lyapunov

theorem, and its application to D-stability by the theorem of Arrow and McManus;

another group is based on the negative diagonal dominance condition which is su¢ -
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cient for D-stability (McKenzie theorem); a third set of results can be derived from

the characteristic equation analysis, using Routh-Hurwitz necessary and su¢ cient

conditions for negativity of all eigenvalues of the polynomial of order n; and the last

set of su¢ cient results in principle can be derived using an alternative de�nition of

D-stability that allows to bypass the Routh�Hurwitz conditions.

Among the approaches mentioned above the ones that are based on negative

diagonal dominance, characteristic equation analysis, and the alternative de�nition

(criterion) ofD�stability turn out to be fruitful, each to di¤erent extent. (The condi-

tion based on Lyapunov theorem looks very theoretical and economically intractable

in our case.) The negative diagonal dominance and the alternative de�nition of D-

stability give us the "aggregate economy stability" and the "equal sign" su¢ cient

conditions. As for the characteristic equation analysis, we have been able to de-

rive a block of necessary conditions using the negativity of eigenvalues requirement,

bypassing the Routh-Hurwitz conditions since they are quite complicated and do

not have economic interpretation. Each group of the results has been studied in

application to the particular setup of models we are working with in order to make

the procedure testing for stability more tractable and at the same time to attach

some economic interpretation to this very procedure.

2 The Setup

Deriving conditions for stability of the economy under structurally heterogeneous

mixed RLS/SG for any (possibly di¤erent) degrees of inertia of agents, we naturally

employ the general framework and notation from Honkapohja and Mitra (2005), who

were �rst to formulate general criterion for stability of the economy under mixed

RLS/SG heterogeneous learning. �Structurally heterogeneous�here refers to struc-

tural heterogeneity, which means that expectations and learning rules of di¤erent

agents are di¤erent, as well as may be di¤erent their fundamental characteristic, such

as preferences, endowments, and technology (as opposed to structural homogeneity,

which corresponds the assumption of a representative agent).

Structural heterogeneity in the setup of Honkapohja and Mitra (2005) is ex-

pressed through matrices Ah, which are assumed to incorporate the mass �h of each

agent type. So, Ah = �h � Âh, where Âh is de�ned as describing how agents of type
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h respond to their forecasts. So these are the structural parameters characterizing

a given economy. Those may be basic characteristics of agents, like those describing

their preferences, endowments, and technology. Structural heterogeneity means that

all Âh�s are di¤erent for di¤erent types of agents. When Âh = A, the economy is

structurally homogenous.

�Mixed RLS/SG learning�refers to persistently heterogeneous learning, de�ned

by Honkapohja and Mitra (2005) as the one arising when di¤erent agents use dif-

ferent types of learning algorithms. In the setup of H&M these are RLS and SG

algorithms.

More on this (as well as some useful reference for more detailed study of the

terms) can be found in Honkapohja and Mitra (2005) (In order not to repeat

Honkapohja and Mitra (2005), we just brie�y present the general setup and general

criterion of stability result. For full presentation of RLS/SG learning and setup

please see Honkapohja and Mitra(2005))

The class of linear structurally heterogeneous models with S types of agents with

di¤erent forecasts is presented by

yt = �+
SX
h=1

AiÊ
h
t yt+1 +Bwt;

wt = Fwt�1 + vt,

where yt is n� 1 vector of endogenous variables, wt is k� 1 vector of exogenous
variables, vt is a vector of white noise shocks, Êh

t yt+1 are (in general, non-rational)

expectations of the endogenous variable by agent i,Mw = limt!1wtw
0
t � is positive

de�nite, F (k � k matrix) is such that wt follows stationary VAR(1) process

The vector form presented above is a reduced form of the model describing the

whole economy, i.e. it is an equation corresponding to the inter�temporal equilibrium

of the dynamic model. Expectations (in general, not rational) of di¤erent agent types

in�uence the current values of endogenous variables.

We also stress the "diagonal" environment (the reason for which will be given

below) which we analyze, namely F = diag(�1; :::; �k); Mw = diag
�

�21
1��21

; :::;
�2k
1��2k

�
.

In forming their expectations about next period endogenous variable, agents are

assumed to believe that economic system develops according to the following model,

which is called agents�perceived law of motion (PLM).

yt = ai;t + bi;twt:
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Mixed learning of agents is introduced as follows. Part of agents, i = 1; :::; S0, is

assumed to use RLS learning algorithm while others, j = S0 + 1; :::; S, are assumed

to use SG learning algorithm. Moreover, all of them are assumed to use possibly

di¤erent degrees of responsiveness to the updating function that are presented by

di¤erent degrees of inertia �h, which, in formulation of Giannitsarou (2003), are

constant coe¢ cients before common for all agents deterministic decreasing gain se-

quence in learning algorithm. (Honkapohja and Mitra use more general formulation

of degrees of inertia as constant limits in time of expected ratios of agents�random

gain sequences and common for all deterministic decreasing gain sequence satisfying

certain regularity conditions.)

After denoting zt = (1; wt) and �i;t = (ai;t; bi;t); the formal presentation of learn-

ing algoritms in this model can be written as follows.

RLS: for i = 1; ::; S0

�i;t+1 = �i;t + �i;t+1R
�1
i;t zt

�
yt � �0i;tzt

�0
Ri;t+1 = Ri;t + �i;t+1

�
zt�1z

0
t�1 �Ri;t

�
SG: for j = S0 + 1; :::; S

�j;t+1 = �j;t + �j;t+1zt
�
yt � �0j;tzt

�0
Honkapohja and Mitra show that stability of REE, �t, in this model is deter-

mined by stability of the ODE:
d�i
d�
= �i (T (�

0)0 � �i) ; i = 1; :::; S0
d�j
d�
= �jMz (T (�

0)0 � �j) ; j = S0 + 1; :::; S,

where Mz = limt!1Eztz
0
t.

The conditions of stability of this ODE give the general criterion of stability

result for this class of models presented in Proposition 5 in Honkapohja and Mitra

(2005)

In the economy above mixed RLS/SG learning converges globally (almost surely)

to the minimal state variable (MSV)3 solution if and only if the matrices D1
 and

Dw
F have eigenvalues with negative real parts, where

3As is mentioned in ch. 8 of Evans and Hokapohja (2001), the concept of the MSV solution
was introduced by McCallum (1983) for linear rational expectations models. As is de�ned in
E&H(2001), this is the solution that depends linearly on a set of variables (in our case it is the
vector of exogenous variables and the intercept); this solution is such that there is no other solution
that depends linearly on a smaller set of variables.
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D1 =

0B@ �1In � � � 0
...

. . .
...

0 � � � �SIn

1CA ;
 =

0B@ A1 � In � � � AS
...

. . .
...

A1 � � � AS � In

1CA
Dw =

0B@ Dw1 � � � 0
...

. . .
...

0 � � � DwS

1CA ;
F =

0B@ F 0 
 A1 � Ink � � � F 0 
 AS
...

. . .
...

F 0 
 A1 � � � F 0 
 AS � Ink

1CA ;

Dwi = �iInk; i = 1; :::; S0; Dwj = �j (Mw 
 In) ; j = S0 + 1; :::; S.

In the "diagonal" environment we consider, the problem of �nding stability con-

ditions of both D1
 and Dw
F is simpli�ed to �nding stability conditions of D1


and D1
�i ;where 
�i is obtained from 
 by substituting all Ah with �iAh, where

j�ij < 1 as wt follows stationary VAR(1) process by setup of the model. We also

use special blocked� diagonal structure of the matrix D1 which is the feature of

the dynamic environment in this class of models.(In a sense these positive diagonal

D-matrices now may be called positive blocked� diagonal �-matices.) It allows us

to formulate the concept of ��stability by analogy to the terminology of the concept

of D�stability, studied for example in Johnson (1974).

De�nition 1 Given n; the number of endogenous variables, and S, the number

of agent types, �-stability is de�ned as stability of the economy under structurally

heterogeneous mixed RLS/SG learning for any (possibly di¤erent) degrees of inertia

of agents, � > 0.

��stability, thus formulated, has the same meaning in models with heterogeneous
learning described above as has E�stability condition in models with homogeneous
RLS learning. E�stability condition is the condition for asymptotic stability of an
REE under homogeneous RLS learning. The REE of the model is stable if it is

locally asymptotically stable under the following ODE:
d�
d�
= T (�)� �,

where � are the estimated parameters from agents PLMs, T (�) is a mapping of

PLM parameters into parameters of actual law of motion (ALM), which is obtained

when we plug forecasts functions based on agents PLMs into the reduced form of

the model and � is a "notional" ("arti�cial") time. The �xed point of this ODE is

the REE of the model.

In what follows we consider conditions of thus formulated ��stability, derived us-
ing di¤erent approaches discussed above. Section 2 is devoted to su¢ cient conditions
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of �-stability, among which are aggregated economy and "equal sign" conditions. In

Section 3 we present necessary conditions of ��stability that are based on char-
acteristic equation. And in Section 4 we show how su¢ cient aggregated economy

conditions can be interpreted on an economic example, the model of simultaneous

markets with structural heterogeneity.

3 Su¢ cient conditions

3.1 Aggregated economy conditions

The negative diagonal dominance approach allows one to show that in the setting

speci�ed above ��stability depends on E�stability of the aggregated economy which

is the upper boundary of aggregated economies with weights of aggregation across

agents, �, and weights of aggregation across endogenous variables,  .

We have been encouraged by the result that follows from Propositions 2 and 3

in Honkapohja and Mitra (2005) that for stability under heterogeneous RLS or SG

learning with the same degrees of inertia, stability in the economy aggregated across

agent types (average economy) tuns out to be crucial. Following Honkapohja and

Mitra (2005), who aggregated across agents by introducing the concept of average

(aggregated across agents) economy, we also are looking for the concept of aggre-

gated economy that has to be crucial for stability under structural mixed RLS/SG

heterogeneous learning with di¤erent degrees of inertia. (��stability)
The basic idea is that there has to be a way of how to aggregate an economy in an

economically reasonable way, so that stability in the aggregated economy is su¢ cient

for ��stability. Another idea is to circumvent the problem of looking for weights

of aggregation that guarantee stability (which follows from the negative diagonal

dominance requirement) by �nding such kind of a unifying economy coe¢ cient - the

coe¢ cient before expectations in the aggregated economy (we will call it aggregated

��coe¢ cient) - that will work as an indicator of stability: if it is less than one,

then there exists an economically reasonable aggregated economy, which implies

��stability.
It has also turned out that it is possible to �nd an upper boundary for economic

models with the same absolute values of coe¢ cients (elements of matrices A), but
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with possibly di¤erent signs, such that E�stability of such an upper boundary aggre-

gated economy implies E�stability in all aggregated economies and the ��stability

in all set of the models with the same absolute values of coe¢ cients. This �nd-

ing together with the unifying aggregated ��coe¢ cient allows us to see how robust

the model is to possible change of signs of coe¢ cients, and to see how robust is

��stability in this economy to a change in economic parameters. As an example,
the policy maker may know some structural coe¢ cients in the economy and have

to choose some parameters itself (like the ones for the policy rule). This formula

allows it to see what is the range of the parameters it may choose in order to make

sure that the economy will be ��stable. Of course, it may include into consideration

the possible range in other agents�coe¢ cients that it has estimated but knows that

they belong to some interval with some probability (situation typical for statistical

interval estimation).

We proceed with aggregation of the economy starting from the following aggrega-

tion across agents used by Honkapohja andMitra (2005): yt = �+AM ÊAV
t yt+1+Bwt.

It turns out that it is convenient, in addition to the aggregation across agents (con-

sidered by Honkapohja and Mitra (2005)), to consider aggregation across endoge-

nous variables. The economy aggregated across endogenous variables will no longer

be a vector but a scalar, which means that it can characterize many economies.

This aggregation across endogenous variables can be interpreted as the construction

of a limiting hyperplane on the space of vectors of endogenous variables � such

hyperplane that all vectors in the subspace limited by this hyperplane are stable

economies. It is like ax + by � c (if we consider economies characterized by a two-

dimensional vector of endogenous variables (x; y)): all vectors (x; y) satisfying the

constraint are stable if the limiting aggregated economy characterized by c is stable.

We rewrite the formulas used by Honkapohja and Mitra (2005) for average ex-

pectations as

EAV
t yt+1 = (A

M)�1

 
S

SX
h=1

1
S
AhE

h
t yt+1

!

AM = S

SX
h=1

1
S
Ah = S

SX
h=1

1
S
�hÂh

So this can be interpreted as if we take the weight of each agent type in calculating

aggregate expectations of one representative agent to be equal to 1
S
and then multiply

10



it by S in order to be consistent with the model in which we have S types of agents

(in the sense that we do not shrink the size of the economy to one representative

agent but preserve its size by replacing each type of agent by a representative agent).

In general, when aggregating expectations one may use di¤erent weights for di¤erent

types of agents summed up to one in order to re�ect the relative importance of a

particular agent type expectations in the aggregated economy. So, we �rst create

a representative agent type by averaging across all agent types (assigning a weight

to each type and summing over all types), then we aggregate over all types by

multiplying the representative (average) agent type by S in order to preserve the

size of the aggregated economy.

Hokapohja and Mitra (2005) use as weights in the formula for the average (ag-

gregate) economy the mass of each agent type �h. The mass of each agent type

was introduced above in section �The Setup�, and we also said that this mass is

incorporated in matrices Ah. We introduce additional dimension to weighting the

agent types.(This dimension can be interpreted as expressed via equal weights 1
S

in Honkapohja and Mitra (2005)). We can interpret it as follows. We can assume

that the share of each agent type expectations in the average expectations of the

population is determined not only by their mass in the population (their physical

share), but also by each type�s in�uence, other than their share in the population

(e.g. political power or other type of in�uence in the social life of the whole popu-

lation; it can be, for example, the in�uence mass media have on the minds of the

rest of the population, just like advertising of some product can in�uence the de-

mand for this product). Even a group of agents that does not have a large share in

the population can have signi�cant in�uence on the overall expectations. We can,

of course model this second dimension in expectations of separate agent types by

making the expectations of each agent type a function of expectations of other agent

types. For example, model how the type of agents called �mass media� in�uence

some other agent types. This would re�ect reality more adequately, but will be very

tricky to model (too many interrelations), leave alone to solve such kind of model.

Our interpretation of the additional weights as the in�uence of each group on the

overall expectations in the economy can be viewed as a shortcut: even if some agent

types in�uence other agent types, in the end this will lead to in�uence the overall
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expectations in the economy, so by assigning additional weights to each agent type

we provide a measure of the share of in�uence of each agent type in the overall ex-

pectations, bypassing the intermediate step of measuring the in�uence of each agent

type on other agent types separately.

If we write the aggregated economy using di¤erent weights for agents, we will

get

ÊWeighted
t yt+1 =

�
AWeigted

��1 
S

SX
h=1

�hAhÊ
h
t yt+1

!

AWeigted = S
SX
h=1

�hAh = S
SX
h=1

1
S
�h�hÂh,

where �h > 0 are weights of single agent types used in calculating aggregate

expectations, such that
SX
h=1

�h = 1: Later we discuss which weights should be used

to re�ect the relative weight of each agent type in aggregation of expectations.

Next, given the weights of aggregation across endogenous variables  i > 0,
nX
i=1

 i = 1, and across agents �h > 0,
SX
h=1

�h = 1, we aggregate the economy in

the following way

 1y1t + :::+  nynt =  1�1 + :::+  n�n+

+S�1
X
i

 ia
1
i1Ê

1y1t+1 + :::+ S�S
X
i

 ia
S
i1Ê

Sy1t+1 + :::+

+S�1
X
i

 ia
1
inÊ

1ynt+1 + :::+ S�S
X
i

 ia
S
inÊ

Synt+1 =

=  1�1 + :::+  n�n+

+
SX
h=1

S�h
X
i

 i
X
j

ahij| {z }
�h

X
i

 i

X
j

ahij(Êhyjt+1)X
i

 i

X
j

ahij

=

=  1�1 + :::+  n�n + �aggreg ( ; �)Eaggreg ( 1y1t+1 + :::+  nynt+1), where

�aggreg ( ; �) = S
X
h

�h
X
i

 i
X
j

ahij,

Eaggreg ( 1y1t+1 + :::+  nynt+1) =

=

0BBBB@
SX
h=1

S�h
X
i

 i
X
j

ahij| {z }
�h

1CCCCA
�1

�
SX
h=1

S�h
X
i

 i
X
j

ahij| {z }
�h

X
i

 i

X
j

a1ij(Êhyjt+1)X
i

 i

X
j

ahij

:4

4We assumed that these weights are such that we may divide over the corresponding coe¢ cient
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It is also useful to consider the economy that bounds above all the possible

economies with di¤erent signs of ahij aggregated using weights  : This is obviously

the model which is written in absolute values. (When all elements in the model, ahij;

endogenous variables and their expectations are positive, this limiting model exactly

coincides with the model considered (So, this is attainable supremum)). Thus we

have the following limiting aggregated model:

 1y1t + :::+  nynt �  1 jy1tj+ :::+  n jyntj �
�  1 j�1j+ :::+ n j�nj+�modaggreg ( ; �)E

mod
aggreg ( 1 jy1t+1j+ :::+  n jynt+1j) ; where

�modaggreg ( ; �) = S
X
h

�h
X
i

 i
X
j

��ahij��
If this limiting economy is E�stable (i.e. �modaggreg ( ; �) = S

X
h

�h
X
i

 i
X
j

��ahij�� <
1), then all the corresponding aggregated economies with various combinations of

signs of ahij are E�stable (�aggreg ( ; �) = S
X
h

�h
X
i

 i
X
j

ahij < 1).

The structure of this limiting aggregate coe¢ cient is as follows.X
i

 i
��ahij�� is the coe¢ cient before expectation of endogenous variable j in the

aggregated economy composed of one single agent type h. Notice that this coe¢ cient

is calculated for expectation of endogenous variable j, that enters the aggregated

product with coe¢ cient  j. So, we may name the ratio

X
i

 ijahijj
 j

the endogenous

variable�s j "own" expectations relative coe¢ cient. By looking at the values of these

coe¢ cients we will be able to judge about the weight a particular agent type has

in the economy in terms of the aggregated ��coe¢ cient. The next proposition is

formulated in terms of these relative coe¢ cients and stresses the fact that weights of

agents in calculating aggregated expectations have to be put into accordance with

this economic intuition in order to have stability under heterogeneous learning.

Proposition 2 If there exists at least one pair of vectors of weights for aggregation

of endogenous variables  and weights � for aggregation of agents such that for each

agent every endogenous variable�s "own" expectations relative coe¢ cient is less than

the weight of the agent used in calculating aggregated expectations (i.e. weights of

consisted weighted sums of a0ijs. In case, when all aij , participating in coe¢ cient over which we
have to divide are zero, this means that we simply do not divide over it, since these expectations
simply do not enter the aggregation,as summing up to zero.

13



agents are put into accordance with their endogenous variable�s "own" expectations

relative coe¢ cients), then the economy is ��stable for any n and S.

Proof: see Appendix

But this proposition above does not give a real rule of thumb (as it implies

looking for systems of weights) to say that a particular system is stable under het-

erogeneous learning. For this purpose we have constructed four maximal aggregated

��coe¢ cients described below. If they are less then one the economic system is

��stable.
Now, we go even further looking for an upper boundary by considering not only

any signs of aij; but also arbitrary values of weights  and �. It is clear that

any aggregated economy with any weights will be bounded above by the following

maximal aggregating economy.

 1y1t +  2y2t + :::+  nynt �
� jyaggregmax j =  1 j�1j + ::: +  n j�nj + �1maxE

max
aggreg ( 1 jy1t+1j+ :::+  n jynt+1j),

where �1max = S
X
j

max
h;i

��ahij��.
It is possible to derive other upper boundaries for subsets of aggregated economies

with either equal weights of agents 1
S
or equal weights of endogenous variables 1

n
, or

both.

In case of equal weights of agents 1
S
and arbitrary weights of endogenous variables

 , we have

jyaggregmax j =  1 j�1j+ :::+ n j�nj+�2maxEmaxaggreg ( 1 jy1t+1j+ :::+  n jynt+1j), where
�2max = max

i

X
h

X
j

��ahij��.
In case of equal weights of endogenous variables 1

n
and arbitrary weights of agents

�, we have

jyaggregmax j =  1 j�1j + ::: +  n j�nj + �3maxE
max
aggreg

�
1
n
jy1t+1j+ :::+ 1

n
jynt+1j

�
, where

�3max = S
X
i

max
h;j

��ahij��.
In case of equal weights of agents 1

S
and equal weights of endogenous variables

1
n
, we have

jyaggregmax j =  1 j�1j + ::: +  n j�nj + �4maxE
max
aggreg

�
1
n
jy1t+1j+ :::+ 1

n
jynt+1j

�
, where

�4max =
X
h

max
j

(X
i

��ahij��
)
.
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Notice that each new boundary is constructed in such a way that it does not

replicate the boundary for a broader set of aggregated models to which this partic-

ular model belongs. It is possible to do by applying the max operator to di¤erent

grouping of elements of sum that becomes possible, for particular subset of aggre-

gated models and which was not possible to apply for broader set. Under equal��ahij�� = jaj all these maximal ��coe¢ cients coincide with �modaggreg ( ; �) = nS jaj. So,
these are attainable maxima.

So, we have managed to aggregate the economy into one dimension and to �nd

the limiting aggregated economies that bound all of such aggregated economies

within a particular subset. If one of these limiting aggregated economies is E�stable

(i.e. if at least one of the maximal aggregated �� coe¢ cients is less than one), then
all aggregated subeconomies from a particular subset are E�stable.

Now we are ready to formulate the result which stresses the key role of E�stability

in the aggregated economy on the stability under structural heterogeneous learning

(recall Proposition 2 and Proposition 3 in Honkapohja and Mitra (2005)).

The key result is as follows.

Proposition 3 If one of the limiting aggregated economies is E�stable (i.e. one of

maximal aggregated ��coe¢ cients is less than one), then the economy is ��stable for
any n and S. (Notice that the aggregated whole economy,aggregated single economies

and all aggregated subeconomies are also stable under this condition)5.

Proof: see Appendix

This result gives the direct rule how to construct ��stable economies
We think that this is quite a strong result that says that there is one economic

unifying condition (such as aggregated ��coe¢ cient less than one) such that when

it holds true all the economies with the same absolute values, but all possible vari-

ous combinations of signs of ahij are stable under heterogenous learning with mixed

RLS/SG learning with any di¤erent positive degrees of inertia. It can be very useful

in the case when one does not know the exact sign of some coe¢ cient in matrix h,

5Note that the economies mentioned in this comment in brackets are economies aggregated
without taking absolute values, so not the limiting economy. Then, the aggregated whole economy
means that the aggregation is done across all agent types, while an aggregated subeconomy means
that the aggregation is partial, i.e. that we sum over a part of agent types, and an aggregated
single economy is a particular case of a subeconomy with only one type of agent.
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but may estimate that its absolute value belongs to some interval.( It is common

situation in policy making). Moreover, these coe¢ cients may change sign in the

economy during the time. So, this condition is to show how robust stability of the

model to a change of sign of some coe¢ cients. Fixing some known coe¢ cients in

these aggregated ��coe¢ cients, we may see how the value of other coe¢ cients is

�exible for the economy to remain stable under structural heterogeneous learning

with mixed RLS/SG learning when it is possible that economic agents have di¤erent

degrees of inertia and from time to time change them.

Implications for more simple cases

From the condition in the proposition above, we get that for the case n = 1 and

for structurally homogenous case the following propositions hold true.

Proposition 4 The univariate economy is stable under all forms of heterogeneous

learning we considered for any combination of signs of coe¢ cients if and only if

jA1j+ jA2j+ :::+ jAsj < 1:

Proof: Obvious: necessary condition for 
 to be stable under any delta is

A1+ :::+As < 1 (From the condition on the determinant of the �
 which has to be
positive This determinant equals � (A1 + :::+ As)+1)). For the above condition to

hold true for any signs of Ah it is necessary and su¢ cient that jA1j+jA2j+:::+jAsj <
1:

The same condition implies that all subeconomies are stable under any form of

structural heterogeneous learning.

Proposition 5 For structurally homogeneous economy: Ah = �hA, �h > 0;
SX
h=1

�h =

1;to be ��stable it is su¢ cient that at least one of the following limiting aggregated

��coe¢ cients: max
i

X
j

��aij�� and max
j

X
i

��aij�� is less than one.
Proof: direct application of Proposition 2

3.2 �Equal sign�conditions

Following the steps of the proof of observation (iv) in Johnson (the formulation of

this observation is presented in Appendix A), which is in fact alternative de�nition
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of D�stability, we get an alternative de�nition of blocked� diagonal (Db)�stability,
that is stability of Db
 for any positive blocked� diagonal matrix Db. This alterna-

tive de�nition of Db�stability is then used to derive conditions for ��stability.

De�nition 6 (Db�stability) Matrix A of size nS�nS is Db�stable if DbA is stable

for any positive blocked�diagonal matrix Db = diag(�1; :::; �1; :::; �S; :::; �S).

Proposition 7 (Alternative de�nition of Db�stability). Consider MnS(C); the set

of all complex nS � nS matrices, DbnS; the set of all nS � nS blocked�diagonal

matrices with positive diagonal entries. Take A 2 MnS(C) and suppose that there

is an F 2 DnS such that FA is stable. Then A is Db�stable if and only if A� iDb

is non�singular for all Db 2 DbnS. If A 2 MnS(R); � the set of all nS � nS real

matrices, then ���in the above condition may be replaced with �+�since, for a real
matrix, any complex eigenvalues come in conjugate pairs.

Proof. (The proof is just a modi�cation of the proof of observation (iv) in Johnson

for our blocked�diagonal case)

Necessity. Let A be Db�stable, that is EA is stable for all positive blocked�

diagonal E 2 DbnS. This means that �i cannot be an eigenvalue of matrix EA for
any E 2 DbnS. That is EA � iI is non�singular for all E 2 DbnS, or A � iDb is

non�singular for all Db = E�1 2 DbnS.

Su¢ ciency. By contradiction, let A be not Db�stable. Thus, we have that there

exists someE 2 DbnS such that FA is stable, whileEFA is not stable. By continuity,

it follows that either value, �i; is an eigenvalue of 1
�
(tE + (1� t)I)FA for some

0 < t � 1 and � > 0. So, A� iDb is singular for Db = � (tE + (1� t) I)�1 2 DbnS.

Contradiction.

Taking F as an identity matrix, andD as diag( 1
�1
; :::; 1

�1
; :::; 1

�S
; :::; 1

�S
) in the above

proposition, we get the following necessary and su¢ cient condition for ��stability
of 
:


�stable and
det

�
�A1
1+ i

�1

+ :::+ �AS
1+ i

�S

+ I

�
=

= det

��
1

1+ 1

�21

(�A1) + :::+ 1
1+ 1

�2
S

(�AS) + I

�
� i

�
1
�1

1+ 1

�21

(�A1) + :::+
1
�S

1+ 1

�2
S

(�AS)
��

6=

0, 8� > 0
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For case n = 1 it simpli�es to


�stable and�
1

1+ 1

�21

(�A1) + :::+ 1
1+ 1

�2
S

(�AS) + 1
�
6= 0;

or
�

1
�1

1+ 1

�21

(�A1) + :::+
1
�S

1+ 1

�2
S

(�AS)
�
6= 0;

or both.

The alternative de�nition of D�stability approach allows us to derive the

"equal sign" conditions for the cases n = 1; 2 and necessary and su¢ cient conditions

for ��stability for n = 1.

Proposition 8 (Criterion of ��stability in the univariate case) In case n = 1 the

 is ��stable if and only if 
 is stable and at least one of the following holds true:
equal sign condition (all Ai are greater or equal than zero and at least one is strictly

greater than zero or all Ai are less or equal than zero and at least one is strictly less

than zero), or all of subeconomies are not unstable and at least one of them in each

size is stable.

Proposition 9 In case n = 2, 
 is ��stable if 
 is stable and an "equal sign"

condition holds true, where the "equal sign" condition looks in general case as follows

det (�Ai) > 0; [detmix (�Ai;�Aj) + detmix (�Aj;�Ai)] > 0; i 6= j; M1(�Ai) >
0;

or

det (�Ai) < 0; [detmix (�Ai;�Aj) + detmix (�Aj;�Ai)] < 0; i 6= j; M1(�Ai) <
0:

(Here we introduce the concept of a pairwise mixed economy which is an economy

characterized by a matrix of structural parameters composed by mixing columns of

a pair of matrices Ai; Aj, for any i; j = 1; :::; S.)

The condition above may follow from the following (more understandable) su¢ -

cient condition:

Proposition 10 In case n = 2; 
 is ��stable if 
 is stable and all eigenvalues of
Ai (matrices of coe¢ cients of single economies) and of pairwise mixes (matrices of

coe¢ cients of pairwise mixed economies) are negative or all eigenvalues of Ai and

of pairwise mixes are positive.

18



Unfortunately, though similar "equal sign" conditions naturally follow from the

alternative de�nition of D�stability for cases n > 2; stability of 
 and a similar

"equal sign" condition are not su¢ cient for ��stability in this case.
For example, a similar "equal sign" condition for case n = 3 looks like

M3 (mix (�Ai;�Aj; Ak)) > 0; M2(mix (�Ai;�Aj)) > 0; M1(�Ai) > 0 or
M3 (mix (�Ai;�Aj; Ak)) < 0; M2(mix (�Ai;�Aj)) < 0; M1(�Ai) < 0
Here, the Mn(mix()) operator means the sum of all possible principal minors of

size n of a particular mix between matrices.

4 Necessary conditions

The characteristic equation approach (that in our formulation leaves aside the

intractable Routh-Hurwitz conditions) allows one to derive strong necessary con-

ditions for ��stability, that provide an easy test for non���stability of the model.
(Note that necessary conditions do not require diagonal structure of F and Mw:)

Condition (*) All sums of the same-size principal minors of diag(�r) (�
r)
are nonnegative (where (�
r) corresponds to a subeconomy of the economy under
consideration) for all subeconomies r for all positive block-diagonal diag(�r).

Proposition 11 Necessary condition for ��stability: For economy to be �-stable it
is necessary that condition (*) holds true.

The condition above can not be used as a test for non-��stability, as it requires
checking all subeconomies sums of minors for all �r > 0.

That is why below we have constructed the condition that has the direct testing

application.

Proposition 12 Necessary condition for ��stability: For an economy to be ��
stable, it is necessary that all sums of the same-size principal minors of minus ma-

trices corresponding to subeconomies are non-negative for each subeconomy, i1; :::; ip.

We think that this is quite a strong necessary condition, which implies that a

lot of models will not satisfy it, and will not be ��stable. Note that stability of
each single economy and subeconomies is a su¢ cient condition for the condition

above to hold true. A weaker requirement that all subeconomies are not unstable

(non-positive real parts of eigenvalues) is also su¢ cient.
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5 Economic Example

We demonstrate the aggregate economy su¤cient conditions on the model of simul-

taneous markets with structural heterogeneity6

The economic environment is given by the following equations

pt = l+vdt+"t is demand function in matrix form for di¤erent goods j = 1; :::; J

pt is a J � 1 vector of prices(which are endogenous variables in this model),
l is a vector of intercepts, v is a J � J matrix, which corresponds to the inverse

of the matrix of price e¤ects. d(t) is a vector of quantities of the J goods, "j;t =

fj"j;t�1 + vj;t, "j;t are demand shocks, jfjj < 1, vj;t are independent white noises.
There are S types of suppliers with supply functions:

sht = gh + nhÊh
t�1pt; h = 1; :::; S;

which depend on expected price due to a production lag. Each supplier produces

all J goods. s(h; t) is a J � 1 vector of goods supplied by type h supplier.
It is further assumed that di¤erent outputs are produced in independent processes

by each producer h, so nh is a positive diagonal matrix. Expectations (non-rational,

in general) of prices are formed by each supplier at the end of period t � 1 before
realization of demand shock "t:

Market clearing condition,dt =
SX
h=1

sht ; leads to the following reduced form

pt = l + v

 
SX
i=1

gi

!
+

SX
h=1

vnhÊh
t�1pt + "t

For the case with equal weights of single agent types used in calculating aggregate

expectations, the aggregated stability su¢ cient condition for this model has the

form:X
i

 i jvijj <
 j
Snhjj

;8j; h:

This condition can be derived by the direct application of Proposition 2 to the

given model.

It is clear that the above condition follows from
X
i

 i jvijj <
 j

Smax
h
fnhjjg �

 j
Snhjj

;8j; h, which is to say that if
X
i

 i jvijj <
 j

Smax
h
fnhjjg ,8j holds, then the con-

dition implied by Proposition 2 holds as well.

6The authors express sincere thanks to Seppo Honkapohja who suggested to use this example.
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And the last condition is condition for stability of the aggregated cobweb model

in terms of the inequality relation between slopes of the demand and supply curves:

The demand curve for the price index7

Pt =
X
i

 ipit =

 X
i

 ivi1

!
d1t + :::+

 X
i

 iviJ

!
dJt +

X
i

 ili +
X
i

 i"it <

<

 X
i

 i jvi1j
!
d1t + :::+

 X
i

 i jviJ j
!
dJt +

X
i

 ili +
X
i

 i"it =

=

 X
i

 i jvi1j+ :::+
X
i

 i jviJ j
!8>><>>:

0@X
i

 ijvi1j

1Ad1t+:::+
0@X

i

 ijviJ j

1AdJtX
i

 ijvi1j+:::+
X
i

 ijviJ j

9>>=>>;+
X
i

 ili+

X
i

 i"it =

= rpDaggr +
X
i

 ili +
X
i

 i"it

Note that here aggregating over the elements of the price vector we obtain the

demand function in terms of the price index.This is an example of economic inter-

pretation of the aggregation procedure that we propose in our paper, in particular,

to assigning weights to the endogenous variables.

Derivation of the supply curve for the price index.

First, we write the aggregate (over all supplier types) supply equation:X
h

sht =
X
h

gh +
X
h

nhÊh
t�1pt =

X
h

gh +

 X
h

nh

!
Êaggreg
t�1 pt

Then we write the expression for each component of the vector: aggregate supply

of each product equations. So, for each product j;X
h

shjt =
X
h

ghj +

 X
h

nhÊh
t�1pt

!
j

=
X
h

ghj +
�
n111 + :::+ nSJJ

�
Êaggreg
t�1 pjt :

Next, we aggregate over all supply equations using weights  j:Aggregating across

endogenous variables (prices) to get price index, we �nally get the supply curve for

the aggregated model

Êaggreg
t�1 Pt: =

�
 1

n111+:::n
S
11

�X
h

sh1t + :::+
�

 J
n1JJ+:::n

S
JJ

�X
h

shJt�

�
X
j

 j

 X
h

ghj =
�
n111 + :::+ nSJJ

�!
=

7To get this function, we aggregate the individual demand functions, not the reduced form
equations (in which case we would obtain the equation for the intertemporal equilibrium price
index).
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=
�

 1
n111+:::n

S
11
+ :::+  J

n1JJ+:::n
S
JJ

�8><>:
�

 1
n111+:::n

S
11

�X
h

sh1t+:::+

�
 J

n1
JJ

+:::nS
JJ

�X
h

shJt�
 1

n111+:::n
S
11

�
+:::+

�
 J

n1
JJ

+:::nS
JJ

�
9>=>;�

�
X
j

 j

 X
h

ghj =
�
n111 + :::+ nSJJ

�!
=

= rmSaggr �
X
j

 j

 X
h

ghj =
�
n111 + :::+ nSJJ

�!
:

It is clear that
 j

n1jj+:::n
S
jj
>

 j

Smax
h
fnhjg :So, condition of aggregated economy stability

in this class of models,
X
i

 i jvijj <
 j

Smax
h
fnhjjg ;8j, is condition for E-stability of the

aggregated cobweb model (rm > rp).

6 Conclusion

Based on the analysis of negative diagonal dominance, the alternative de�nition of

D�stability, and the characteristic equation, we have been able to derive two groups

of su¢ cient conditions and one group of necessary conditions for ��stability.

Our paper partly resolves the open question posed by Honkapohja and Mitra

(2005). As has been mentioned, Honkapohja and Mitra (2005) provide a general

stability condition (criterion) for the case of persistently heterogeneous learning

� a joint restriction on matrices of structural parameters and degrees of inertia,

which implies that stability in such an economy is determined by the interaction of

structural heterogeneity and learning heterogeneity. For the general (multivariate)

case, however, it was not possible to derive stability conditions expressed in terms

of an economy aggregated only across agent types.

They have derived su¢ cient conditions in terms of the structure of the economy,

but this condition is very general: D�stability and H�stability of the structural

matrices. We go a bit further in this direction by providing su¢ cient conditions for

D�stability in terms of the aggregate economy structure.

In particular, using negative diagonal dominance (su¢ cient for D�stability) and

our concept of aggregating an economy (both across agent types and endogenous

variables), we have obtained su¢ cient conditions for ��stability expressed in terms

of E�stability of the aggregated economy and its structure. These were summarized

as the �aggregated economy�su¢ cient conditions. One of them, in principle, can
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serve as a rule of thumb for checking a model for delta-stability.

We have found a unifying condition for the most general case of heterogeneous

learning in linear forward�looking models. It is quite restrictive, of course. But our

main achivement was to have shown that such a simple condition with E�stability

meaning of some aggregated economy (notion, that already proved to be useful as a

condition of stability under heterogeneous learning in previous learning literature)

does exist for a large class of models with any �nite natural numbers of agents,

exogenous and endogenous variables.

The economic example provided in the end of the paper demonstrates the appli-

cation of the aggregate economy conditions.

Next, based on the analysis of the alternative de�nition of D-stability, we have

obtained su¢ cient conditions on the structure of the economy summarized as the

�equal sign conditions�.

Further, based on the analysis of the characteristic equation and requirement for

negativity of all eigenvalues (necessary and su¢ cient for stability), we have derived

a group of necessary conditions. Their failure can be used as an indicator of non�

��stability.
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A Appendix

Here we provide the reader with de�nitions and theorems adapted from mathematics

literature that are used for deriving conditions of ��stability. These results are
structured according to the approach which is used for deriving stability conditions.

General de�nition of stability and D-stability of a matrix

De�nition 13 Matrix A is stable if all the solutions of the system of ordinary dif-

ferential equations _x(t) = Ax(t) converge toward zero as t converges to in�nity.

Theorem 14 Matrix A is stable if and only if all its eigenvalues have negative real

parts

De�nition 15 (D�stability) Matrix A is D�stable if DA is stable for any positive
diagonal matrix D. A COMMENT FROM JOHNSON(1974), p.54: �Thus the D-

stables are just those matrices which remain stable under any relative reweighting of

the rows or columns.�

Lyapunov theorem approach

Theorem 16 (Lyapunov): A real n � n matrix A is a stable matrix if and only if

there exists a positive de�nite matrix H such that A0H +HA is negative de�nite.

Theorem 17 (Arrow-McManus, 1958): Matrix A is D-stable if there exists a pos-

itive diagonal matrix C such that A0C + CA is negative de�nite.

Negative diagonal dominance approach

De�nition 18 (introduced by McKenzie): A real n�n matrix A is dominant diag-
onal if there exist n real numbers dj > 0; j = 1; :::; n, such that djjajjj >

P
dijaijj :

i 6= j); j = 1; : : : ; n This is called �column� diagonal dominance. �Row� diagonal

dominance is de�ned as the existence of di > 0 such that dijaiij >
P
djjaijj : j 6=

i); i = 1; : : : ; n.

Theorem 19 (su¢ cient condition for stability, McKenzie, 1960): If an n�n matrix
A is dominant diagonal and the diagonal is composed of negative elements (aii < 0,

all i = 1; : : : ; n), then the real parts of all its eigenvalues are negative, i.e. A is

stable.
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Corollary 20 If A has negative diagonal dominance, then it is D-stable.

Characteristic equation approach

Theorem 21 (Routh-Hurwitz necessary and su¢ cient conditions for negativity of

eigenvalues of a matrix)

Consider the characteristic equation

j�I � Aj = �n + b1�
n�1 + :::+ bn�1�+ bn = 0

determining the n eigenvalues � of a real n�n matrix A, where I is the identity

matrix. Then the eigenvalues � all have negative real parts if and only if

�1 > 0;�2 > 0; :::;�n > 0,

where

�k =

�����������

b1 1 0 0 0 0 � � � 0
b3 b2 b1 1 0 0 � � � 0
b5 b4 b3 b2 b1 0 � � � 0
...

...
...

...
...

...
. . .

...
b2k�1 b2k�2 b2k�3 b2k�4 b2k�5 b2k�6 � � � bk

�����������
.

Alternative de�nition of D�stability approach

Theorem 22 (From Observation (iv) in Johnson (1974)). Consider Mn(C); the

set of all complex n � n matrices, Dn; the set of all n � n diagonal matrices with

positive diagonal entries. Take A 2 Mn(C) and suppose that there is an F 2 Dn

such that FA is stable. Then A is D�stable if and only if A � iD is non�singular

for all D 2 Dn. If A 2 Mn(R); �the set of all n � n real matrices, then ��� in
the above condition may be replaced with �+�since, for a real matrix, any complex

eigenvalues come in conjugate pairs.

B Appendix

Proof of Proposition 2

Use "columns" negative diagonal dominance of 
 which is su¢ cient for negative

real parts of eigenvalues of D
, look for condition which is su¢ cient for negative di-

agonal dominance in our structure8. Use as weight diag ('1( 1; :::;  n); :::; 's ( 1; :::;  n)),

8Note here again that if we assume that matrices F and Dw are diagonal, then we do not have
to �nd a separate condition for stability of Dw
F . So this condition is su¢ cient for stability of
the whole system.
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'i > 0;  h > 0;
X
i

 i = 1;
X
h

'h = 1:

Take any block h and any column j:

ahjj � 1 < 0 -negative diagonal;
'h j

��ahjj � 1�� > ('1 + :::+ 's)
X
i

 i
��ahij��� 'h j

��ahjj�� 8j; h
m
ahjj � 1 < 0
�'h jahjj + 'h j > ('1 + :::+ 's)

X
i

 i
��ahij��� 'h j

��ahjj�� 8j; h
m
(Case1) and (Case2)

Case 1 1 > ahjj > 0X
i

 i
��ahij�� < 'h j

'1+:::+'S
8j; h such that 1 > ahjj > 0

Case 2.ahjj < 0X
i

 i
��ahij�� < 'h j

'1+:::+'S
� 2'h j

'1+:::+'S
ahjj 8j; h such that ahjj < 0

Using that in second case we have ahjj < 0; one may formulate the following

su¢ cient condition
X
i

 i
��ahij�� < 'h j

'1+:::+'S
= 'h j 8j; h (The condition 1 > ahjj is

implied by this relation, and the condition of case 2 is also satis�ed). This is the

condition of proposition 1. Q:E:D:

Proof of Proposition 3.

For proof of maximal beta�coe¢ cient �1max. take  i =
1
n
:The previous general

su¢ cient condition is rewritten as
X
i

��ahij�� < �h 8j; h: Now one is left to notice that

condition �4max =
X
h

max
j

(X
i

��ahij��
)
< 1 implies that there exists such weights

� = (�1; :::; �S) > 0 that above condition holds true which is su¢ cient for negative

diagonal dominance of 
:Q:E:D:

For proof of maximal beta�coe¢ cient �4max. take 'h =
1
S
:The previous general

su¢ cient condition is rewritten as
X
i

 i
��ahij�� <  j

S
8j; h: Notice that condition

�1max = S
X
j

max
h;i

��ahij�� < 1 implies that there exist such weights  = ( 1; ::;  n) > 0
that above condition holds true which is su¢ cient for negative diagonal dominance

of 
: Q:E:D:

For proof of maximal beta�coe¢ cients �2max and �
3
max, use �rst "rows" negative
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diagonal dominance of 
 which is su¢ cient for negative real parts of eigenvalues of

D
, look for condition which is su¢ cient for negative diagonal dominance in our

structure. Use as weight diag (d1; :::; dn; :::; d1; :::; dn), di > 0;
X
i

di = 1

Take any block h and any row i:

ahii � 1 < 0 -negative diagonal;
di
��ahii � 1�� >X

h

X
j

dj
��ahij��� di

��ahii�� 8i; h
m
ahii � 1 < 0
�diahii + di >

X
h

X
j

dj
��ahij��� di

��ahii�� 8i; h
m
(Case1) and (Case2)

Case 1 1 > ahii > 0X
h

X
j

dj
��ahij�� < di 8i; h such that 1 > ahii > 0

Case 2.ahii < 0X
h

X
j

dj
��ahij�� < di � 2diahii 8i; h such that ahii < 0

Using that in second case we have ahii < 0; one may formulate the following

su¢ cient condition
X
h

X
j

dj
��ahij�� < di 8i (The condition 1 > ahii is implied by this

relation, and the condition of case 2 is also satis�ed). Notice that condition �3max =

S
X
i

max
h;j

��ahij�� < 1 implies that there exist such weights d = (d1; ::; dn; ::::; d1; :::; dn) >
0 that above condition holds true which is su¢ cient for negative diagonal dominance

of 
: For proof of maximal beta�coe¢ cient �2max, take di =
1
n
in above.The previ-

ous general su¢ cient condition is rewritten as
X
h

X
j

��ahij�� < 1 8i. Now one is left
to notice that condition �2max = max

i

X
h

X
j

��ahij�� < 1 implies that above condition
holds true which is su¢ cient for negative diagonal dominance of 
:Q:E:D:

C Appendix

Proof of Proposition 6:

For case n = 1, the condition for alternative de�nition of D-stability simpli�es

to
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�stable and
at least one of the following holds true�

1
�1

1+ 1

�21

(�A1) + :::+
1
�S

1+ 1

�2
S

(�AS)
�
6= 0;�

1
1+ 1

�21

(�A1) + :::+ 1
1+ 1

�2
S

(�AS) + 1
�
6= 0:

The �rst "equal sign" condition in Proposition 6 follows directly from the �rst

inequality. The second condition that follows from the second inequality is proved

below.

Necessity: Fix some subeconomy (i1; :::; ip) and force deltas corresponding to

other agents to zero, while deltas for agents in the subeconomy to in�nity. The

resulting inequality will look like �Ai1 � Ai2 � ::: � Aip + 1 � 0 or �Ai1 � Ai2 �
::: � Aip + 1 � 0 for any subeconomy (i1; :::; ip). Note that each single economy

has to satisfy �Ai + 1 � 0, and at least one of them has to have strict inequality,

�Ai0 + 1 > 0, - the result that follows from the requirement on the trace of the

matrix D(�
) to be greater than zero (see proof of proposition 9 and 10). Thus we
proved the necessity part of the second condition in proposition 6.

Su¢ ciency: We have �Ai1�Ai2� :::�Aip+1 � 0 for any subeconomy (i1; :::; ip)

and 9j0
...�Aj0+1 > 0, and have to prove that

�
1

1+ 1

�21

(�A1) + :::+ 1
1+ 1

�2
S

(�AS) + 1
�
6=

0.

We group separately the terms corresponding to non-positive Ai�s and terms

corresponding to non-negative Ai�s (arbitraly put zero Ai�s to any of the groups).

Schematically, we will have"
1

1 + 1
�21

�
A�1
�
+ :::+

1

1 + 1
�2k

�
A�k
�#

| {z }
�0

+

"
1

1 + 1
�21

�
A+1
�
+ :::+

1

1 + 1
�2m

�
A+m
�#

| {z }
�1

� 1. If

j0 is such that Aj0 < 0, then the �rst term is strictly negative. If j0 is such that

1 > Aj0 > 0, then the second term is strictly less than 1. In any case the whole

expression is negative. (We used that 0 < 1
1+ 1

�21

< 1). So, the su¢ ciency part of the

second condition in proposition 6 is proved.

Proof of Propositions 7 and 8:

For case n = 2, the inequality in alternative de�nition of D�stability looks the

following way:

det

�
�A1
1+ i

�1

+ :::+ �AS
1+ i

�S

+ I

�
= 1 + det (�A1)

1+ i
�1

+ :::+ det (�AS)
1+ i

�S

+ M1(�A1)
1+ i

�1

+ :::+
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+M1(�AS)
1+ i

�S

+ detmix

�
�A1
1+ i

�1

; �A2
1+ i

�2

�
+ :::+ detmix

�
�AS�1
1+ i

�S�1
; �AS
1+ i

�S

�
=

= 1 +

�
1� i

�1

1+ 1

�21

�2
det (�A1) + :::+

�
1� i

�S

1+ 1

�2
S

�2
det (�AS)+

+

�
1� i

�1

1+ 1

�21

�
M1(�A1) + :::+

�
1� i

�S

1+ 1

�2
S

�
M1(�AS) + :::+

+

�
1� i

�1

1+ 1

�21

��
1� i

�2

1+ 1

�22

�
[detmix (�A1;�A2) + detmix (�A2;�A1)] + :::+

+

 
1� i

�S�1
1+ 1

�2
S�1

!�
1� i

�S

1+ 1

�2
S

�
[detmix (�AS�1;�AS) + detmix (�AS;�AS�1)] 6= 0

Taking real and imagianary part, one gets

Redet

�
�A1
1+ i

�1

+ :::+ �AS
1+ i

�S

+ I

�
= 1 +

1� 1

�21�
1+ 1

�21

�2 det (�A1) + :::+

+
1� 1

�2
S�

1+ 1

�2
S

�2 det (�AS) + 1
1+ 1

�21

M1(�A1) + :::+ 1
1+ 1

�2
S

M1(�AS) + :::+

+
1� 1

�1�2�
1+ 1

�21

��
1+ 1

�22

� [detmix (�A1;�A2) + detmix (�A2;�A1)] + :::+

+
1� 1

�S�1�S�
1+ 1

�2
S�1

��
1+ 1

�2
S

� [detmix (�AS�1;�AS) + detmix (�AS;�AS�1)]
Imdet

�
�A1
1+ i

�1

+ :::+ �AS
1+ i

�S

+ I

�
=

� 2i
�1�

1+ 1

�21

�2 det (�A1) + :::+

+
� 2i
�S�

1+ 1

�2
S

�2 det (�AS) + � i
�1

1+ 1

�21

M1(�A1) + :::+
� i
�S

1+ 1

�2
S

M1(�AS) + :::+

+
�i
�
1
�1
+ 1
�2

�
�
1+ 1

�21

��
1+ 1

�22

� [detmix (�A1;�A2) + detmix (�A2;�A1)] + :::+

+
�i
�

1
�S�1

+ 1
�S

�
�
1+ 1

�2
S�1

��
1+ 1

�2
S

� [detmix (�AS�1;�AS) + detmix (�AS;�AS�1)]
From Im part of the determinant we see "equal sign" su¢ cient condition for this

case:

det (�Ai) > 0; [detmix (�Ai;�Aj) + detmix (�Aj;�Ai)] > 0; i 6= j;M1(�Ai) >
0 and 
�stable
or

det (�Ai) < 0; [detmix (�Ai;�Aj) + detmix (�Aj;�Ai)] < 0; i 6= j;M1(�Ai) <
0 and 
�stable
Proof of Proposition 9 and 10:

We consider � = D(�
). Necessary and su¢ cient condition for stability of this
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matrix is that real parts of eigenvalues of D(�
) be greater than zero. And for
the condition on eigenvalues to hold true it is necessary that all sums of principal

minors of D (�
) grouped by the same size be greater than zero.
Really, characterisitic equation for eigenvalues of � has the form

det (� + I�) = det �+�Mn�1 + �
2Mn�2 + :::+ �

n�1M1 + �
n = 0, where � = ��

is the eigenvalue of �: and Mk is the sum of all principal minors of � of size k.

On the other hand, the same characteristic equation can be written in terms of

the product decomposition of the polynomial:

(�+ �1) � � � (�+ �n) = �1:::�n| {z }
>0

+:::+�n�2(�1�2 + :::+ �n�1�n)| {z }
>0

+�n�1(�1 + :::+ �n)| {z }
>0

+

�n = 0.

Thus, all Mk > 0.

By writing down this condition in terms of D(�
), one gets that in each size
group the sum of minors is subdivided into groups of sums of minors that contain

the same number of columns of each block of (�
), i.e. Ai�I. The coe¢ cient before
such particular sum has the form (�i1)

j1 (�i2)
j2 :::

�
�ip
�jp . This coe¢ cient uniquely

speci�es the sum of minors by the size, the number of columns from each block,

and from which subeconomy it is formed, i1; :::; ip. The size of the minors in such a

group is equal to the total power of the coe¢ cients, j1 + :::+ jp, and the subscripts

of deltas mean from which block of (�
) columns are taken, while the power of each
delta indicates how many columns are taken from this particular block.

Let us �x one subeconomy (let us say, formed by blocks 1, 2, 3) and consider

the limit of the inequalities for sum of minors, with deltas for other blocks going to

zero. Doing the same operation for all subeconomies, we will get condition (*). The

statement in proposition 10 is derived by setting all deltas for all subeconomies in

condition (*) equal to 1.
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