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Abstract 

This paper proposes Lagrange Multiplier based panel unit root tests 

allowing for structural breaks through simple extensions of existing group 

mean and combination tests. The proposed tests are more general than those 

previously suggested. They consider potential breaks in the intercept, in the 

slope, and both. A desirable property of the tests is their flexibility to 

accommodate heterogeneous break types across cross-sections in a panel. 

Response surfaces to approximate finite sample distributions of the underlying 

test statistics required to implement the panel tests are provided. The tests are 

analyzed for the case when the break dates are known and for the case when 

they are endogenously determined. A bootstrap test is further suggested to deal 

with cross-sectional dependency. The proposed tests are applied to two major 

macroeconomic variables, per capital gross domestic product and consumer 

prices of OECD countries.  
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1. Introduction 

Notwithstanding their frequent use in applied works, most panel unit root tests in the 

literature ignore the presence of potential structural breaks. Erroneous omission of 

structural breaks may induce deceptive inference, as evidenced by Perron (1989) for 

the univariate case, and Murray and Papell (2000), Carrion-i-Silvestre et el. (2002), 

Breitung and Candelon (2005) and Im et el.  (2005, hereafter ILT) in the panel 

setting. However, only a handful of studies, including Murray and Papell (2000), 

Carrion-i-Silvestre et el. (2002), Papell (2002), Tzavalis (2002), Bai and 

Carrion-i-Silvestre (2004), Breitung and Candelon (2005) and ILT, have attempted to 

develop panel unit root tests with structural breaks. This paper addresses this concern 

and proposes extensions to the ILT test, and the combination tests of Maddala and Wu 

(1999) and Choi (2001) originally considered for the no break case to account for 

structural breaks. 

The ILT test is noticeable among the prevailing panel unit root tests with structural 

breaks. It is a group mean test that combines individual exogenous intercept break 

tests, developed by Amsler and Lee (1995, hereafter AL), across cross-sections in a 

panel. Based on the Lagrange Multiplier (LM), or score, principle advanced by 

Schmidt and Phillips (1992, hereafter SP), the test allows for breaks under both the 

null and alternative hypotheses, so that rejection of the null unambiguously implies 

trend stationarity. It also permits a high degree of heterogeneity across cross-sections 

in a panel. However, two deficiencies of the test can be heeded. First, it only caters for 

intercept breaks, but for trending variables, it is possible for a break to affect the 

intercept of the trend function, as well as its slope. Erroneous determination of the 

break type may lead to incorrect conclusions (see Montañés et al., 2005). Second, it is 

devised under the assumption of known breaks, which is strongly criticized for the 
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problem of pre-testing and data-mining (see Christiano, 1992). Thus, ILT apply the 

minimum LM test of Lee and Strazicich (2003) to select the break date for each 

individual, and then combine the minimum LM tests as in the known break case, but 

do not provide finite sample performance of the resulting panel unit root test. 

This paper contributes in the following respects. First, we extend the ILT test to 

incorporate breaks in the intercept and slope, and pure breaks in the slope. Second, we 

show that the ILT test with minimum LM break selection exhibits severe 

over-rejections of the null. As a remedy, we apply the minimum sum of squared 

residuals (SSR) test of Nunes (2004) to select the break date for each time series. 

Notice that the ILT test, by combining test statistics, only has limited ability to permit 

heterogeneous break type across cross-sections in a panel. Thus, we also extend the 

combination tests to account for structural breaks. Since combination tests are based 

on combining p-values from unit root tests applied to individual time series in a panel, 

they permit the use of a different unit root test on a different time series in the same 

panel. Consequently, combination tests permit full flexibility to accommodate 

heterogeneous break types across cross-sections.  

We also simulate finite sample distributions of individual statistics required for 

computing the extended ILT and combination tests, and summarize the simulation 

results using response surfaces. We highlight in passing the importance of using finite 

sample distributions simulated under different lag order assumptions, which has not 

been thoroughly examined for panel unit root tests in the literature. We further suggest 

employing the bootstrap approach to compute the panel unit root tests when the 

cross-sectional independence assumption is relaxed.  

 The plan of this paper is as follows. Section Two details the testing methodology. 

Section Three deals with practical implementation issues of the proposed tests. 
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Section Four reports Monte Carlo simulation results, Section Five provides empirical 

applications, and Section Six concludes. 

 

2. Testing Methodology 

2.1 Model Framework 

We consider the following general data generating process (DGP) for each 

cross-section in a panel 

     itiitiit uZy ++= δµ , ittiiit uu εα += −1, , ),0(~ 2
iit iidN σε , Ni ,,1 ⋅⋅⋅= , Tt ,,1 ⋅⋅⋅= , (1) 

where itZ  is the nonstochastic process excluding the intercept term, iδ  is the vector 

of coefficients corresponding to itZ , 0iu  is fixed, and iid means independently and 

identical distributed. Thus, individual specific intercepts, time trend coefficients, 

structural break coefficients, serial correlation structure, first-order autoregressive 

parameters and break locations are allowed. 1  No contemporaneous correlations 

among cross-sections are assumed, that is, itε  is independent of jsε  when ji ≠  for 

all t  and s . The models of interest are specified as follows 

(Model 0) tZit = , ii 1δδ = ,  

(Model 1) ( )itit DUtZ ,= , ),( 21 ′= iii δδδ ,  

(Model 2) ( )ititit DTDUtZ ,,= , ),,( 321 ′= iiii δδδδ ,  

(Model 3) ( )itit DTtZ ,= , ),( 31 ′= iii δδδ , 

where 1=itDU  if iTBt >  and 0 otherwise, iit TBtDT −=  if iTBt >  and 0 otherwise, 

                                                 
1 With serially correlated errors taking the general form, itε  follows a stationary and invertible 

autoregressive moving average  process itiiti vLBLA )()( =ε , where )(LAi  and )(LBi  are finite 

order polynomials in the lag operator L with all roots lying outside the unit circle and ),0(~ 2
viit iidNv σ , 

so that itε  can be approximated by an autoregressive process of order ki, 

ititiitii vLCLALB ==− εε )()()( 1 , with ∑ =
= ik

j
j

ji LcLC
1

)( . 
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iTB ( )TTBi <<1  being the break date, also defined as TTB ii λ= ( )10 << iλ , and iλ  

being the break fraction. Model 0 does not account for structural breaks. Model 1 

allows for a change in the intercept of the trend function, Model 2 allows for a change 

in the intercept and slope, whereas Model 3 permits a change in the slope.  

The null and alternative hypotheses are 

H0: 1=iα , Ni ,,1 ⋅⋅⋅= , 

H1: 1<iα , 1,,1 Ni ⋅⋅⋅= , and 1=iα , NNi ,,11 ⋅⋅⋅+= , (2) 

where for test consistency, it is assumed NN /1  is a constant as ∞→N . Under the 

null of 1=iα , DGP (1) can be expressed as 

itiitit Zy εδ +∆=∆ , Tt ,,2 ⋅⋅⋅= , 1011 iiiiii uZy εδµ +++= . (3) 

Based on the LM, or score principle, SP suggest unit root testing for an 

individual using the regression equation 

it
k

j jtiijiittiiit eScZSy i +∆+∆+=∆ ∑ = −− 1 ,1,
~~

γφ , Tkt i ,,2 ⋅⋅⋅+= . (4) 

where 1−= ii αφ , ituiitit ZyS δµ
~~~

−−= , Tt ,,2 ⋅⋅⋅= , with 0~
1 =iS , iδ

~  are the restricted 

MLEs of iδ  obtained by a regression of the null equation (3), and iiiiui Zy δµµ
~~

11 −−= , 

the restricted MLE of )( 0iiui u+≡ µµ . Equation (4) takes the augmented form to allow 

for autocorrelated errors as in AL. The LM statistic is computed as the t-statistic for 

testing 0=iφ . We denote the individual LM statistics under Models 0, 1, 2 and 3 as 

0
iTτ , )(1

iiT λτ , )(2
iiT λτ  and )(3

iiT λτ  respectively.  

 

2.2 ILT Tests 

ILT first consider Model 0. Under the null as ∞→T  for fixed N, each 0
iTτ  converges 
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to the SP distribution, with finite mean 0
iE  and variance 0

iV . 2  With the 

cross-sectional independence assumption, the 0
iTτ ’s are iid. Thus, the panel unit root 

test under Model 0 is given by 

0

00 )(

i

iNT

V

E
N

−τ , (5) 

where ∑=
=

N

i iTNT N
1

00 )/1( ττ . The statistic (5) converges to a standard normal distribution 

as T and N grow large in sequence by the Lindeberg-Lévy central limit theorem (CLT) 

under the null, and diverges to negative infinity under the alternative. ILT also 

consider Model 1 with exogenous known breaks. As shown by AL, under the null as 

∞→T  for fixed N, each )(1
iiT λτ  converges to the SP distribution, since itDU∆  in 

equation (4) equals one at only one point and is thus asymptotically negligible. The 

panel unit root test under Model 1 with exogenous known breaks is  

)

))((
0

01

i

iNT

V

E
N

−λτ , (6) 

where )()/1()(
1

11
i

N

i iTNT N λτλτ ∑ =
= , with ),,,( 1 Nλλλ ⋅⋅⋅= .  

 We extend the ILT testing methodology to Model 2 with intercept and slope 

breaks and Model 3 with slope breaks only. For Model 2, each )(2
iiT λτ  has a limiting 

distribution that depends on the break location, with finite mean 2
iE  and variance 2

iV , 

under the null as ∞→T  for fixed N, according to Lee and Strazicich (2003) and 

Nunes (2004).3 Cross-sectional independence implies the )(2
iiT λτ ’s are iid. Thus, we 

                                                 
2  The SP distribution is given by [ ] 2/121

0 )()2/1(
−

∫− drrV i , with drrVrVrV iii )()()( 1
0∫−= , a 

demeaned Brownian bridge, )1()()( iii rWrWrV −= , a standard Brownian bridge, and )(rWi , a standard 
Brownian motion. 

3 The distribution is given by [ ] 2/121
0 ),(

2
1 −
∫− drrV ii λ , where ),( rV ii λ  denotes the residuals 

from the projection of ),( rV ii λ onto the orthogonal complement of )},(,1{),( rdurdz ii λλ = , 
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formulate the panel unit root test under Model 2 with exogenous known breaks as  

2

22
2 ])([

)(
i

iNT

V

EN −
=Γ

λτ
λ , (7) 

where )()/1()(
1

22
i

N

i iTNT N λτλτ ∑ =
= . For Model 3, under the null as ∞→T  for fixed N, 

each )(3
iiT λτ  has a limiting distribution that depends on the break location, which is 

the same as that for )(2
iiT λτ , since inclusion of itDU∆  in equation (4) is asymptotically 

irrelevant. Therefore, the panel unit root test under Model 3 with exogenous known 

breaks can be devised likewise as  

3

33
3 ])([)(

i

iNT

V

EN −
=Γ

λτλ , (8) 

where )()/1()(
1

33
i

N

i iTNT N λτλτ ∑ =
= , 3

iE  and 3
iV  denote the mean and variance 

respectively of the limiting distribution of )(3
iiT λτ .4 

Another extension of the ILT test concerns the endogenous determination of 

break dates. ILT propose selecting the break date for each individual time series with 

the minimum break selection criterion, that is, the break date is selected where the LM 

statistic is minimized. Like the exogenous break test, the minimum LM test with an 

intercept break, denoted as ))(( 11
iTiiT τλτ , converges in distribution to the SP test 

according to Nunes (2004). The panel unit root test under Model 1 using minimum 

LM break selection is calculated as in (6), where ∑=
=

N

i iTiiTTNT N
1

1111 ))(()/1())(( τλττλτ , with 

))(,),(()( 11
11

1
NTNTT τλτλτλ ⋅⋅⋅= , replaces )(1 λτ NT . However, the minimum LM test is 

                                                                                                                                            
1),( =rdu iλ  if ir λ>  and 0 otherwise, 

i

ii
iii

rW
rWrV

λ
λ

λ
)(

)(),( −=  if ir λ≤ , and  

[ ])()1(
1

)()(
)(

1
)()1(

)(
)(

)(),( iii
i

i
iii

i

ii

i

iii
i

i

ii
iii WW

r
WrW

WWW
r

rW
rWrV λ

λ
λ

λ
λ
λ

λ
λ

λ
λ
λ

λ −
−
−

−−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

−−−=  

if ir λ> . 
4 Since the limiting distributions of )(2

iiT λτ  and )(3
iiT λτ  are the same, 32

ii EE =  and 32
ii VV = . 

However, because finite sample distributions of the two statistics differ as shown in Section 3.1, we opt 
for the use of different notations under Models 2 and 3. 
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dominated by Nunes’ (2004) proposed minimum SSR test, where the break date is 

selected according to the estimator of iTB  (or iλ ), that is, the date (or break fraction) 

that minimizes the SSR in an ordinary least squares (OLS) regression of the null 

equation (3). The minimum SSR test with an intercept break, denoted as )ˆ(1
ii λτ , 

converges in distribution to the SP test. This test is appealing since it selects the 

correct break date almost perfectly, and it possesses better finite sample properties 

than the minimum LM test. We calculate the panel unit root test under Model 1 using 

minimum SSR break selection by replacing )(1 λτ NT  with ∑=
=

N

i iiTNT N
1

11 )ˆ()/1()ˆ( λτλτ , 

where )ˆ,,ˆ(ˆ
1 Nλλλ ⋅⋅⋅= , in (6). 

 Application of the minimum LM and SSR break selection criteria to individual 

time series gives the test statistics ))(( 22
iTiiT τλτ  and )ˆ(2

iiT λτ  respectively under Model 2, 

and ))(( 33
iTiiT τλτ  and )ˆ(3

iiT λτ  respectively under Model 3. Since these criteria choose the 

correct break date asymptotically as proved in Nunes (2004), limiting distributions of 

))(( 22
iTiiT τλτ  and )ˆ(2

iiT λτ  coincide with that of )(2
iiT λτ , whereas limiting distributions of  

))(( 33
iTiiT τλτ  and )ˆ(3

iiT λτ  are the same as )(3
iiT λτ . Therefore, the panel unit root tests under 

Models 2 and 3 using the two break selection criteria can be formulated likewise as in 

Model 1 through appropriate standardization of the simple averages of the 

corresponding individual test statistics. 

 

2.3 Combination Tests 

Maddala and Wu (1999) and Choi (2001) consider panel unit root testing under Model 

0. Applying a one-sided left-tailed unit root test with no break to an individual time 

series, the asymptotic p-value of the resulting test statistic iTG , denoted as i∏ , is 

defined as )( iTi GF=∏ , where )(⋅F  denotes the distribution function of iTG  when 
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∞→T . The four combination tests are the Fisher’s inverse chi-square test P, its 

modified version mP , the inverse normal test Z and the logit test L 

∑=
∏−=

N

i iP
1

)ln(2 .  (9) 

])1)[ln(1
1∑=

+∏−=
N

i im N
P . (10) 

∑=
− ∏Φ=

N

i i
N 1

1 )(1 Z ,  (11) 

∑= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∏−

∏
=

N

i i

ig
1 1
lnL ,   (12) 

where )(⋅Φ  stands for a standard normal distribution function, and 

[ ] [ ])25()45(3 2 ++= NNNg π . With cross-sectional independence, ]1,0[~ iidUi∏  as ∞→T  

for fixed N under the null, so that )2(~)ln(2 2χiidi∏− , )1,0(~)(1 iidNi∏Φ−  and 

)]1([ln ii ∏−∏  have the logistic distribution with mean zero and variance 32π . 

Consequently, )2(~ 2 NP χ , )1,0(~ NZ , and approximately, )45(~ +NtL , with )(⋅t  being 

the Student’s t-distribution function. Furthermore, as T and N grow large sequentially, 

mP , Z  and ∑=
∏−∏≈

N

i iiNL
1

2 )]1/(ln[)(3 π  converge to a standard normal distribution 

by the CLT. Under the alternative, P and mP  diverge to positive infinity, whereas Z  

and L  diverge to negative infinity.  

It is easy to see that the above testing procedure can readily be adapted to 

accommodate structural breaks. To this end, the DGP for each cross-section is first 

specified with the inclusion of appropriate structural break dummies, depending on 

the type of structural break. Next, the relevant unit root test with a break is applied to 

each time series, and the corresponding p-values obtained. These p-values are then 

combined in accordance with (9) to (12) for panel unit root testing. It is noteworthy 

that because combination tests combine p-values, they are non-parametric in nature, 
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so that they allow for a different unit root test applied on a different individual time 

series with individual specific nonstochastic process, which can be specified under 

Model 0, 1, 2 or 3. Therefore, in effect, they permit full flexibility to accommodate 

heterogeneous break type across cross-sections in a panel. Such desirable property 

does not pertain to the ILT test, which combines individual statistics, so that its ability 

to accommodate heterogeneous break types is constrained by the limiting behavior of 

these individual statistics. 

 

3. Practical Implementation Issues 

3.1 Finite Sample Distribution 

To implement the proposed tests, it is necessary to make available distributions of 0
iTτ , 

)(2
iiT λτ  and )(3

iiT λτ and to obtain p-values, means and variances. Since the limiting 

distributions are in general poor approximations in finite samples, we simulate finite 

sample distributions of the LM statistics for 31 sample sizes, with T = {30, 33, 35, 37, 

40, 43, 45, 50, 55, 60, 65, 70, 75, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 

350, 400, 450, 500, 750, 1000, 1250}. Nine known break fractions are considered, 

with λ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} when a break is allowed. Since 

finite sample distributions also depend on the procedure employed to select k, two 

ways of determining k are considered for each T under Model 0 and each combination 

of T and λ under other models. The first way assumes k to be fixed at 0, 5 and 8, 

whereas the second selects k by the general-to-specific t-sig method recommended by 

Ng and Perron (1995), with the upper bound kmax set at 5 and 8. 

The number of replications (I) used is as follows. When k = 0, 5, 8 and kmax = 5, I 

= 50,000, 30,000 and 20,000 for T ≤ 100, 100 < T ≤ 500, T > 500. When kmax = 8, I = 

30,000, 20,000 and 10,000 for T ≤ 100, 100 < T ≤ 500, and T > 500. In each iteration, 
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T+100 observations are generated according to a driftless random walk with N(0,1) 

errors while the initial value is set at zero, and the first 100 observations discarded to 

reduce the initial value effect.5 With the generated data, LM statistics are computed 

according to equation (4), and 399 equally spaced percentiles (from which p-values 

can be obtained by linear interpolation as in Choi, 2001), means and variances of the 

statistics obtained and stored. All simulations are programmed in GAUSS 6.0. 

Simulation results are summarized using estimated response surface regressions. 

Under Models 0 and 1, the response surface regression equation takes the form 

ωβββββ +++++= 34232/3210
1111)(

TTTT
Tq ,  (13) 

where q denotes the distribution quantiles, means or variances, and ω is the error term. 

Under Models 2 and 3, the response surface regression equation is 

ωββλλλλλ +++++++= 265
4

4
3

3
2

2
2/3

10
11)()()()()(),(

TT
TgTgTgTgTgTq , (14) 

where 3/242/133/124/110
1111)(

TTTT
Tg jjjjjj βββββ ++++= , .4,3,2,1,0=j  It is worth 

noting that under Model 1, the break fraction is found to be statistically insignificant 

in explaining the simulated quantiles, means and variances under all lag order 

assumptions. The parameters in (13) and (14) are estimated using OLS. However, 

since the errors are heteroskedastic, heteroskedasticity-consistent standard errors are 

computed using the jackknife covariance matrix estimator of MacKinnon and White 

(1985). The choice of response surface terms is motivated by the overall fit of the 

regression as measured by the coefficient of determination (R2), small standard error 

of regression ( ωσ̂ ), small mean absolute error (mean |ˆ|ω ), small maximum absolute 

error (max |ˆ|ω ), statistical significance of regressors and parsimony.  

                                                 
5 The individual exogenous break LM-type tests are exactly invariant to the break magnitudes 

under the null when the break is correctly placed according to Nunes (2004). Furthermore, without loss 
of generality, the intercept and time trend coefficient are set to zero, and the error variance set to one. 
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 Response surface regression results are reported in Tables 1 to 3. To conserve 

space, we only present results for k = 0, 5 and kmax = 5, and among the 399 pecentiles, 

the 5% quantile for illustration. With the reported estimates, the 5% quantiles, means 

and variances of the LM statistics for selected sample sizes and break fractions are 

computed and displayed in Table 4. Some interesting observations are revealed. First, 

response surface estimates provide good approximations to distributions of the LM 

statistics. Overall, the estimates track closely those simulated results available in the 

literature. Second, finite sample distribution of )(1
iiT λτ  does not differ significantly 

from that of 0
iTτ  for any lag order choice. This suggests finite sample distribution of 

0
iTτ  can also be used to compute the panel statistics under Model 1. In contrast, larger 

discrepancies are found between finite sample distributions of )(2
iiT λτ  and )(2

iiT λτ , 

although they converge to the same limiting distribution. Third, finite sample 

distributions of the LM statistics under all models depend on the lag selection method 

employed. Using distributions of the LM statistics when k = 0 as benchmarks, 

distributions of the statistics when k > 0 are shifted to the right, whereas distributions 

of the statistics when kmax > 0 are shifted to the left. This draws attention to the use of 

appropriate distributions of the individual statistics in computing panel statistics under 

different lag order assumptions. 

 

3.2 Cross-Sectional Dependency 

The panel unit root tests discussed assume cross-sectional independence in a panel. 

Different methods for tackling cross-sectional dependency have been proposed in the 

literature. In this paper, we adopt the bootstrap approach as it can cater for 

cross-correlations of the general form 

     ittiit f υϕε += , )1,0(~ iidNft , ),0(~ υυ ΩiidNt , (15) 
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where tf  is an unobserved stationary common factor, 
iϕ  is the factor loading that 

measures the heterogeneous impact of the common factor on each individual, 

( )'1 ,, Nttt υυυ ⋅⋅⋅=  and υΩ  is not diagonal. Furthermore, in analyzing finite sample data, 

bootstrap helps to obtain approximations to finite sample distributions of the panel 

statistics for more accurate statistical inference drawn.   

The bootstrap procedure used is a recursive one based on resampling residuals 

from OLS estimation of the null model of each time series in a panel. Notice that 

computation of the panel statistics requires the use of distributions of the underlying 

individual statistics. Following conventional practice, finite sample distributions of 

individual statistics can be simulated as described in Section 3.1. An alternative 

method to obtain finite sample approximations is through the use of bootstrapped 

distribution of the individual statistic of interest, which is specific to the observed 

time series under study via a bootstrap procedure similar to that outlined above. 

Details of the bootstrap procedures are documented in the appendix.  

 

4. Monte Carlo Simulation Results 

We conduct Monte Carlo simulation experiments to assess finite sample performance 

of the panel unit root tests. Data are generated with N cross-sections and T+100 time 

series observations for each cross-section according to DGP (1) with the following 

parameter values: 0=iµ , 01 =iδ  52 =iδ , 13 =iδ , 00 =iu , and 12 =iσ  for all i. The 

break is set to occur at the middle of each time series. In analyzing size and power 

properties, 1=iα  and 9.0=iα  respectively for all i. The first 100 observations for 

each cross-section are discarded to reduce the initial value effect.  

Three experiments are conducted. In the first experiment, we analyze 

performance of the panel unit root tests under all models using different break 
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selection criteria while assuming no serial correlation and no cross-sectional 

dependency. Results are carried out for N = {10, 25, 50} and T = {25, 50}, with 3,000 

iterations for each combination of N and T. In the second experiment, we introduce 

serial correlation while breaks are assumed exogenously known so that the effects of 

using different lag orders are not obscured by the influence of break selection. The 

disturbances itε  are generated by an AR(1) process ittiit v+= −1,3.0 εε , )1,0(~ iidNvit . In 

the third experiment, we consider cross-sectional dependency. The disturbances itε  

are generated according to (15), with ]3,1[~ −Uiϕ , which represents strong 

cross-correlations. To ensure the covariance matrix υΩ  be symmetric, positive 

definite and nonsingular, it is generated as in Chang (2002). Simulation results are 

obtained for N = {10, 25} and T = {25, 50}. In assessing the performance of the 

bootstrap test, we use 500 Monte Carlo replications and 500 bootstrap replications.   

Distributions of individual LM statistics used in calculating the panel tests are 

simulated using the conventional approach as described in Section 3.3. Bootstrapped 

distributions of the LM statistics for use in the bootstrap test are simulated out of 

5,000 replications. In computing the panel statistics under Model 1, distribution of 

0
iTτ  is employed. All tests are conducted at the 5% nominal level. Size-adjusted 

powers are presented for fair comparison. All simulations are programmed in GAUSS 

6.0. In what follows, we only report results for Models 1 and 2. Results for Models 0 

and 3 are similar to those for Models 1 and 2 respectively. 

In the first experiment, sizes of all tests are reasonably close to the 5% nominal 

level under the assumption of exogenous breaks. The inverse normal and logit tests 

exhibit most stable size and possess highest power among all tests. When break dates 

are endogenously determined with the minimum SSR criterion, the performance of all 

tests is comparable to that for the exogenous known break case. However, when break 
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dates are determined with the minimum LM criterion, all tests suffer from severe size 

distortions. The difference may be attributed to the higher frequency of true break date 

selection with the minimum SSR criterion. More importantly, finite sample 

distribution of )ˆ(1
iiT λτ  and )ˆ(2

iiT λτ  are in line with that of 0
iTτ  and )(2

iiT λτ  

respectively. In contrast, finite sample distribution of ))(( 11
iTiiT τλτ  and ))(( 22

iTiiT τλτ  are 

shifted to the left of 0
iTτ  and )(2

iiT λτ .6 Consequently, selecting break dates by the 

minimum LM criterion and then combining the resulting minimum LM test evidence 

across individuals to compute panel statistics using distribution of 0
iTτ  under Model 1 

and distribution of )(2
iiT λτ  under Model 2 is rendered inappropriate. Thus, we drop the 

minimum LM break selection criterion in subsequent discussion.  

 In the second experiment with serial correlation, we consider both the fixed lag 

case and the sequential lag selection case. Results for the fixed lag case are displayed 

in Table 6. With AR(1) errors, the true lag orders are 1 for all i. When 0=ik  for all i 

are used, all sizes are reported to be zero. Size performance of the panel tests when 

using lag orders equal to the true ones is similar to that when using lag orders greater 

than the true ones. Under Model 1, sizes are in general not far from the nominal size 

of 5%, but combination tests (except the modified inverse chi-square test) have better 

size property than the ILT test overall. Under Model 2, all tests suffer from some size 

distortions when T is small relative to N, with the inverse chi-square test attaining the 

best size property. For all model types, power decreases with higher lag order, with 

the inverse normal and logit tests exhibiting the highest power overall. Thus, with 

serial correlation, it is desirable to have T large relative to N, so that N/T does not 

diverge as both N and T approach infinity simultaneously as mentioned in ILT.  
                                                 

6 The critical values of ))(( 11
iTiiT τλτ  are substantially more negative than those of 0

iTτ  in finite 
samples according to simulation results in Nunes (2004) for the one-break case and Lee and Strazicich 
(2003) for the two-break case. 
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When the lag order is selected, we set the maximum lag order at 3/1T . Two 

methods of computing the panel tests are used. The first method entails first 

determining the optimal lag for all i and then calculating panel statistics using 

distributions of individual statistics simulated with corresponding fixed lag order as in 

ILT. For the second method, panel statistics are calculated using distributions of 

individual statistics simulated with corresponding lag selection method. With the first 

method, all tests exhibit size distortions as shown in the upper panel of Table 7. ILT 

relate such kind of size distortions to the accuracy of true lag order selection. We 

attribute the size distortion to the use of inappropriate finite sample distribution of 

individual statistics, since finite sample distributions of individual statistics with 

endogenously determined lag order differ much from those with fixed lag order as 

shown in Section 3.1. This argument is evidenced by the fact that when distributions 

of individual statistics simulated with corresponding lag selection method are used to 

compute the panel statistics, the panel tests no longer suffer from severe 

over-rejections according to results in the lower panel of Table 7.  

Data are cross-correlated in the third experiment. We find that panel tests taking 

no account of cross-sectional dependency suffer from size-distortions as shown in the 

upper panel of Table 8. Size biases accumulate as N grows, but are not attenuated by 

increasing T. All panel tests become less powerful in the presence of cross-sectional 

dependency. Results in the lower panel of Table 8 demonstrate the bootstrap approach 

helps to correct for size distortions of the panel tests in the presence of 

cross-correlations. The inverse normal test possesses the highest overall power.7  

We draw the following conclusions from the simulation results. First, the inverse 
                                                 

7 Results shown in the lower panel of Table 8 are those using bootstrapped distributions of 
individual statistics to compute the panel tests. Contrasting the use of conventional and bootstrapped 
distributions of individual statistics according to unreported results, size performance of the bootstrap 
test in either case is comparable, whereas power of the bootstrap test rise faster as T increases for fixed 
N using the latter. 
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normal and logit tests perform best in terms of size and power, and are therefore 

recommended for empirical applications. Second, in endogenizing the break dates 

instead of assuming exogenously known, the minimum SSR selection criterion is 

recommended for its high frequency of true break date selection and good size and 

power properties of the resulting panel tests. Third, bootstrap is an effective way to 

correct for size distortions even in the presence of strong cross-correlations which 

take on a general structure. 

 

5. Empirical Applications 

Since the seminal paper by Nelson and Plosser (1982), econometricians are 

increasingly interested in testing whether macroeconomic time series are integrated or 

trend stationary. We apply the proposed panel unit root tests using the minimum SSR 

break selection criterion to the study of two frequently investigated macroeconomic 

variables, per capita GDP and consumer prices, of OECD countries for the period 

1960-2003 and 1949-2004 respectively.8 The logarithms of these series are analyzed.  

To carry out unit root testing with the panel data, individual LM regression for 

each country is first conducted with a 10% trimming at both ends of the time series. 

The optimal lag order is selected using the general-to-specific t-sig method with kmax 

= 8. The optimal break model type for each time series is selected following the 

procedure of Alba and Papell (1995). The most general model, Model 2, is first 

estimated. If both the estimated level and slope break coefficients are significant, 

Model 2 is applied. If only the slope coefficient is significant, Model 3 is used. If only 

the level coefficient is significant, Model 1 is employed. If both coefficients are not 

                                                 
8 Data for per capita GDP measured in PPP for 25 OECD countries are obtained from the OECD 

Health Data 2005. These GDP data are expressed in constant 2000 prices using GDP deflators taken 
from the World Development Indicators 2005. Data for consumer prices for 23 OECD countries, with 
2000 as the base year, come from the International Financial Statistics April 2005. 
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significant, the no break situation is considered. Test results for each country are 

presented in the upper panel of Table 9. It can be noted that Model 0 is rarely selected 

for individual time series, thus justifying the allowance for structural breaks in unit 

root testing. Furthermore, Models 2 and 3 are more frequently selected than Model 1, 

which signifies the importance of accounting for a break in the slope. Comparing the 

computed individual statistics with the bootstrapped critical values obtained according 

to the procedure outlined in the appendix using 5,000 replications, it is found that the 

unit root null for per capita GDP is rejected for three countries and that for consumer 

prices for five countries, at conventional significance levels.   

The null hypothesis of cross-sectional independence is further tested with the 

Pesaran (2004) test. The test statistic is ( )∑ ∑−

= +=−
1

1 1
ˆ

)1(
2 N

i

N

ij ijNN
T ϑ , where ijϑ̂  is the 

sample estimate of the pairwise correlation of the residuals, which follows a standard 

normal limiting distribution. The computed test statistics are 15.666 for per capita 

GDP, and 21.454 for consumer prices, thus we reject the null of cross-sectional 

independence at conventional significance levels for both variables. 

In the presence of cross-sectional correlations, the bootstrap approach as 

described in Section 3.2 is employed. The bootstrapped critical values of the panel 

statistics are obtained out of 5,000 replications. Panel unit root test results using 

bootstrapped distributions of individual statistics are presented in the lower panel of 

Table 9.9,10 The joint unit root null for per capita GDP is not rejected, thus supporting 

the non-stationary nature of the variable. As for consumer prices, results provide 

evidence of trend-stationarity. The joint unit root null is rejected at the 5% level using 

                                                 
9 Results using conventional distributions, are qualitative the same and are therefore not reported. 
10 For the group mean test, when asymptotic critical values are used for hypothesis testing, its 

flexibility in accommodating heterogeneous break type across cross-sections is restricted as discussed 
in Section 2.2. Accommodating full flexibility like the combination tests will result in nonstandard 
distribution, the critical values of which can be obtained using bootstrap.  
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the inverse chi-square test and its modified version, and at the 1% level using other 

panel tests.  

 

6. Conclusion 

This chapter proposes LM-type group mean and combination tests for panel unit root 

testing with structural breaks. The proposed tests have the following advantages. First, 

they are modeled with breaks under both the null and alternative hypotheses. Second, 

they are able to account for breaks in the intercept, in the slope and both. Third, they 

take into account the heterogeneity nature of cross-sections in a panel by allowing for 

individual specific intercepts, time trend and structural break coefficients, serial 

correlation structure, first-order autoregressive parameters, break locations and break 

types. Simulation results show that two of the combination tests, namely the inverse 

normal and logit tests, have the best size and power properties. Furthermore, in 

endogenizing the break date, the minimum SSR criterion is preferred to the more 

commonly employed minimum LM criterion. Finally, bootstrap is shown to be 

effective in correcting for size distortions arising from a relaxation of the 

cross-sectional independence assumption. The proposed panel unit root tests with 

structural breaks are applied to study the time series behavior of per capita GDP and 

consumer prices for OECD countries. Empirical results lend support to the 

nonstationary nature of the former and the trend stationary behavior of the latter. 
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Appendix 
A.   Bootstrapping critical values for panel unit root test 
(a1) Select the null model for each individual time series in the observed panel data 

according to null equation (3) with the incorporation of serial correlation 

it
k

j jitijiitit vycZy i∑ = − +∆+∆=∆
1

δ . (A1.1) 

The optimal ik  is determined by the general-to-specific t-sig method. Where a 
break is allowed, the optimal ik  is first determined at each possible break point, 
then all possible regressions with the optimal ik  estimated, and the break date 
selected where the Schwarz Bayesian Criterion is minimized.11  

(a2) Estimate the selected null model, defined at the selected break date iTB
∧

 and the 
corresponding optimal ik̂ , for every individual with the observed data by OLS 

and obtain the parameter estimates iδ̂ , 1ˆic , …, 
ikic ˆˆ together with the regression 

residuals itv̂ , Tkt i ,,2ˆ ⋅⋅⋅+= . The residuals are then rescaled by the multiplicative 
factor )/( iii oll − , where il  is the number of observations used in estimation 
and io  is the number of parameters estimated, to obtain itv( , Tkt i ,,2ˆ ⋅⋅⋅+= .  

(a3) Construct RP number of pseudo panel samples. For each pseudo panel sample, 
resample ( )Nttt vvv ((( ,,1 ⋅⋅⋅= randomly with replacement T times to obtain ( )****

1
** ,, Nttt vvv ⋅⋅⋅= , 

Tt ,,1 ⋅⋅⋅= .12 For each individual time series, construct the first-differenced series 
**

ˆ

1
**** ˆˆ

it
k

j jitijiitit vycZy i∑ = − +∆+∆=∆ δ .  (A1.2) 

 The initial starting values for all individuals together ( )**
0

**
ˆ ,, yy k ⋅⋅⋅− , with )ˆ(maxˆ

i
i

kk =  

and ( )****
1

** ,, Njjj yyy ⋅⋅⋅= , 0,,ˆ ⋅⋅⋅−= kj , are obtained by block resampling.  The 

observed data are divided into ( kT ˆ− ) overlapping blocks each with ( 1ˆ +k ) time 
observations per individual, and one block is randomly selected with 
replacement to serve as the initial values. Partial sums of **

ity∆  give the level 
series  

∑ =
∆+=

t

j jiit yyy
1

****
0

** . (A1.3) 

 (a4) Calculate the bootstrapped individual statistic of interest according to equation 
(4) for each time series in each pseudo panel sample. Construct the bootstrapped 
panel statistic of interest with these bootstrapped individual statistics for each 
pseudo panel sample. The p-values, means and variances used to compute the 
panel statistic are obtained in two ways. The first is using conventional 
distributions of the individual statistics simulated as described in Section 3.1. 
The second is using bootstrapped distributions of the individual statistics 
simulated in steps (b4) and (b5) below. [In step (b5), “observed individual 
statistic” is replaced by bootstrapped individual statistic of interest in this step.] 
A sorted vector of these RP bootstrapped panel statistics forms the bootstrapped 
distribution of the panel statistic under the null, from which bootstrapped critical 
values of the panel statistic are obtained. 

                                                 
11 The estimated break date for each individual here is the estimate under the null, conditional on 

the selected null model. This may differ from the break date generating the statistic for unit root testing. 
12 Resampling the residuals as a vector for fixed t for all individuals simultaneously help to preserve 
the cross-sectional dependency structure of the time series. 
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B.  Bootstrapping critical values, mean, variance and p-vale for individual unit root 
test 
(b1) Same as step (a1).  
(b2) Same as step (a2).  
(b3) Construct RU number of pseudo samples for each individual time series. First, 

resample itv( , Tkt i ,,2ˆ ⋅⋅⋅+= , randomly with replacement T times to obtain *
itv , 

Tt ,,1 ⋅⋅⋅= . Then construct the first-differenced series *
ity∆  

*
ˆ

1
** ˆˆ

it
k

j jitijiitit vycZy i∑ = − +∆+∆=∆ δ . (A2.1) 

The initial starting values ( ) ⎟
⎠
⎞⎜

⎝
⎛ ⋅⋅⋅−

*
0

*
ˆ ,, iki yy
i

 are obtained by random draw with 

replacement one block from the ( ikT ˆ− ) overlapping blocks of the observed 
individual time series, each with length ( 1ˆ +ik ). Partial sums of *

ity∆  gives the 
level series  

∑ =
∆+=

t

j jiit yyy
1

**
0

* . (A2.2) 

(b4) Calculate the bootstrapped individual statistic of interest according to equation 
(4) for each pseudo sample. A sorted vector of these RU bootstrapped statistics 
forms the bootstrapped distribution of the individual statistic under the null, 
from which bootstrapped critical values, mean and variance can be computed.  

(b5)  Obtain p-value for the individual statistic as #{bootstrapped individual statistic 
in step (b4) ≤ observed individual statistic}/RU, where observed individual 
statistic is the test statistic calculated according to equation (4) using the 
observed data ity . 
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Table 1. Response surface estimates under Models 0 and 1. 
Coefficients 
& statistics 

5% 
quantile 

Mean Variance 5% 
quantile

Mean Variance 5% 
quantile

Mean Variance

Model 0 

 k = 0 k = 5 kmax = 5 

β0 -3.0175 -1.9663 0.3328 -3.0152 -1.9702 0.3323 -3.0220 -1.9711 0.3323 

β1 -5.8713 -1.4399 1.2707 -12.007 1.2539 -1.6262 -27.319 -9.5769 2.9874 

β2    244.2308 54.9976 47.1178 84.6323 45.4104 96.9871
β3 206.8227 79.463  -1189.27 -263.008 -182.136 -114.944 -228.564 -650.862
β4 -4387.95 -1650.10 254.337 6922.293 3006.236 3810.814 -457.827 2112.922 7034.919

          

R2 
0.9426 0.8550 0.9666 0.7731 0.997 0.9964 0.9967 0.9977 0.9978 

ωσ̂  0.0088 0.0020 0.0029 0.0089 0.0033 0.0030 0.0099 0.0034 0.0033 

Mean |ˆ|ω  0.0065 0.0015 0.0023 0.0063 0.0024 0.0021 0.0069 0.0022 0.0025 

Max |ˆ|ω  0.0166 0.0040 0.0051 0.0189 0.0071 0.0071 0.0239 0.0080 0.0066 

          

Model 1 

 k = 0 k = 5 kmax = 5 

β0 -3.0250 -1.972 0.3290 -3.0262 -1.9727 0.3324 -3.0067 -1.9648 0.3280 

β1 -3.3665 -0.2814  2.1107 4.3835 -1.8594 -37.3495 -1..3793 10.7862

β2   1.9455   53.9962 196.9223 46.6379 -39.0829

β3 -15.2599 -4.9768 -26.1806 60.5926 28.4646 -226.803 -353.439 -115.870  

β4   711.7967 -3149.09 910.8902 4806.765 -3937.18  3370.686

          

R2 
0.9572 0.7169 0.978 0.7745 0.997 0.9964 0.9977 0.9987 0.9978 

ωσ̂  0.0080 0.0027 0.0026 0.0078 0.0032 0.0030 0.0076 0.0023 0.0030 

Mean |ˆ|ω  0.0064 0.0021 0.0020 0.0062 0.0025 0.0023 0.0058 0.0017 0.0024 

Max |ˆ|ω  0.0228 0.0057 0.0073 0.0199 0.0076 0.0103 0.0324 0.0075 0.0092 

Notes: k is the fixed lag order used in regression. kmax is the upper bound of the lag order used when 
the lag order is determined endogenously in regression. R2 is the coefficient of determination. ωσ̂  is 
the estimated standard error of the regression. Mean |ˆ|ω  gives the mean absolute error of the response 
surface predictions versus simulated values, whereas Max |ˆ|ω  denotes the maximum absolute error. 
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Table 2. Response surface estimates under Model 2. 
Coefficients 
& statistics 

5% 
quantile 

Mean Variance 5% 
quantile

Mean Variance 5% 
quantile

Mean Variance

 k = 0 k = 5 kmax = 5 

β00 -3.3650 -1.1379 1.7187 27.3195 25.8458 -2.0058 -3.0710 9.7186 9.4432 

β01 44.4158 -30.5227 -76.6409 -1295.14 -1272.73 31.214 46.4865 -528.316 -444.315
β02 -115.328 58.2877 171.8811 2666.469 2697.047 0.6939 -135.189 1112.130 966.3929
β03 153.4493 -46.8127 -189.566 -2454.34 -2657.94 -160.030 211.5373 -1077.17 -1011.46
β04 -91.3441 19.9652 102.3988 1089.328 1281.366 174.8088 -144.674 505.0783 522.7624
β10 -144.416 9.8848 96.2237 5043.148 1864.997 -2516.03 1364.446 1108.409 -440.979
β11 194.9303 -50.8515 -144.274 -14748.7 -4530.52 7664.678 -4580.11 -2909.38 1863.976
β12 -123.979 39.2899 94.9235 12566.42 3607.005 -6620.57 4051.674 2385.562 -1737.80
β13 8.6147 -3.9079 -7.1657 -2028.96 -501.342 1099.268 -701.415 -355.360 328.4013
β14    163.7555 33.901 -91.3299 60.3871 26.2779 -30.394
β20 267.6613 -67.0487 -206.017 -11189.3 -3636.31 5652.536 -3376.03 -2382.51 1200.230
β21 -352.534 176.0439 304.5694 32671.04 8508.458 -17211.4 11134.86 6137.928 -4800.21
β22 221.271 -129.740 -200.065 -27837.2 -6672.37 14867.01 -9820.72 -5007.69 4428.554
β23 -14.8551 12.0473 15.0541 4496.330 892.3936 -2469.15 1692.846 738.219 -823.765
β24    -363.185 -57.0283 205.2491 -145.346 -53.9591 75.3743
β30 -222.633 108.3534 200.8407 10628.67 2914.369 -5338.17 3599.857 2177.166 -1331.23
β31 289.0128 -230.955 -294.495 -30989.2 -6385.68 16268.12 -11742.6 -5466.67 5176.935
β32 -179.135

8
166.3468 193.5095 26401.66 4863.656 -14054.4 10339.79 4425.527 -4748.78

β33 11.6137 -14.8942 -14.5764 -4264.66 -599.826 2334.945 -1778.57 -641.362 875.5189
β34    344.5736 33.3175 -194.162 152.5529 45.9403 -79.5811
β40 102.5449 -50.5124 -92.5182 -4486.28 -1116.54 2194.693 -1608.60 -894.804 581.519
β41 -136.764 104.7302 136.7118 13083.22 2330.573 -6699.70 5254.857 2214.726 -2270.93
β42 85.4693 -75.2058 -90.0777 -11146.6 -1732.32 5789.019 -4630.08 -1783.52 2084.434
β43 -5.6627 6.7000 6.8265 1800.4 198.0079 -961.858 797.4862 255.2959 -384.635
β44    -145.447 -9.3079 79.9713 -68.4952 -17.9992 34.9807

          

R2 
0.9948 0.9985 0.9876 0.9836 0.9973 0.9742 0.9958 0.9986 0.9824 

ωσ̂  0.0126 0.0076 0.0045 0.0295 0.0123 0.0153 0.0193 0.0098 0.0122 

Mean |ˆ|ω  0.0091 0.0047 0.0034 0.0211 0.0085 0.0102 0.0145 0.0064 0.0081 

Max |ˆ|ω  0.0406 0.0330 0.0131 0.0919 0.0488 0.0683 0.0608 0.0406 0.0556 

Note: See notes to Table 1.
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Table 3. Response surface estimates under Model 3. 
Coefficients 
& statistics 

5% 
quantile 

Mean Variance 5% 
quantile

Mean Variance 5% 
quantile

Mean Variance

 k = 0 k = 5 kmax = 5 

β00 -3.6489 -1.0263 1.5889 20.6507 24.2763 0.7546 -7.3648 8.8846 10.9748
β01 54.1158 -34.6824 -70.2494 -1009.39 -1200.64 -82.297 231.4024 -491.442 -505.236
β02 -134.429 66.3181 158.0253 2075.780 2543.678 230.2551 -518.086 1034.938 1087.692
β03 170.8513 -52.9362 -175.257 -1904.81 -2504.96 -360.121 569.1555 -1003.16 -1112.59
β04 -100.053 21.8433 95.0905 843.6152 1206.332 254.358 -305.243 470.6864 559.7532
β10 -98.8721 20.6314 83.7165 3964.255 1625.891 -2005.91 940.451 928.9196 -169.342
β11 110.7526 -71.2776 -120.512 -11608.5 -3857.91 6204.270 -3378.63 -2381.14 1075.579
β12 -66.3714 53.4469 78.4884 9889.661 3039.158 -5381.95 3037.506 1933.028 -1066.47
β13 3.939 -5.0916 -5.7999 -1596.05 -411.060 900.8314 -540.825 -281.311 220.0619
β14    128.7458 26.7041 -75.418 47.6957 20.2049 -21.6496
β20 160.6153 -83.0126 -172.289 -8738.81 -3047.66 4561.337 -2422.73 -1913.30 645.5827
β21 -153.626 207.2012 241.1837 25516.64 6852.940 -14077.5 8411.401 4757.615

5
-3180.23

β22 84.8515 -151.480 -156.322 -21731.1 -5274.11 12206.33 -7514.88 -3824.61 3046.567
β23 -3.7291 13.8861 11.4296 3506.088 669.7494 -2042.02 1325.277 544.2838 -599.969
β24    -282.858 -39.2396 170.9282 -116.076 -38.0125 57.2519
β30 -104.676 110.5854 154.7544 8164.847 2249.812 -4339.52 2626.101 1609.825 -867.474
β31 68.4929 -237.668 -209.027 -23777.9 -4523.50 13389.79 -8925.23 -3802.48 3806.860
β32 -27.5136 171.4427 134.6985 20240.56 3291.837 -11608.3 7943.570 2999.463 -3576.47
β33 -0.8227 -15.3833 -9.7235 -3263.09 -349.683 1941.576 -1392.84 -407.503 684.6781
β34    263.0989 13.3254 -162.504 121.5016 26.6848 -64.0576
β40 42.1844 -48.6371 -65.9632 -3394.06 -798.256 1784.613 -1167.34 -615.333 408.474
β41 -23.8674 102.6427 87.8002 9885.146 1442.354 -5516.85 3965.465 1396.757 -1754.30
β42 7.7864 -74.0234 -56.4739 -8413.63 -983.449 4783.890 -3529.84 -1082.90 1641.357
β43 0.7234 6.6388 4.0601 1355.890 79.0682 -800.303 619.1879 140.462 -312.262
β44    -109.263 0.1825 66.9814 -54.0416 -8.5451 29.0811

          

R2 
0.9947 0.9985 0.9892 0.9826 0.9976 0.9773 0.9966 0.9987 0.9869 

ωσ̂  0.0123 0.0074 0.0041 0.0292 0.0113 0.0137 0.0168 0.0090 0.0103 

Mean |ˆ|ω  0.0088 0.0047 0.0032 0.0212 0.0078 0.0095 0.0123 0.0057 0.0071 

Max |ˆ|ω  0.0427 0.0320 0.0137 0.0836 0.0518 0.0578 0.0553 0.0356 0.0479 

Note: See notes to Table 1. 
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Table 4. Comparison of response surface estimates and simulated results in the literature. 
T Lag order λ Measure Simulated results in literature Response surface estimates 

    Source Value Model 0 Model 1 Model 2 Model 3 

25/50/1,000 k=0  5% quantile SP
a
 (Model 0) -3.18/-3.11/-3.02 -3.202/-3.087/-3.023 -3.184/-3.098/-3.028   

38 k=0  mean/variance ILT
b

 (Model 0) -1.979/0.371 -1.979/0.371 -1.983/0.375   

38 k=5  mean/variance ILT (Model 0) -1.829/0.430 -1.830/0.434 -1.821/0.444   

56 k=0  mean/variance ILT (Model 0) -1.976/0.358 -1.976/0.357 -1.979/0.360   

56 k=5  mean/variance ILT (Model 0) -1.884/0.377 -1.883/0.379 -1.880/0.383   

62/111 k=0  5% quantile AL
c
 (Model 1) -3.09/-3.06 -3.077/-3.057 -3.083/-3.055   

1,000 k=0 0.3/0.5/0.8 5% quantile Nunes
d

 (Models 2, 3) -3.59/-3.66/-3.48   -3.598/-3.658/-3.490 -3.596/-3.658/-3.491 

38 k=0/5  5% quantile   -3.109/-2.986 -3.124/-2.986   

38 kmax=5  5% quantile   -3.480 -3.456   

38 kmax=5  mean/variance   -2.149/0.502 -2.145/0.507   

38 k=0 0.3/0.5/0.8 5% quantile     -3.751/-3.828/-3.603 -3.739/-3.826/-3.638 

38 k=5 0.3/0.5/0.8 5% quantile     -3.338/-3.840/-3.423 -3.333/-3.801/-3.484 

38 kmax=5 0.3/0.5/0.8 5% quantile     -4.121/-4.342/-4.027 -4.098/-4.311/-4.073 

38 k=0 0.5 mean/variance     -2.680/0.393 -2.678/0.390 

38 k=5 0.5 mean/variance     -2.586/0.532 -2.572/0.382 

38 kmax=5 0.5 mean/variance     -3.054/0.528 -3.030/0.519 

Notes: a SP denotes Schmidt and Phillips (1992). b ILT denotes Im, Lee and Tieslau (2005), where effective number of observations is used instead of actual number of 
observations here. c AL denotes Amsler and Lee (1995). d Nunes denotes Nunes (2004).   
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Table 5. Sizes and size-adjusted powers of panel unit root tests under Models 1 and 2. 

N T Γ  P Z L  Pm 

  Size Power  Size Power Size Power Size Power  Size Power
Model 1

Exogenous              

10 25 0.059 0.103  0.053 0.097 0.050 0.115 0.053 0.108  0.069 0.097
 50 0.055 0.378  0.046 0.304 0.047 0.429 0.045 0.418  0.059 0.304

25 25 0.057 0.155  0.054 0.135 0.050 0.179 0.051 0.182  0.061 0.135
 50 0.054 0.730  0.043 0.620 0.048 0.765 0.048 0.752  0.051 0.620

50 25 0.052 0.271  0.049 0.237 0.042 0.308 0.046 0.304  0.057 0.237
 50 0.056 0.943  0.049 0.862 0.046 0.968 0.047 0.965  0.056 0.862
Minimum LM          

10 25 0.641 0.094   0.556 0.096 0.623 0.099 0.612 0.098   0.606 0.096 
 50 0.593 0.270   0.528 0.229 0.563 0.294 0.559 0.269   0.576 0.229 

25 25 0.926 0.127   0.883 0.120 0.927 0.134 0.925 0.134   0.898 0.120 
 50 0.895 0.500   0.854 0.441 0.876 0.557 0.879 0.523   0.874 0.441 

50 25 0.997 0.196   0.991 0.183 0.998 0.213 0.997 0.200   0.992 0.183 
 50 0.993 0.816   0.988 0.724 0.992 0.856 0.992 0.822   0.989 0.724 

 Minimum SSR          

10 25 0.059 0.100   0.053 0.090 0.051 0.108 0.052 0.105   0.069 0.090 
 50 0.053 0.391   0.045 0.315 0.045 0.437 0.044 0.423   0.058 0.315 

25 25 0.058 0.166   0.054 0.141 0.050 0.193 0.051 0.194   0.061 0.141 
 50 0.055 0.712   0.041 0.619 0.048 0.762 0.048 0.750   0.050 0.619 

50 25 0.053 0.259   0.049 0.215 0.044 0.294 0.047 0.286   0.058 0.215 
 50 0.056 0.931   0.048 0.849 0.045 0.961 0.046 0.960   0.054 0.849 

Model 2
Exogenous       

10 25 0.055 0.082   0.049 0.075 0.046 0.085 0.045 0.084   0.063 0.075 
 50 0.055 0.169   0.048 0.148 0.049 0.177 0.046 0.187   0.059 0.148 

25 25 0.059 0.078   0.054 0.079 0.058 0.082 0.057 0.082   0.064 0.079 
 50 0.058 0.282   0.049 0.245 0.050 0.307 0.051 0.298   0.060 0.245 

50 25 0.055 0.105   0.049 0.099 0.049 0.118 0.053 0.106   0.055 0.099 
 50 0.057 0.463   0.044 0.382 0.046 0.492 0.045 0.498   0.052 0.382 
Minimum LM          

10 25 0.896 0.062   0.806 0.066 0.917 0.066 0.903 0.062   0.847 0.066 
 50 0.932 0.127   0.867 0.127 0.935 0.135 0.925 0.127   0.893 0.127 

25 25 0.999 0.068   0.993 0.071 1.000 0.066 1.000 0.068   0.996 0.071 
 50 1.000 0.191   0.998 0.177 1.000 0.207 1.000 0.187   0.999 0.177 

50 25 1.000 0.091   1.000 0.092 1.000 0.090 1.000 0.088   1.000 0.092 
 50 1.000 0.295   1.000 0.257 1.000 0.320 1.000 0.293   1.000 0.257 
Minimum SSR           

10 25 0.055 0.081   0.049 0.074 0.046 0.084 0.045 0.082   0.063 0.074 
 50 0.055 0.165   0.048 0.150 0.049 0.177 0.046 0.188   0.059 0.150 

25 25 0.059 0.081   0.053 0.082 0.057 0.083 0.056 0.083   0.064 0.082 
 50 0.060 0.281   0.051 0.243 0.050 0.305 0.050 0.298   0.062 0.243 

50 25 0.056 0.102   0.049 0.101 0.050 0.114 0.052 0.108   0.055 0.101 
 50 0.059 0.443   0.045 0.382 0.047 0.481 0.046 0.490   0.052 0.382 

Notes: Γ is the group mean test following Im, Lee and Tieslau (2005), whereas P, Z, L and Pm are the 

combination tests, namely the inverse chi-square, inverse normal, logit and modified inverse 

chi-square tests, respectively, following Maddala and Wu (1999) and Choi (2001). 
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Table 6. Sizes and size-adjusted powers of panel unit root tests under Models 1 and 2 (exogenous 

breaks) with serial correlation, fixed lag in regression. 

N T Γ  P Z L  Pm 

  Size Power  Size Power Size Power Size Power  Size Power
Model 1

k = 0       
10 25 0.000 0.112  0.000 0.097 0.000 0.114 0.000 0.123  0.000 0.097
 50 0.000 0.379  0.000 0.276 0.000 0.444 0.000 0.460  0.000 0.276

25 25 0.000 0.166  0.000 0.138 0.000 0.188 0.000 0.199  0.000 0.138
 50 0.000 0.727  0.000 0.557 0.000 0.787 0.000 0.803  0.000 0.557

50 25 0.000 0.273  0.000 0.209 0.000 0.321 0.000 0.336  0.000 0.209
 50 0.000 0.945  0.000 0.804 0.000 0.974 0.000 0.979  0.000 0.804
k = 1       

10 25 0.052 0.104  0.046 0.094 0.047 0.112 0.046 0.111  0.059 0.094
 50 0.060 0.286  0.047 0.248 0.050 0.311 0.051 0.293  0.062 0.248

25 25 0.063 0.141  0.060 0.122 0.054 0.152 0.057 0.145  0.067 0.122
 50 0.063 0.570  0.051 0.471 0.047 0.624 0.051 0.607  0.062 0.471

50 25 0.057 0.184  0.057 0.152 0.057 0.194 0.055 0.197  0.065 0.152
 50 0.067 0.819  0.051 0.717 0.057 0.867 0.060 0.859  0.058 0.717
k = 2        

10 25 0.061 0.081  0.054 0.084 0.058 0.074 0.058 0.077  0.069 0.084
 50 0.062 0.249  0.056 0.191 0.053 0.265 0.054 0.252  0.069 0.191

25 25 0.065 0.106  0.062 0.091 0.060 0.113 0.063 0.106  0.073 0.091
 50 0.062 0.469  0.053 0.379 0.052 0.514 0.052 0.506  0.064 0.379

50 25 0.073 0.126  0.071 0.114 0.066 0.127 0.068 0.130  0.080 0.114
 50 0.063 0.743  0.049 0.639 0.051 0.783 0.051 0.776  0.054 0.639

Model 2
k = 0       

10 25 0.000  0.074   0.000 0.065 0.000 0.070 0.000 0.066   0.000 0.065 
 50 0.000  0.165   0.000 0.125 0.000 0.163 0.000 0.162   0.000 0.125 

25 25 0.000  0.078   0.000 0.072 0.000 0.074 0.000 0.081   0.000 0.072 
 50 0.000  0.273   0.000 0.196 0.000 0.295 0.000 0.300   0.000 0.196 

50 25 0.000  0.126   0.000 0.094 0.000 0.133 0.000 0.128   0.000 0.094 
 50 0.000  0.466   0.000 0.318 0.000 0.506 0.000 0.518   0.000 0.318 
k = 1       

10 25 0.096  0.067   0.078 0.063 0.095 0.065 0.092 0.063   0.094 0.063 
 50 0.076  0.106   0.063 0.100 0.070 0.114 0.070 0.106   0.081 0.100 

25 25 0.148  0.060   0.114 0.059 0.158 0.062 0.156 0.061   0.131 0.059 
 50 0.091  0.172   0.069 0.163 0.087 0.169 0.088 0.171   0.082 0.163 

50 25 0.219  0.076   0.160 0.073 0.252 0.083 0.239 0.081   0.174 0.073 
 50 0.116 0.255   0.085 0.211 0.115 0.273 0.114 0.258   0.094 0.211 
k = 2       

10 25 0.118 0.051   0.093 0.054 0.110 0.053 0.108 0.054   0.121 0.054 
 50 0.082  0.092   0.065 0.090 0.078 0.100 0.072 0.097   0.081 0.090 

25 25 0.179  0.045   0.153 0.040 0.176 0.047 0.175 0.046   0.171 0.040 
 50 0.093  0.142   0.070 0.133 0.093 0.140 0.090 0.137   0.083 0.133 

50 25 0.264  0.057   0.217 0.059 0.266 0.060 0.256 0.057   0.235 0.059 
 50 0.135  0.193   0.092 0.174 0.135 0.206 0.134 0.205   0.103 0.174 

Note: See notes to Table 5. k is fixed lag order used in regression for each individual time series. 
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Table 7. Sizes and size-adjusted powers of panel unit root tests under Models 1 and 2 (exogenous 

breaks) with serial correlation, lag selection in regression. 

N T Γ  P Z L  Pm 

  Size Power  Size Power Size Power Size Power  Size Power
Distribution of individual statistic with fixed lag

Model 1
10 25 0.174  0.076   0.170 0.069 0.133 0.074 0.138 0.074   0.201 0.069 
 50 0.127  0.212   0.117 0.186 0.096 0.243 0.105 0.222   0.142 0.186 

25 25 0.253  0.121   0.264 0.111 0.188 0.118 0.202 0.122   0.289 0.111 
 50 0.169  0.416   0.167 0.340 0.127 0.453 0.139 0.432   0.189 0.340 

50 25 0.365  0.128   0.389 0.114 0.274 0.138 0.294 0.132   0.412 0.114 
 50 0.211 0.656   0.224 0.576 0.157 0.705 0.164 0.685   0.240 0.576 

Model 2
10 25 0.567  0.067   0.497 0.064 0.560 0.059 0.550 0.063   0.544 0.064 
 50 0.319  0.078   0.275 0.078 0.301 0.076 0.296 0.077   0.319 0.078 

25 25 0.892  0.078   0.841 0.070 0.897 0.074 0.894 0.075   0.865 0.070 
 50 0.567  0.101   0.497 0.103 0.555 0.098 0.554 0.097   0.533 0.103 

50 25 0.995  0.038   0.987 0.036 0.995 0.030 0.995 0.033   0.989 0.036 
 50 0.827  0.141   0.763 0.126 0.827 0.140 0.821 0.130   0.781 0.126 

Distribution of individual statistic with lag selection 
Model 1

10 25 0.031  0.077   0.031 0.070 0.021 0.078 0.024 0.084   0.038 0.070 
 50 0.038  0.211   0.032 0.182 0.028 0.249 0.028 0.226   0.043 0.182 

25 25 0.010  0.122   0.016 0.115 0.009 0.124 0.008 0.124   0.020 0.115 
 50 0.025  0.420   0.023 0.354 0.017 0.452 0.018 0.451   0.028 0.354 

50 25 0.009  0.132   0.012 0.117 0.007 0.143 0.007 0.133   0.015 0.117 
 50 0.018  0.669   0.015 0.576 0.009 0.723 0.009 0.709   0.019 0.576 

Model 2
10 25 0.066  0.044   0.058 0.046 0.059 0.044 0.059 0.044   0.074 0.046 
 50 0.045  0.089   0.041 0.088 0.042 0.089 0.040 0.088   0.051 0.088 

25 25 0.069  0.047   0.071 0.041 0.055 0.049 0.058 0.051   0.082 0.041 
 50 0.038  0.120   0.035 0.119 0.039 0.118 0.038 0.118   0.043 0.119 

50 25 0.070  0.055   0.071 0.058 0.055 0.054 0.057 0.051   0.078 0.058 
 50 0.031  0.178   0.025 0.160 0.031 0.193 0.031 0.178   0.033 0.160 

Note: See notes to Table 5. 
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Table 8. Sizes and size-adjusted powers of panel unit root tests under Models 1 and 2 with 

cross-sectional dependence. 

N T Γ  P Z L  Pm 

  Size Power  Size Power Size Power Size Power  Size Power
No account for cross-sectional dependency

Model 1
Exogenous              

10 25 0.166 0.088  0.133 0.088 0.176 0.089 0.166 0.088  0.148 0.088
 50 0.170 0.200  0.131 0.187 0.177 0.218 0.165 0.208  0.147 0.187

25 25 0.266 0.088  0.218 0.083 0.293 0.095 0.284 0.091  0.227 0.083
 50 0.273 0.211  0.218 0.189 0.297 0.231 0.289 0.217  0.228 0.189
Minimum SSR          

10 25 0.162 0.081  0.127 0.078 0.163 0.089 0.156 0.085  0.143 0.078
 50 0.162 0.183  0.123 0.171 0.166 0.196 0.159 0.185  0.140 0.171

25 25 0.258 0.083  0.209 0.079 0.280 0.087 0.273 0.084  0.218 0.079
 50 0.266 0.193  0.213 0.178 0.285 0.209 0.278 0.198  0.223 0.178

Model 2
Exogenous       

10 25 0.180 0.065  0.141 0.061 0.191 0.064 0.180 0.065  0.159 0.061
 50 0.178 0.115  0.134 0.102 0.182 0.117 0.170 0.116  0.152 0.102

25 25 0.272 0.058  0.226 0.058 0.301 0.060 0.291 0.058  0.236 0.058
 50 0.273 0.101  0.214 0.093 0.292 0.105 0.279 0.102  0.225 0.093
Minimum SSR           

10 25 0.142 0.063  0.114 0.059 0.142 0.063 0.137 0.062  0.132 0.059
 50 0.144 0.099  0.111 0.095 0.142 0.105 0.135 0.102  0.125 0.095

25 25 0.230 0.065  0.195 0.062 0.246 0.061 0.235 0.064  0.204 0.062
 50 0.230 0.090  0.192 0.087 0.239 0.095 0.229 0.090  0.202 0.087
         

Account for cross-sectional dependency using bootstrap 

Model 1
Exogenous         

10 25 0.046 0.093  0.052 0.098 0.048 0.092 0.050 0.088  0.052 0.098
 50 0.038 0.170  0.038 0.162 0.036 0.184 0.038 0.172  0.038 0.162

25 25 0.047 0.081  0.052 0.092 0.042 0.076 0.046 0.078  0.052 0.092
 50 0.039 0.175  0.042 0.166 0.040 0.196 0.038 0.182  0.042 0.166

 Minimum SSR       
10 25 0.059 0.100  0.058 0.098 0.060 0.102 0.058 0.098  0.058 0.098
 50 0.049 0.191  0.048 0.170 0.048 0.204 0.050 0.206  0.048 0.170

25 25 0.062 0.115  0.066 0.128 0.064 0.114 0.062 0.120  0.066 0.128
 50 0.054 0.212  0.052 0.190 0.052 0.220 0.054 0.210  0.052 0.190

Model 2
Exogenous       

10 25 0.061 0.070  0.064 0.076 0.054 0.064 0.056 0.066  0.064 0.076
 50 0.036 0.107  0.042 0.098 0.038 0.112 0.038 0.106  0.042 0.098

25 25 0.048 0.058  0.048 0.060 0.048 0.060 0.046 0.058  0.048 0.060
 50 0.047 0.111  0.052 0.112 0.046 0.118 0.048 0.110  0.052 0.112
Minimum SSR        

10 25 0.062 0.068  0.062 0.068 0.058 0.074 0.062 0.064  0.062 0.068
 50 0.048 0.111  0.050 0.104 0.044 0.112 0.044 0.112  0.050 0.104

25 25 0.056 0.062  0.058 0.068 0.058 0.066 0.060 0.062  0.058 0.068
 50 0.054 0.123  0.054 0.116 0.054 0.130 0.056 0.124  0.054 0.116

Note: See notes to Table 5. 



 
 

 32

Table 9. Outcomes of univariate and panel unit root tests for real per capita GDP in PPP, 1960-2003 

and consumer prices, 1949-2004. 

 Test results Bootstrapped critical values Test results Bootstrapped critical values

 

Break 

model Statistic k TB 1% 5% 10% 

Break 

model Statistic k TB 1% 5% 10% 

 Per capita GDP Consumer prices 
Univariate unit root tests            

Australia 2 -3.153  6 1981 -5.086 -4.373 -4.018 3 -3.761 8 1990 -5.014  -4.282 -3.916 

Austria 1 -1.386  6 1992 -4.144 -3.440 -3.080 3 -4.091* 5 1984 -5.223  -4.440 -4.054 

Belgium 1 -1.735  6 1974 -4.208 -3.479 -3.134 2 -4.266** 8 1973 -5.106  -4.221 -3.783 

Canada 2 -3.245  1 1981 -5.191 -4.400 -4.042 3 -2.970 6 1965 -4.985  -4.161 -3.691 

Denmark 3 -3.191  3 1973 -4.860 -4.130 -3.763 3 -4.149* 6 1985 -4.769  -4.205 -3.818 

Finland 2 -2.567  1 1990 -5.276 -4.418 -3.982 3 -2.814 6 1990 -4.924  -4.101 -3.677 

France 2 -3.775  1 1974 -4.825 -4.123 -3.796 3 -3.338 7 1985 -7.141  -5.118 -4.526 

Germany 2 -3.513  8 1990 -6.381 -5.212 -4.687    

Greece 2 -1.599  2 1973 -4.687 -3.958 -3.533 3 -3.318 5 1972 -4.858  -4.163 -3.841 

Iceland 2 -3.065  7 1986 -5.943 -5.048 -4.595 1 -3.063 4 1982 -7.833  -6.485 -5.700 

Ireland 1 -1.724  1 1996 -4.262 -3.448 -3.111 0 -2.742 4  -4.459  -3.752 -3.371 

Italy 1 -0.500  6 1974 -3.771 -2.987 -2.637 3 -2.891 3 1972 -5.770  -4.830 -4.351 

Japan 2 -1.785  8 1973 -5.322 -4.466 -3.956 1 -2.190 8 1973 -4.185  -3.398 -3.014 

Luxembourg 1 -2.244  1 1974 -4.168 -3.490 -3.120 0 -2.564 8  -4.572  -3.706 -3.275 

Mexico 3 -2.127  0 1981 -4.983 -4.293 -3.955 3 -2.648 3 1973 -4.811  -4.024 -3.648 

Netherlands 3 -2.441  1 1974 -4.762 -4.088 -3.713 3 -3.312 6 1982 -5.055  -4.339 -4.001 

New Zealand 1 -1.408  6 1990 -4.357 -3.520 -3.100 1 -2.971 4 1979 -4.620  -3.784 -3.407 

Norway 2 -1.984  0 1999 -4.350 -3.639 -3.272 3 -4.185** 6 1989 -4.851  -4.110 -3.746 

Portugal 2 -4.653*  3 1974 -5.921 -4.796 -4.308 2 -6.155*** 6 1973 -5.545  -4.731 -4.284 

Spain 3 -3.174  3 1974 -6.066 -5.054 -4.508 3 -2.385 6 1986 -4.916  -4.168 -3.788 

Sweden 3 -3.993*  5 1970 -4.890 -4.178 -3.813 2 -2.042 4 1990 -4.828  -4.021 -3.679 

Switzerland 2 -1.626  6 1974 -4.778 -3.980 -3.632 3 -2.036 8 1993 -5.147  -4.353 -3.966 

Turkey 1 -3.290  7 1975 -4.907 -4.147 -3.723    

United Kingdom 1 -2.797  1 1979 -4.575 -3.780 -3.389 2 -3.372 3 1974 -5.052  -4.292 -3.956 

United States 1 -3.998** 1 1981 -4.174 -3.423 -3.092 2 -2.591 5 1966 -4.992  -4.057 -3.668 

              

Panel unit root tests            

Γ -0.330  -2.567 -1.726 -1.348 -2.668***  -2.661 -1.776 -1.404

P 50.150  76.741 68.188 63.469 70.372**  73.456 63.842 59.686

Z -0.107  -2.432 -1.749 -1.341 -2.871***  -2.529 -1.758 -1.392

L -0.158  -2.479 -1.757 -1.348 -2.851***  -2.593 -1.750 -1.390

Pm 0.015  2.674 1.819 1.347 2.541**  2.863 1.860 1.427 

Notes: See notes to Table 5. Break model, k and TB are the selected break model, lag order and break 

date for each individual time series. ***, ** and * represent significance at the 1%, 5% and 10% level 

respectively.  
 


