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Abstract

In this paper we deal with some validation and calibration experiments on the CATS
model proposed in Gallegati et al. (2003a, 2004b).

The CATS model has been extensively used to replicate a large number of scaling type
stylized facts with a remarkable degree of precision. For such purposes, the simulation
of the model has been performed entering ad hoc parameter values and using the same
initial set up for all the agents involved in the experiments.

Nowadays alternative robust and reliable validation techniques for determining whether
the simulation model is an acceptable representation of the real system are available.
Moreover many distributional and goodness-of-�t tests have been developed while sev-
eral graphical tools have been proposed to give the researcher a quick comprehension of
actual and simulated data.

This paper discusses some validation experiments performed with the CATS model.
In particular starting from a sample of Italian �rms included in the CEBI database, we
perform several ex-post validation experiments over the simulation period 1982-2000. In
the experiments, the model parameters have been estimated using actual data and the
initial set up consists of a sample of agents in 1982. The CATS model is then simulated
over the period 1982-2000. Using alternative validation techniques, the simulations�
results are ex-post validated respect to the actual data. The results are promising in
that they show the good capabilities of the CATS model in reproducing the observed
reality.

Finally we have performed a �rst calibration experiment via indirect inference, in
order to ameliorate our estimates. Even in this case, the results are interesting.
JEL classi�cation: C15, C16, D31, E37, L11, L16, O31.



1. Introduction

Mainstream economics adopts the classical mechanical approach of 19th cen-
tury physics, based upon the reductionist principle, according to which one can
understand the aggregate, simply analyzing its single elements. The microfound-
ation of macroeconomics in the (New) Classical tradition is based on the hope
that the aggregate behaviour is the magni�cation of the single agent�s behaviour
on a larger scale. The application of the reductionist framework implies that the
so-called overlapping principle holds true, i.e. the dynamics of a (linear) model can
be decomposed into its constituent parts through the representative agent (RA)
framework.
The microeconomic foundations of general equilibrium models must be based,

according to mainstream economics, on an optimizing RA, fully rational and om-
niscient. Unfortunately, �there are no assumptions on [...] isolated individuals
which will give us the properties of aggregate behavior which we need to obtain
uniqueness and stability. Thus we are reduced to making assumptions at the ag-
gregate level which cannot be justi�ed by the usual individualistic assumptions.
This problem is usually avoided in the macroeconomic literature by assuming that
the economy behaves like an individual. Such an assumption cannot be justi�ed in
the context of the standard economic model and the way to solve the problem may
involve rethinking the very basis on which this model is founded.� (Hildenbrand
and Kirman, 1988, p. 239).
The quantum revolution of the last century radically changed the perspective

in contemporary physics. According to the holistic approach, the aggregate is
di¤erent from the sum of its components because of the interaction of particles.
In the social sciences, a step in this direction is taken by the agent-based modeling
(ABM) strategy.
Agent-based models, which are increasingly applied in economics (Tesfatsion,

2002; Axelrod, 1997), have been developed to study the interaction of many het-
erogeneous agents. In a sense they are based on new microfoundations, according
to a bottom-up approach. They follow a holistic methodology as opposed to the
reductionist approach of the mainstream economics. One builds a model starting
from simple behavioral rules at the single agent level. Through interactions some
aggregate statistical regularities emerge so that they can not be inferred from the
individual level. This emergent behaviour often feeds back to individual agents
making their rules change (they may evolve in an adaptive way). According to
this approach, macroeconomics is not a set of equations that occurs by summation
and averaging of the individual decisions, but it is a SOC (Self-Organized Critical)
phenomenon that rises from the micro-level.
As already mentioned, ABM and simulations have been extensively used in

many scienti�c �elds, including economics, in the last decade (Axelrod, 1997; Ax-
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tell, 2000). However, in recent years only, researchers have started considering
the issue of validation: that is whether a model and its results may be considered
correct. As Sargent (1998) puts it: �This concern is addressed through model veri-
�cation and validation. Model validation is usually de�ned to mean substantiation
that a computerized model within its domain of applicability possesses a satisfact-
ory range of accuracy consistent with the intended application of the model�. This
is not at all a secondary problem, in fact, only a correct model can be considered
a suitable model.
In this paper we deal with some validation experiments of the CATS model

proposed in Gallegati et al. (2003a, 2004b).
The CATS model has been extensively used (see, for example, Gallegati et al.,

2003b, 2004a, 2005; Delli Gatti, 2004) to replicate a large number of scaling type
stylized facts with a remarkable degree of precision and, for these purposes, the
simulation of the model has been performed entering ad hoc parameters�values
and using the same initial set up for all the agents involved in the experiments. It
must be recalled that the above mentioned analyses have been performed following
Kaldor�s suggestion: �construct a hypothesis that could account for these stylized
facts, without necessarily committing himself on the historical accuracy" (Kaldor,
1965, page 178).
In this paper our intentions are more ambitious: using an initial set up of

actual data (a sample of Italian �rms in 1982) we aim to verify if the CATS model,
simulated over a period for which actual data are fully available (the interval 1982-
2000), is an acceptable representation of the real system. In other words we intend
to perform an ex-post validation of the model.
Alternative distributional and goodness-of-�t tests, discussed in Prabhakar et

al. (2003) and Kleiber and Kotz (2003), are performed and some graphical tools
(Embrechts, 1997) are proposed in order to give the reader a quick comprehension
of actual and simulated data.
In the validation exercise, over the simulation period 1982-2000, we use a

sample of 18304 Italian �rms included in the CEBI database. The model para-
meters have been estimated using actual data and the initial set up consists of the
sample data of the year 1982. The CATS model is then simulated over the period
1982-2000 and the simulations�results are ex-post validated with respect to actual
data.
The model reproduces, in a short (medium) term horizon, a good percentage

of the output actual data. The two samples (simulated and observed data) belong
to the same distribution with a con�dence interval of 95%. Moreover the model
also reproduces the �rms�growth dynamics at a micro level, while less satisfying
is the simulation for the behaviour of the very small and very large �rms.
We have then performed a �rst simultaneous calibration-validation of the model

via indirect inference, following the techniques presented in Gourieroux et al.
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(1993; 1996). This procedures allows us to ameliorate our estimates. For these
reasons we believe indirect inference can be a very powerful tool for validating
agent-based models.
The papers is organized as follows: Section 2 presents the state of the art

for the validation of agent-based models; Section 3 introduces the model we have
studied and validated; Section 4 describes the database we used and the empirical
evidence we aim to investigate; Section 5 shows the proceeding of the validation
procedure; Sections 6-7 deal with Indirect Inference for calibrating ACE models;
while Section 8 concludes.

2. Empirical Validation of Agent-based Models (ABM)

As Leigh Tesfatsion points out in her important website on Agent-based Com-
putational Economics1 , the validation of ACE models is becoming one of the major
points in the agenda of those researchers, who work according to the agent-based
approach.
In the literature, looking at the main methodological aspects, there are three

di¤erent ways of validating computational models:

1. descriptive output validation, matching computationally generated output
against already available actual data. This kind of validation procedure is
probably the most intuitive one and it represents a fundamental step towards
a good model�s calibration;

2. predictive output validation, matching computationally generated data against
yet-to-be-acquired system data. Obviously, the main problem concerning
with this procedure is essentially due to the delay between the simulation
results and the �nal comparison with actual data. This may cause some
di¢ culties when trying to study long time phenomena. Anyway, since pre-
diction should be the real aim of every model2 , predictive output validation
must be considered an essential tool for an exhaustive analysis of a model
meant to reproduce reality.

3. input validation, ensuring that the fundamental structural, behavioral and
institutional conditions incorporated in the model reproduce the main as-
pects of the actual system. This is what we can call ex ante validation: the
researcher, in fact, tries to introduce the correct parameters in the model be-
fore running it. The information about parameters can be obtained analyzing
actual data, thanks to the common empirical analysis. Input validation is
obviously a necessary step one has to take before calibrating the model.

Since the empirical validation of agent-based models is still a brand new topic,
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at the moment there are only a limited number of contributions in the literature
dealing with it, as summarized below.
In their paper, Axtell et al. (1996) develop the basic concepts and methods of

an alignment process for agent-based models. In particular they show how align-
ment can be used to test if two di¤erent computational models can be considered
similar in terms of behaviour and output.
In Carley (1996), there�s a �rst stress on model validation issues, even if the

attention of the author is still focusing on computational modeling in general.
A very interesting experiment can be found in the paper by Gilli and Winker

(2003), in which the authors present an agent-based exchange market model and
introduce a global optimization algorithm for calibrating the model�s parameters
via simulation.
In Castillo et al. (2003), the authors describe several statistical techniques

researchers can use in order to select and validate their models.
In Troitzsch (2004), there is a comprehensive list of all the issues concerning

the validation of simulation models to describe and predict real world phenomena.
In Fagiolo et al. (2005), one can �nally �nd a very interesting discussion about

the ways agent-based modelers have tried to face the empirical validation of their
models. The authors brie�y review the standard approaches to model validation
employed by mainstream economists and then point out the main di¤erences deal-
ing with ABM validation. The paper concludes with some suggestions regarding
the methodological aspects of validation.
Finally, without any presumption of being complete and exhaustive, we cannot

forget the mainly theoretical and methodological contributions by Sargent (1998),
Klevmarken (1998), Epstein (1999), Axelrod (2003), and Judd (2005).

3. The CATS model

The model we are presenting was �rst introduced in Gallegati et al. (2003a) to
study �nancial fragility and power laws. Here, it�s modi�ed to better reproduce
actual data, according to the input validation principle we have mentioned above.
Following the ACE philosophy, it is a simple model, since it makes use of

straightforward and clear-cut assumptions. Simplicity is one of the main qualities
of agent-based models, which are considered good models only if able to reproduce
and explain empirical evidences, without being too complicated or making too
many assumptions. In other words, the simpler is the model, the easier is reading
and interpreting the results.
Consider a sequential economy3 , with time running t = 1; 2; :::; populated by

�rms and banks. Two markets are opened in each period: the market for a ho-
mogeneous produced good and the market for credit. As in the levered aggregate
supply class of models �rst developed in Greenwald and Stiglitz (1990, 1993), our
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model is fully supply-determined, in the sense that �rms can sell all the output they
optimally decide to produce. Due to informational imperfections in the equity mar-
ket, �rms can raise funds only from the credit market, apart from retained pro�ts
from previous periods. This assumption seems to re�ect the examined reality in
Italy, since new equity issues were rarely a �nancial option for Italian �rms in
the observed period. Moreover, the full distribution of dividends to shareholders
was expensive, due to the �scal system. In a perfect environment, without taxes,
corporations would not have preferences among these �nancial options, as shown
by the Modigliani-Miller theorem.
Hence, in our setting, the demand for credit is related to investment expendit-

ure and it is fully satis�ed at the �xed banks�interest rates: i.e. total credit supply
always equals the demand for it. This hypothesis helps us in identifying a suitable
proxy of the individual interest rates (namely, the average interest rate), since we
have no reliable information related to them.
Let us then brie�y describe the main features of the model in the remaining

part of the section.
At any time t = 1; :::; 6, the economy consists of Nt �rms, each belonging to

two di¤erent sets (small �rms and large ones)4 , depending on their size, and facing
di¤erent levels of risk (price shocks). This assumption is di¤erent from the original
one (Gallegati et al., 2003a) with a single risk level.
Every �rm i 2 Nt produces the output Y according to a linear production

function, in which capital (Kit) is the only input5 :

Yit = �itKit: (1)

For each �rm i the productivity �it in t = 1 corresponds to its actual pro-
ductivity (estimated on the CEBI data in 1982) and it evolves according to the
following formula:

�it = �it�1 + %it

q
�it�1; where %it =

M

2
; (2)

with M � U(0; 2), if the �rm is small, and to

�it = �i1; (3)

if large. All this reproduces the evidence from our database6 .
Each �rm�s demand for goods is a¤ected by an iid idiosyncratic real shock.

Since arbitrage opportunities are imperfect, the individual selling price is the ran-
dom outcome of a market process around the average market price Pt of the
output, according to the law Pit = uitPt, where E(uit) = � and �2uit < +1. Ac-
tual data suggest to split the price generator process into two di¤erent processes,
depending on �rms�size. For the sake of simplicity we assume that uit follows two
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di¤erent uniform distributions: small �rms get a high average price and a stronger
volatility, while big �rms face more concentrated prices with a lower mean. This
assumption has a justi�cation in the analysis of actual data: small �rms, in fact,
show a stronger volatility in their revenues and pro�ts.
Summarizing, if U1 is the distribution of uit if i is small and U2 if i is large, we

have that �U1 > �U2 and �2U1 > �
2
U2
:

Since, by assumption, credit is the only external source of �nance for �rms, the
�rm can �nance its capital expenditure by recurring to net worth (Ait) or bank
loans (Lit), i.e. Kit = Ait + Lit: At the exogenous real interest rate r, at each
time t debt commitments for every �rm are equal to rLit. Since, for the sake of
simplicity, there are no dividends distributed to shareholders, �nancing costs equal
debt commitments. Therefore, pro�t/loss (�it) in real terms is:

�it = uitYit � rLit (4)

In our model a �rm goes bankrupt if its net worth becomes negative, that is
to say Ait < 0. The law of motion of Ait is, for hypothesis,

Ait = Ait�1 + �it: (5)

As in Greenwald and Stiglitz (1993), we assume that the probability of bank-
ruptcy (Prb) is directly incorporated into the �rm�s pro�t/loss function: bank-
ruptcy is costly and increasing with the �rm�s size. In particular we have chosen
a quadratic cost function:

Cb = cY 2it c > 0 (6)

Finally, each �rm, by maximizing its objective function, determines its optimal
capital stock K�

it:
max
Kit

�it = E(�it)� E(Cb): (7)

and the demand for credit.

4. The Database and the Empirical Evidence

All our validation experiments, together with the subsequent empirical analysis,
are based on �rm-level observations from the CEBI database, for the period 1982-
2000. CEBI, formerly developed by Bank of Italy, is now maintained by Centrale
dei Bilanci Srl.
Thanks to several queries on the database, we have collected a sample of 18304

Italian non-�nancial �rms, all satisfying the following: (i) no missing data in each
year; (ii) reliable data for capital, employees and costs. For each �rm and year, we
have data on equities, along term debts and loans, short term debts, total capital,
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gearing ratio, solvency ratio, debt ratio, number of employees, cost of employees
and revenues.
Recent explorations (Gallegati et al., 2005) in industrial dynamics have detec-

ted two important empirical regularities, which are so widespread across countries
and persistent over time to be characterized as universal laws:

1. The distribution of �rms�size is right skewed and can be described by a Zipf
or power law probability density function (Gallegati et al., 2003b; Ga¤eo et
al., 2003; Axtell, 2000; Ramsden, Kiss-Haypal, 2000; Okuyama et al., 1999;
Quandt, 1966a-b; Simon, 1955);

2. Firms� growth rates are Laplace distributed, belonging to the Subbotin�s
Family (Stanley et al, 1996; Bottazzi, Secchi, 2003);

Gallegati et al.(2004b) have shown analytically that 1-2 (and other regularities
we don�t deal with) determine several industrial, �nancial and business cycle facts
(see those papers for a review of the empirical literature.) A model should there-
fore be able to replicate the empirical evidence 1-2, and our validation exercise is
focused on it.
The following section will present the validation exercise, i.e. if the above

presented CATS model successfully deals with evidences 1-2.

5. Simulation and Results

Our validation exercise is run with a sample of 18304 �rms over the period
1982-2000,
The validation procedure we have used is quite new for agent-based models,

but it is based on some well-known results of extreme value theory, mainly as far
as the analytical tests are concerned (see, for example, Bianchi et al., 2005, or
Embrechts, 1997)7 . Appendix A contains a detailed description of this procedure.
In t = 1, each �rm is initialized with its actual data from 1982: net worth,

loans, productivity and so on. The market interest rate is exogenous and, each
year, it is equal to the average historical interest rate, as in the Bank of Italy
yearly Survey.
In each period actual data from the CEBI database are compared with the

simulated data produced by the model. In particular our analysis can be divided
into two di¤erent approaches: a pointwise analysis, meant to evaluate the evolution
of the single �rm, in order to study the predictive power of the model; and a
distributional analysis, whose aim is to look for regularities.
Our experiments can be considered a �rst ex-post validation of the CATS

model, that is to say a �rst step, necessary to develop all the subsequent analysis.
In Cirillo (2006), the interested reader can �nd a very complete analysis of all
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the data we have used, together with a detailed description of all the empirical
evidences we will deal with.
Let us consider the total capital dynamics. Accepting a maximum deviation of

�15% between observed and simulated data in 2000 (that is a very low composite
yearly deviation rate), we succeed in reproducing 15192 �rms over 18304 (83%).
As Figure 1 shows, the tails of the �rms�size distribution is not adequately �tted.
Similar results can be found in the previous years (in 1986, for example, the
percentage of �tted �rms is 76%, in 1990 it�s 80% and 79% in 1996) and analyzing
the pooled distributions (79; 5%).8

In order to verify the real goodness of these results, that�s verifying if they are
due to the goodness of the model rather than to the characteristics of data (few
years, few �rms with respect to the universe and so on), we have performed an em-
pirical analysis of actual data. In Figure 2 one can observe the comparison, by the
means of a Zipf�s plot, between actual total capital in 1982 and 2000. The evidence
is quite clear: there is a substantial di¤erence between the two amounts of data.
Accepting the usual 15% deviation, only 8% of the �rms (essentially the smallest
ones) can be considered as �tting the data. In fact, even if both distributions be-
long to the Paretian case9 , their parameters are di¤erent. Several analytical tools,
such as the Kolmogorov-Smirnov�s statistics and the Kruskall-Wallis�test, con�rm
all this. Another informative picture is Figure 3, that summarizes the evolution
of total capital over time: all the distributions are rather di¤erent.
Even if we calculate the average growth rate of �rms from 1982 to 2000 and

then we multiply the initial data in 1982 for this coe¢ cient, in 2000 we succeed
in �tting "only" 44% of the �rms (see �gure 4). Since our model can �t 83% of
them, it must be considered as better performing.
Figure 1 also shows that both observed and simulated capital distributions are

particularly skewed, with fat right tails (decreasing linear relationship in the plot).
This reproduces a widely accepted result (Zipf, 1932), according to which �rms�
size is power law distributed10 (Axtell, 2000; Ga¤eo et al., 2003; Gabaix, 2004).
We have performed many graphical and analytical tests to check if our two

samples (observed and simulated data) may be considered belonging to the same
distribution.
A �rst Quantile-Quantile plot (Figure 5) supports the idea of a unique dis-

tribution for both samples, since there is a clear linear relationship between the
observed and simulated data.
Another graphical test, the Box Plot (Figures 6 and 7), shows that the two

distributions have many similarities. For example, the median (red line) is almost
the same and it�s not centered in the box, indicating two skewed distributions.
Moreover, both distributions present a great number of outliers (red plus) in the
right tails, underling the possible presence of fat tails.
The same results are supported by the Generalized Kolmogorov-Smirnov Test11
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Figure 1: Zipf�s Plot of the total capital distributions.

(Prabhakar et al., 2003) with a con�dence interval of 95%. Therefore, it�s possible
to say that our two samples belong to the same distribution or, to be more exact,
to the same mixture.
In particular, excluding the right Paretian tails, that we have separately ana-

lyzed (we trimmed them after a threshold study, see Cirillo (2006)), we found out
that our data follow a Weibull distribution. Figure ?? shows a Weibull Plot12 of
the observed capital distribution (again, after excluding the largest �rms).
As far as the right tails of the two distributions, the Mean Excess Function

versus Threshold Plot (MEPLOT) clearly shows a Paretian behaviour. An upward
sloping mean excess function, as in Figure 8, indicates a heavy tail in the sample
distribution. That is why, thanks to the semiparametric Hill�s method13 , we have
decided to estimate the shape parameters of the two samples, in order to see if
data have a similar behaviour in the right tails14 .
Figure 9 reports the Hill�s estimates of the shape parameter for the simulated

capital, while Figure 10 refers to observed data. In the �rst case � = 1:63, while in
the second one � = 1; 66:Hence, the two parameters are very similar (Figure 11)
and belong to the Paretian �eld (0:8 < � < 2)15 , but we cannot claim that the two
tails behave in the same way. Simulated capital, in fact, shows a slightly heavier
tail (since its alpha is lower16), demonstrating that we slightly overestimated the
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Figure 2: Comparison between actual total capital in 1982 and 2000.

observed values.
As far as net worth is concerned, accepting a maximum deviation of �15%

between actual and simulated data in 2000, we succeed in reproducing 14461 �rms
over 18304 (79%)17 . This number is lower than that of total capital, indicating
some more problems of �tting18 .
Other positive results, see Figure 12, are the skewness of the two distributions

and the presence of a clear Paretian behaviour in both actual and simulated net
worth. Hill�s estimates of the shape parameters both show heavy right tails: actual
data present � = 1:57, while the simulation produces � = 1:52.
As far as the possibility of a unique distribution for the two samples, the two-

sided generalized Kolmogorov-Smirnov test rejects such a null hypothesis. On the
contrary the one-sided right version of the test19 is not rejected, indicating that we
get a better �tting of medium and big �rms, but we fail in forecasting the smallest
one (see in Figure 12), as in Bianchi et al. (2005).
The results we get about loans are very similar to those of the total capital:

we succeed in �tting 14827 �rms out of 18304 (81%).
Moreover, similarly for total capital and net worth, both graphical and analyt-

ical tests support the idea of a unique distribution for both actual and simulated
debt data.
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Figure 3: Evolution of total capital over time.

As in Fujiwara (2003), the distribution of loans is also power law. The Hill�s
estimates of the shape parameters of the Paretian right tails are � = 1:69 for the
actual data and � = 1:61 for the simulated ones, demonstrating an overestimate
of biggest �rms.
Finally, analyzing the ratio between net worth and debt we �nd out that, apart

from some exceptions20 , it is almost constant for each �rm over time. In other
words, if �rm i has a ratio of x% in 1982, it shows a very similar ratio in 2000,
As far as �rms�growth rates are concerned, several studies (Axtell, 2000; Bot-

tazzi and Secchi, 2002; Hall, 1987) �nd a tent-shape behaviour. In particular,
the Laplace and Lévy distributions seem to provide the best �tting (Bottazzi and
Secchi, 2003; Gabaix, 2004).
We have investigated if the empirical distributions of growth rates (in terms of

capital) belong to the well-known Subbotin�s family (Subbotin, 1923), which rep-
resents a generalization of several particular cases, such as Laplace and Gaussian
distributions. The functional form of Subbotin�s family is:

f(x; a; b) =
1

2ab
1
b�
�
1 + 1

b

�e� 1
b j x��a jb; (8)

where � is the mean, b and a two di¤erent shape parameters and � is the standard
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Figure 4: Comparison between actual total capital in 2000 and naive forecast.

Gamma. If b ! 1 the Subbotin distribution becomes a Laplace, a Gaussian for
b! 2.
Using the maximum likelihood method21 , we have estimated the three Sub-

botin�s parameters on our data. Table 1 contains the results.

At a �rst glace, observed and simulated growth rates show several similarities:

1. The two means are very close to zero;

2. Since b is very near to 1, both distributions are in the �eld of attraction of
the Laplacian case22 . Figure 13 supports this evidence since it�s tent-shaped;

observed data Simulated data
� -0.0022 ( 0 .0 0 1 0 ) 0.0038 ( 0 .0 0 1 3 )

a 0.0611 ( 0 .0 2 4 4 ) 0.0653 ( 0 .0 2 3 8 )

b 1.0421 ( 0 .3 2 1 5 ) 1.0217 ( 0 .4 2 3 5 )

�loglik 2.1321 3.0119

Table 1: Estimated Subbotin�s Parameters (standard errors in brackets)
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Figure 5: Q-Q Plot of the two Capital distributions.

3. The values of a, the Laplacian shape parameter, are not very di¤erent in
both cases, even if simulated data show slightly fatter tails (0.065>0.061),
see Figure 13.

Overall, the CATS model is able to mimic �rms�growth dynamic, once again
with some discrepancies as far as the tails are concerned.

6. Indirect inference: introduction

The aim of this section is to brie�y introduce Indirect Inference (Gourieroux
et al., 1993, 1996) as estimation and calibration method.
Indirect inference can be understood as a generalization of simulated GMM.

Quite often in economics, since the actual model has a complicated structure (in
our situation the real industrial model), direct inference is intractable for analyt-
ical reasons23 . If the structural (true) model is easily simulated for any �xed para-
meter value in the parameter space, indirect inference is probably one of the best
procedures to use. According to indirect inference, estimation of the structural
parameters consists of two steps. The �rst one involves the use of an easy-to-
compute auxiliary model in order to achieve consistent and asymptotically normal
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Figure 6: Box Plot of simulated and actual Capital after trimming.

estimates for some auxiliary parameters (pseudo true value). In the second step,
simulations are used to correct the discrepancy of the auxiliary parameters from
the structural ones.
The idea of indirect inference is as follows. Given a parameter �;let

eyh(�) = feyh0 ; eyh1 ; :::; eyhT g (9)

be data simulated from the true model where h=1,...,H with H being the number
of simulated paths24 . Now, let�s match various functions of the simulated data
with those of actual data in order to get estimates of the parameters.
Suppose QT is the objective function of a certain estimation method applied

to an auxiliary model indexed by the parameter �. De�ne the related estimator
based on the observed data by

e�T = argmin
�2�

QT (y): (10)

The corresponding estimator based on the h-th simulated path is de�ned by

e�hT (�) = argmin
�2�

QT (eyh(�)); (11)
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Figure 7: Boxplot of simulated and actual Capital (no trim).

where � is a compact set.
The indirect inference estimator is set as

�IIT;H = argmin
�2�

jjb�T � 1

H

XH

h=1
e�hT (�)jj; (12)

with � compact set. If H tends to in�nity, the indirect inference estimation be-
comes

�IIT;H = argmin
�2�

jjb�T � E(e�hT (�))jj: (13)

Let�s de�ne bT (�) = E(e�hT (�)) as the binding function. When the number of
parameters in the auxiliary model is the same as that in the true model and the
function b is invertible, the indirect inference estimator is equal to

�IIT = b�1T (�): (14)

As far as all the properties of Indirect Inference (unbiasedness, e¢ ciency and
so on), we refer to the original works of Gourieroux et al. (1993,1996).
For all these reasons, indirect inference can be thought as a simultaneous way

of calibrating and validating models
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Figure 8: Meplot of observed and simulated total capital.

Figure 9: Hill Plot of the simulated Capital
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Figure 10: Hill Plot of the actual capital

Figure 11: Comparison of the two Hill Plots.
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Figure 12: Zipf�s Plots of the net worth distributions: actual and simulated data.

Figure 13: Empirical distributions of actual and simulated growth rates.
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7. Indirect Inference: Simulation results

The �rst step of our calibration and validation procedure consists in de�ning
both the true and the auxiliary model. For our analysis the true model is the
Italian Industrial Market, so we assume that the CEBI database comes from a
process we don�t explicitly know. The CATS models, on the contrary, represents
the auxiliary model we are able to simulate.
As we have seen before, the distributions of actual and simulated data are very

similar. In particular they show very close moments and scale parameters, while
the greater di¤erences are related to the shape parameters �i, that�s to say the
two right tails. Our aim is to calibrate the shape parameters, in order to improve
our capability of reproducing empirical data. If we reduce the distance between
the shape parameters of actual and simulated data, we can reach our goals. Figure
14 gives a graphical representation of our method.
Unfortunately, we cannot directly calibrate the shape parameters. Anyway, we

can make them change, acting on other parameters of the auxiliary model, as re-
quired by indirect inference. Since our model is very sensitive to the price generator
processes, we have decided to calibrate the supports of the two generators. Start-
ing from the values we have determined with a simple grid method (see Appendix
A), we let them vary until the distance between the two right tails is minimized.
The procedure we have used is the one by Gourieroux et al. (1996), which makes
use of a quadratic loss function. In order to have perfect identi�cation, besides
shape parameters, we calibrate also the scale ones.
The results we achieve are quite promising, even if preliminary. In particular,

after calibration via indirect inference, in 2000 we succeed in reproducing the total
capital of 16108 �rms over 18304, so we ameliorate our estimates25 passing from
83% to 88%. Similar results are available for the other years (80% in 1986, 84
in 1990 and 81% in 1996) and the pooled distribution. Figure 15 shows the new
comparison between actual and simulated total capital in 2000 after calibration
via indirect inference.
So, modifying the two supports of the price generators, indirect inference allow

us to reduce the distance between the shape parameters of the two distributions:
�simulation passes from 1,63 to 1,646.

8. Conclusions and future research

Even if the results we have presented are preliminary they shows that, in the
interval 1982-2000, the simple CATS model, �rstly introduced by Gallegati et
al. (2003a) and slightly modi�ed for these experiments (see section 3), has good
capabilities in replicating empirical evidence, with few exceptions.
More reliable results could be obtained improving the speci�cation of the
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Figure 14: Graphical explanation of our calibration method.

Figure 15: Comparison between actual and simulated total capital in 2000 after
calibration via indirect inference.
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model, and then de�ning new parameters to be calibrated.
In future validation experiments, we intend to modify the model speci�cation,

endogenising the banking sector (see Vagliasindi et al., 2005) and the price gener-
ator process and including a labor market module. Moreover, we hope to match
our database with other dataset in order to increase the available information,
which is a fundamental aspects for correctly calibrating simulation models.

Notes

1http://www.econ.iastate.edu/tesfatsi/empvalid.htm

2Validation is not the end of the study process. Indeed, it must be considered an
intermediate step, necessary to ameliorate the model in order to make predictions.

3In a sequential economy (Hahn, 1982) spot markets open at given dates, while
future markets do not operate.

4According to the Italian Fiscal Law, to which we referred in writing this paper,
a �rm is considered: �small�, if it has less than 50 employees; �medium� if it has
between 51 and 250 employees; �large� if it has more than 250 employees. In our
sample, the percentage of �rms is: � 56% small, � 31% medium, � 13% large. In
1996 the smallest �rm shows 2 employees, while the largest one 7308.

5Capital stock never depreciates.

6In fact, as statistically tested, small �rms show an increasing productivity,
while the large ones present an almost constant one.

7But also in Sargent et al. (2000), Sargent (1998), Kleijen (1998), Gumbel
(1958).

8As in Ijiri et al. (1997), the use of pooled distribution is possible since the
single distributions show similar slopes.

In this paper, almost all the �gures refer to year 2000.

9This is quite obvious: in only six years one cannot expect a distribution to
change its shape and family. Finally this is what we can �nd in most of all the
empirical studies about �rms.

10A power law behaviour in �rms� size is essentially due to the random iid
micro-multiplicative shocks (Solomon, 1995; Gabaix, 2004) and the presence of the
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(bankruptcy) lower bound we have modelled. As Lutz et al. (1995) show a system
with power laws tails distributions have divergent �rst and second moments, so
the law of large numbers does not hold and the system is not ergodic. All this has
disruptive consequences for mainstream economics (Davidson, 1986).

11The Generalised or Two Sample Kolmogorov-Smirnov test is a variation of
the classical Kolmogorov-Smirnov test.

Given N data points Y1; Y2; :::; Yn the empirical distribution function (ECDF)
is de�ned as

FN =
n(i)

N
; (15)

where n(i) represents the number of points less than Yi. As one can see, this step
function increases by 1

N for each data point.

The Kolmogorov-Smirnov test is based on the maximum distance between the
ECDF and the theoretical cumulative distribution one wants to test (FT ):

D = max
1�i�N

����FT (Yi)� i

N

���� : (16)

On the contrary, the two sample K-S test, instead of comparing an empirical
distribution function to the theoretical one, compares two di¤erent ECDF, that is

D = jF1(i)� F2(i)j ; (17)

where Fi is the empirical distribution for sample i.

The generalised K-S statistic can be de�ned as:

H0 : F1 = F2 ! the two samples come from the same distribution

H1 : F1 6= F2 ! the two samples come from di¤erent distributions

To decide the results of the test, the values of D are compared to the critical
values obtained from Kolmogorov and Smirnov�s table.

12That�s a quantile-quantile plot with a theoretical Weibull distribution.

13The well-known Hill�s Estimator �, together with the Pickard�s one, is the most
used way to determine the shape parameter � = 1

� of a distribution belonging to
the GEV family.
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In particular

� =
1

k � 1

k�1X
i=1

lnxi;N � lnxk;N for k � 2; (18)

where k is the upper order statistics and N the sample size.

14Similar results can be obtained with standard MLE.

15Once again the results concerning the pooled distributions are very similar.
The reason can be found in the words of Ijiri et al. (1977): �We conclude that when
two or more Pareto distributions are pooled together, the resulting distribution is
Pareto if and only if all the distributions have similar slopes [...]. This result is
important in dealing with the aggregation of empirical �rm size distributions.�

16As clearly showed in Kleiber and Kotz (2003), the Pareto density has a poly-
nomial right tail that varies at in�nity with index (�� � 1), implying that the
right tail is heavier as � is smaller.

1780% in 1986, 78% in 1996.

18In particular this may depend on the hypothesis of the model that: 1) �rms
cannot raise funds on the equity market, 2) pro�ts are entirely retained in the �rm
and 3) as suggested by the referee, that all �rms face the very same interest rate.
However, these simplifying hypothesis, typical of CATS model, do not seems to
a¤ect too much the robustness of our validation results.

19H0 : F
+
1 (x) = F

+
2 (x):

H1 : F
+
1 (x) > F

+
2 (x):

20While validating our model, we have experienced several experiments on in-
terest rates, �nding out an interesting thing.

Those �rms showing a decreasing net worth/debt ratio are the same that
obviously go bankrupt if the interest rates rise. All this is interesting since the
decreasing ratio is almost completely due to a monotonically deteriorating equity
ratio (Beaver, 1966; Gallegati et al., 2005; Bianchi et al., 2005).

21The results are very similar, using the method of moments.

22Some authors prefer a truncated Lévy distribution. The querelle is open. See
Kleiber and Kotz (2003).
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23It is useful when the moments and the likelihood function of the true model
are di¢ cult to deal with, but the true model is amenable to data simulation.

24The number of simulated observations must be the same as the number of
actual observations for the purpose of the bias calibration.

25We succeed in better reproducing smaller �rms.

A Validation Procedure: some notes

The aim of this appendix is to describe the procedure we have used to validate
the CATS model.
All the codes and the programs have been written in Fortran90 c, while all the

graphics have been developed with Matlab7 c.
As far as the simulation of the CATS model is concerned, it can be useful to

underline the following aspects:

1. In t = 1 (1982), when the simulation starts, every �rm is initialized with
its actual data from the database. These data are: net worth, loans and
productivity. The current version of the model has a recursive structure so
that parameters �it have been consistently estimated using, �rm by �rm,
ordinary least squares. Then productivity evolves according to the laws of
motions presented in 2 and 3;

2. The parameter M in 2 follows an uniform distribution, whose support (0; 2)
has been ad hoc calibrated, thanks to several replications;

3. The interest rate is equal to the average historical one;

4. The two di¤erent uniform distributions we have used to model the idiosyn-
cratic shocks on prices show support (0:6; 2:6) for small �rms and support
(0:6; 1:4) for the large ones. This supports have been inductively calibrated
with a grid method, considering the results of several alternative replications,
in order to get the best �tting values;

5. Every year the following data are stored in order to be compared with ac-
tual data: net worth, loans, total capital, productivity, growth rates, paid
interests, total output, aggregate output.

Our analysis of data can be divided into two di¤erent approaches: a pointwise
analysis, meant to evaluate the evolution of the single �rm, in order to study the
predictive power of the model; and a distributional analysis, whose aim is to look
for general regularities.
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In Embrechts (1997), one can �nd a quite complete list of all the tests a re-
searcher should perform in analyzing data, while Kleijen (1998) deals with the
theoretical implications of validation.
Further information on this procedure is present in Bianchi et al. (2005).
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