
Just tired of endless loops!
or parallel: Stata module for parallel computing

George G. Vega Yon1 Brian Quistorff2

1University of Southern California
vegayon@usc.edu

2Microsoft AI and Research
Brian.Quistorff@microsoft.com

Stata Conference Baltimore
July 27–28, 2017

Thanks to Stata users worldwide for their valuable contributions. The usual disclaimers applies.

Agenda

Motivation

What is it and how does it work

Benchmarks

Syntax and Usage

Concluding Remarks

Motivation

I Both computation power and size of data are ever increasing

I Often our work is easily broken down into independent chunks

I Implementing parallel computing, even for these “embarrassingly parallel”
problems, however, is not easy.

I Stata/MP exists, but only parallelizes a limited set of internal commands,
not user commands.

I parallel aims to make this more convenient.

Motivation

I Both computation power and size of data are ever increasing

I Often our work is easily broken down into independent chunks

I Implementing parallel computing, even for these “embarrassingly parallel”
problems, however, is not easy.

I Stata/MP exists, but only parallelizes a limited set of internal commands,
not user commands.

I parallel aims to make this more convenient.

Motivation

I Both computation power and size of data are ever increasing

I Often our work is easily broken down into independent chunks

I Implementing parallel computing, even for these “embarrassingly parallel”
problems, however, is not easy.

I Stata/MP exists, but only parallelizes a limited set of internal commands,
not user commands.

I parallel aims to make this more convenient.

Motivation

I Both computation power and size of data are ever increasing

I Often our work is easily broken down into independent chunks

I Implementing parallel computing, even for these “embarrassingly parallel”
problems, however, is not easy.

I Stata/MP exists, but only parallelizes a limited set of internal commands,
not user commands.

I parallel aims to make this more convenient.

Motivation

I Both computation power and size of data are ever increasing

I Often our work is easily broken down into independent chunks

I Implementing parallel computing, even for these “embarrassingly parallel”
problems, however, is not easy.

I Stata/MP exists, but only parallelizes a limited set of internal commands,
not user commands.

I parallel aims to make this more convenient.

Motivation

What is it and how does it work

Benchmarks

Syntax and Usage

Concluding Remarks

What is it and how does it work
What is it?

I Inspired by the R package “snow” (several other examples exists:
HTCondor, Matlab’s Parallel Toolbox, etc.)

I Launches “child” batch-mode Stata processes across multiple processors
(e.g. simultaneous multi-threading, multiple cores, sockets, cluster nodes).

I Depending on the task, can reach near linear speedups proportional to the
number of processors.

I Thus having a quad-core computer can lead to a 400% speedup.

What is it and how does it work
What is it?

I Inspired by the R package “snow” (several other examples exists:
HTCondor, Matlab’s Parallel Toolbox, etc.)

I Launches “child” batch-mode Stata processes across multiple processors
(e.g. simultaneous multi-threading, multiple cores, sockets, cluster nodes).

I Depending on the task, can reach near linear speedups proportional to the
number of processors.

I Thus having a quad-core computer can lead to a 400% speedup.

What is it and how does it work
What is it?

I Inspired by the R package “snow” (several other examples exists:
HTCondor, Matlab’s Parallel Toolbox, etc.)

I Launches “child” batch-mode Stata processes across multiple processors
(e.g. simultaneous multi-threading, multiple cores, sockets, cluster nodes).

I Depending on the task, can reach near linear speedups proportional to the
number of processors.

I Thus having a quad-core computer can lead to a 400% speedup.

What is it and how does it work
What is it?

I Inspired by the R package “snow” (several other examples exists:
HTCondor, Matlab’s Parallel Toolbox, etc.)

I Launches “child” batch-mode Stata processes across multiple processors
(e.g. simultaneous multi-threading, multiple cores, sockets, cluster nodes).

I Depending on the task, can reach near linear speedups proportional to the
number of processors.

I Thus having a quad-core computer can lead to a 400% speedup.

Simple usage

Serial:

I gen v2 = v*v

I do byobs calc.do

I bs, reps(5000): reg price foreign
rep

Parallel:

I parallel: gen v2 = v*v

I parallel do byobs calc.do

I parallel bs, reps(5000): reg price
foreign rep

Simple usage

Serial:

I gen v2 = v*v

I do byobs calc.do

I bs, reps(5000): reg price foreign
rep

Parallel:

I parallel: gen v2 = v*v

I parallel do byobs calc.do

I parallel bs, reps(5000): reg price
foreign rep

What is it and how does it work
How does it work?

I Method is split-apply-combine like MapReduce.

What is it and how does it work
How does it work?

Data

globals programs

mata
objects

mata
programs

Cluster 3Cluster 2Cluster 1 ... Cluster n

Splitting the data set

Passing
objects

Cluster
3’

Cluster
2’

Cluster
1’

... Cluster
n’

Task (stata batch-mode)

Data’

globals programs

mata
objects

mata
programs

Appending the data set

Starting (current) stata instance loaded with
data plus user defined globals, programs, mata
objects and mata programs

A new stata instance (batch-mode) for every
data-clusters. Programs, globals and mata ob-
jects/programs are passed to them.

The same algorithm (task) is simultaneously ap-
plied over the data-clusters.

After every instance stops, the data-clusters are
appended into one.

Ending (resulting) stata instance loaded with the
new data.

User defined globals, programs, mata objects
and mata programs remind unchanged.

What is it and how does it work
How does it work?

I Method is split-apply-combine like MapReduce. Very flexible!

I Straightforward usage when there is observation- or group-level work
I If each iteration needs the entire dataset, then use procedure to split the

tasks and load the data separately. Examples:
I Table of seeds for each bootstrap resampling
I Table of parameter values for simulations

I If the list of tasks is data-dependent then the “nodata” alternative
mechanism allows for more flexibility.

What is it and how does it work
How does it work?

I Method is split-apply-combine like MapReduce. Very flexible!

I Straightforward usage when there is observation- or group-level work

I If each iteration needs the entire dataset, then use procedure to split the
tasks and load the data separately. Examples:

I Table of seeds for each bootstrap resampling
I Table of parameter values for simulations

I If the list of tasks is data-dependent then the “nodata” alternative
mechanism allows for more flexibility.

What is it and how does it work
How does it work?

I Method is split-apply-combine like MapReduce. Very flexible!

I Straightforward usage when there is observation- or group-level work
I If each iteration needs the entire dataset, then use procedure to split the

tasks and load the data separately. Examples:

I Table of seeds for each bootstrap resampling
I Table of parameter values for simulations

I If the list of tasks is data-dependent then the “nodata” alternative
mechanism allows for more flexibility.

What is it and how does it work
How does it work?

I Method is split-apply-combine like MapReduce. Very flexible!

I Straightforward usage when there is observation- or group-level work
I If each iteration needs the entire dataset, then use procedure to split the

tasks and load the data separately. Examples:
I Table of seeds for each bootstrap resampling

I Table of parameter values for simulations

I If the list of tasks is data-dependent then the “nodata” alternative
mechanism allows for more flexibility.

What is it and how does it work
How does it work?

I Method is split-apply-combine like MapReduce. Very flexible!

I Straightforward usage when there is observation- or group-level work
I If each iteration needs the entire dataset, then use procedure to split the

tasks and load the data separately. Examples:
I Table of seeds for each bootstrap resampling
I Table of parameter values for simulations

I If the list of tasks is data-dependent then the “nodata” alternative
mechanism allows for more flexibility.

What is it and how does it work
How does it work?

I Method is split-apply-combine like MapReduce. Very flexible!

I Straightforward usage when there is observation- or group-level work
I If each iteration needs the entire dataset, then use procedure to split the

tasks and load the data separately. Examples:
I Table of seeds for each bootstrap resampling
I Table of parameter values for simulations

I If the list of tasks is data-dependent then the “nodata” alternative
mechanism allows for more flexibility.

Implementation
Some details

I Uses shell on Linux/MacOS. On Windows we have a compiled plugging
allowing:

I Functionality when the parent Stata is in batch-mode
I Seamless user experience by launching the child programs in a hidden

desktop (otherwise GUI for each steals focus)

I For a Linux/MacOS cluster with a shared filesystem (e.g. NFS) and
ssh-like commands, can distribute across nodes.

I New feature so we’d appreciate help from the community to extend to other
cluster settings (e.g. PBS)

I Make sure that child tempnames or tempvars don’t clash with those
coming from parent.

I Passes through programs, macros and mata objects, but NOT Stata
matrices or scalars. No state but datasets are returned to parent.

I Recover gracefully from child failures. Currently no re-try support.

https://en.wikipedia.org/wiki/Portable_Batch_System

Implementation
Some details

I Uses shell on Linux/MacOS. On Windows we have a compiled plugging
allowing:

I Functionality when the parent Stata is in batch-mode

I Seamless user experience by launching the child programs in a hidden
desktop (otherwise GUI for each steals focus)

I For a Linux/MacOS cluster with a shared filesystem (e.g. NFS) and
ssh-like commands, can distribute across nodes.

I New feature so we’d appreciate help from the community to extend to other
cluster settings (e.g. PBS)

I Make sure that child tempnames or tempvars don’t clash with those
coming from parent.

I Passes through programs, macros and mata objects, but NOT Stata
matrices or scalars. No state but datasets are returned to parent.

I Recover gracefully from child failures. Currently no re-try support.

https://en.wikipedia.org/wiki/Portable_Batch_System

Implementation
Some details

I Uses shell on Linux/MacOS. On Windows we have a compiled plugging
allowing:

I Functionality when the parent Stata is in batch-mode
I Seamless user experience by launching the child programs in a hidden

desktop (otherwise GUI for each steals focus)

I For a Linux/MacOS cluster with a shared filesystem (e.g. NFS) and
ssh-like commands, can distribute across nodes.

I New feature so we’d appreciate help from the community to extend to other
cluster settings (e.g. PBS)

I Make sure that child tempnames or tempvars don’t clash with those
coming from parent.

I Passes through programs, macros and mata objects, but NOT Stata
matrices or scalars. No state but datasets are returned to parent.

I Recover gracefully from child failures. Currently no re-try support.

https://en.wikipedia.org/wiki/Portable_Batch_System

Implementation
Some details

I Uses shell on Linux/MacOS. On Windows we have a compiled plugging
allowing:

I Functionality when the parent Stata is in batch-mode
I Seamless user experience by launching the child programs in a hidden

desktop (otherwise GUI for each steals focus)

I For a Linux/MacOS cluster with a shared filesystem (e.g. NFS) and
ssh-like commands, can distribute across nodes.

I New feature so we’d appreciate help from the community to extend to other
cluster settings (e.g. PBS)

I Make sure that child tempnames or tempvars don’t clash with those
coming from parent.

I Passes through programs, macros and mata objects, but NOT Stata
matrices or scalars. No state but datasets are returned to parent.

I Recover gracefully from child failures. Currently no re-try support.

https://en.wikipedia.org/wiki/Portable_Batch_System

Implementation
Some details

I Uses shell on Linux/MacOS. On Windows we have a compiled plugging
allowing:

I Functionality when the parent Stata is in batch-mode
I Seamless user experience by launching the child programs in a hidden

desktop (otherwise GUI for each steals focus)

I For a Linux/MacOS cluster with a shared filesystem (e.g. NFS) and
ssh-like commands, can distribute across nodes.

I New feature so we’d appreciate help from the community to extend to other
cluster settings (e.g. PBS)

I Make sure that child tempnames or tempvars don’t clash with those
coming from parent.

I Passes through programs, macros and mata objects, but NOT Stata
matrices or scalars. No state but datasets are returned to parent.

I Recover gracefully from child failures. Currently no re-try support.

https://en.wikipedia.org/wiki/Portable_Batch_System

Implementation
Some details

I Uses shell on Linux/MacOS. On Windows we have a compiled plugging
allowing:

I Functionality when the parent Stata is in batch-mode
I Seamless user experience by launching the child programs in a hidden

desktop (otherwise GUI for each steals focus)

I For a Linux/MacOS cluster with a shared filesystem (e.g. NFS) and
ssh-like commands, can distribute across nodes.

I New feature so we’d appreciate help from the community to extend to other
cluster settings (e.g. PBS)

I Make sure that child tempnames or tempvars don’t clash with those
coming from parent.

I Passes through programs, macros and mata objects, but NOT Stata
matrices or scalars. No state but datasets are returned to parent.

I Recover gracefully from child failures. Currently no re-try support.

https://en.wikipedia.org/wiki/Portable_Batch_System

Implementation
Some details

I Uses shell on Linux/MacOS. On Windows we have a compiled plugging
allowing:

I Functionality when the parent Stata is in batch-mode
I Seamless user experience by launching the child programs in a hidden

desktop (otherwise GUI for each steals focus)

I For a Linux/MacOS cluster with a shared filesystem (e.g. NFS) and
ssh-like commands, can distribute across nodes.

I New feature so we’d appreciate help from the community to extend to other
cluster settings (e.g. PBS)

I Make sure that child tempnames or tempvars don’t clash with those
coming from parent.

I Passes through programs, macros and mata objects, but NOT Stata
matrices or scalars. No state but datasets are returned to parent.

I Recover gracefully from child failures. Currently no re-try support.

https://en.wikipedia.org/wiki/Portable_Batch_System

Implementation
Some details

I Uses shell on Linux/MacOS. On Windows we have a compiled plugging
allowing:

I Functionality when the parent Stata is in batch-mode
I Seamless user experience by launching the child programs in a hidden

desktop (otherwise GUI for each steals focus)

I For a Linux/MacOS cluster with a shared filesystem (e.g. NFS) and
ssh-like commands, can distribute across nodes.

I New feature so we’d appreciate help from the community to extend to other
cluster settings (e.g. PBS)

I Make sure that child tempnames or tempvars don’t clash with those
coming from parent.

I Passes through programs, macros and mata objects, but NOT Stata
matrices or scalars. No state but datasets are returned to parent.

I Recover gracefully from child failures. Currently no re-try support.

https://en.wikipedia.org/wiki/Portable_Batch_System

Motivation

What is it and how does it work

Benchmarks

Syntax and Usage

Concluding Remarks

Benchmarks
Bootstrap with parallel bs

sysuse auto, clear expand 10

// Serial fashion

bs, rep($size) nodots: regress mpg weight gear foreign

// Parallel fashion

parallel setclusters $number of clusters

parallel bs, rep($size) nodots: regress mpg weight gear foreign

Problem size Serial 2 Clusters 4 Clusters

1,000 2.93s 1.62s 1.09s
×2.69 ×1.48 ×1.00

2,000 5.80s 3.13s 2.03s
×2.85 ×1.54 ×1.00

4,000 11.59s 6.27s 3.86s
×3.01 ×1.62 ×1.00

Table: Absolute and relative computing times for each run of a basic bootstrap
problem. For each given problem size, the first row shows the time in seconds, and the
second row shows the relative time each method took to complete the task relative to
using parallel with four clusters. Each cell represents a 1,000 runs.

Benchmarks
Bootstrap with parallel bs

sysuse auto, clear expand 10

// Serial fashion

bs, rep($size) nodots: regress mpg weight gear foreign

// Parallel fashion

parallel setclusters $number of clusters

parallel bs, rep($size) nodots: regress mpg weight gear foreign

Problem size Serial 2 Clusters 4 Clusters

1,000 2.93s 1.62s 1.09s
×2.69 ×1.48 ×1.00

2,000 5.80s 3.13s 2.03s
×2.85 ×1.54 ×1.00

4,000 11.59s 6.27s 3.86s
×3.01 ×1.62 ×1.00

Table: Absolute and relative computing times for each run of a basic bootstrap
problem. For each given problem size, the first row shows the time in seconds, and the
second row shows the relative time each method took to complete the task relative to
using parallel with four clusters. Each cell represents a 1,000 runs.

Benchmarks
Simulations with parallel sim

prog def mysim, rclass

// Data generating process

drop all

set obs 1000

gen eps = rnormal()

gen X = rnormal()

gen Y = X*2 + eps

// Estimation

reg Y X

mat def ans = e(b)

return scalar beta = ans[1,1]

end

// Serial fashion

simulate beta=r(beta), reps($size) nodots: mysim

// Parallel fashion

parallel setclusters $number of clusters

parallel sim, reps($size) expr(beta=r(beta)) nodots: mysim

Benchmarks
Simulations with parallel sim (cont.)

Problem size Serial 2 Clusters 4 Clusters

1000 2.19s 1.18s 0.73s
×3.01 ×1.62 ×1.00

2000 4.36s 2.29s 1.33s
×3.29 ×1.73 ×1.00

4000 8.69s 4.53s 2.55s
×3.40 ×1.77 ×1.00

Table: Absolute and relative computing times for each run of a simple Monte Carlo
exercise. For each given problem size, the first row shows the time in seconds, and the
second row shows the relative time each method took to complete the task relative to
using parallel with four clusters. Each cell represents a 1,000 runs.

Code for replicating this is available at
https://github.com/gvegayon/parallel

https://github.com/gvegayon/parallel

Motivation

What is it and how does it work

Benchmarks

Syntax and Usage

Concluding Remarks

Syntax and Usage

Setup

parallel setclusters # |default [, force hostnames(namelist)]

Main command types

parallel [, by(varlist) programs(namelist) mata seeds(string) randtype(random.org|datetime)
nodata]: stata cmd

parallel do filename [, by(varlist) programs(namelist) mata seeds(string)
randtype(random.org|datetime) nodata]

Helper commands

parallel bs [, expression(exp list) programs(namelist) mata seeds(string)
randtype(random.org|datetime) bs options]: stata cmd

parallel sim [, expression(exp list) programs(namelist) mata seeds(string)
randtype(random.org|datetime) sim options)]: stata cmd

parallel append [files], do(command|dofile) [in(in) if(if) expression(expand exp)
programs(namelist) mata seeds(string) randtype(random.org|datetime)]

Additional Utilities

parallel version/clean/printlog/viewlog/numprocessors

Syntax and Usage

Setup

parallel setclusters # |default [, force hostnames(namelist)]

Main command types

parallel [, by(varlist) programs(namelist) mata seeds(string) randtype(random.org|datetime)
nodata]: stata cmd

parallel do filename [, by(varlist) programs(namelist) mata seeds(string)
randtype(random.org|datetime) nodata]

Helper commands

parallel bs [, expression(exp list) programs(namelist) mata seeds(string)
randtype(random.org|datetime) bs options]: stata cmd

parallel sim [, expression(exp list) programs(namelist) mata seeds(string)
randtype(random.org|datetime) sim options)]: stata cmd

parallel append [files], do(command|dofile) [in(in) if(if) expression(expand exp)
programs(namelist) mata seeds(string) randtype(random.org|datetime)]

Additional Utilities

parallel version/clean/printlog/viewlog/numprocessors

Syntax and Usage

Setup

parallel setclusters # |default [, force hostnames(namelist)]

Main command types

parallel [, by(varlist) programs(namelist) mata seeds(string) randtype(random.org|datetime)
nodata]: stata cmd

parallel do filename [, by(varlist) programs(namelist) mata seeds(string)
randtype(random.org|datetime) nodata]

Helper commands

parallel bs [, expression(exp list) programs(namelist) mata seeds(string)
randtype(random.org|datetime) bs options]: stata cmd

parallel sim [, expression(exp list) programs(namelist) mata seeds(string)
randtype(random.org|datetime) sim options)]: stata cmd

parallel append [files], do(command|dofile) [in(in) if(if) expression(expand exp)
programs(namelist) mata seeds(string) randtype(random.org|datetime)]

Additional Utilities

parallel version/clean/printlog/viewlog/numprocessors

Syntax and Usage

Setup

parallel setclusters # |default [, force hostnames(namelist)]

Main command types

parallel [, by(varlist) programs(namelist) mata seeds(string) randtype(random.org|datetime)
nodata]: stata cmd

parallel do filename [, by(varlist) programs(namelist) mata seeds(string)
randtype(random.org|datetime) nodata]

Helper commands

parallel bs [, expression(exp list) programs(namelist) mata seeds(string)
randtype(random.org|datetime) bs options]: stata cmd

parallel sim [, expression(exp list) programs(namelist) mata seeds(string)
randtype(random.org|datetime) sim options)]: stata cmd

parallel append [files], do(command|dofile) [in(in) if(if) expression(expand exp)
programs(namelist) mata seeds(string) randtype(random.org|datetime)]

Additional Utilities

parallel version/clean/printlog/viewlog/numprocessors

Syntax and Usage

Setup

parallel setclusters # |default [, force hostnames(namelist)]

Main command types

parallel [, by(varlist) programs(namelist) mata seeds(string) randtype(random.org|datetime)
nodata]: stata cmd

parallel do filename [, by(varlist) programs(namelist) mata seeds(string)
randtype(random.org|datetime) nodata]

Helper commands

parallel bs [, expression(exp list) programs(namelist) mata seeds(string)
randtype(random.org|datetime) bs options]: stata cmd

parallel sim [, expression(exp list) programs(namelist) mata seeds(string)
randtype(random.org|datetime) sim options)]: stata cmd

parallel append [files], do(command|dofile) [in(in) if(if) expression(expand exp)
programs(namelist) mata seeds(string) randtype(random.org|datetime)]

Additional Utilities

parallel version/clean/printlog/viewlog/numprocessors

Syntax and Usage

Setup

parallel setclusters # |default [, force hostnames(namelist)]

Main command types

parallel [, by(varlist) programs(namelist) mata seeds(string) randtype(random.org|datetime)
nodata]: stata cmd

parallel do filename [, by(varlist) programs(namelist) mata seeds(string)
randtype(random.org|datetime) nodata]

Helper commands

parallel bs [, expression(exp list) programs(namelist) mata seeds(string)
randtype(random.org|datetime) bs options]: stata cmd

parallel sim [, expression(exp list) programs(namelist) mata seeds(string)
randtype(random.org|datetime) sim options)]: stata cmd

parallel append [files], do(command|dofile) [in(in) if(if) expression(expand exp)
programs(namelist) mata seeds(string) randtype(random.org|datetime)]

Additional Utilities

parallel version/clean/printlog/viewlog/numprocessors

Syntax and Usage

Setup

parallel setclusters # |default [, force hostnames(namelist)]

Main command types

parallel [, by(varlist) programs(namelist) mata seeds(string) randtype(random.org|datetime)
nodata]: stata cmd

parallel do filename [, by(varlist) programs(namelist) mata seeds(string)
randtype(random.org|datetime) nodata]

Helper commands

parallel bs [, expression(exp list) programs(namelist) mata seeds(string)
randtype(random.org|datetime) bs options]: stata cmd

parallel sim [, expression(exp list) programs(namelist) mata seeds(string)
randtype(random.org|datetime) sim options)]: stata cmd

parallel append [files], do(command|dofile) [in(in) if(if) expression(expand exp)
programs(namelist) mata seeds(string) randtype(random.org|datetime)]

Additional Utilities

parallel version/clean/printlog/viewlog/numprocessors

Debugging

I Use parallel printlog/viewlog to view the log of the child process
(includes some setup code as well). Can set trace in the child do-file or
command to see more.

I Auxiliary files created during process (harder to use):
I (Unix) pllID shell.sh
I pllID dataset.dta
I pllID doNUM.do
I pllID glob.do
I pllID dtaNUM.dta
I pllID finitoNUM

I Can keep these around by specifying the keep or keeplast options

Debugging

I Use parallel printlog/viewlog to view the log of the child process
(includes some setup code as well). Can set trace in the child do-file or
command to see more.

I Auxiliary files created during process (harder to use):

I (Unix) pllID shell.sh
I pllID dataset.dta
I pllID doNUM.do
I pllID glob.do
I pllID dtaNUM.dta
I pllID finitoNUM

I Can keep these around by specifying the keep or keeplast options

Debugging

I Use parallel printlog/viewlog to view the log of the child process
(includes some setup code as well). Can set trace in the child do-file or
command to see more.

I Auxiliary files created during process (harder to use):
I (Unix) pllID shell.sh
I pllID dataset.dta
I pllID doNUM.do
I pllID glob.do
I pllID dtaNUM.dta
I pllID finitoNUM

I Can keep these around by specifying the keep or keeplast options

Debugging

I Use parallel printlog/viewlog to view the log of the child process
(includes some setup code as well). Can set trace in the child do-file or
command to see more.

I Auxiliary files created during process (harder to use):
I (Unix) pllID shell.sh
I pllID dataset.dta
I pllID doNUM.do
I pllID glob.do
I pllID dtaNUM.dta
I pllID finitoNUM

I Can keep these around by specifying the keep or keeplast options

Syntax and Usage
Recommendations on its usage

parallel suits ...

I Repeated simulation

I Extensive nested control flow
(loops, while, ifs, etc.)

I Bootstrapping/Jackknife

I Multiple MCMC chains to test for
convergence (Gelman-Rubin test)

parallel doesn’t suit ...

I (already) fast commands

I Regressions, ARIMA, etc.

I Linear Algebra

I Whatever Stata/MP does better
(on single machine)

Syntax and Usage
Recommendations on its usage

parallel suits ...

I Repeated simulation

I Extensive nested control flow
(loops, while, ifs, etc.)

I Bootstrapping/Jackknife

I Multiple MCMC chains to test for
convergence (Gelman-Rubin test)

parallel doesn’t suit ...

I (already) fast commands

I Regressions, ARIMA, etc.

I Linear Algebra

I Whatever Stata/MP does better
(on single machine)

Syntax and Usage
Recommendations on its usage

parallel suits ...

I Repeated simulation

I Extensive nested control flow
(loops, while, ifs, etc.)

I Bootstrapping/Jackknife

I Multiple MCMC chains to test for
convergence (Gelman-Rubin test)

parallel doesn’t suit ...

I (already) fast commands

I Regressions, ARIMA, etc.

I Linear Algebra

I Whatever Stata/MP does better
(on single machine)

Syntax and Usage
Recommendations on its usage

parallel suits ...

I Repeated simulation

I Extensive nested control flow
(loops, while, ifs, etc.)

I Bootstrapping/Jackknife

I Multiple MCMC chains to test for
convergence (Gelman-Rubin test)

parallel doesn’t suit ...

I (already) fast commands

I Regressions, ARIMA, etc.

I Linear Algebra

I Whatever Stata/MP does better
(on single machine)

Syntax and Usage
Recommendations on its usage

parallel suits ...

I Repeated simulation

I Extensive nested control flow
(loops, while, ifs, etc.)

I Bootstrapping/Jackknife

I Multiple MCMC chains to test for
convergence (Gelman-Rubin test)

parallel doesn’t suit ...

I (already) fast commands

I Regressions, ARIMA, etc.

I Linear Algebra

I Whatever Stata/MP does better
(on single machine)

Syntax and Usage
Recommendations on its usage

parallel suits ...

I Repeated simulation

I Extensive nested control flow
(loops, while, ifs, etc.)

I Bootstrapping/Jackknife

I Multiple MCMC chains to test for
convergence (Gelman-Rubin test)

parallel doesn’t suit ...

I (already) fast commands

I Regressions, ARIMA, etc.

I Linear Algebra

I Whatever Stata/MP does better
(on single machine)

Syntax and Usage
Recommendations on its usage

parallel suits ...

I Repeated simulation

I Extensive nested control flow
(loops, while, ifs, etc.)

I Bootstrapping/Jackknife

I Multiple MCMC chains to test for
convergence (Gelman-Rubin test)

parallel doesn’t suit ...

I (already) fast commands

I Regressions, ARIMA, etc.

I Linear Algebra

I Whatever Stata/MP does better
(on single machine)

Syntax and Usage
Recommendations on its usage

parallel suits ...

I Repeated simulation

I Extensive nested control flow
(loops, while, ifs, etc.)

I Bootstrapping/Jackknife

I Multiple MCMC chains to test for
convergence (Gelman-Rubin test)

parallel doesn’t suit ...

I (already) fast commands

I Regressions, ARIMA, etc.

I Linear Algebra

I Whatever Stata/MP does better
(on single machine)

Use in other Stata modules

I EVENTSTUDY2: Perform event studies with complex test statistics

I MIPARALLEL: Perform parallel estimation for multiple imputed datasets

I Synth Runner: Performs multiple Synthetic Control estimations for
permutation testing

https://ideas.repec.org/c/boc/bocode/s458086.html
https://ideas.repec.org/c/boc/bocode/s457822.html
https://github.com/bquistorff/synth_runner

Concluding Remarks

I Brings parallel computing to many more commands than Stata/MP

I Its major strengths/advantages are in simulation models and
non-vectorized operations such as control-flow statements.

I Depending on the proportion of the algorithm that can be parallelized, it is
possible to reach near to linear scale speedups.

I We welcome other user commands optionally utilizing parallel for
increased performance.

I Install, contribute, find help, and report bugs at
http://github.com/gvegayon/parallel

http://github.com/gvegayon/parallel

Concluding Remarks

I Brings parallel computing to many more commands than Stata/MP

I Its major strengths/advantages are in simulation models and
non-vectorized operations such as control-flow statements.

I Depending on the proportion of the algorithm that can be parallelized, it is
possible to reach near to linear scale speedups.

I We welcome other user commands optionally utilizing parallel for
increased performance.

I Install, contribute, find help, and report bugs at
http://github.com/gvegayon/parallel

http://github.com/gvegayon/parallel

Concluding Remarks

I Brings parallel computing to many more commands than Stata/MP

I Its major strengths/advantages are in simulation models and
non-vectorized operations such as control-flow statements.

I Depending on the proportion of the algorithm that can be parallelized, it is
possible to reach near to linear scale speedups.

I We welcome other user commands optionally utilizing parallel for
increased performance.

I Install, contribute, find help, and report bugs at
http://github.com/gvegayon/parallel

http://github.com/gvegayon/parallel

Concluding Remarks

I Brings parallel computing to many more commands than Stata/MP

I Its major strengths/advantages are in simulation models and
non-vectorized operations such as control-flow statements.

I Depending on the proportion of the algorithm that can be parallelized, it is
possible to reach near to linear scale speedups.

I We welcome other user commands optionally utilizing parallel for
increased performance.

I Install, contribute, find help, and report bugs at
http://github.com/gvegayon/parallel

http://github.com/gvegayon/parallel

Concluding Remarks

I Brings parallel computing to many more commands than Stata/MP

I Its major strengths/advantages are in simulation models and
non-vectorized operations such as control-flow statements.

I Depending on the proportion of the algorithm that can be parallelized, it is
possible to reach near to linear scale speedups.

I We welcome other user commands optionally utilizing parallel for
increased performance.

I Install, contribute, find help, and report bugs at
http://github.com/gvegayon/parallel

http://github.com/gvegayon/parallel

Thank you very much!

George G. Vega Yon1 Brian Quistorff2

1University of Southern California
vegayon@usc.edu

2Microsoft AI and Research
Brian.Quistorff@microsoft.com

Stata Conference Baltimore
July 27–28, 2017

	Motivation
	What is it and how does it work
	Benchmarks
	Syntax and Usage
	Concluding Remarks

