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Motivation: why should we use generalized linear models?

- Practitioners often prefer least squares when seemingly better alternatives exist. Examples:
- Linear probability model instead of logit/probit
- Log transformations instead of Poisson
- This comes with several disadvantages:
- Inconsistent estimates under heteroskedasticity due to Jensen's inequality; bias can be quite
severe (Manning and Mullahy 2001; Santos Silva and Tenreyro 2006; Nichols 2010)
- Linear models might lead to a wrong support: predicted probabilities outside [0-1], log(O), etc.



Digression: genesis of this paper

- We wanted to run pseudo-ML poisson regressions with fixed effects:
- Paulo: log(1 + wages)
- Tom: log(1 + trade)
- Sergio: log(1 + credit)
- Should have been feasible:
- No incidental parameters problem in many standard panel settings (Wooldridge 1999;
Fernandez-Val and Weidner 2016; Weidner and Zylkin 2019)
- Works with non-count variables (Gourieroux, Monfort, and Trognon 1984)
- Practical estimator through IRLS and alternating projections (Guimaraes 2014; Correia 2017; Larch
et al. 2019)
- However, there was another obstacle we did not anticipate:
- Our implementation sometimes failed to converge, or converged to incorrect solutions.
- Problem was aggravated when working with many levels of fixed effects (our intended goal)



How can maximum likelihood estimates not exist?

Consider a Poisson regression on a simple dataset without constant:

- Log-likelihood: £(B) = Y [y;(x;8) — exp(z;8) — log(y;!)]
- FOC: X w;ly; — exp(z8)] =0

y X
0 1
0 1
0 0
1 0
2 0
3 0
- In this example, the FOC becomes exp( /) = 0, maximized only at infinity!

- Note that at infinity the first two observations are fit perfectly, with £, = 0

- More generally, non-existence can arise from any linear combination of regressors including
fixed effects.



Existing literature

Non-existence conditions have been independently (re)discovered multiple times:
- Log-linear frequency table models (Haberman 1974)

- Binary choice (Silvapulle 1981; Albert and Anderson 1984)

- GLM sufficient-but-not-necessary conditions (Wedderburn 1976; Santos Silva and Tenreyro 2010)

GLM (Verbeek 1989; Geyer 1990, 2009; Clarkson and Jennrich 1991 - all three unaware of each
other).

Most researchers still unaware of problem outside of binary choice models; no textbook
mentions as of 2019.

Software implementations either fail to converge or inconspicuously converge to wrong results.



Our contribution

1. Derive existence conditions for a broader class of models than in existing work
- Including Gamma PML, Inverse Gaussian PML
2. Clarify how to correct for non-existence of some parameters.
- Finite components of 3 can be consistently estimated; inference is possible
3. Introduce a novel and easy-to-implement algorithm that detects and corrects for
non-existence
- Particularly useful with high-dimensional fixed effects and partialled-out covariates.
- Can be implemented with run-of-the-mill tools.
- programmed in our new HDFE PPML command ppmlhdfe (Correia, Guimaraes, and Zylkin 2019)



Proposition 1: non-existence conditions (1/4)

Consider the class of GLMs defined by the following log-likelihood function:

L = Zﬁi = Z la(@) y; 0; — a(¢) b(0;) + c(y;, D)
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- a, b, and ¢ are known functions; ¢ is a scale parameter

- 0, = 6(x,;3) is the canonical link function; where 8" > 0

- y; > 0is an outcome variable. Potentially ¥y < ¥ as in logit/probit but for simplicity we’ll
ignore this for the most part.

- Its conditional mean is u; = Efy;|x;] = b'(6;)

- Assume for simplicity that regressors X have full column rank.

- Assume that £; has a finite upper bound (rules out e.g. log link Gamma PML)



Proposition 1: non-existence conditions (2/4)

ML solution for B will not exist iff there is a non-zero vector =y such that:

<0 ify; =0
ry=2%2 =0 if0<y, <y
>0 ify, =y



Proposition 1: non-existence conditions (2/4)

ML solution for B will not exist iff there is a non-zero vector =y such that:

<0 ify; =0
ry=2%2 =0 if0<y, <y
>0 ify, =y

Intuition If 3 a linear combination of regressors z;, = x,7 satisfying these conditions, then

ﬁ+k’y Za z—i-z y—b'(0,)]0z >0,

forany k > 0, which implies we can always increase the objective function by searching in the
direction described by v*.



Proposition 1: non-existence conditions (3/4)

ML solution for B will not exist iff there is a non-zero vector =y such that:

<0 ify; =0
ry=2%2 =0 if0<y, <y
>0 ify, =y

Poisson PML example For PPML, ¥ = 00, and only the first two conditions matter

al(p + kv*)

T = > —ep @Bt kz) 2+ ) [y —exp (#.8)] 2 > 0,

y;=0 y;>0

Note the second term is 0 and the first term is positive and asymptotically decreasing towards 0 as

k — oo (finite solution for 3 not possible!)



Proposition 1: non-existence conditions (4/4)

- Linear combination z is a “certificate of non-existence”; hard to obtain, but can be used to
verify non-existence
- If we add z to the regressor set, its associated FOC will not have a finite solution.
- Observations where z; =+ 0 will be perfectly predicted 0's and /'s

- If £, is unbounded above, conditions are more complex (and ultimately less innocuous)

- See proposition 2 of the paper.



Addressing non-existence

- As in perfect collinearity, first look for specification problems:

- In a Poisson wage regression, did we add “unemployment benefits” as covariate?
- In a Poisson trade regression, did we add an “is embargoed?” indicator?

- If no specification problems, it's due to sampling error
- Solution: allow estimates to take values in the extended reals: R = R U {400, —00}
- Permits solutions like this: [)?1 =lim, . a+3, /)?2 =lim, . a+2 /3A3 =15

- We are mostly interested in the non-infinite components:

/31—[3)2:1153:1-5

- Can show “separated” observations drop out of FOC's for finite B’S (including that of ﬂAl = ﬂ;)



Proposition 3: Addressing non-existence

- Given a £; bounded above, a unique ML solution in the extended reals will always exist.
- Given a z identifying all instances of non-existence, if we first drop perfectly predicted
observations (and resulting perfectly collinear variables) ML solution in the reals will always

exist.
- It will consistently estimate the non-infinite components of 3, allowing for inference on them
(proposition 3d)
- We can recover infinite components by regressing z against .



Obtaining z: Existing Alternatives

1. Drop boundary observations with £, close to 0 (Clarkson and Jennrich 1991)
- Slow under non-existence; often fails as “close to 0" is data specific.

2. Solve a modified simplex algorithm (Clarkson and Jennrich 1991)
- Cannot handle fixed effects or other high-dimensional covariates

3. Analytically solve computational geometry problem (Geyer 2009), or use eigenvalues of

Fischer information matrix (Eck and Geyer 2018).
- Extremely slow and complex (Geyer 2009); requires full working with full information matrix (Eck

and Geyer 2018); cannot handle fixed effects (both).

None works well with fixed effects!



Obtaining z: Iterative Rectifier (our algorithm)

1.

I

u & w

Define a working dependent variable z; =1, _g

K ify, >0
(Weighted least squares) Regress z on X with weights w (fixed effects no problem!)
Stop ifall z; > 0

Else, update z; = max(z;, 0) and repeat from step 3

Given an arbitrarily large integer K, set weights w; =

- Steps 2-3 are the “weighting method” of solving least squares with equality constraints

(Stewart 1997); step 5 is a “rectifier” that enforces a positive dependent variable

- Proofs in proposition 4 and appendix

- Stata implementation in our ppmlhdfe package ; examples at our github

- Convergence usually achieved in a few iterations, but choosing weights too large could lead to

numerical instability.


https://github.com/sergiocorreia/ppmlhdfe

Other existing approaches

- Naive approach: drop the regressors causing non-existence and proceed as usual
- Leads to nonsensical results (Zorn 2005; Gelman et al. 2008)
- Penalize estimates beyond plausible values (Firth regression, Bayesian aproach)
- “For Poisson regression and other models with the logarithmic link, we would not often expect
effects larger than 5 on the logarithmic scale” (Gelman et al 2008)
- Not a ML estimator

- Many datasets (e.g. in trade) can have plausible effects way beyond 5.

- Solutions specific to binary choice discussed in Konis (2007)



Comparison of solutions

Method Advantages Concerns
1. Drop regressors = Nonsensical
2. Drop p; < € observations Simple Fails often: ¢ is data dependent
3. Bayesian: penalize p; < € It's Bayesian It's Bayesian.
€ is data dependent
4, Modified simplex Fast for small k Slow for large k
Can't handle FEs
5. Directions of recession Exact answer “at infinity” Complex, very slow (?)
Can't handle FEs
6. Iterative rectifier Simple Numerical accuracy (?)

works well with large k and FEs




Example (1/3)

y X1 X2
0 2 A
0o -1 2

0 0 O

1T 0 0

2 5 -0
3 6 -2

- The first y = 0 value in this data set is “separated” by the linear combination z = 2z, + x,.

- In theory, the coefficients for 2y and x4 are both infinite, but we can still obtain a finite
estimate for the transformed parameter 5; — 23,

- Math + interpretation are analogous to the case of perfect collinearity



Example (2/3)

Current workhorse Stata commands like poisson and ppml either fail to converge or give

incorrect estimates.
poisson does not converge.

ppml recognizes there is a problem, but incorrectly attributes it to the regressor x:

. ppml y x1 x2




Example (3/3)

Here is an example of how ppmlhdfe handles this situation. The sep(ir) option specifies we

want to use our “IR” algorithm.

. 6486

.56B6Ea42

There are lots of other options as well (can use simplex method instead, can ask ppmlhdfe to

compute the contents of z). Read more here.


https://github.com/sergiocorreia/ppmlhdfe/blob/master/guides/separation_primer.md

Conclusion

Non-existence of estimates:

- Affects a broad class of GLMs beyond just binary choice models
- Poorly understood (no textbook mentions); not addressed in statistical packages
- Leads practitioners to stay with least squares despite limitations

This paper:

- Presents non-existence conditions for a broad class of GLMs

- Discusses how to address non-existence: drop perfectly predicted observations, then proceed
as normal

- Introduces an algorithm for detecting and addressing non-existence that is conceptually
simple, easy-to-implement, and allows for fixed effects

New “fast” FE-PPML command ppmlhdfe incorporates our methods: ssc install ppmlhdfe
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