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Abstract. As shown by Alvarez and Jermann (2003), the constrained efficient
allocations of models with complete markets and limited commitment can be decentral-
ized with trade in a complete set of contingent claims subject to trading constraints
that are not too tight, in the sense that they allow for the maximum possible amount of
borrowing such that there is no default in equilibrium. On the other hand, the previous
decentralization is not possible in the presence of a capital accumulation. The reason is
that a shift in resources from one period to the next leads to a change in the aggregate
capital stock that affects the autarky utility and drives a wedge between the expected
marginal rates of substitution and transformation in the standard capital Euler equation
of the planner’s problem. To take these effects into account, one needs to include a sav-
ings constraint on the capital holdings, which is, however, difficult to interpret. In the
present paper, we study the competitive equilibrium (CE) with a competitive interme-
diation sector that operates the investment technology and with no savings constraints.
We show that the CE allocations can be characterized with a similar system of equations
to the one characterizing the optimal allocations. The only difference is that the effects
of capital accumulation on the autarky utilities is not internalized. In addition, our nu-
merical results show that these autarky effects are quantitatively negligible. Thus, the
CE allocations in the absence of savings constraints are very similar to the constrained
efficient solution, whereas our characterization considerably simplifies the computation
of the equilibrium.
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1. Introduction
During the recent years, models with limited commitment have been introduced to study
several important economic issues. Among others, Thomas and Worrall (1988) study efficient
wage contracts, Kocherlakota (1996) analyzes optimal risk sharing, Alvarez and Jermann
(2001) investigate asset prices and Krueger and Perri (2003) study inequality. Mostly, these
models have been studied in endowment economies, whereas limited commitment models
with capital accumulation have received less attention. In the present paper, we introduce
capital accumulation into a similar framework to the one studied by the previous authors and
study its consequences. In particular, we focus on the relationship between the constrained
efficient allocations and the competitive equilibrium allocations with (endogenous) borrowing
limits and complete financial markets.

As shown by Alvarez and Jermann (2000), the constrained efficient allocations of models
with complete markets and enforcement constraints can be decentralized with debt con-
straints that are not too tight, in the sense that they are the loosest possible limits that
do not allow for default in equilibrium. We show that these decentralizations are not pos-
sible in a model with capital accumulation. The reason is that a shift in resources from
one period to the next in the presence of enforcement constraints has two additional effects
on the standard Euler equation determining aggregate capital accumulation. On the one
hand, it increases the planner’s marginal rate of substitution, raising the benefits of a higher
aggregate capital stock. On the other hand, a higher capital stock tightens the enforcement
constraints through an increase in the autarky value, reducing the benefits of more capi-
tal. Since the previous effects drive a wedge between the marginal rates of substitution and
transformation, one needs to impose a savings constraint on the individual capital holdings
to decentralize the model with debt constraints. Note that a similar result has been obtained
by Kehoe and Perri (2002,2005) in a related multi-country model, where the different agents
are interpreted as representative agents of different countries. Further, they also show that
one can decentralize the constrained efficient allocations in their environment with partial
governmental default on loans to foreign households and capital income taxes.

In the present paper, we focus instead on a decentralization with borrowing constraints
for two reasons. First, since we assume that there is only one production sector, our agents
cannot be interpreted as countries but rather as two different households that engage in
a trading contract to smooth consumption over time. Consequently, governmental default
would not make sense in this environment. Second, a decentralization with debt constraints
leads to lower interest rates with respect to a decentralization with sovereign default, being
therefore more promising to explain (closed economy) asset pricing moments.

First, a key extension of the present work to the existing decentralization literature is
the introduction of financial intermediaries that operate the investment technology and set
the trading limits. In contrast to the findings of Kehoe and Perri (2002,2005), we show that
a decentralization of the constrained efficient allocations with borrowing constraints in the
presence of financial intermediaries is not possible only due to the impact on capital on the
autarky valuations. As shown by the previous authors, however, these effects can be taken
into account if one imposes a savings constraint on the capital holdings of the intermediary.

Second, since there is little evidence of the presence of savings constraints in the data,
while it is difficult to provide equilibrium micro-foundations for them, we also characterize
the decentralized equilibrium allocations with no savings constraints and borrowing limits
that are not too tight. In particular, we show that the equilibrium allocations solve almost
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the same system of equations as the constrained efficient allocations, with the key difference
that the aforementioned effects of aggregate capital accumulation on the autarky values are
not internalized. In addition, we also show how the borrowing limits that are not too tight
can arise as an equilibrium outcome when the intermediaries are free to choose them.

Note that this characterization results provides a relatively simple solution method, which
is similar to the one used to solve constrained efficient allocations, for a potentially very com-
plicated equilibrium problem. Further, our numerical results show that, in the long-run, the
competitive equilibrium allocations with and without saving limits exhibit permanent risk
sharing. The key difference between the two economies arises in the short run from the fact
that the economy will over accumulate capital in the absence of the savings constraint, which
in turns implies a lower range of possible wealth distributions in the short run. In addition,
our numerical results suggest that the autarky effects are quantitatively unimportant, im-
plying that the equilibrium allocations without saving constraints are very similar to the
constrained efficient solution.

The paper is organized as follows. The next section introduces the model economy.
Section three discusses the benchmark competitive equilibrium with borrowing constraints
that are not too tight. Section 4 introduces the constrained efficient allocations and Sec-
tion 5 shows how one can decentralize these with a competitive equilibrium with borrowing
constraints and a capital accumulation constraints on the financial intermediaries. The com-
petitive equilibrium in the absence of the capital accumulation constraint is characterized
in Section 6, where we also provide micro foundations for the borrowing limits. Finally,
Section 7 compares the two competitive equilibria quantitatively and Section 8 summarizes
and concludes.

2. The Economy
We consider an infinite horizon economy with aggregate technology shocks and idiosyncratic
labor income shocks. Time is discrete and indexed by t = 0, 1, 2.... Further, the resolution of
uncertainty is represented by an information structure or event-tree N , where each node or
date-state st ∈ N , summarizing the history of the environment through and including date
t, has a finite number of immediate successors, denoted by st+1|st. We use the notation sr|st
with r ≥ t to indicate that node sr belongs to the sub-tree with root st. In addition, with
the exception of the unique root node s0 at date t = 0, each node has a unique predecessor,
denoted by st−1. The probability as of period 0 of date-event st is denoted by π(st), with
π(s0) = 1, since the initial realization s0 is given. In addition, we denote by π(sr|st) the
probability of sr given st, and we let x =

©
x
¡
st
¢ª

st∈N throughout the section.
At each node st, there exists a spot market for a single consumption good y(st) ∈ R+,

produced with the following aggregate technology:

y(st) = f(z(st),K(st−1), L(st)) (1)

where K(st−1) ∈ R+ and L(st) ∈ R+ denote the aggregate capital and labor respectively,
with K

¡
s−1
¢ ∈ R++ given. Further, z(st) ∈ R++ is an aggregate productivity shock that

follows a stationary Markov chain with Nz possible values.
We assume that the production function f(z, ·, ·) : R2+ → R+ is continuously differentiable

on the interior of its domain, strictly increasing, strictly concave in K and L separately, and
homogeneous of degree one in the two arguments. We also assume that fK(z,K,L) > 0
and fL(z,K,L) > 0 for all K > 0 and L > 0, and that limK→0 fK(z,K, 1) = ∞ and
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limk→∞ fK(z,K, 1) = 0. To simplify notation, the total output including undepreciated
capital is denoted by:

F (z(st),K(st−1), L(st)) = y
¡
st
¢
+ (1− δ)K(st−1) (2)

where δ is the capital depreciation rate.
The economy is populated by two types of households indexed by i = 1, 2, each containing

a continuum of identical infinitely lived consumers1. Households have additively separable
preferences over sequences of consumption ci of the form:

U(ci) =
∞X
t=0

X
st

π(st)βtu
¡
ci(s

t
¢
) = E0

∞X
t=0

βtu
¡
ci(s

t
¢
) (3)

where β ∈ (0, 1) is the subjective discount factor and E0 denotes the expectation conditional
on information at date t = 0. We assume that the period utility function u is strictly
increasing, strictly concave and continuously differentiable, with limci→0 u0(ci) = ∞, and
limci→∞ u0(ci) = 0.

At each date-state st, households receive a stochastic labour endowment �i(st), following
a stationary Markov chain with N� possible values. We assume that households supply labor
inelastically, and we therefore have that L(st) =

P
i∈I �i(s

t). Further, they have a potentially
history dependent outside option Vi

¡
st
¢
, implying that they are subject to a participation

constraint of the form:
∞X
r=t

X
sr|st

βr−tπ (sr)u (ci (sr)) ≥ Vi(s
t) for i = 1, 2. (4)

Finally, the resource constraint of the economy is given by:X
i∈I

ci(s
t) +K(st) = y

¡
st
¢
+ (1− δ)K(st−1). (5)

3. Competitive Equilibrium with Borrowing Constraints

This section defines a competitive equilibrium of the above economy where agents can trade
in one period ahead Arrow securities subject to borrowing constraints. We assume that the
economy is populated by a representative firm that operates the production technology and
by a competitive financial intermediation sector operating the investment technology. The
intermediaries are risk neutral, and we use the representative intermediary in what follows,
since we want to focus on symmetric equilibria.

Each period, after observing the realization of the productivity shock, the representative
firm rents labor from the households and physical capital from the intermediary to maximize
the period profits:

Max{K,L}f(z(st),K(st−1), L(st))− w
¡
st
¢
L(st)− r(st)K(st−1).

The profit maximization implies that the wages and capital rental rate are given by the
following expressions at every node:

w(st) = fL(s
t) ≡ fL(z(s

t),K(st−1), L(st)) (6)
1All the results in the paper hold for a finite number I of agents, and the assumption that I = 2 is therefore

without loss of generality. On the other hand, it simplifies both the notation and the computations.
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r(st) = fK(s
t) ≡ fK(z(s

t),K(st−1), L(st)). (7)

The representative intermediary lives for two periods. An intermediary born at node
st first decides how much capital k(st) to purchase at period t. The capital is rented to
the firm, earning a rental revenue of r(st+1)k(st) and a liquidation value of (1− δ)k(st) the
following period. Further, to finance the capital purchases, the intermediary sells the future
consumption goods in the spot market for one period ahead contingent claims traded at price
q(st+1|st), which represents the price of one unit of consumption good delivered at t + 1,
contingent on the realization st+1|st. Thus, the intermediary solves the following problem:

Max{k}

−k(st) + X
st+1|st

q(st+1|st)[r(st+1) + (1− δ)]k(st)


In equilibrium, it must be the case that, in equilibrium,

1 =
X

st+1|st
q(st+1|st)[r(st+1) + (1− δ)]. (8)

At each note st, households can trade through the financial intermediaries in a complete
set of state contingent claims to one period ahead consumption. If we denote by ai(s

t+1)
the amount of contingent claims chosen by household i ∈ I at the end of period t, the
maximization problem is given by:

Max{ci,ai}
∞X
t=0

X
st

π(st)βtu
¡
ci(s

t
¢
) s.t. (Problem 1)

ci(s
t) +

X
st+1|st

q(st+1|st)ai(st+1) ≤ w(st)�i(s
t) + ai(s

t) (9)

ai(s
t+1) ≥ Ai(s

t+1) for ∀st+1|st (10)

where the initial holdings
©
ai(s

0)
ª
i=1,2

of Arrow securities are given. Note that, for the state
contingent debt issued by the intermediary to match the demand from the households, it must
be the case that

P
i ai(s

t+1) = [r(st+1) + (1− δ)]k(st). Further, the Arrow security holdings
are subject to the borrowing constraints Ai(s

t+1), which are set by the intermediaries so that
no intermediary has an incentive to deviate. The determination of these limits is discussed
below.

If γcei (s
t+1) ≥ 0 is the multiplier on the portfolio constraint (10) of security ai(st+1), the

necessary and sufficient first order conditions from the previous maximization problem imply
that:

q(st+1|st) = βπ(st+1|st)
(
u0
¡
ci(s

t+1)
¢

u0 (ci(st))

)
+

γcei (s
t+1)

u0 (ci(st))
(11)

whereas the transversality condition is given by:

lim
t→∞

X
st

βtπ(st)u0
¡
ci(s

t)
¢
[ai(s

t)−Ai(s
t)] ≤ 0. (12)
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Clearly, the portfolio constraint can only be binding for one of the two households, im-
plying that γcei (s

t+1) = 0 for at least one household. The first order condition in (11) can
therefore be rewritten as follows:

q(st+1|st) = βπ(st+1|st)max
i=1,2

(
u0
¡
ci(s

t+1|st)¢
u0 (ci(st))

)
. (13)

Definition 1 A competitive equilibrium with borrowing constraints {Ai} and initial con-
ditions K(s−1) and

©
ai(s

0)
ª
i=1,2

satisfying
P

i ai(s
0) = [r(s0) + (1 − δ)]K(s−1) is a vector

of quantities {ci, k, ai,K} and prices {w, r, q} such that (i) given prices {ci, ai} solves the
problem for each household; (ii) the factor prices {w, r} satisfy the optimality conditions
of the firm; (iii) q and r satisfy the optimality condition of the intermediary; (iv) all mar-
kets clear, i.e. k(st) = K(st),

P
i ai(s

t+1) = [r(st+1) + 1 − δ]K(st),
P

i �i(s
t) = L(st) andP

i∈I ci(s
t) +K(st) = y

¡
st
¢
+ (1− δ)K(st−1).

As stated earlier, we assume that each household has an outside option. In particular, we
assume that households can leave the risk sharing arrangement at any date-state and go to
financial autarky. In this case, they will only be able to consumer their labour income, and
they are excluded from financial markets forever2. Similarly to Alvarez and Jermann (1997),
we choose limits that are not too tight, in the sense that any further loosening will imply
that agents with that level of debt prefer to go to financial autarky. In order to determine
these limits, we can write (Problem 1) recursively as follows:

W ce(ai(s
t), Si(s

t)) = u
¡
ci(s

t
¢
) + β

X
st+1

π(st+1|st)W ce(ai(s
t+1), Si(s

t+1))

s.t. (9) and (10),

K(st) = Γ(Si(s
t+1)) (Problem 1’)

where Si(st+1) is defined as before and Γ is the law of motion of the aggregate capital, which
is taken as given by the households.

Definition 2 The borrowing constraints on Arrow securities are not too tight if they
satisfy the following condition for all i = 1, 2 and all nodes st ∈ N :

W ce(Ai(s
t), Si(s

t)) = V ce(Si(s
t)) (14)

where the value of the outside option is given by:

V ce(Si(s
t)) =

∞X
r=t

X
sr|st

βr−tπ
¡
sr|st¢u (w (sr) �i(sr)) . (15)

Note that, since the value of staying in the trading contract W ce is increasing in wealth,
whereas and V ce is independent of wealth, the fact that ai

¡
st
¢ ≥ Ai

¡
st
¢
implies that, for all

i = 1, 2 and all st ∈ N ,
P∞

r=t

P
sr|st β

r−tπ
¡
sr|st¢u (ci (sr)) ≥ V ce(Si(s

t)).

2 In section (7), we also consider a case where households are excluded from the complete market scenario
described here, but where they can save by accumulating physical capital.
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4. Constrained Efficient Allocations
This section characterizes the constrained efficient allocations of the previous economy. This
allocation solves a central planning problem where the planner takes into account both the
resource constraint and the participation constraints of the two households. If αi is the initial
Pareto weight assigned by the planner to each household, the problem of the planner can be
written as follows:

Max{ci,K}
X
i∈I

αi

∞X
t=0

X
st

π(st)βtu
¡
ci(s

t)
¢
s.t. (Problem 2)

X
i∈I

ci(s
t) +K(st) = F (z(st),K(st−1), L(st)) (16)

∞X
r=t

X
sr

βr−tπ(sr)u(ci(sr)) ≥ V (Si
¡
st
¢
) for i = 1, 2. (17)

As in the previous section, we have assumed that the value of the outside option for type
i ∈ I depends on Si

¡
st
¢
=
¡
�i(s

t); z
¡
st
¢
, �−i(st),K

¡
st−1

¢¢
. and this implies that we can

write Vi
¡
st
¢
= V (Si

¡
st
¢
).

The previous equations reflect that standard dynamic programming is inapplicable, since
future decision variables appear in the participation constraints. However, following Marcet
and Marimon (1999), we can write the Lagrangian of the above problem as follows:

inf
{γi}

sup
{ci,K}

H ≡
X
i∈I

∞X
t=0

X
st

π(st)βt
©
u(ci(s

t))(µi(s
t) + αi)− γi(s

t)V (Si
¡
st
¢
)
ª
.

In the previous equation, βtγi(s
t) denotes the Lagrange multiplier of the time t partici-

pation constraint for household i ∈ I, while µi(s
t) ≡ Pt

r=0 γi(s
r), where the summation is

over the particular history st. Further, this pseudo state variable can be defined recursively
by:

µi(s
t) = µi(s

t−1) + γi(s
t), µi(s

−1) = 0 for i = 1, 2. (18)

It is easy to see that the solution to the previous problem can be characterized by the re-
source and participation constraints in (16)-(17) and by the following first order conditions3:

u0
¡
c1(s

t)
¢

u0 (c2(st))
= λ(st) =

(1 + v2(s
t))

(1 + v1(st))
λ(st−1) (19)

1 = β
X

st+1|st
π(st+1|st)

(
u0
¡
ci(s

t+1)
¢

u0 (ci(st))
(1 + vi(s

t+1))FK
¡
st+1

¢)
(20)

−β
X

st+1|st
π(st+1|st)

X
j=1,2

vj(s
t+1)

u0 (cj(st))
VK(Sj

¡
st+1

¢
)

 for i = 1, 2.

3The first-order conditions for this problem are only necessary but not sufficient in general. The reason
is that the constraint set defined by (16) and (17) is not necessarily convex. More precisely, convexity is
guaranteed only if V is convex in capital. Unfortunately, V is a concave function in our application. So,
we assume for now that the first-order conditions are sufficient and we will see later that this assumption is
satisfied for the examples we consider.
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In the previous Euler condition, the terms FK
¡
st+1

¢
and VK(Si

¡
st+1

¢
) for i = 1, 2 on the

right hand side represent the derivatives of total output F and of the outside option value
V with respect to the aggregate capital stock K. Further, we have expressed the equations
in terms of the normalized multipliers λ and vi, which simplify the system of equilibrium
equations and are given by:

vi(s
t) =

γi(s
t)

µi(s
t−1) + αi

for i = 1, 2 (21)

λ(st) =
µ2(s

t) + α2
µ1(s

t) + α1
, with λ(s−1) =

α2
α1

. (22)

Here, it is important to note that vi(st) > 0 only if γi(s
t) > 0 due to the fact that

µi(s
t−1) +αi > 0. This implies that vi(st) is positive only when the participation constraint

of type i ∈ I is binding. Note also that λ is the “temporary” relative Pareto weight of type 2
households relative to type 1 households. Thus, as usual in models with complete markets,
condition (19) says that the relative consumptions of the two types are determined by their
(temporary) relative Pareto weights. Further, as in other models with commitment (see for
example Thomas and Worrall [1988] and Kocherlakota [1996]) whenever households belong-
ing to type 1 have a binding participation constraint (v1(st) > 0), λ is decreasing, and their
relative Pareto weight is increasing. The opposite happens when the participation constraint
of type 2 household is binding. Finally, notice that, whenever the aggregate technology
and the idiosyncratic labor endowment shock are Markovian, the optimal allocation of this
problem is recursive in (�1, �2,K, λ).

As reflected by the Euler equation in (20), when the participation constraints are not
binding for any household at any continuation history st+1, implying that vi(st+1) = 0 for all
st+1|st and for i = 1, 2, the equation reduces to the standard capital Euler condition of the
stochastic growth model. On the other hand, the presence of binding enforcement constraints
at a any continuation state st+1 introduces two additional effects on the intertemporal alloca-
tion of consumption and capital. First, it increases the planner’s marginal rate of substitution
between period t and t+ 1 goods, raising the benefits of a higher aggregate capital stock at
t+ 1. This is due to the fact that a higher future capital increases output and consequently
future consumption of each household type and it is reflected by the presence of vi

¡
st+1

¢
on

the first part of the right hand side of the equation. Second, a higher capital stock at t+ 1
tightens the enforcement constraints through an increase in the autarky value, reducing the
benefits of a higher capital at t + 1. This is reflected by the autarky effects on the second
part of the right hand side of the equation.

As shown by Alvarez and Jermann (1997) and Kehoe and Perri (2002,2004), who study
the constrained efficient allocations of economies with complete markets and participation
constraints, if {c1, c2} is constrained efficient and W (Sj

¡
st
¢
) > V (Sj

¡
st
¢
), it has to be the

case that:
u0
¡
cj(s

t)
¢

u0 (cj(st−1))
= max

i=1,2

u0
¡
ci(s

t)
¢

u0 (ci(st−1))
.

To see that the previous equality is true, note that equation (19) can be rewritten as:

u0
¡
c1(s

t)
¢

u0 (c2(st))
= λ(st) =

(1 + v2(s
t))

(1 + v1(st))

u0
¡
c1(s

t−1)
¢

u0 (c2(st−1))
.
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First, it is easy to see that
u0(c1(st))
u0(c1(st−1)) =

u0(c2(st))
u0(c2(st−1)) if vi(s

t) = 0 for i = 1, 2. Further, if

v2(s
t) > 0 and v1

¡
st
¢
= 0, implying that the participation constraint is binding for agent

two, we have that
u0(c1(st))
u0(c1(st−1)) >

u0(c2(st))
u0(c2(st−1)) , and the opposite holds if v2(s

t) = 0 and v1(st) > 0.
This result also implies that

u0
¡
c1(s

t+1)
¢
(1 + v1(s

t+1))

u0 (c1(st))
=

u0
¡
c2(s

t+1)
¢
(1 + v2(s

t+1))

u0 (c2(st))

for all st+1|st. Thus, we can use the adjusted intertemporal marginal rate of substitution of
either agent in the Euler condition (20), which can be rewritten as:

1 = β
X

st+1|st
π(st+1|st)

maxi=1,2

(
u0
¡
ci(s

t+1)
¢

u0 (ci(st))

)
FK

¡
st+1

¢− X
j=1,2

vj(s
t+1)

u0 (cj(st))
VK(Sj

¡
st+1

¢
)

 .

(23)
In what follows, we focus on allocations that have high implied interest rates, in the

sense that they have a finite present value when discounted with the appropriate present
value prices. Following Alvarez and Jermann (1997), we say that an allocation x has high
implied interest rates if:

∞X
t=0

X
st

Qp(s
t|s0)x(st) <∞ for ∀st, t

where

qp(s
t+1|st) = max

i=1,2
βπ(st+1|st)

(
u0
¡
ci(s

t+1)
¢

u0 (ci(st))

)
(24)

Qp(s
t|s0) = qp(s

t|st−1)qp(st−1|st−2)...qp(s1|s0). (25)

In the next section, we show that set-up in Section 3 needs to be modified in order to
decentralize the constrained efficient allocation as a competitive equilibrium with trading
constraints that are not too tight. Further, the competitive equilibrium described in the
previous section is further characterized in section 6.

5. Decentralization with Sequential Trade

In this section, we first show that constrained efficient allocations with an outside option
of financial autarky cannot be decentralized as a competitive equilibrium with trade in one
period ahead Arrow securities subject to borrowing constraints that are not too tight. We
then argue that this decentralization is possible if one introduces a savings constraint on the
capital holdings of the intermediary.

As to the first finding, a similar result has been shown by Kehoe and Perri (2002,2004),
who study an economy with no financial intermediaries and with two production sectors that
can be interpreted as countries. In their environment, the impossibility of a decentralization
in the presence of participation constraints is due to the two effects on the standard Euler
equation discussed above. In contrast to this, we show that this impossibility is solely due
to the autarky effects in the presence of financial intermediaries.
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In addition, the previous authors show that a decentralization is possible if one introduces
either a savings constraints on the capital holdings of the households or government default
on foreign debt and capital income taxes. In our framework, however, government default is
not a viable option, since it requires that agents of a given type are able to coordinate. In
addition, it is difficult to imagine that governments would default on behalf of some of the
households against some other households in the same economy. Given this, we focus on a
decentralization with borrowing constraints. Further, we show that this decentralization is
also possible in our framework if one imposes a savings or accumulation constraint on the
capital holdings of the intermediary.

Our first result is stated by the following proposition, which is analogous to proposition
5 in Kehoe and Perri (2002).

Proposition 1 Let {c1, c2,K} be a constrained efficient allocation where c
¡
st
¢
=
P

i ci(s
t)

has high implied interest rates. Then, it cannot be decentralized as a competitive equilibrium
with trade in one period ahead Arrow securities subject to borrowing constraints on the Arrow
security holdings that are not too tight.

Proof of Proposition 1: To prove the proposition, recall that the capital Euler equation
of the planner can be written as:

1 = β
X

st+1|st
π(st+1|st)

(
max
i=1,2

"
u0
¡
ci(s

t+1)
¢

u0 (ci(st))

#
[fK(s

t+1) + 1− δ]

)

−β
X

st+1|st
π(st+1|st)

X
j=1,2

vj(s
t+1)

u0 (cj(st))
VK(Sj

¡
st+1

¢
)

 .

On the other hand, the equilibrium condition of the intermediary in the competitive
equilibrium (8) can be rewritten as:

1 =
X

st+1|st
π(st+1|st)β

(
max
i=1,2

"
u0
¡
ci(s

t+1)
¢

u0 (ci(st))

#)
[fK

¡
st+1

¢
+ 1− δ]

where we have substituted for q(st+1|st) and r
¡
st+1

¢
from (13) and (7). Clearly, the previ-

ous two equations cannot be satisfied by the same allocation {c1, c2,K} if the participation
constraint is ever binding, that is, if vj(st+1) > 0 for some st+1 with π(st+1) > 0. It therefore
follows that constrained efficient allocations cannot be decentralized as a competitive equi-
librium with borrowing constraints on the Arrow security holdings that are not too tight.¥

Several remarks are worth noting. First, the previous result is in contrast to the one
obtained by Alvarez and Jermann (1997), who show that a decentralization of the con-
strained efficient allocations with borrowing constraints that are not too tight is possible
in the absence of capital accumulation. Second, the equations reflect that the impossibility
of a decentralization in the presence of financial intermediaries is solely due to the autarky
effects on the planner’s Euler equation, an observation that will prove to be useful in the
next section. To see this, note that, if no intermediaries were present, the budget constraint
of the households in the decentralized economy would be given by:

ci(s
t) +

X
st+1|st

q(st+1|st)ai(st+1) + ki
¡
st+1

¢ ≤ w(st)�i(s
t) + ai(s

t) + r
¡
st
¢
ki
¡
st
¢
.

10



Further, the first order conditions with respect to the individual capital holdings would imply
that:

1 =
X

st+1|st
π(st+1|st)β

(
u0
¡
ci(s

t+1)
¢

u0 (ci(st))

)
[fK

¡
st+1

¢
+ 1− δ] for i = 1, 2.

Comparing the previous equation to the Euler equation of the planner, it is easy to
see that both cannot be satisfied by the same allocation, even if the value of autarky is
independent of capital and VK(Sj

¡
st
¢
) ≡ 0 for all st+1 and j = 1, 2. Kehoe and Perri

(2002,2004) suggests that imposing a savings constraint on the individual capital holdings
takes care of both Euler equation effects. In what follows, we show that a similar result can
also be obtained in our setup. In particular, we show that the constrained efficient allocations
can be decentralized with borrowing constraints on the total asset wealth if one imposes a
savings constraint on the capital holdings of the intermediary. This is stated by the following
proposition.

Proposition 2 Let {c1, c2,K} be a constrained efficient allocation where c
¡
st
¢
=
P

i ci(s
t)

has high implied interest rates. Further, assume that the intermediary in the decentralized
economy is subject to a savings constraint of the form k(st) ≤ B(st). Then, the constrained
efficient allocations can be decentralized as a competitive equilibrium with borrowing con-
straints on the total asset wealth that are not too tight.

Before proving the proposition, we start by describing the economy in the presence of a
savings constraint on the capital holdings of the intermediary. In particular, if we let ψ(st)
be the multiplier on the constraint, optimality requires that:

1 = β
X

st+1|st
π(st+1|st)

(
max
i=1,2

"
u0
¡
ci(s

t+1)
¢

u0 (ci(st))

#)
[r(st+1) + (1− δ)]− ψ(st.) (26)

Since ψ(st) ≥ 0, the previous equation implies that 1 ≤Pst+1|st q(s
t+1|st)[r(st+1) + (1−

δ)], and the intermediary makes therefore nonnegative profits, given by:

d
¡
st
¢
=

X
st+1|st

q(st+1|st)[r(st+1) + (1− δ)]k(st)− k(st) = ψ(st)k(st). (27)

As before, the intermediaries operate for two periods. Further, we assume that the
profits they make are distributed to the households when they are realized, i.e. during
the first period of the intermediary’s life-cycle. The period before an intermediary starts
its business, households own equal shares of it, which they can immediately trade at a price
p
¡
st
¢
, representing the total value of an intermediary that will pay profits next period. Thus,

if θi
¡
st
¢
denote the share representing a claim to the next period profits held by household

i ∈ I at the end of period t, the budget constraint can be written as:

ci(s
t) +

X
st+1|st

q(st+1|st)ai(st+1) + p
¡
st
¢ ·

θi
¡
st
¢− 1

2

¸
≤ d(st)θi

¡
st−1

¢
+ ai(s

t) +wi

¡
st
¢

where θi
¡
s−1
¢
= 1

2 for i = 1, 2. The absence of arbitrage implies that the price of the shares
has to satisfy:

p
¡
st
¢
=

X
st+1|st

q(st+1|st)d(st+1). (28)

11



Further, if we define ci(s
t) = ci(s

t) − wi

¡
st
¢ − p

¡
st
¢
1
2 and we denote by ωi

¡
st
¢
=

d(st)θi
¡
st−1

¢
+ ai(s

t) the total asset wealth of the household at the beginning of period t,
we have that:

ci(s
t) +

X
st+1|st

q(st+1|st)ωi
¡
st+1

¢ ≤ ωi
¡
st
¢

(29)

Finally, we assume that the total asset wealth of the household at the end of period t is
subject to borrowing constraints that are not too tight, i.e.,

ωi
¡
st+1

¢ ≥ Ai

¡
st+1

¢
(30)

where W ce(Ai(s
t+1), Si(s

t+1)) = V ce(Si(s
t+1)), and the two value functions are defined as

above. A competitive equilibrium can then be defined as in the previous section, noting
that market clearing now implies that

P
i ωi(s

t+1) =
£
r
¡
st+1

¢
+ (1− δ)

¤
K
¡
st
¢
+ d

¡
st
¢
andP

i ci
¡
st
¢
+K

¡
st
¢
= y

¡
st
¢
+ (1− δ)K

¡
st−1

¢
. Further, the transversality condition is now

given by:
lim
t→∞

X
st

βtπ(st)u0
¡
ci(s

t)
¢
[ωi(s

t)−Ai(s
t)] ≤ 0. (31)

It is easy to see that constrained efficient allocations assuming that the outside option
involves consuming the labor income can now be decentralized as a competitive equilibrium.
The proof is presented in what follows, and it extends the ones in Alvarez and Jermann
(1997) and Kehoe and Perri (2002) to the presence of financial intermediaries that operate
the investment technology and are subject to a savings constraint.

Proof of Proposition 2: We first note that the savings constraint B(st) can be set so
that a constrained efficient allocation that satisfies the planner’s capital Euler equation in
(23) also satisfies the optimality condition of the intermediary in (26). In particular, when
the enforcement constraint in the planner’s problem does not bind for any household at
period t+1, implying that vi

¡
st+1

¢
= 0 for i = 1, 2 and all st+1, B(st) is set to an arbitrary

large number. Further, when the enforcement constraint in the planner’s problem is binding
for any of the two households, B(st) is set to the level of capital that solves the optimal
allocation. In particular, we can always choose B(st) such that the accumulation constraint
is given by4:

ψ(st) = β
X

st+1|st
π(st+1|st)

X
i=1,2

vi(s
t+1)

u0 (ci(st))
VK(Si

¡
st+1

¢
)


where ψ(st) ≥ 0 due to the fact that vi(st+1) ≥ 0, u0

¡
ci(s

t)
¢ ≥ 0 and VK(Si

¡
st+1

¢
) ≥ 0 for

i = 1, 2. Further, the last inequality follows from the fact that the marginal product of labor
is increasing in capital5.

Given the capital allocation from the planner’s problem, we can construct the wage
and capital rental rates w

¡
st
¢
= fL

¡
st
¢
and r

¡
st
¢
= fK

¡
st
¢
that satisfy the optimality

conditions of the firm in the competitive equilibrium at each node. Further, given the

4This is possible due to the fact that limB(st)→0 ψ(s
t) = +∞ and limB(st)→∞ ψ(st) = 0.

5 It is important to note that, with all production functions in the CES family, wages are concave in capital
and V is therefore a concave function of capital as well.
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consumption allocations from the planner’s problem, we can use (24) and (25) to define
the prices q(st+1|st) = qp(s

t+1|st) and Q(st+1|st) = Qp(s
t+1|st). In addition, q(st+1|st) can

be used to define the multiplier γcei (s
t+1) so that the asset Euler condition of the agents is

satisfied. Note that it will have the desired properties. In particular, if vi = 0, γcei (s
t+1) = 0.

Further, if vi(st+1) > 0, it follows that γcei (s
t+1) > 0. To see this, suppose that vj(st+1) > 0

for some j = 1, 2. Then,

βπ(st+1|st)u
0 ¡cj(st+1)¢
u0 (cj(st))

< max
i=1,2

(
π(st+1|st)βu

0 ¡ci(st+1)¢
u0 (ci(st))

)

and

q(st+1|st) = βπ(st+1|st)max
i=1,2

(
u0
¡
ci(s

t+1)
¢

u0 (ci(st))

)
= βπ(st+1|st)u

0 ¡cj(st+1)¢
u0 (cj(st))

+
γcei (s

t+1)

u0 (cj(st))
.

Since the high implied interest rate condition holds, we can then use the budget constraint
of the households in the competitive equilibrium to construct the wealth levels ωi(st) that
support the constrained efficient consumption allocations at every node. To do this, we first
construct the profits d

¡
st
¢
from (27), the share price p

¡
st
¢
from (28), and the individual

labor incomes from wi

¡
st
¢
= w

¡
st
¢
�i
¡
st
¢
. Further, we iterate on the budget constraint of

each household to obtain:

ωi(s
t) =

∞X
n=0

X
st+n|st

Q(st+n|st)ci(st+n) (32)

and we let:

ωi(s
0) =

∞X
t=0

X
st|s0

Q(st|s0)ci(st). (33)

Finally, note that we can also recover the individual asset levels ai
¡
st
¢
and θi

¡
st−1

¢
from

the following set of equations:

ωi
¡
st
¢
= d

¡
st
¢
θi
¡
st−1

¢
+ ai

¡
st
¢
for all st|st−1

ci
¡
st−1

¢
+ p

¡
st−1

¢
θi
¡
st−1

¢
+
X

st|st−1
q
¡
st|st−1¢ ai ¡st¢ = ωi

¡
st−1

¢
.

The initial asset holding ai
¡
s0
¢
are given by ωi

¡
s0
¢
= 1

2d
¡
s0
¢
+ ai

¡
s0
¢
(recall that

θi
¡
s−1
¢
= 1

2).
Concerning the trading limits, if vi(st) = 0 for agent i, we first set:

Ai(s
t+1) = −

∞X
n=1

X
st+n|st

Q(st+n|st)
·
wi(s

t+n) +
1

2
p
¡
st+n

¢¸

and we will redefine the limit for these cases later. In addition, if vi(st) > 0, we set Ai(s
t+1) =

ωi(s
t+1), implying that it will be binding when the participation constraint in the planner’s
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problem is binding. The transversality condition is satisfied, since:

lim
t→∞

X
st

βtπ(st)u0
¡
ci(s

t)
¢
[ωi(s

t)−Ai(s
t)]

≤ lim
t→∞

X
st

βtπ(st)u
¡
ci(s

t)
¢ ∞X

n=0

X
st+n|st

Q(st+n|st)ci(st+n)


≤ u0
¡
ci(s

0)
¢
lim
t→∞

X
st

βtπ(st)
u0
¡
ci(s

t)
¢

u0 (ci(s0))

 ∞X
n=0

X
st+n|st

Q(st+n|st)
X
i

ci(s
t+n)


≤ u0

¡
ci(s

0)
¢
lim
t→∞

X
st

Q(st|s0)
 ∞X
n=0

X
st+n|st

Q(st+n|st)
X
i

ci(s
t+n)

 = 0.
The first inequality follows from the fact that [ωi(st) − Ai(s

t)] is equal to zero if the
participation constraint is binding and it is equal to

P∞
n=0

P
st+n|st Q(s

t+n|st)ci(st+n) ≥ 0
otherwise, since ωi(st) =

P∞
n=0

P
st+n|st Q(s

t+n|st)ci(st+n). The second follows from the fact
that ci(st) ≤

P
i ci(s

t). The third inequality follows from the the definition of Q(st|s0) and
from the fact that Q(st|s0) ≥ βtπ(st)

u0(ci(st))
u0(ci(s0))

by construction. Finally, the last equality
follows form the high implied interest rate condition.

To show that markets clear, we can sum the total asset wealth in (32) and (33), obtaining
that:X

i

ωi(s
t) =

∞X
n=0

X
st+n|st

Q(st+n|st)
X
i

ci(s
t+n) =

£
fK(s

t) + (1− δ)
¤
K(st−1) + d

¡
st
¢

X
i

ωi(s
0) =

∞X
t=0

X
st

Q(st|s0)
X
i

ci(s
t) =

£
fK(s

0) + (1− δ)
¤
K(s0) + d

¡
s0
¢
.

This also implies that
P

i ai
¡
st
¢
=
£
r
¡
st
¢
+ (1− δ)

¤
K
¡
st−1

¢
and

P
i θi
¡
st
¢
= 1. In

addition, summing the two budget constraints, we have that:X
i

ci(s
t) =

X
i

ωi
¡
st
¢
+ p

¡
st
¢
+ w

¡
st
¢− X

st+1|st
q
¡
st+1|st¢X

i

ωi
¡
st+1

¢
= y

¡
st
¢
+ (1− δ)K(st−1)−K

¡
st
¢
.

It only remains to redefine the borrowing limits so that they are not too tight. To do
this, we first construct the autarky values at each node using the allocations of the planner:

V ce(Si(s
t)) =

∞X
r=t

X
sr|st

βr−tπ (sr)u (fL (sr) �i (sr)) .

We can then use (Problem 1’) to generate the value function W ce(ωi(s
t), Si(s

t)) and we
use these two functions to redefine the borrowing constraints for the nodes where the limit
is not binding. In particular, we can iterate on the constraint Ai(s

t) until we find the one
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that satisfies W ce(Ai(s
t), Si(s

t)) = V ce(Si(s
t)). Since the new set of constraints constraint

is (weakly) tighter than before, the new value of ωi − Ai still satisfies the transversality
condition. Further, since, these constraints do not bind for any household for whom the
participation constraint is not binding in the planner’s solution, the allocation derived above
with the original constraints is still feasible and optimal.¥

6. Characterization of the CE without Savings Constraints
The previous section shows that a decentralization of the constrained efficient allocations
with sequential trade and borrowing constraints is possible in the presence of financial in-
termediaries that are subject to a savings constraint on the capital holdings. These type of
constraints, however, are difficult to interpret and are not typically found in the data. In
particular, it is difficult to imagine how these upper bounds would arise as an equilibrium
outcome. On the other hand, Proposition 5 at the end of this section Proposition shows
that, if the intermediaries can set the borrowing limits on households, they will choose the
ones which are not to tight. Given this, the present section characterizes the competitive
equilibrium allocations with no savings constraints. In particular, it is shown that it satisfies
the same system of equations as the constrained efficient problem except the Euler condition
in (20), which can be replaced by:

1 = β
X

st+1|st
π(st+1|st)

(
u0
¡
ci(s

t+1)
¢

u0 (ci(st))
¡
1 + vi

¡
st+1

¢¢
[fK(s

t+1) + 1− δ]

)
. (34)

This result is stated by the following proposition.

Proposition 3 Let {c1, c2,K} be a solution to equations (16), (17), (19), (21), (22)
and (34) where c =

P
i ci has high implied interest rates. Then, this allocation can be

decentralized as a competitive equilibrium with trade in one period ahead Arrow securities
subject to borrowing constraints on the Arrow security holdings that are not too tight.

Proof of Proposition 3: The proof follows the same arguments as the proof of propo-
sition 2, and we therefore only sketch it in what follows. First, given the consumption allo-
cations {ci}i=1,2 from the planner’s problem, we can use (24) and (25) to define the prices
q(st+1|st) = qp(s

t+1|st) and Q(st+1|st) = Qp(s
t+1|st) for all nodes. Further, since the high

implied interest rate condition holds, we can then use the prices and the budget constraint of
the households to construct the holdings {ai}i=1,2 so that the constrained efficient consump-
tion allocations {ci}i=1,2 are feasible at every node. Note that, in the absence of a savings
constraint, the profits of the intermediary are always equal to zero. Concerning the trading
limits, if vi(st) = 0 for agent i, we first set Ai(s

t+1) = −P∞
n=1

P
st+n|st Q(s

t+n|st)wi(s
t+n)

and we will redefine this limit later. Further, if vi(st) > 0, we set Ai(s
t+1) = ai(s

t+1),
implying that it will be binding when the participation constraint in the planner’s problem
is binding. To make sure that the sufficient Euler equations are satisfied, we can first use
q(st+1|st) to define the multiplier γcei (st+1) so that the Euler condition of the agents in (11)
is satisfied. It is easy to see that an allocation that satisfies (34) also satisfies the equilibrium
condition of the intermediary in (8). Further, using the same arguments as in the proof of
proposition 2, we can check that the transversality condition in (12) is satisfied. Finally, we
can construct the value functions W (ai(s

t);Si(s
t)) and V (Si(s

t)) from the value functions
of the planner’s problem and redefine the borrowing constraints on Arrow security holdings
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so that they satisfy W (Ai(s
t+1);Si(s

t+1)) = V (Si(s
t+1)) at every node. Since these limits

do not bind for the originally unconstrained consumers, the allocations obtained under the
natural borrowing limits are still feasible and optimal.¥

The following proposition shows that the reverse is also true.

Proposition 4 Let {c1, c2,K, q, r, w} be a competitive equilibrium with borrowing con-
straints {Ai} that are not too tight. Then {c1, c2,K} is a solution to equations (16), (17),
(19), (21)-(22) and (34). Further, c

¡
st
¢
=
P

i ci(s
t) satisfies the high implied interest rates

condition with respect to the price Q(st|s0) defined by:

Q(st|s0) = q(st|st−1)q(st−1|st−2)...q(s1|s0).

Proof of Proposition 4: To prove the proposition, we first note that the resource con-
straint in (16) is satisfied by the equilibrium allocations. Since the asset holdings are subject
to portfolio restrictions {Ai} that are not too tight, the value functions in the competitive
equilibrium satisfy:

W ce(ai(s
t), Si(s

t)) ≥ V ce(Si(s
t))

for all i = 1, 2 and all st ∈ N , where:

W ce(ai(s
t), Si(s

t)) =
∞X
r=t

X
sr

βr−tπ(sr|st)u(ci(sr))

V ce(Si(s
t)) =

∞X
r=t

X
sr

βr−tπ(sr|st)u(w(sr)�i(sr)).

It therefore follows that the functions defined by W (Si(s
t)) = W ce(ai(s

t), Si(s
t)) and

V (Si(s
t)) = V ce(Si(s

t)) satisfy the participation constraints in (17). We also note that the
competitive equilibrium allocations still solve the same problem if the borrowing constraints
on the Arrow securities of the unconstrained households are substituted for the natural
borrowing limits, defined by:

Ai(s
t+1) = −

∞X
n=1

X
st+n|st

Q(st+n|st)wi

¡
st+n

¢
.

Optimality implies that the previous limit is finite6. In addition, since the shocks z and
�i lie in a compact set, the present values of K and fL

¡
st
¢
are finite. Using the resource

constraint, it is then easy to see that the competitive equilibrium allocation satisfies the high
implied interest rate condition.

To recover the multipliers in the planner’s problem, we can first use the equilibrium

consumption allocations to define λ(st) =
u0(c1(st))
u0(c2(st)) . Further, {vi}i=1,2 can be recovered as

6 In an exchange economy context with sequential trade and potentially incomplete financial markets,
Santos and Woodford (1997) show that the natural borrowing limit implied by the optimal allocations has to
be finite. Otherwise, one can construct a portfolio that yields more utility than the optimal allocation. The
same proof can be used in the present setup.
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follows. If the portfolio constraint is not binding for household i at node st in the decentral-
ized problem, we set vi(st) = 0. Otherwise, if it is binding for agent two, we set v1(st) = 0
and v2(s

t) is recovered from:

u0
¡
c1(s

t)
¢

u0 (c2(st))
= (1 + v2(s

t))
u0
¡
c1(s

t−1)
¢

u0 (c2(st−1))

Similarly, if it is binding for agent one, we set v2(st) = 0 and v1(s
t) is recovered from:

u0
¡
c1(s

t)
¢

u0 (c2(st))
=

1

(1 + v1(st))

u0
¡
c1(s

t−1)
¢

u0 (c2(st−1))
.

Clearly, this implies that equations (19) and (21)-(22) are satisfied. In addition, it also
follows that:

max
i=1,2

u0
¡
ci(s

t)
¢

u0 (ci(st−1))
= (1 + v2(s

t))
u0
¡
c2(s

t)
¢

u0 (c2(st−1))
=

u0
¡
c1(s

t)
¢

u0 (c1(st−1))
(1 + v1(s

t)).

Finally, since equation (8) in the decentralized solution implies that:

1 = β
X

st+1|st
π(st+1|st)

(
max
i=1,2

"
u0
¡
ci(s

t+1)
¢

u0 (ci(st))

# ¡
fK
¡
st+1

¢
+ 1− δ

¢)

= β
X

st+1|st
π(st+1|st)

("
u0
¡
ci(s

t+1)
¢

u0 (ci(st))
(1 + vi(s

t+1))

#
(fK(s

t+1) + 1− δ)

)

the modified Euler equations (34) is also satisfied.¥
Several remarks are worth noting. First, whereas the competitive equilibrium without

savings constraints solves a system of equations that is very similar to the optimal plan-
ner’s problem, considerably simplifying the equilibrium computations, the solution is still
suboptimal due to the fact that it ignores the autarky effects. The key here that financial
intermediaries do not internalize the effect of capital accumulation on default incentives,
whereas the planner internalizes this effect in the (constrained) optimal allocation. Further,
the next section shows that these autarky effects are quantitatively unimportant. Thus,
there is little difference between the optimal allocations of the CE model without savings
constraints.

Second, λ(st) measures the relative wealth of the two types of households. To see this,
we can define the Lagrange multipliers of (9) by βtξi(s

t). In the competitive equilibrium, we
then have that:

ξ1(s
t)

ξ2(s
t)
=

u0
¡
c1(s

t)
¢

u0 (c2(st))
= λ(st),

where the second inequality is a consequence of Proposition 4. The above identity implies
that λ(st) measures the relative wealth of type 2 versus type 1, since the bigger is ai(st) the
smaller is ξi(s

t), which measures the marginal utility of wealth. Therefore a higher λ(st)
implies that agent 1 has a smaller initial wealth compared to type 2 households.

Third, our equilibrium concept and the characterization provided above does not neces-
sarily require that the limits are not too tight. In particular, the participation constraints
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will be satisfied for any limits that are equal or tighter to the limits defined by (14). In
what follows we provide some micro foundations for these limits by letting the intermedi-
aries set them. We first show that no intermediary has incentives to loosen or tighten the
limits individually when they are set to be not too tight. This implies that this choice of
the constraints is indeed an equilibrium decision of the intermediaries. We also show that no
symmetric equilibrium exists where some or all of the limits are looser than the ones dictated
by (14).

Proposition 5 (i) The CE with borrowing constraints that are not too tight remains to be
a competitive equilibrium if intermediaries can set the borrowing limits. (ii) No symmetric
competitive equilibrium exists for limits that are looser than the ones that are no too tight.

Proof of Proposition 5: (i) We now show that there are no profitable deviations from
the equilibrium allocation with limits that are looser then the ones defined by (14). To see
this, first notice that tightening the limits will not increase the profits of any intermediary.
In what follows we show that no intermediary can make positive profits by making loosening
the limits, that is, by setting Ai(s

t) ≤ Ai(s
t) < 0 for all st and assume (without a loss of

generality) that A1(bs) < A1(bs) for some bs|es where the participation constraint was binding
for agent at wealth level A1(bs). This implies that under the original prices q(st+1|es), type 1
agents would default if next period node bs|es occurs. Since type 1 households would choose
a1(bs) < Ai(bs) < 0 and default if bs occurs, it is easy to see that the intermediary would make
negative profits. First define a1(s

t+1|es) as the asset decision of type 1 households under
the new limits and observe that a1(bs) < Ai(bs) < 0 under q(bs|es). Then default of type 1
households imply that the profits of the intermediary is given by:

d(es) = −k(es) + X
st+1|es q(s

t+1|es)[r(st+1) + (1− δ)]k(es) + q(bs|es)a1(bs)
< −k(es) + X

st+1|es q(s
t+1|es)[r(st+1) + (1− δ)]k(es) = 0.

For the second equality we used the intermediaries equilibrium condition (8).
(ii) Now we show that there does not exist any symmetric equilibrium with limits that

are looser than the limits that are not too tight. To do this, we assume that the limits
are such that some agent would default in equilibrium. In particular, we assume that there
exists an equilibrium with prices q and limits {Ai}i=1,2 such that agents of type 1 would
default under some continuation history st+1|st = bs|st if the current history is st = es. First,
notice that perfect competition would still require that intermediaries will make zero profits.
Theirs profits are given by:

d(es) = −k(es) + X
st+1|es q(s

t+1|es)[r(st+1) + (1− δ)]k(es) + q(bs|es)a1(bs) = 0.
Since a household would only default at node bs if a1(bs) < 0, the previous equation implies
that:

−k(es) + X
st+1|es q(s

t+1|es)[r(st+1) + (1− δ)]k(es) > 0.
Thus, in any symmetric equilibrium with default, it must be the case that:X

st+1|es q(s
t+1|es)[r(st+1) + (1− δ)]− 1 > 0.
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The previous condition implies that any intermediary could make arbitrarily positive
profits by trading only with agents of type 2 and by demanding arbitrary large amounts of
total deposits (

P
st+1|es q(st+1|es)a2(es)) from them. However, this contradicts the fact that

the original portfolio was optimal for the intermediaries under q(st+1|st).¥
7. Quantitative Comparison of the Competitive Equilibria

In this section we solve numerically for both competitive equilibrium allocations (with and
without savings constraints). The parameters of the economy are calibrated following the
asset pricing and real business cycle literature. The time period is assumed to be one quarter,
and the discount factor and depreciation rate are therefore set to β = 0.99 and δ = 0.025.
Concerning the functional forms, we assume that the production function is Cobb-Douglas,
with a constant capital share of α = 0.36. Further, the utility function of the households
is assumed to be u (c) = log(c). Finally, the exogenous shock processes are assumed to be
independent. In particular, the aggregate technology shock follows a two state Markov chain
with z ∈ {zl, zh} = {0.99, 1.01}, and its transition matrix is given by:

Πz =

·
πll πlh
πhl πhh

¸
=

·
0.875 0.125
0.125 0.875

¸
.

We assume that aggregate labor supply is constant and we normalize it to 1. As to the
idiosyncratic income process, it is assumed to follow a seven state Markov chain. Further, the
values and transition matrix are obtained by using the Hussey and Tauchen (1991) procedure
to discretize the following process:

�i0 = (1− ψ�)µ� + ψ��
i + u, u ∼ N(0, σ2u).

where the shock parameters are set to ψ� = 0.956 and σ
2
u = 0.082, corresponding to quarterly

adjusted estimates from annual data used by Aiyagari (1994). Constant aggregate labor
supply implies that �−i = 1− �i, and the values for �1 were chosen to be symmetric around
µ� = 0.5. Consequently, the idiosyncratic productivity of the two types follows the same
process and the shocks are perfectly negatively correlated across the two types.

Note that Proposition 3 and 4 provide us with a relatively easy and analogous solution
method for both models. In the competitive equilibrium with saving constraint (autarky
effects) we use equations (16), (17), (19), (21), (22) and (20). Further, to solve for the
competitive equilibrium with no savings constraints (no autarky effects), we use the same
system of equations but (20) is replaced by (34).

In what follows, we let s1 = [�, λ; z,K] and s2 = [1− �, 1/λ; z,K]. Under our Markovian
assumption on the shocks, the previous set of equations implies that we can describe the
optimal allocations in both models by the consumption functions {ci(si)}i=1,2 , the normal-
ized multipliers on the participations constraints {νi(si)}i=1,2 and the laws of motion for the
relative wealth λ0(s1) and aggregate capital K 0(s1). To solve for these functions, we have
used policy functions iterations in both models

Our numerical results are presented on Figures 1 to 4 in the Appendix. All the optimal
policies are conditioned on the low aggregate technology shock z = 0.99 and on K = 38.6,
which is in the stationary distribution of capital. For expositional convenience, we have
plotted the results for only three levels of the labour endowment, where �1 is the lowest and
�7 is the highest labor endowment. Recall that type 2 households have the highest labor
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endowment when type 1 households have the lowest. Note also that both types have equal
endowments when �4 = 1− �4 = 0.5.

Figure 1 displays λ0 ≡ λ(st+1) as a function of λ(st) for the three different levels of the
idiosyncratic income shocks. The first thing that is reflected by the figure is that agents
enjoy permanent perfect risk sharing in the long run in both models. To see this, assume
first that our initial λ is inside its ergodic set, which is equal to λ ∈ [0.8368, 1.195] and λ ∈
[0.8366, 1.1953] for the models without and with the savings constraint respectively. As we see
on the graph, λ0 = λ inside this region, independently of the labor income shocks. Condition
(19) implies then that this can only happen if neither agent’s participation constraint is
binding. Second, the same condition implies that the ratio of marginal utilities remains
constant over time if this is the case. These facts, however, are the defining feature of a
perfect risk sharing allocation. Assume now that we start with λ > 2.5, implying that type
1 households hold significantly lower initial assets, and they are therefore entitled to less
consumption than agent 2. In this case, Figure 1 implies that λ0 depends on the idiosyncratic
income of the agent, and that it will drop to a new level depending on the shock realization.
In particular, the higher the idiosyncratic income, the lower will be the new level of the
relative wealth, since type 1 agents require a higher compensation for staying in the risk
sharing arrangement. Note that, whenever λ jumps, type 1 agents’ participation constraint
is binding, and these new level of λ0 pins down the borrowing constraint faced by type 1
households in the previous period. This process will go on until the highest income (�7)
is experienced by the type 1 agents. In this case, λ will enter the stationary distribution7

(λ = 1.195) and remain constant forever, implying that agents enjoy permanent perfect risk
sharing from that period on. In addition, a symmetric argument implies that whenever
λ < 0.83, λ will become 0.83 and remain constant forever after finite number of periods.
Given this, the present framework implies that agents will obtain full insurance in the long-
run, independently of the initial wealth distribution. On the other hand, the economy may
experience movements in consumption and the relative wealth in the short run.

The second important observation is that, comparing the two economies, we observe
minor differences only. First of all, the long-run behavior is practically identical. Both
economies enjoy perfect risk sharing in the long run. In addition, if λ(s0) ∈ [0.8368, 1.195],
then the long-run allocations are identical. This is due to the fact that the borrowing con-
straints (and therefore the savings constraint of the intermediary in the constrained efficient
economy) will never bind in this case, implying that individual consumptions will be deter-
mined by λ(s0), and capital accumulation will be (unconstrained) efficient. On the other
hand, if λ(s0) is outside the above interval, the long-run allocations are only slightly differ-
ent, since the bounds of the stationary distribution are slightly different in the two models.
As we see, the model with savings constraint allows for a slightly wider range of the wealth
distribution. Also, the model with autarky effects allows for a wider range of λ0 outside the
stationary distribution. As we will see below, this is the consequence of the different capital
accumulation pattern in the two economies.

Figure 2, shows the optimal consumption of type 1 households in the two economies as
a function of λ for different levels of the labor endowment. Obviously, as the relative wealth

7We use the terms ergodic set and the stationary distribution loosely in this paper. Notice, however that
we defined these sets as the possible values of λ in the long run. In fact, the initial condition λ0 will pin down
a unique long-run value for the relative wealth, that is, for any given initial value, the long run distribution
is degenerate.
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of type 1 households decreases (λ increases) their consumption decreases. Also, since we
have perfect risk sharing in the stationary distribution, consumption does not depend on the
idiosyncratic labour endowment there. For the same reason, the optimal consumption allo-
cations are identical across the two models in this range. Outside the stationary distribution,
as expected, consumption is increasing in the labour endowment. Also, we observe that the
model with autarky effects allows for a higher consumption for every λ and � outside the
stationary distribution. On the one hand, this is not surprising, since these allocations corre-
spond to the constrained efficient allocations, where we should expect a higher consumption.
On the other hand, the resource constraint then implies that, in the model without saving
constraints, aggregate capital accumulation will be higher.

Figure 3 displays the next period’s aggregate capital K 0 as a function of λ and � and
it documents the previously mentioned pattern. Not surprisingly, aggregate capital is again
independent of both the wealth distribution and labour endowments in the stationary dis-
tribution, where it is set to its efficient level. On the other hand, markets are effectively
incomplete outside the stationary distribution, where we see a higher capital accumulation.
This result is well-documented in models with exogenously incomplete markets, see Aiyagari
(1994) for a model without aggregate uncertainty and Ábrahám and Cárceles-Poveda (2005)
for a model with a similar set-up but trade in physical capital only. Note also that these
effects are the biggest when low idiosyncratic labour endowment coincides with low wealth
(this is the case for type 1 households on the upper right corner of the figure and for type 2
households in the upper left corner).

To see why this happens, we can look at Figure 1 and at the Euler equation of the
constrained efficient problem in (20). It is clear for Figure 1 that, when type one households
have labour endowment �7 and a high wealth (λ < 0.5), the participation constraint of type
2 households is going to be binding in many continuation states ((vi(st+1) > 0). In turn, this
implies that the return of investment is higher and more capital will be accumulated. In the
decentralized problem this is equivalent to an increase of most of the Arrow security prices
q(st+1|st), implying that intermediaries have to pay lower return to the agents and therefore
invest more. In the model without autarky effects, this is the only effect. On the other
hand, this over accumulation is mitigated by the autarky effects in the constrained efficient
allocation. In that case, the planner internalizes that increasing capital will increase the value
of autarky for the agent. Since vj(st+1)

u0(cj(st))VK(Sj
¡
st+1

¢
) > 0 for some st+1, the presence of this

effect will then imply a lower capital accumulation. In the decentralized solution, this is
internalized with a binding upper limit on capital accumulation, which deters intermediaries
from excessively overinvesting. This is the indirect reason of why a higher range of the
wealth distribution (a higher range of λ) results in the model with saving constraints. As
an example, if type 1 households have a low labour endowment (labor income) and a low
wealth in the model with no autarky effects, they will have less incentives to default because
capital accumulation is lower and the value of their outside option is therefore lower.

Finally, Figure 4 shows the life-time utilities of the agents with different labour endow-
ments and initial wealths (measured by λ). Obviously, welfare is identical across the two
economies in the stationary distribution, since the allocations are identical. Outside the
stationary distribution, however, agents gain some utility in the suboptimal allocation com-
pared to the constrained efficient allocation (autarky effects) if they are relatively wealthy
(λ < 1), and they loose some utility when they are less wealthy (λ > 1). The reason for the
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utility loss is that, although agents can enjoy a higher current consumption in the economy
with saving constraints, there is also less capital accumulation, affecting their life-time utility
negatively. When λ > 1.195, this second effect dominates. Notice that these utility gains
and losses are quantitatively very small, even outside the stationary distribution. In other
words, the competitive equilibrium allocation without the savings constraint is close to be
optimal.

Overall, we conclude that both economies have practically identical allocations in the
long run (stationary distribution), and they have some (small) differences in the short run.
The model without saving constraints leads to a higher short run capital accumulation and
consequently to a lower consumption. We checked the robustness of these findings by allowing
agents to accumulate physical capital through the intermediaries in autarky, increasing the
value of the outside option and limiting the scope of risk sharing in both economies. In this
case, we obtain a somewhat narrower range of λ in the stationary distribution. However,
none of the other key findings are influenced by this change. We still find a perfect risk
sharing in the long-run in both models, and we find the same type of qualitative changes
and the same relatively small differences between the two models.

8. Conclusions
In this paper, we show two key theoretical results. First, in the presence of capital accu-
mulation, the constrained efficient allocation of a model with limited commitment cannot
be decentralized by a competitive equilibrium with borrowing constraints that are not tight,
in contrast to the finding in endowment economies. On the other hand, this decentraliza-
tion is possible with the introduction of financial intermediaries and an upper limit on their
capital holdings. Second, we characterize the competitive equilibrium with only borrowing
constraints that are not too tight. We show that these limits are micro founded, since the
intermediaries have no incentives to loosen or tighten them. Furthermore, we show that the
key inefficiency in this economy is coming from the fact that intermediaries do not internalize
the effect of aggregate capital on the autarky value of the agents.

We think that this second result is particularly important, since it provides an empiri-
cally plausible decentralization which can be used to analyze several applied questions where
financial intermediation is important. In addition, in spite of the fact that this economy is
suboptimal, the solution for the equilibrium allocation does not require any extra computa-
tional burden as compared to the optimal solution due to our characterization result.

Finally, we show that there are no significant differences between the equilibrium alloca-
tions with and without the saving constraint in our framework, especially in the long run.
This is mostly due to the fact, the in our production economy, autarky is not an attractive
enough outside option, even if agents can save after default. One key direction of future
research should be to identify other applications where the differences are more significant.
In particular, models where the long run optimal allocation does not display permanent risk
sharing, such as Kehoe and Perri (2002). They can be studied using this methodology to
further understand the important differences between the two equilibria.
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Appendix: Figures
Figure 1: Next Period Wealth Distribution λ0 as a Function of λ and
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Figure 2: Optimal Consumption (c1) as a Function of λ and �
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Figure 3: Aggregate Capital Accumulation (K 0) as a Function of λ and �
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Figure 4: Life-Time Utilities (W ) as a Function of λ and �
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