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Abstract

We analyse the timing of competitive bids. There are two buyers in our model,

each of whom decide when and how much to bid for an object. These agents’

valuations are commonly known, but are driven by a stochastic state variable that

varies randomly over time. We assume that agent 1 (2) has the higher valuation

when the state is high (low). We show first that there is delay in equilibrium: agent

1 bids only when the state is sufficiently high; and agent 2 bids only when the state

is sufficiently low. This delay is not necessarily present when there is a single agent;

it is present with two agents because competition makes payoffs convex. Secondly,

the extent of delay increases with the degree of uncertainty (i.e., both agents wait

for more extreme values of the state before bidding). Thirdly, we show that there

is too much delay in equilibrium, relative to the efficient solution. Finally, we show

that, in our model, the seller wishes to sell immediately, and to choose the lowest

degree of uncertainty about the value of the object.
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1 Introduction

Many papers have studied the economics of takeovers and acquisitions. These have tended

to focus on mechanisms by which takeovers are enacted or hindered, free-rider problems

amongst shareholders, and the efficiency (or otherwise) of the market for corporate con-

trol. Few, however, have examined the issue of timing of acquisitions. When a number of

potential bidders have positive valuations at the prevailing market price, what determines

when the auction for the target is held? What does this imply for the pattern of takeover

activity? Is this efficient from the perspective of the target firm’s shareholders, and for

society as a whole?

In this paper, we analyse the timing of competitive bids in a dynamic model. There

are two potential buyers in our model, each of whom decides when and how much to

bid for an object. These agents’ valuations are commonly known, but are driven by a

stochastic state variable that varies randomly over time. We assume that agent 1 (2) has

the higher valuation when the state is high (low). For all values of the state variable, both

agents are credible buyers, as each one’s valuation always exceeds the seller’s reservation

value (which is normalised at zero). When one buyer decides to bid, a bidding war results,

and the object is awarded to the highest bidder.

There are a number of applications for our model. The most direct is a complete

information auction of a single unit of a good, when bidders’ valuations have a common

value component so that they satisfy a single-crossing property.1 A related application

involves two firms bidding to take over a target firm. In this application, the state variable

is the level of demand in the target firm’s industry. The bidders have different comparative

advantages in running the firm, depending on the level of demand. For example, firm 1

may have a lower marginal cost of production than the target; while firm 2 has a lower

fixed cost of production. Hence the value of the target to firm 1 increases with the level

of demand, while firm 2’s advantage is independent of demand. A third application is a

variant of the second, when the bidders are in different countries rather than industries.2

1For example, suppose that agent i ∈ {1, 2} has a valuation of ηi + λiθ, where η1 < η2 but λ1 > λ2,
and θ is a (common) state variable.

2We are grateful to Pauli Murto for suggesting this example.
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In this application, the state variable is the exchange rate between the countries. If firm

1 is in the same country as the target, it has the higher valuation when the exchange rate

is strong; when the exchange rate is weak, the foreign firm 2 has the higher valuation.

We show the following results. First, there is delay in equilibrium: agent 1 bids only

when the state is sufficiently high, while agent 2 bids only when the state is sufficiently

low. Secondly, the extent of delay increases with the degree of uncertainty (i.e., both

bidders wait for more extreme values of the state variable before bidding). In deciding

when to bid, the bidders balance two factors. The first is the benefit from delay that

arises due to real option values. The second is the cost from being pre-empted i.e., the

state variable changing by a large amount so that the rival bidder can acquire the object.

(This second factor is absent in a standard real option setting with a single agent.) Our

result shows that the first factor dominates.

Thirdly, we show that there is too much delay in equilibrium, relative to the efficient

solution. The efficient solution does involve delay: the object is allocated to a bidder only

when its valuation is sufficiently greater than its rival’s. But the extent of delay in the

efficient solution is less than in equilibrium. Fourthly, if the seller can choose the time at

which the object is sold, then it sells the object immediately. If it cannot directly control

the timing of acquisition but can choose the degree of uncertainty (for example, the seller

may be a target firm choosing the riskiness of its investment projects), then it chooses

the lowest possible degree of uncertainty in order to reduce the extent of bidding delays.

Finally, we use numerical analysis to contrast the seller’s preferences to the efficient choice

of the level of uncertainty.

The main results of inefficient delay in equilibrium arise because of two general features

of our model. There is delay in equilibrium because competition makes payoffs convex.

The agents face a combination of irreversibility (they do not get a second chance to

acquire the object if they lose) and uncertainty (valuations are driven by a stochastic

state variable). There are, therefore, real options involved in the bidding decision. But

irreversibility and uncertainty on their own are not sufficient to cause delay in our model.

We assume that the agents’ valuations are not convex in the state. This assumption means
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that a single agent bidding for the object, not faced with a rival bidder, bids immediately:

there is no (real) option value to the bidder and hence no incentive to delay. Competition

is also required for delay to occur. When an agent is faced with a rival bidder, its payoff

function is convex since if it loses, it receives a payoff of zero. The convexity induced

by competition gives agents an incentive to delay their bids. This finding runs counter

to most of the literature on competitive real options, where competition hastens, rather

than delays, option exercise.

There is too much delay in equilibrium because competition creates negative external-

ities between bidders. These externalities affect the level and shape of the equilibrium

payoff functions, relative to the efficient payoff. The equilibrium payoff to a bidder is

lower than the efficient payoff (the difference being the other bidder’s valuation). Also,

the equilibrium payoff functions (determined by relative valuations) may be more or less

convex than the efficient payoff function (determined by actual valuations). We concen-

trate on the levels effect by restricting the analysis of the efficient solution to the case

where agent 1’s valuation is a linear function of the state variable θ (s1(θ) = λθ where

λ > 0), while agent 2’s valuation is a constant: s2(θ) = η > 0. The efficient payoff is then

πE ≡ max{η, λθ}; the equilibrium payoff to agent 1 is π1 ≡ max{λθ− η, 0} = πE − s2(θ);

to agent 2 is π2 ≡ max{η − λθ, 0} = πE − s1(θ). Hence the equilibrium payoff are lower

than the efficient payoff, both when an agent wins and when it loses. The reduction in

payoff on winning the object leads the agent to bid later (relative to the efficient solu-

tion); the reduction on losing leads to an earlier bid. We show that the former is more

important when the agents choose their triggers optimally. This leads to inefficient delay

in equilibrium—an effect that appears not to be specific to linear valuation functions.

The analysis has the following implications for takeover activity and the market for

corporate control. First, it implies that even when there is competition between bidders,

each of whom has a postive value of acquistion, the target may not be acquired immedi-

ately. Secondly, if the stochastic variable in each case is correlated with general economic

variations, takeover activity will be highest during booms and busts, with lower activity

in between. Finally, the market for corporate control may not be fully efficient as regards
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the timing of acquisition.

We are not aware of many papers that consider the timing of acquisitions. The

field of empirical study of the pattern of firm takeovers is reasonably large (see, e.g.,

Weston, Chung, and Hoag (1990) for a review). There are fewer papers dealing with

the issue theoretically. Lambrecht (2004) uses, like us, real option techniques to consider

the timing of mergers. There are two crucial differences between his analysis and ours,

however. First, he focuses on an agreed merger between two firms; thus, the key feature

of competitive bidding for the target is missing from his framework. Secondly, the surplus

from merger arises from economies of scale, and hence increases with industry demand;

while we allow for more general payoff functions. It is this second assumption that drives

Lambrecht’s finding of pro-cyclical merger waves. Our paper also contributes to the small,

but growing number of papers analysing strategic interaction in real options settings. See,

for example, Smets (1991), Grenadier (1996), Hoppe (2000), Weeds (2002), Lambrecht

and Perraudin (2003), and Mason and Weeds (2004).

In the rest of the paper, we first describe the model (section 2). We then characterise

equilibrium in what we call competitive cautious trigger strategies ; in this equilibrium, the

timing of bidding is of primary interest. In section 4, we derive the efficient solution and

contrast this to the equilibrium outcome. Section 5 summarises the main results, before

section 6 considers the preferences of the seller.

2 The Model

Time is continuous and the time horizon is infinite with t ∈ [0, +∞). Two risk neutral

agents each can bid to acquire an object. The decisions to bid and acquire can be delayed

indefinitely. Once the object has been acquired by one bidder, no further actions are

considered. This limits the analysis to one ‘cycle’ of acquisition, for simplicity. This

implies no resale in the case of an auction; while in the context of a takeover, post-

merger integration prevents subsequent acquisition of the original business unit. We do

not assume a sunk cost of bidding (though this could be added).
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We normalize the value of the object to the seller to zero. The valuations of agent 1

and 2, denoted si(θ) : R+ → R+, i ∈ {1, 2}, are functions of of an exogenous, stochastic

variable θ ∈ R+. The variable θ evolves according to a geometric Brownian motion

(GBM) without drift:

dθt = σθtdWt (1)

where σ ∈ [0, +∞) is the instantaneous standard deviation or volatility parameter, and

dWt is the increment of a standard Wiener process {Wt}t≥0, so that dWt ∼ N(0, dt).

The continuous-time discount rate is r > 0. The parameters σ and r are common knowl-

edge and constant over time. (The choice of continuous time and this representation of

uncertainty is motivated by the analytical tractability of the value functions that result.)

The following assumptions are made about the bidders’ valuations:

Assumption 1 The functions si(θ) : R+ → R+, i ∈ {1, 2} are continuous, twice-

differentiable, positive and non-convex. Let δ(θ) ≡ s1(θ) − s2(θ).

(i) δ(θ) is a (continuous, twice-differentiable) strictly increasing function of θ;

(ii) there is a unique θ∗ > 0 such that δ(θ∗) = 0, and δ(θ) < (>)0 when θ < (>)θ∗.

Continuous differentiability of valuations simplifies the analysis. Secondly, the fact

that the bidders’ valuations are non-negative means that we focus on the case in which

it is efficient to sell the object; moreover, with two credible bidders at every value of θ,

bidding occurs competitively in equilibrium. Thirdly, as we will make clear in section

2.1, assuming that valuations are non-convex ensures that there is a qualitative difference

between the single-agent decision problem and the two-agent game. Finally, the single-

crossing assumption on relative valuations implies that agent 1’s valuation of the object

is greater than agent 2’s when θ is high (above θ∗); and that agent 2 has the higher

valuation when θ is low (below θ∗).

We formulate the game form and the strategies of the agents to reflect the structure

that we have imposed on the agents’ valuations. Our main interest is in equilibria with

the following two properties:
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Property 1 (Competitive Cautious Bidding) (i) if one agent bids, then so does the

other; (ii) the agents epsilon-outbid each other; (iii) the losing agent bids cautiously.3

Property 2 (Trigger Bids) Agent 1 bids at the first instant that the state variable θ

hits the interval [θ1, +∞). Agent 2 bids at the first instant that the state variable θ hits

the interval [0, θ2].

Definition 1 (Competitive, Cautious, Trigger Equilibrium) Any equilibrium that

satisfies properties 1 and 2 is called a CCT equilibrium.

(These properties will be restated later in terms of the strategies of the agents, which

we are about to define.)

Restricting attention to competitive bidding means that we can focus on the timing

(rather than the amount) of bids as our primary interest. We concentrate on cautious

equilibria to rule out arbitrary outcomes in which the losing bidder effectively uses weakly

dominated strategies. The same equilibrium notion has been used in the equilibrium

analysis of e.g., Bergemann and Välimäki (1996) and Felli and Harris (1996). We only

consider trigger strategies, for two reasons. First, they seem natural ones to consider,

given the single-crossing property that we have assumed for the relative valuation function

δ(θ). The second reason is analytical tractability. There may be equilibria that involve

non-trigger strategies i.e., where the ‘stopping region’ for an agent (e.g., the set [θ1, +∞)

for player 1) is not an interval. Solving explicitly for such equilibria is not likely to be

possible.

We therefore consider a game with two stages. The first stage is a timing game in

which agents decide when to bid (i.e., at what level of the state variable). Once one or

more of the agents decides to bid, the game then enters a second, bidding stage in which

the agents both submit bids (if they wish). To formalize this story, at any time t ≥ 0, let

x = 0 if agent 1 has not made a bid for the target at any time τ ≤ t, and x = 1 otherwise;

let y ∈ {0, 1} indicate the same for agent 2. The state variable of the game is the triple

(θ, x, y). At any time t > 0, past realizations of the process described by equation (1) and

3I.e., so as to be indifferent between winning and not winning at the equilibrium bids.
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past decisions whether to bid constitute the history of the game. Agents are assumed to

use stationary Markovian strategies: actions depend on only the current state and the

strategy formulation itself does not vary with time.4 A (pure) Markovian strategy for

agent i ∈ {1, 2} (at time t) has two parts: (i) when xt = yt = 0, a measurable function5

mi(θt) : R+ → {0, 1} which takes the value 0 when the agent has not made a bid, and

the value 1 when the agent makes a bid; (ii) when xt + yt > 0, a measurable function

bi(θt) : R+ → R describing the bid submitted by the agent.

In the bidding stage, agent i acquires the target if and only if its bid bi exceeds its

rival’s b−i and is greater than zero. If this is the case, then agent i receives a payoff

si(θ) (which can be interpreted as the present discounted value of a flow payoff ŝi(θ)

received in perpetuity after acquisition), while paying its bid to acquire the target. If

agent i bids unsuccessfully, then it receives a (flow) payoff of zero. In the event of a

non-zero tie (b1 = b2 > 0), the target is allocated randomly between the bidders. Hence

the intertemporal payoff of agent i is

Vi(T, b1, b2; θt) =



































Et

[

(si(θT ) − bi(θT ))e−r(T−t)
]

if bi > max[0, b−i],

0 if bi < max[0, b−i],

1
2
Et

[

(si(θT ) − bi(θT ))e−r(T−t)
]

if bi = b−i > 0,

0 if bi = b−i = 0,

(2)

where T ≡ min[T1, T2] and Ti is the (random) first time at which mi = 1; the operator Et

denotes expectations conditional on information available at time t.

Definition 2 (Markov Perfect Equilibrium, MPE) A pair of strategies (m∗
1, b

∗
1), (m

∗
2, b

∗
2),

with T ∗ ≡ min[T ∗
1 , T ∗

2 ] and T ∗
i ≡ inf{t|m∗

i (θt) = 1}, is a Markov Perfect Equilibrium if

4For further explanation, see Maskin and Tirole (1988) and Fudenberg and Tirole (1991). Non-
Markovian equilibria may exist. Since we want to analyse how the resolution of uncertainty affects the
take-over game, we concentrate on equilibria in Markovian strategies. This allows us to rule out collusive
equilibria with continuation strategies that depend on information that is not payoff relevant.

5Measurability is with respect to the filtration F of the complete probability space (Ω,F , P ) on which
the Wiener process {Wt}t≥0 in equation (1) is defined.
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and only if, for all θt and i ∈ {1, 2},

Vi(T
∗, b∗i , b

∗
−i; θt) ≥ V1(T, b∗i , b

∗
−i; θt),∀ mi(θt),

where T ≡ min[Ti, T
∗
−i], Ti ≡ inf{t|mi(θt) = 1};

Vi(T
∗, b∗i , b

∗
−i; θt) ≥ Vi(T

∗, bi, b
∗
−i; θt),∀ bi.

Note that deviation strategies are not required to be Markovian.

2.1 The Single-Agent Decision Problem

In this model, it is relatively straightforward to determine when a single agent, not faced

with a rival bidder, will bid. If the bidder’s valuation function, s(θ), is not convex in the

state θ (as we have assumed, in assumption 1), then it will bid immediately. In this case,

there is no option value to the bidder and hence no incentive to delay bidding. Only if the

valuation function is convex in θ will the bidder have an incentive to delay. As we shall

see, this is in marked contrast to the competitive bidding situation: in the game between

the two bidders, equilibrium always involves delay, even when the bidders’ valuations are

not convex in θ. This is because the prospect of a rival acquiring the target introduces a

convexity into the bidder’s payoff function; this convexity leads to delay in equilibrium.

3 Equilibrium

We are interested in equilibria that have cautious, competitive triggers bids. In terms of

the agents’ strategies and best responses, this implies the following properties:

Property 1 (Competitive Cautious Bidding) For i ∈ {1, 2},

bi(θ)







= b−i(θ) + ε if b−i < si,

≤ si if b−i ≥ si,

where ε > 0 is arbitrarily small.
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Property 2 (Trigger Bids)

m1(θ) =















0 θ < θ1,

1 θ ≥ θ1;

m2(θ) =















0 θ > θ2,

1 θ ≤ θ2.

I.e., agent 1 (2) bids when θ rises (falls) to θ1 (θ2 ), where θ1 > θ2.

A CCT equilibrium is characterized, therefore, by the two trigger points θ1 and θ2. We

first determine and analyze these trigger points; we then confirm that a CCT equilibrium

exists.

The equilibrium analysis will be simplified by making the following assumptions on

δ(θ) (the difference in the agents’ valuations):

Assumption 2 1.

(i) −(α + 1) < θδ′′(θ)/δ′(θ) < α for all θ, where α > 0 is a constant determined below,

and δ′(·) and δ′′(·) denote the first and second derivatives of δ(·), respectively;

(ii) θ2δ(θ)δ′′(θ) − α(α + 1)(δ(θ))2 < 0 for all θ and α > 0.

Part (i) complements assumption 1 in ensuring that in equilibrium, agent 1 will be the

successful bidder when θ is high, and agent 2 when θ is low (as the proof of proposition

1 makes clear). It requires that δ(·) be neither too convex nor too concave. Part (ii)

ensures that the agents’ strategies are strategic complements; see the next section. Both

parts of the assumption, as well as assumption 1, are satisfied by a linear δ(·) function,

for example.

3.1 Properties of a CCT Equilibrium

Detailed derivations of the agents’ equilibrium value functions are contained in the ap-

pendix. There we show that the value function V1(θ) of agent 1 has three components,
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holding over different ranges of θ:

V1(θ) =



























0 θ ≤ θ2,

A1θ
−α + B1θ

α+1 θ2 < θ < θ1,

s1(θ) − b1(θ1) θ = θ1.

(3)

A1 and B1 are constants determined by boundary conditions, discussed below. α is the

positive root of a ‘characteristic’ equation (see the appendix):

α =
1

2

(

−1 +

√

1 +
8r

σ2

)

≥ 0.

B1θ
α+1 is an option term anticipating agent 1’s bid for the target; A1θ

−α is an option-like

term anticipating agent 2’s bid.

By arbitrage, the critical value θ1 for agent 1 must satisfy a value-matching condition;

optimality requires a second, smooth-pasting condition to be satisfied. (See Dixit and

Pindyck (1994) for an explanation.) This condition requires the components of the agent

1’s value function to meet smoothly at θ1. θ2 is not chosen optimally by agent 1; hence

the smooth-pasting optimality condition does not apply here for agent 1. Value functions

are forward-looking, however, and so a value-matching condition applies at θ2. Hence

there are three relevant equations for agent 1—value-matching and smooth-pasting at θ1;

and value-matching at θ2:

A1θ
−α
1 + B1θ

α+1
1 = δ(θ1),

−αA1θ
−α−1
1 + (α + 1)B1θ

α
1 = δ′(θ1),

A1θ
−α
2 + B1θ

α+1
2 = 0.
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These three equations can be combined to give

θ2α+1
1

Θ(θ1)
= θ2α+1

2 , (4)

where Θ(θ) ≡
αδ(θ) + θδ′(θ)

−(α + 1)δ(θ) + θδ′(θ)
.

Equation (4) gives the reaction function of agent 1.6 Note that the equation is well-defined

iff −(α + 1)δ(θ) + θδ′(θ) 6= 0.

Definition 3 θ̄ > θ∗ is such that −(α + 1)δ(θ̄) + θ̄δ′(θ̄) = 0.

Hence if θ < θ̄, then equation (4) is well-defined, from assumption 2(i). From that

assumption, if θ2 is increased (decreased), agent 1’s best response is lower (higher). Hence

the agents’ triggers are strategic complements—agent 1’s best response to a more aggres-

sive strategy from agent 2 (θ2 closer to θ∗) is more aggressive (θ1 is closer to θ∗). The

following facts about θ̄ follow immediately from its definition (using assumptions 1 and

2) and so are stated without proof:

Result 1 (i) ∂θ̄/∂σ > 0; (ii) limσ→0 θ̄ = θ∗.

A similar story holds for agent 2. Its value function is

V2(θ) =



























s2(θ) − b2(θ2) θ = θ2,

A2θ
−α + B2θ

α+1 θ2 < θ < θ1,

0 θ1 ≤ θ.

(5)

Value-matching and smooth-pasting hold at θ2, and value-matching at θ1:

A2θ
−α
2 + B2θ

α+1
1 = −δ(θ2),

−αA2θ
−α−1
2 + (α + 1)B2θ

α
2 = −δ′(θ2),

A2θ
−α
1 + B2θ

α+1
1 = 0.

6Equation (4) gives a reaction function rather than correspondence, since assumption 2 implies that
the function on the left-hand side of equation (4) is strictly decreasing in θ.
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These three equations can be combined to give

θ2α+1
2

Θ(θ2)
= θ2α+1

1 . (6)

Definition 4
¯
θ < θ∗ is such that αδ(

¯
θ) +

¯
θδ′(

¯
θ) = 0.

If θ >
¯
θ, then equation (4) is well-defined, from assumption 2(i), and gives the reaction

function of agent 2. Analogously to result 1:

Result 2 (i) ∂
¯
θ/∂σ < 0; (ii) limσ→0

¯
θ = θ∗.

A necessary condition for a CCT equilibrium with θ1 > θ∗ > θ2 to exist is that there

is a solution to the simultaneous equations (4) and (6) that satisfies this property. The

next proposition establishes the existence of such a solution.

Proposition 1 There exists a solution to equations (4) and (6) with θ̄ > θ1 > θ∗ > θ2 >

¯
θ.

Proof. The proof uses five facts about the reaction functions defined by equation

(4) and (6). Note that the functions θ1(θ2) and θ2(θ1) defined by the two equations are

continuously differentiable for θ ∈ (
¯
θ, θ̄).

1. The reaction functions intersect at θ1 = θ2 = θ∗. At these values, Θ(θ1) = Θ(θ2) =

1, since δ(θ∗) = 0; and θ1/θ2 = 1.

2. As θ2 → 0, the solution to equation (4) must be such that Θ(θ1) → ∞ i.e., θ1 → θ̄.

3. As θ1 → ∞, the solution to equation (6) must be such that Θ(θ2) → 0 i.e., θ2 →
¯
θ.

4. The derivative of agent 1’s reaction function, when it exists, is obtained by total

differentiation of equation (4):

(

(2α + 1)
θ2α
1

Θ(θ1)
−

θ2α+1
1

(Θ(θ1))
2 Θ′(θ1)

)

dθ1 = (2α + 1)θ2α
2 dθ2.
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By assumption 2(ii), the reaction function is downward-sloping. Straightforward

calculations show that

lim
θ1↓θ∗, θ2↑θ∗

∂θ1

∂θ2

= −∞.

5. Similarly, the derivative of agent 2’s reaction function, when it exists, is obtained

by total differentiation of equation (6). Evaluated at θ1 = θ2 = θ∗, this gives the

derivative of agent 2’s reaction function as

lim
θ1↓θ∗, θ2↑θ∗

∂θ1

∂θ2

= 0.

Hence the solutions of equations (4) and (6) are equal at θ1 = θ2 = θ∗ (fact 1); for

any given value of θ2 less than but close to θ∗, the solution of equation (4) is greater than

the solution of equation (6) (facts 4 and 5); and the solution of equation (4) is less than

the solution of equation (6) for θ2 sufficiently close to
¯
θ (facts 2 and 3). Therefore, by

the intermediate value theorem, a solution to the equations exists that satisfies θ̄ > θ1 >

θ∗ > θ2 >
¯
θ. ¤

One possibility is shown in figure 1, which assumes that there is only one intersection

point (labelled (θ̂1, θ̂2) for clarity) of the reaction functions in the region θ1 > θ∗ > θ2.

Note from the figure (see also fact 1 in the proof of the proposition) that the reaction

functions also intersect at θ1 = θ2 = θ∗. The following corollary, which follows immedi-

ately from the relative slopes of the reaction functions around the point θ1 = θ2 = θ∗,

means that this solution can be ignored in the remainder of the analysis.

Corollary 1 The solution θ1 = θ2 = θ∗ to equations (4) and (6) is not stable under the

best-response dynamic (when strategies are restricted to be CCT).

The two-agent game differs markedly from the single-agent decision problem. As we

pointed out in section 2.1, with one agent, there is no delay: the object is acquired

immediately. This is because we have assumed that individual agents’ valuations are

non-convex; and with non-convex valuations, there is no benefit from delaying a bid.7

7Note that we do not have a sunk cost of bidding in the model—any irreversibility arises because once
the object is acquired, it cannot be resold and the bid recouped.
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Figure 1: Reaction functions

When there is a rival bidder, however, each agent’s payoff function becomes convex: it is

bounded below by 0 when the agent loses, and is equal to the difference in the agents’

valuations when the agent wins. This convexity induces an incentive to delay bidding:

rather than bidding immediately, or at the first instant when it has the larger valuation,

each bidder waits until the difference in valuations is sufficiently large. This feature—

that competition makes payoffs convex—is quite general; we therefore expect to see bidder

delay in more general environments than the one that we consider in this paper.

For the usual reasons, comparative statics are complicated if there are multiple equilib-

ria. In order to ensure a unique solution to equations (4) and (6), the following assumption

is made:

Assumption 3 (Uniqueness of CCT Equilibrium) θΘ(θ)−1/(2α+1) is a strictly con-

cave function of θ for all α.

There is, unfortunately, no intuitive interpretation of the technical condition required

in the assumption. The assumption can, of course, be stated in terms of the function

δ(θ); it is satisfied by a linear δ(·) function, for example.

An important comparative static involves the effect of an increase in uncertainty (i.e.,

14



the parameter σ) on the trigger points θ1 and θ2. A standard property of single-agent

real option models is that irreversible actions are delayed (i.e., occurs at a higher level of

the state variable for agent 1, and a lower level for agent 2) when uncertainty increases.

The reason for this is that delay allows for the possibility that the random process (1)

might change; if it goes in an adverse direction (down for agent firm 1, up for agent 2),

then the agent need not act. The greater the variance of the process, the more valuable

is the option created by this asymmetric situation, and so the more delay occurs.

The situation is complicated in the multiple agent case by the threat of pre-emption. If

agent 1 delays, then it may lose its option altogether should agent 2 act in the meantime.

This consideration can be seen in the value function in equation (3), for example. The

term B1θ
α+1 > 0 is agent 1’s valuation of the option to delay due to the single-agent effect;

the option-like term A1θ
−α < 0 is the decrease in the valuation due to the possibility that

agent 2, not agent 1, acquires the target.

There are, therefore, two factors pulling in opposite directions when uncertainty in-

creases; the comparative statics of θ1 and θ2 with respect to σ are determined by the

balance between these two factors. Proposition 2 shows how these effects balance out.

Proposition 2 ∂θ1/∂σ > 0 and ∂θ2/∂σ < 0 for all σ ≥ 0.

Proof. The proof of both parts concentrates on the reaction function of agent 1,

equation (4); the symmetry in equations (4) and (6) means that the equivalent result for

agent 2 follows immediately. Equation (4) can be re-written as

θ1

(Θ(θ1))
1

2α+1

= θ2.

Consider the denominator of the left-hand side of this reaction function. Taking logs and

differentiating with respect to σ gives

∂

∂σ
ln
(

(Θ(θ))
1

2α+1

)

=
2ασ

(2α + 1)2

(

− ln Θ(θ) +
1

2

(

Θ(θ) − 1

Θ(θ)

)

(1 + Θ(θ))

)
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where ασ ≡ ∂α/∂σ. Since ασ < 0, the sign of this expression is determined by the sign of

− ln Θ(θ) +
1

2

(

Θ(θ) − 1

Θ(θ)

)

(1 + Θ(θ)) . (7)

Consider the function φ(x) ≡ − ln x + 1
2

(

x−1
x

)

(1 + (x − 1)). φ(1) = 0; and for x > 1,

the first derivative is

φ′(x) =
1

2

(

x − 1

x

)2

> 0.

Hence φ(x) > 0 for x > 1. Hence the expression in equation (7) is positive for all values

of σ below some critical value σ∗. Therefore the denominator of the left-hand side of the

reaction function of agent 1 is decreasing in σ; and consequently, the reaction function

of agent 1 shifts upwards when σ increases. With the symmetric argument for agent 2’s

reaction function, the proposition follows. ¤

We show in the proposition that the standard option effect (which acts e.g., to increase

the trigger θ1 as σ increases) outweighs the pre-emption effect (which acts in the opposite

direction). This need not be the case. When the random process in equation (1) has a

positive drift, µ,8 there are cases when the pre-emption effect dominates. We have shown

analytically (in a proof available on request) that when µ > 0, in the limit as σ → +∞,

∂θ1/∂σ < 0 and ∂θ2/∂σ > 0. Numerical analysis suggests that this outcome occurs

when the drift parameter is large (close to, but below the interest rate r) and there is a

substantial degree of uncertainty. When µ is large, the opportunity cost of holding the

option to bid is small, and so the option value is large. When σ is large, the option value

is large. Hence both conditions (µ and σ large) ensure that the agents’ options to bid

are very valuable. But when σ is large, each agent assesses a high probability that the

state variable hits the other agent’s trigger point. The optimal response of each agent

to an increase in σ is then to decrease delay (so that θ1 falls and θ2 rises), to limit the

probability of pre-emption and so preserve its large option value. (See Mason and Weeds

(2004) for a more general analysis of when the standard comparative static is reversed

8I.e., dθt = µθtdt + σθtdWt where µ ∈ [0, r) is the drift parameter. The restriction that µ < r ensures
that there is a positive opportunity cost to holding the option to bid to acquire the good. This means that
each agent bids at some finite value of the state variable, rather than holding the option in perpetuity.
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because of pre-emption.)

In a sense, therefore, the result in proposition 2 is not general: the comparative static

with respect to σ is unambiguous only when µ = 0. But the numerical analysis suggests

that, even with a large drift, the extent of delay increases with σ for almost all values of

the volatility parameter. The unusual outcome, in which delay decreases with uncertainty,

occurs only for extreme values of σ.

3.2 Equilibrium Existence

In this section, we show that the best response to a CCT strategy is itself a CCT strategy

i.e., that a CCT equilibrium exists. Consider first the bidding stage when at least one of

the agents has made a bid. By the standard ‘Bertrand’ argument in common knowledge

bidding games, when one agent bids competitively and cautiously, then the best response

is a competitive, cautious bid. Given this behaviour in the bidding stage, now consider

the prior stage when agents must decide when to bid; and suppose that agent 2 bids at

the first time that the state variable hits the interval [0, θ2]. Agent 1’s value function V0

when it is not bidding is

V0 =







0 θ ≤ θ2,

A1θ
−α + B1θ

α+1 θ > θ2;

see the appendix. Its value function when it makes a bid is given by

δ(θ) − ε s1(θ) > s2(θ)

0 otherwise.

As is argued in the appendix, the continuation region (i.e., in which no bid is made) for

agent 1 is the half-open interval [0, θ̂), while the stopping region (in which a bid is made)

is the interval [θ̂,∞), for some θ̂. (In fact, the analysis above determines the optimal

point as θ1.)

An analogous argument holds for agent 2’s best response when agent 1 uses a CCT
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strategy. In summary: the best response to a CCT strategy is itself a CCT strategy.

Hence

Proposition 3 A CCT equilibrium exists.

Of course, non-CCT equilibria exist—there are Markovian equilibria that are non-CCT

(for example, the continuum of equilibria with non-cautious bidding in the bidding stage

of the game); and there are non-Markovian equilibria. As we have explained, our focus

on Markovian CCT equilibrium is motivated by our interest in the timing of noncollusive

bids.

4 The Efficient Solution

Efficiency requires that the object be acquired by the agent with the higher valuation. The

identity of that agent is stochastic—when θ < θ∗, it is agent 2, when θ > θ∗, it is agent

1. The timing of acquisition must also be efficient; we denote the efficient trigger points

by θL for the lower threshold and θH for the upper one. Hence the efficient allocation

rule takes the form “award the object to agent 2 immediately if θ ∈ [0, θL], to agent 1

immediately if θ ∈ [θH ,∞); otherwise wait”. Familiar derivations give the efficient value

function as

W =



















s2(θ) θ ≤ θL,

AEθ−α + BEθα+1 θ ∈ (θL, θH),

s1(θ) θ ≥ θH .

(8)

Value-matching and smooth-pasting conditions apply at the efficient triggers θL and θH .

These four equations yield, after elimination of the value function coefficients,

(

θH

θL

)α

=
−(α + 1)s2(θL) + θLs′2(θL)

−(α + 1)s1(θH) + θHs′1(θH)
, (9)

(

θH

θL

)α+1

=
αs1(θH) + θHs′1(θH)

αs2(θL) + θLs′2(θL)
. (10)

Little analytical progress can be made without strong assumptions on the agent’s

valuation functions s1(·) and s2(·). We assume the following simple linear form.
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Assumption 4

s1(θ) = λθ, λ > 0, (11)

s2(θ) = η, η > 0. (12)

Hence δ(θ) = −η+λθ, θ∗ = η/λ, θ̄ = (α+1)θ∗/α and
¯
θ = αθ∗/(α+1). These functional

forms are chosen for their analytical convenience. One informal story to support them is

that agent 1 is a firm that operates in the same industry as the target and has a lower

unit cost of production than the target. When the state θ is the level of demand in the

industry, agent 1 can generate an extra profit, of the form λθ (where λ is related to the

cost difference). In contrast, agent 2 has a fixed cost saving, relative to the target, of η.

With assumption 4, equations (4) and (6), determining the equilibrium triggers, and

equations (9) and (10), determining the efficient triggers, become

(

θ1

θ2

)2α+1

=
(α + 1)θ1 − αθ∗

−αθ1 + (α + 1)θ∗
, (13)

(

θ1

θ2

)2α+1

=
−αθ2 + (α + 1)θ∗

(α + 1)θ2 − αθ∗
, (14)

θH =

(

α + 1

α

)
1

2α+1

θ∗, (15)

θL =

(

α

α + 1

)
1

2α+1

θ∗. (16)

The symmetry of the equations means that θ1 = 1/θ2 and θH = 1/θL.

Since pre-emption is not an issue in the efficient solution, the triggers θH and θL should

have the the usual property of delay for situations of irreversible action under uncertainty;

that is, θH should be increasing and θL decreasing in σ. The next proposition confirms

this conjecture.
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Proposition 4 If assumption 4 holds, then

(i) limσ→0 θH/θL = 1;

(ii) limσ→∞ θH/θL = ∞;

(iii) ∂θH/∂σ > 0, ∂θL/∂σ < 0.

Proof. Equations (15) and (16) imply that

θH

θL

=

(

α + 1

α

)
2

2α+1

.

Parts (i) and (ii) of the proposition follow immediately from observing that as σ → 0 (∞),

α → ∞ (0), respectively. Part (iii) of the proposition will be proved for θH ; an equivalent

argument holds for θL. Since α is a decreasing function of σ,

∂

∂σ

(

α + 1

α

)

> 0 and
∂

∂σ

(

1

2α + 1

)

> 0.

This implies immediately that θH is increasing in σ. ¤

Assumption 4 also allows us to compare the equilibrium and efficient triggers:

Proposition 5 If assumption 4 holds, then θ1 ≥ θH and θ2 ≤ θL.

Proof. The proof works by showing (through contradiction) that θ1/θ2 ≥ θH/θL; since

θ1 = 1/θ2 and θH = 1/θL, this gives the result immediately. To simplify expressions, let

θ̃k ≡ θk/θ
∗ for k ∈ {1, 2, H, L}. From equations (15) and (16),

θ̃H

θ̃L

=

(

α + 1

α

)
2

2α+1

;

from equation (13),

θ̃1

θ̃2

=

(

(α + 1)θ̃1 − α

−αθ̃1 + α + 1

)
1

2α+1

.
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Suppose that θ̃H/θ̃L ≥ θ̃1/θ̃2. Manipulation of the above expressions shows that this

would mean that

θ̃1 ≤
α3 + (α + 1)3

α(α + 1)(2α + 1)
.

Similarly, from equation (14),

θ̃1

θ̃2

=

(

−αθ̃2 + α + 1

(α + 1)θ̃2 − α

)
1

2α+1

.

θ̃H/θ̃L ≥ θ̃1/θ̃2 then implies that

θ̃2 ≥
α(α + 1)(2α + 1)

α3 + (α + 1)3
.

Hence θ̃H/θ̃L ≥ θ̃1/θ̃2 implies that θ̃1/θ̃2 ≤ 1—a contradiction (since θ1 ≥ θ2). Therefore

θ̃H/θ̃L ≤ θ̃1/θ̃2. The proposition follows. ¤

Proposition 5 tells us that there is too much delay in equilibrium. The efficient payoff

is πE ≡ max{s1, s2}; the equilibrium payoff of bidder 1 is π1 ≡ max{s1 − s2, 0}, and

of bidder 2 is π2 ≡ max{s2 − s1, 0}. Equilibrium payoffs are lower, therefore, because

competition creates negative externalities : πi = πE − s−i < πE for i ∈ {1, 2}. Notice that

the equilibrium payoff of an agent is lower than the efficient payoff, both when it wins

the object and when it loses to the agent. The reduction in payoff on winning the object

leads the agent to bid later (relative to the efficient trigger); the reduction on losing leads

to an earlier bid. When an agent chooses its trigger point optimally, the former effect

dominates, so that negative externalities lead to more delay in equilibrium.

To see why, consider first the choice of trigger point by agent 1. When assumption 4

holds, the equilibrium payoff to agent 1 is max{0, λθ−η}; the efficient payoff is max{η, λθ}

i.e., an upward shift of the equilibrium payoff. The equilibrium payoff of agent 1 is

therefore lower than the efficient payoff by an amount η (i.e., the valuation of agent

2) both when it wins the object and when it loses to agent 2. Agent 1 will be the

first to bid only when θ ≥ θ∗ i.e., when it has the higher valuation. Hence, the payoff

reduction on winning is more important than the reduction on losing because the former
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occurs immediately, while the latter occurs in the future (when θ falls below θ∗) and so is

discounted. Since the undiscounted payoff reductions are equal, the reduction on winning

has greater weight. So, for a given lower trigger point (θL, say), the equilibrium upper

trigger is greater than the efficient upper trigger. The shape of the reaction functions

(established in proposition 1) then ensures that θ1 ≥ θH ≥ θL ≥ θ2.

This argument for agent 1 relied on agent 2’s valuation being a constant, η. A more

general intuitive argument can be made. Agent 1’s value function in equation (3) has

two components. The first OL1(θ) ≡ A1θ
−α < 0 is an option-like term anticipating

agent 2’s successful bid; the second O1(θ) ≡ B1θ
α+1 > 0 is an option term relating to its

own successful bid. At agent 1’s optimally-chosen trigger point θ1, value-matching and

smooth-pasting imply that O1(θ1) > −OL1(θ1) > 0 and O′
1(θ1) > −OL′

1(θ1) > 0 (where

the prime denotes the derivative with respect to θ). Hence the option term is greater

in terms of both level and slope. In short, the value from winning is more important

than the value from losing.9 Hence agent 1’s trigger point lies above the efficient level.

This argument suggests that the result in proposition 5 should generalize beyond linear

valuation functions, although we have been unable to show this analytically.10

In general, a second effect may arise: the negative externalities may not only shift

equilibrium payoffs, but also change the degree of convexity, relative to the efficient payoff.

If the externalities create more (less) convexity, then they will tend to lead to more (less)

delay in equilibrium, other things equal. Agent 1’s equilibrium payoff function is (weakly)

more convex than the efficient payoff function iff

s′′1(θ)

s′1(θ)
≥

s′′2(θ)

s′2(θ)
∀ θ,

assuming non-zero first derivatives. This condition is satisfied with equality when as-

sumption 4 is satisfied (since s′′1 = s′′2 = 0);11 hence this effect does not arise in our

9Equivalently, for agent 2: its value function in equation (5) has two components: the option term
O2(θ) ≡ A2θ

−α > 0 relating to its own successful bid; and the option-like term OL2(θ) ≡ B2θ
α+1

anticipating agent 1’s successful bid. Value-matching and smooth-pasting at agent 2’s trigger point θ2

imply that O2(θ2) > −OL2(θ2) > 0 and −O′
2(θ2) > −OL′

2(θ2) > 0. Again, the option term is greater in
level and slope.

10Numerical investigation supports this optimism.
11Or when both valuation functions are (strictly increasing) linear functions—in this case, the equilib-
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analysis.

5 Summary of Results

In figure 2, the various triggers are shown against different values of σ. We use assumption

4 for the agent’s valuation functions, and set the interest rate r to 5%, agent 2’s value η

to 10 and the slope of agent 1’s value λ to 1. With these values, θ∗ = 10.

Summarising, our analytical results are that

1. θ̄ is increasing and
¯
θ is decreasing (results 1 and 2);

2. θ1 is greater than θ∗, less than θ̄ and increasing; θ2 is less than θ∗, greater than
¯
θ

and decreasing (propositions 1 and 2);

3. θH is increasing and θL decreasing (proposition 4);

4. θ1 ≥ θH and θ2 ≤ θL (proposition 5).

These results are all confirmed by the numerical analysis shown in figure 2.

Figure 2: Triggers against the degree of uncertainty σ

rium payoff of e.g., agent 1 is shifted vertically and rotated, relative to the efficient payoff; the degree of
convexity is unchanged.
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6 Incentives of the Seller

We now investigate the question of the seller’s preferences with respect to the timing

of acquisition, and towards the volatility parameter σ of the stochastic process followed

by θ. One motivation for this analysis is the case of the seller as a target firm in a

take-over situation. If the target can influence when bids are made, at what time would

its shareholders prefer this to be? A firm can affect its value by choosing projects with

different risk profiles: when volatility affects the timing of takeover bids, how might this

be manipulated?

When the bidders’ payoffs satisfy assumption 4, there is an alternative interpretation

of volatility. Note that the stochastic process θ drives the gap between the valuations of

the target firm and bidder 1, with this difference being scaled by λ. Thus, the volatility

σ may be interpreted as the degree of correlation between the value of these assets when

controlled by the target and under the alternative ownership of bidder 1—a higher value

of σ is a reduction in the correlation between these valuations. Under this interpretation,

the target’s choice of a lower value of σ corresponds to a higher degree of correlation

between itself and the bidder with lower marginal cost. (The degree of correlation with

bidder 2, with a fixed cost reduction, is not affected.)

The seller receives the payoff of the losing bidder when acquisition occurs i.e., its

payoff is

S(θ) =







s1(θ) θ ≤ θ2,

s2(θ) θ ≥ θ1.

Using familiar calculations, the seller’s value function can then be shown to be

U =



















s1(θ) θ ≤ θ2,

ASθ−α + BSθα+1 θ2 < θ < θ1,

s2(θ) θ ≥ θ1.

The coefficients AS and BS are determined by value-matching conditions at the triggers
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θ1 and θ2; there are no corresponding smooth-pasting conditions as the trigger points

involve no optimality on the part of the seller.

The first observation is immediate: the seller’s payoff function S(θ) is concave. Thus

greater delay (i.e., a widening of the trigger points θ1 and θ2) is harmful to the seller. Note

that this finding does not require a functional form assumption, such as assumption 4, for

s1(·) and s2(·). It depends only on the assumption that the difference in the valuations

is (weakly) increasing; bidding is competitive, so that the seller receives the lower of the

valuations.12

From proposition 2, we know that the bidders’ triggers widen when the degree of

uncertainty σ increases. An increase in σ reduces the seller’s pre-bid value: for any two

parameters such that σ1 < σ2, the associated value functions U1 and U2 are such that

U1 > U2. Hence the seller always prefers a lower value of σ. This is illustrated in figure

3, in which an increase in σ from 0.2 to 0.4 shifts θ2 to the left and θ1 to the right, and

results in a downward shift in the seller’s value function.

Figure 3: The target’s value function against σ

These arguments are summarised in the next proposition.

Proposition 6 If the seller can choose the time at which the object is sold, then it will

12Recall that assumption 1 ensures that the valuation functions si(·) are not convex.
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sell the object immediately. If, instead, the seller can choose the volatility parameter σ of

the state variable process (1), then it will choose the lowest possible value of σ.

To complete this section, we consider the efficient choice of the parameter σ, given the

behaviour of the bidders. The efficient value function is of the same form as in equation

(8), but the value function coefficients AE and BE are now determined by value-matching

conditions at θ1 and θ2. (In section 4, smooth-pasting conditions apply at θH and θL ,

since these triggers are fully efficient.) We are unable to obtain analytical results in this

case. Numerical analysis shows that the efficient choice of σ depends on the initial level

θ0 of the process 1. If θ0 is close to θ∗, the efficient choice of σ is high, as illustrated in

figure 4. But when the initial value is further away from θ∗, the efficient choice of σ is low.

This result is due to the tension between two factors. Since the efficient payoff function

is convex, greater uncertainty increases the (option) value of take-over. This effect is

particularly strong close to the kink at θ∗. However, in non-cooperative equilibrium, the

bidders tend to delay too much; greater uncertainty worsens this inefficiency. At values

of θ further away from θ∗, this inefficiency dominates and the efficient choice of σ is low,

despite the convexity of the efficient payoff, in order to avoid excessive delay.

Figure 4: The efficient value function against σ
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7 Conclusions

We have examine the timing of competitive bids. Our main results demonstrate that there

is inefficient delay in equilibrium. Delay occurs because competition between bidders

makes their payoffs convex. Too much delay occurs in equilibrium because competition

creates negative externalities. While we had to specialize the analysis to linear valuation

functions when demonstrating the inefficiency of equilibrium, we believe that the result

is more general.

In future work, we plan to examine in more detail the seller’s decision of when to

offer the object for sale. When the seller has incomplete information about the buyers’

valuations, the choice of the selling mechanism (e.g., auction format) is likely to influence

the timing of sale. The separation of ownership and control implies that managerial,

rather than shareholder, incentives determine the behaviour of the target; in this context

an analysis of managers’ payoffs becomes relevant.

Appendix

In this appendix, we derive the value function of agent 1 when agent 2 uses a CCT

strategy. The derivation of agent 2’s value function is very similar and so is omitted.

Agent 1’s value function V1(θt) given a level θt of the state variable is given by equation

(2). In the ‘continuation’ region before either agent has bid, in any short time interval

dt starting at time t agent 1 receives a flow payoff of 0 and experiences a capital gain or

loss dV1. The Bellman equation for the value of the entry opportunity is therefore

V1 = exp (−rdt)Et [V1 + dV1] .

Itô’s lemma and the GBM equation (1) gives the ordinary differential equation (ODE)

1

2
σ2θ2V ′′

1 (θ) − rV1(θ) = 0.

The general solution of this homogeneous ordinary differential equation is V1 = A1θ
α +

27



B1θ
α+1, where A1 and B1 are constants, and α > 0 is the positive root of the quadratic

equation Q(z) = 1
2
σ2z(z + 1) − r.

If agent 1 bids and wins, it receives a flow payoff of s1(θ) while paying its bid b1. With

CCT bidding, b1 = b2 + ε if b2 < s1 , or b1 ≤ s1 otherwise. Hence agent 1’s payoff at

the point θ̂ at which it bids and wins is δ(θ) (minus an arbitrarily small constant ε). By

assumption 1, δ(·) is a strictly increasing function. Hence by a standard argument (see

e.g., Dixit and Pindyck (1994)), the ‘stopping’ region for agent 1 i.e., the region of the

state space in which it bids, is the interval [θ̂, +∞).
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