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Abstract

This paper estimates and compares the full participation and the segmented

markets monetary frameworks. In both models, the real sector and monetary

policy determine exogenously the joint process for the aggregate endowment and

the short-term nominal interest rate, while the money growth rate and the inflation

rate are determined endogenously. Using linearized versions of the models, we use

Bayesian methods to compare the two models over the full dimension of the data.

This likelihood-based comparison overwhelmingly favors the segmented markets

model over the full participation model. The estimate of the fraction of households

participating in financial markets is approximately 13%. The segmented markets

model generates more persistent and more realistic impulse response functions to

monetary policy shocks. Our results strongly suggest that taking the presence

of market segmentation into account is important in understanding the short-run

dynamics of the monetary sector.
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1 Introduction

The segmented markets model, has recently been adopted with success as a framework for

monetary analysis. Alvarez, Lucas and Weber (2001), Lahiri, Singh and Vegh (2003), and

Occhino (2004) are current examples of how the segmented markets framework provides

fundamental insights into the nature of the short-run interaction among money, interest

rates, exchange rates and inflation.

This paper brings the segmented markets literature one step further, estimating

the model and comparing it with the benchmark of full participation. Abstracting from

other frictions, we focus on evaluating the impact of introducing market segmentation

into an equilibrium model with money. We assume that the real sector and monetary

policy determine exogenously the joint process for the aggregate endowment and the

short-term nominal interest rate, and then we derive the model predictions on the the

money growth rate and the inflation rate. We compare the models with data along two

main dimensions. One, statistical, based on the log marginal likelihood, the other, more

dependent on economic theory, based on the response to monetary policy shocks.

We use contemporary Bayesian methods to bring non-sample and sample infor-

mation to bear on this comparison. Linearized versions of each model are calculated

and these are used to construct likelihood functions for each model. The information

contained in the data, through the likelihood function, and non-sample information, in

the form of proper priors, are combined to statistically compare the two models using

log marginal likelihoods. As the log marginal likelihood reflects the cumulative out-of-

sample prediction performance of a model, we therefore formally compare the two models

based on their ability to predict out of sample. We also evaluate the performance of the

two models based on their ability to produce impulse responses to monetary shocks that

accord with the empirical literature.

The paper is organized as follows. Section 2 describes the economy, defines the

competitive equilibrium, and derives the log-linear approximation to the solution. Sec-
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tion 3 details the data, the calibrated parameters, and the estimation procedure. Section 4

describes and comments on the estimation results, the likelihood comparison, and the

impulse response analysis. Section 5 concludes.

2 Model

The model is a cash-in-advance endowment economy, with a large number of households

and a monetary authority. Time is discrete and is indexed by t ≥ 0. There are a single

non-durable consumption good, money, and one-period nominal bonds, which are claims

to one unit of money payable at the end of the period. Households are of two types,

traders and non-traders. Let ω > 0 and ω∗ ≥ 0 be respectively the number of traders

and non-traders. We will refer to the case where ω∗ = 0 and ω∗ > 0 respectively as the

full participation model and the segmented markets model.

Households of the same type are identical in all respects. The crucial difference

between the two types of households is that non-traders spend all their money purchasing

consumption goods, while traders can purchase bonds as well.

Households start each period with cash balances from the previous period. Then,

two markets meet in sequence, a bond market and a goods market.

In the bond market, the monetary authority sells one-period nominal bonds to

the traders, at the bond price qt > 0. Open market operations are conducted in terms

of the short-term nominal interest rate it. The monetary authority announces the bond

price

qt ≡
1

1 + it
(1)

and stands ready to issue and sell any number of bonds to clear the market at that price.

Monetary policy is, then, an exogenous stochastic process for the interest rate, while the

bond supply and the money supply are determined endogenously. By assumption, the

interest rate is strictly positive, and the bond price is strictly less than one.
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After the bond market, all households participate in the goods market. Each

trader and each non-trader respectively receive constant fractions Λ > 0 and Λ∗ > 0

of the exogenous stochastic aggregate endowment Yt > 0, with ωΛ + ω∗Λ∗ = 1. The

endowment cannot be consumed directly, and must be sold in exchange of money at the

price Pt > 0. Households can only consume goods purchased with money held before the

goods market session. The money supply

Mt ≡ PtYt (2)

is defined as the amount of dollars PtYt spent in the goods market. Bonds are redeemed

after the goods market closes.

The aggregate endowment Yt and the nominal interest rate it are the only sources

of uncertainty in the economy. Let {Y t, it}
∞
t=0 be the non-stochastic steady state values

of the aggregate endowment and the interest rate, and let us assume that Y t+1/Y t = α

and it = i are constant over time. We assume that ẑt ≡ [log(Yt)− log(Y t), log(it)− log(i)]′

follows the AR(1) process

ẑt = Πẑt−1 + Ψηt (3)

where Π and Ψ are two-by-two matrices, Ψ is lower triangular, ηt is a two-by-one vector

of independently and identically distributed standard Gaussian shocks.

Each trader chooses consumption Ct, bonds Bt, and next-period cash balances

At+1 to solve

max
{Ct>0,Bt,At+1>0}∞

t=0

E0

[

∞
∑

t=0

βtu(Ct)

]

subject to:

qtBt + PtCt ≤ At

At+1 = At − qtBt − PtCt + PtΛYt + Bt,

(4)
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given the trader’ initial cash balances A0 > 0 in period zero, where E0 is the expectation

conditional on information available after ẑ0 has been revealed, the period utility function

u(C) ≡ C1−1/ε/(1−1/ε) is constant elasticity of substitution, and the preferences discount

factor satisfies βα1−1/ε ∈ (0, 1).

Since the bond price qt is strictly less than one for all t, holding idle cash bal-

ances is never optimal for traders, so the traders’ cash-in-advance constraint always holds

with equality. Then, the two constraints in the above maximization problem (4) can be

substituted with the constraints

qtBt + PtCt = At

At+1 = PtΛYt + Bt

(5)

Non-traders spend all their initial cash balances purchasing consumption goods.

Under this assumption, the behavior of a non-trader is simply described by constraints

PtC
∗
t = A∗

t

A∗
t+1 = PtΛ

∗Yt

(6)

given the non-traders’ initial cash balances A∗
0 > 0 in period zero.

The economy is described by the traders’ initial assets A0 > 0, the non-traders

initial assets A∗
0 > 0, the initial exogenous state ẑ0, and the law of motion (3) for the ex-

ogenous state ẑt. An equilibrium is a set of contingent sequences {Ct > 0, Bt, At+1 > 0}∞t=0

of consumption demand, bonds demand and cash balances for traders, {C∗
t > 0, A∗

t+1 >

0}∞t=0 of consumption demand and cash balances for non-traders, a contingent sequence

{Dt}
∞
t=0 of bonds supplied by the monetary authority, and a contingent sequence {Pt >

0}∞t=0 of prices such that, given the prices, the traders’ contingent sequence solves the

traders’ optimization problem (4), the non-traders’ contingent sequence satisfies the non-

traders constraints (6), and the following bonds and goods market equilibrium condition
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hold:

ωBt = Dt

ωCt + ω∗C∗
t = Yt

(7)

The necessary first-order conditions for the traders’ optimization problem are

βtu′(Ct) − ν1
t Pt = 0

−qtν
1
t + ν2

t = 0

−ν2
t + Et[ν

1
t+1] = 0

(8)

and the transversality condition is

lim
t→∞

E0

[

ν1
t At

]

= 0 (9)

where ν1
t and ν2

t are the Lagrange multipliers associated with the two constraints (5).

From the first-order conditions, it follows that

βtu′(Ct) = ν1
t Pt

qtν
1
t = Et[ν

1
t+1]

(10)

The system describing the equilibrium is, then, made of the identities (1) and (2),

the law of motion 3 for the exogenous state, the traders’ first-order conditions 10, the

traders’ constraints 5, the non-traders’ constraints 6, and the equilibrium conditions 7.

For convenience, variables are normalized as follows. As Lucas (1990), nominal

variables are normalized by aggregate cash balances available at the beginning of the

period. Let At ≡ ωAt + ω∗A∗
t be the initial aggregate cash balances. Then, yt ≡ Yt/Y t,

νt ≡ u′(ω)ν1
t At/β

tu′(Y t)Y t, ct ≡ ωCt/Y t, bt ≡ ωBt/At, at ≡ ωAt/At, c∗t ≡ ω∗C∗
t /Y t,

a∗
t ≡ ω∗A∗

t /At, dt ≡ Dt/At, γt ≡ At+1/At, pt ≡ PtY t/At, mt ≡ Mt//At. Also, let us
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define the traders’ share of the aggregate endowment as λ ≡ ωΛ = 1 − ω∗Λ∗. λ is equal

to 1 in the full participation model, and λ ∈ (0, 1) in the segmented markets model. It

might be helpful to consider the case where the endowment received by a trader is the

same as the one received by a non-trader, so Λ = Λ∗. In this case, Λ = 1/(ω + ω∗, and

λ = ω/(ω + ω∗), so λ is the proportion of traders in the economy.

The system describing the equilibrium can then be written as

qt(1 + it) ≡ 1 (11a)

u′(ct) = νtpt (11b)

qtγtνt = βEt[νt+1]u
′(α)α (11c)

qtbt + ptct = at (11d)

γtat+1 = ptλyt + bt (11e)

ptc
∗
t = a∗

t (11f)

γta
∗
t+1 = pt(1 − λ)yt (11g)

bt = dt (11h)

ct + c∗t = yt (11i)

mt ≡ ptyt (11j)

at + a∗
t = 1 (11k)

together with the law of motion (3) for the exogenous state. The transversality condi-

tion (9) can be written as

lim
t→∞

E0

[

βtu′(Y t)Y tνtat/u
′(ω)ω

]

= 0. (12)

It is convenient to derive an equivalent system as follows. From the households’
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budget constraints (11e) and (11g), it follows that

γtat+1 + γta
∗
t+1 = ptλyt + bt + pt(1 − λ)yt

qtγt[at+1 + a∗
t+1] = qtptyt + qtbt

Then, using the households’ cash-in-advance constraints (11d) and (11f), the equa-

tion (11a), and the goods market equilibrium condition (11i)

qtγt[at+1 + a∗
t+1] = qtptyt + at − ptct + a∗

t − ptc
∗
t

qtγt = qtptyt + 1 − ptct − ptc
∗
t

qtγt + (1 − qt)ptyt = 1

which we use in place of the traders’ budget constraint 11e in the previous system 11.

In the non-stochastic steady state, all normalized variables are constant over time,
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and yt = 1. The non-stochastic steady state can, then, be derived from the system:

q(1 + i) ≡ 1

qγ = βu′(α)α

qγ + (1 − q)py = 1

m ≡ py

pc∗ = a∗

γa∗ = p(1 − λ)y

c + c∗ = y

u′(c) = νp

a + a∗ = 1

qb + pc = a

b = d

(13)

where the variables without the time subscript are the non-stochastic steady state values.

Notice that, since βα1−1/ε ∈ (0, 1), the transversality condition is satisfied in the non-

stochastic steady state.
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Log-linearizing the system around the non-stochastic steady state yields

q̂t +
i

1 + i
ît ≡ 0

−
1

ε
ĉt = ν̂t + p̂t

q̂t + γ̂t + ν̂t = Et[ν̂t+1]

qb[q̂t + b̂t] + pc[p̂t + ĉt] = aât

qγ[q̂t + γ̂t] + (1 − q)py[−
q

1 − q
q̂t + p̂t + ŷt] = 0

p̂t + ĉ∗t = â∗
t

γ̂t + â∗
t+1 = p̂t + ŷt

b̂t = d̂t

cĉt + c∗ĉ∗t = yŷt

m̂t ≡ p̂t + ŷt

aât + a∗â∗
t = 0

(14)

where the variables without the time subscript are the non-stochastic steady state values,

while the variables with the hat are the percentage deviations from the steady state

values.

The system (14) together with the law of motion (3) for the exogenous state can

be reduced to a four equations system in the two exogenous variables ŷt and ît, the en-

dogenous state variable â∗
t and the control variable ν̂t. With standard methods, we, then,

derive the linear system describing the equilibrium evolution of the three state variables

ŷt, ît, and â∗
t , and linking all the other variables to the three state variables1. In partic-

ular, we derive the the percentage deviations of normalized money m̂t and normalized

1The solution method is based on the eigenvalue decomposition of the matrix describing the evolution
of the state and control variables. Very small imaginary parts of the solution are dropped. As a check,
the model has been solved using MATLAB files written by Chris Sims and Paul Klein as well. I thank
them for making the files available at the web address http://www.ssc.uwo.ca/economics/faculty/klein/.
Their solution method is based on the Schur decomposition of the matrix describing the evolution of the
state and control variables. The two methods yield identical solutions.
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prices p̂t as linear functions of the three state variables.

As detailed in the following section, however, the data that we use to estimate

the model are the deviations from steady-state values of the money growth rate µ̂t and

the inflation rate π̂t. In the model, µ̂t ≡ m̂t + γ̂t−1 − m̂t−1, and π̂t ≡ p̂t + γ̂t−1 − p̂t−1,

so they both depend on the last-period as well as the current-period state variables. It

is then necessary to re-define the state to include the last-period values as well as the

current-period values of the original state variables ŷt, ît, and â∗
t . We then define the

state as

st ≡ [ŷt, ît, â
∗
t , ŷt−1, ît−1, â

∗
t−1]

′,

and we represent the solution of the linearized system (14) and the law of motion (3) as

st = Msst−1 + Rηt, (15a)

where

Ms =

































Π11 Π12 0 0 0 0

Π21 Π22 0 0 0 0

m31 m32 m33 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

































, and R =

























Ψ

0

0

0

0

























,

where Ψ is the 2× 2 lower triangular matrix previously defined in the law of motion (3),

and 0 is a 1 × 2 vector of zeros. The structure of the model imposes that the exogenous

variables ŷt and ît evolve following a vector AR(1) process, while the endogenous vari-

able â∗
t is a function of the last-period values of ŷt, ît and â∗

t itself. The shocks ηt are

independently and identically distributed standard Gaussian shocks. The model takes as

exogenous the dynamics of the percentage deviations of the aggregate endowment and

the interest rate from their steady-state values and makes predictions about the endoge-
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nous dynamics of the deviations of the money growth rate µ̂t and the inflation rate π̂t.

We then define the data of the model as

xt = [µ̂t, π̂t]
′

and we represent the data equation of the state-space system as

xt = Mxst, (15b)

where Mx is a 2 × 6 system matrix.

3 Calculation of Likelihood Function and Estimation

of Model

In this paper we use likelihood methods to compare the full participation and the seg-

mented markets models described above. The philosophy behind using likelihood meth-

ods is so that all the information contained in the observed data can be brought to bear

on the inferential problem at hand. The inferential problem that we face is twofold: First

we want to estimate the structural parameters of the models described in Section 2, and

second we want to compare various functions of interest, such as the impulse response

functions, that are generated by the model.

There have been a number of approaches in the literature that have aimed to

answer similar types of inferential problems. The first type of approach is the method of

calibration where the structural parameters of laboratory economies are calibrated so that

selected functions of the simulated data from the model economy “match” observed values

of these functions from data. This approach has been widely used in macroeconomics

and has yielded important insights about the way the economy operates in the face of
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different types of shocks2.

The method of calibration, however, has not been without criticism, especially

in the area of formal model evaluation and comparison3. This has led to the use of

likelihood methods to estimate and formally evaluate the performance of highly stylized

models of the macro-economy. In this paper, we follow authors such as DeJong, Ingram

and Whiteman (1996, 2000), Geweke (1999), Schorfheide (2000), Fernandez-Villaverde

and Rubio-Ramirez (2004) and Smets and Wouters (2003), and use Bayesian methods

to answer the inferential problem described above. To use Bayesian methods we need

to be able to calculate the likelihood function of the model we are estimating. For the

types of models used in this literature this is not an easy problem. The most common

approach is obtain a locally linear approximation to the model and use this to construct

a likelihood function. In effect, we treat the linearized version of the model as the “true”

model to be estimated.

The linearized version of our model can be written as

xt = Mxst

st = Msst−1 + Rηt,

(16)

where xt is a n × 1 vector of observed variables, st is a m × 1 vector of state variables,

and ηt is a k× 1 vector of innovations to the system where k ≤ m. The system matrices,

My, Ms, and R are functions of the structural parameters of the model and reflect the

restrictions imposed on the observed data by the model.

Suppose that we observe T observations on our data vector, xt. Let this sample

be denoted as XT = {xt}
T
t=1. Let θ be a p × 1 parameter vector that includes all the

parameters that determine the system matrices in (16). Then, using the Kalman Filter

2There is a very large literature using calibration methods. Important early papers using these
methods are Kydland and Prescott (1982), Hanson (1985), and King, Plosser and Rebelo (1988). A very
good summary of calibration and its uses can be found in Kydland and Prescott (1996).

3See, for example, papers by Hansen and Heckman (1996), Sims (1996) and Kim and Pagan (1998)
for a good discussion of the issues surrounding calibration as an econometric tool.
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(see Harvey ( 1989, page 104)) we can, for any particular value of the parameter vector

θ, calculate the value likelihood function for the model given by (16)4. Let p(XT |θ,M)

represent that likelihood function of model M indexed by parameter vector θ.

Let p(θ|M) represent the prior density that we, the investigators, place over the

parameter vector θ that indexes model M. The prior distribution over the parameters

θ represents our beliefs regarding the true values of the parameters of the model, and

this acts as a way of imposing non-sample information onto our inferential problem. The

information on θ contained in the data is combined with the non-sample information on

θ via Bayes’ Theorem,

p(θ|XT ,M) ∝ p(θ|M)p(XT |θ,M). (17)

The posterior distribution, p(θ|XT ,M), contains all information on the value of θ con-

tained in the observed data and all non-sample information on θ supplied by the prior.

The inferential problem, described above, boils down to estimating the following expected

value:

E(g(θ)|XT ,M) =

∫

Θ

g(θ)p(θ|XT ,M)dθ, (18)

where g : Rp → Rq is some well-defined (potentially) vector valued function of θ, and Θ

is the domain of θ. In all but very special cases the integral defined in (18) cannot be

calculated analytically or, because of the “curse of dimensionality”, cannot be calculated

using numerical integration techniques. In these cases we use Markov chain Monte Carlo

(MCMC) methods (see Tierney (1994)) to simulate N serially correlated draws from

p(θ|XT ,M), {θ1, . . . , θN}. Then as long as E(g(θ)|XT ,M) = g < ∞ and E(g(θ) −

4In order to calculate the likelihood function for a state-space model using the Kalman Filter we need
to make an assumption about the initial value of the state vector, s0. In what follows we treat the initial
value of the state vector as a parameter of the model rather than using the steady state values of the
state vector and the covariance matrix of the state vector as the initial conditions of the filter.
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E(g(θ))2|XT ,M) = σ2
g < ∞ then

g(N) =
1

N

N
∑

j=1

g(θj)
a.s.
−→ g

σ2
g(N) =

1

N

N
∑

j=1

(g(θj) − g(N))2 a.s.
−→ σ2

g .

(19)

Examples of functions that we use in this paper are the indicator function that selects

one of the elements of θ and the impulse response function of an element of the data

vector to a one unit shock to one of the structural shocks of the model.

An important consequence of using Bayesian methods is that we can use Bayesian

model selection methods to perform formal model comparison between the two models

we study in this paper. Formal model comparison is handled via the Bayes Factor which

is the ratio of the marginal likelihoods of the two models. The marginal likelihood of a

model, Mj is defined as

p(XT |Mj) =

∫

Θ

p(XT |θ,Mj)p(θ|Mj)dθ, (20)

and this represents the probability of observing the data, XT , under model Mj.

Given a prior probability for model Mj, p(Mj), the posterior probability of model

Mj conditional on the observed data, XT , is

p(Mj|XT ) = p(Mj)p(XT |Mj). (21)

Model comparison then involves the comparison of competing models that make predic-

tions over the same observable data and / or functions of the data. Suppose for example

that we wish to compare two models, Mj and Mk. Let θj be the vector of parameters

that index the likelihood function for model Mj and let θk be the vector of parameters

that index model Mk. The posterior odds ratio in favor of model Mj over model Mk is

15



the ratio of the posterior probability of the respective models given in (21),

p(Mj|XT )

p(Mk|XT )
=

p(Mj)

p(Mk)

p(XT |Mj)

p(XT |Mk)
. (22)

The first component of the posterior odds ratio is the prior odds ratio and the second

component is the ratio of marginal likelihoods, also referred to as the Bayes Factor in

favor of model Mj over model Mk. Thus if we assign equal prior odds to each model

the posterior odds ratio is equal to the Bayes Factor. What makes the Bayes Factor a

natural model comparison tool is the fact that the marginal likelihood of a model can

be shown to reflect the cumulative out-of-sample prediction performance of that model

over the observed sample (Geweke (1995)). Model Mj is favored over model Mk if it

has a higher posterior odds, and in the case of equal prior weights, if it has a higher

marginal likelihood. Model Mj, therefore, has a higher marginal likelihood only if it has

a superior cumulative out-of-sample prediction performance than model Mk.

The previous paragraphs outline the methods that we employ in this paper to

formally compare our two competing models using the full dimension of the observed

data. The next subsections now describe the models that we compare in detail and the

prior beliefs that we impose.

3.1 Linear State-Space Representation of the Full Participation

and Segmented Markets Models

The model that we study is the monetary model described in Section 2. We compare

the segmented markets case where the traders’ share λ of the aggregate endowment is

constrained to be less than 1, and the full participation case where all households are

traders (λ = 1). The full participation model, then, is a limiting case of the segmented

markets model.

As we saw in Section 2, the solution to the linearized system describing the equi-
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librium is represented by the state-space system (15). The parameter vector θ, which

indexes the state-space system (15), consists of three sets of parameters.

The first set of parameters are the structural parameters, the traders’ share λ of

the aggregate endowment, the intertemporal elasticity of substitution ε, the preferences

discount factor β, and the aggregate endowment growth factor α in the non-stochastic

steady state. It is convenient, however, to choose an equivalent set of structural param-

eters substituting β with the annualized percent real rate of return κ on financial assets

in the non-stochastic steady state defined as

κ ≡ −log(βu′(α)) ∗ 400 = −log(β) ∗ 400 + (1/ε) log(α) ∗ 400

where the multiplication by 400 converts the quarterly rates into a percent annualized

rate. The structural parameters are, then, λ, ε and κ, which are estimated, together with

α, which is calibrated.

The second set of parameters consists in the matrices Π and Ψ determining the law

of motion (3) of the exogenous variables. They are calibrated and fixed in the estimation.

The final set of parameters are the initial values of the state vector, s0. The

estimation procedure that we employ in this paper involve using the Kalman Filter to

calculate the likelihood function of the state-space model (15). To do this we need to

make some assumptions about how the filter is initialized. We choose to treat the initial

value of the state vector as parameters so the the Kalman filter is initialized with the

prior mean of s0 and the prior variance of s0.

Hence the state-space model is parameterized by

θ = (λ, ε, κ, s′0, vec(Π)′, vec(Ψ)′, γ)′ = (θ1, θ2)
′

where θ1 = (λ, ε, κ, s′0)
′ are the “free” parameters of the model and θ2 = (vec(Π)′, vec(Ψ)′, α)′

are the fixed parameters of the model. In what follows we fix the values of θ2 and allow
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θ1 to be estimated using the estimation algorithm described in Section 3.2.

3.2 Estimation Algorithm

Given a set of observations on the growth rate of money supply and prices, XT = {xt}
T
t=1,

and a prior distribution over the unknown parameters of the model, p(θ1), the posterior

distribution of θ1 conditional on the observed data, the model and the fixed parameters

is given by

p(θ1|XT , θ2,M) = p(θ1|θ2,M)p(XT |θ,M), (23)

where the model is either the segmented markets model (0 < λ < 1) or the full partici-

pation model (λ = 1).

Given values for θ and given the data XT , the prediction error decomposition via

the Kalman filter allows us to calculate the value of p(XT |θ,M). Thus we are able to

calculate the value of the posterior for any value of θ1 in the domain of θ1 given by

Θ1 = [0, 1] × R
+ × R

+ × R
6.

The posterior distribution, given in (23), is in general not a standard distribution.

In order to make some draws from this distribution we use a MCMC approach where

we construct a Markov chain with p(θ1|XT , 1θ2,M) as its limiting distribution. After

discarding a number of initial iterations from the algorithm and testing for convergence

we use the last N iterations as draws from the posterior. The particular algorithm that

we use is the random-walk Hastings-Metropolis algorithm described in Tierney (1994).

The ith iteration of this algorithm is as follows:

• given θ
(i−1)
1 , draw x ∼ N(0, V )

• let θ̃ = f(θ
(i−1)
1 ) where f(.) is a function such that f : Θ1 −→ R

9

• let z̃ = θ̃+x and let z = f−1(z̃)
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• let θ
(i)
1 =















z with probability max

[

p(z|XT ,θ2,M)

p(θ
(i−1)
1 |XT ,θ2,M)

, 1

]

θ
(i−1)
1 else.

This algorithm is initialized by drawing θ
(1)
1 from the prior for θ1. The random

step is made operational by transforming the parameter space, Θ1 to R
9 so that the

random step is drawn from a Gaussian distribution with mean 0 and variance V . The

variance-covariance matrix V is a tuning parameter of the chain and is chosen so that

the draws from (23) has good numerical properties.

3.3 Data and Prior Distributions

The data used in this project are obtained from the FRED II database5. All series are

quarterly data starting in the first quarter of 1959 and ending in the last quarter of 2002.

The money supply series is the seasonally adjusted M2 series and the price series is the

GDP deflator. Both of these series are detrended using the Hodrick-Prescott (1997) filter

with the proportionate deviations from the trend being used in the construction of the

likelihood function.

The parameters of the law of motion (3) are calibrated using a VAR(1) model with

real output and the federal funds rate. The real output series is the seasonally adjusted

real GDP series, and the federal funds rate is constructed from the monthly federal

funds rate series by taking the last months value for each quarter. The proportionate

deviations from trend of each variable is used to estimate the VAR. Finally, the value

of α is calibrated to the long-run growth rate 0.0080 of real output, which translates

to an annualized growth rate of 3.2%. A summary of the calibrated values of the fixed

parameters can be found in Table 1.

The free parameters of the models are λ (for the case of the segmented markets

model only), ε, κ, and the initial value of the state vector, s0. Since all variables in the

5http://research.stlouisfed.org/fred2/
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Table 1: Calibrated Values of Fixed Parameters: θ2

Parameter Value

Π

[

0.8790 −0.0028
3.0946 0.9496

]

Ψ

[

0.0080 0
0.0500 0.1272

]

α 0.0080

state vector are measured in proportionate deviations from their long-run trend, the prior

mean for each element of s0 was chosen to be 0. The prior variance for s0 was chosen to

reflect our lack of information regarding the true initial value. Thus

s0 ∼ N(0, I6). (24a)

A crucial parameter is the traders’ share λ of the aggregate endowment, for which we

choose a uniform prior over the interval [0, 1] for this parameter. Thus,

λ ∼ U(0, 1). (24b)

For the intertemporal elasticity of substitution ε, we choose a log Gaussian prior with

mean equal to 1 and standard deviation set to 0.1. That is,

ε ∼ logN(−0.005, 0.1). (24c)

A value of ε = 1 implies log utility. Finally, κ is the annualized percent real rate of return

on financial assets in the non-stochastic steady state. We use a log Gaussian prior with
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Table 2: Prior Distributions for Free Parameters: θ1

Parameter mean std. dev. 90% HPD Region

λ 0.5 0.2887 —-
ε 1 0.1 [0.8181 1.1792]
κ 7.0 1.414 [4.4596 9.4513]

mean equal to 7.0 and variance equal to 1.7. That is,

κ ∼ logN(1.8518, 0.2). (24d)

The prior mean of 7 matches the average real rate of return of the S&P500 stock index

over the sample period. Using a different financial asset would lead to a different value

for κ, so we model the uncertainty surrounding κ with a relatively large prior variance.

Table 2 gives the mean, variance and 90% highest prior density regions for these priors.

It is assumed that all priors are independent of each other so that the prior for the free

parameters is

p(θ1) = p(λ)p(ε)p(κ)p(s0). (25)

The prior distributions given in Table 2 and the calibrated values given in Table 1

were then used in the random-walk Hastings-Metropolis algorithm defined above to make

a set of drawings from the posterior distribution of θ1 conditional on the values of θ2 and

the observed data for each model. The results of this are reported below. These results

are reported in Table 3 in the second column under estimation experiment. In this

experiment, the random-walk Hastings-Metropolis chain was used. For both models,

because of the serial correlation inherent in the chain, 50,000 draws were made with only

the 10th iteration being accepted. As before, the chains were tested for convergence and

the first 1000 iterations were excluded.
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4 Results

We ran two sets of experiments. The first, which we refer to as the baseline experiment,

is an experiment where we fixed the intertemporal elasticity of substitution ε equal to 1

(logarithmic utility), and the average real rate of return on financial assets κ equal to

7%, the average real rate of return of the S&P500 over the sample period. The second

experiment, which we refer to as the estimation experiment, is an experiment where we

allowed all parameters of the model to be estimated. The same priors for each of the free

parameters of both models were used for each experiment. The only difference between

the experiments is the fact that in the baseline experiment we fixed the intertemporal

elasticity of substitution ε and the average return on financial assets κ.

In all experiments we used the random-walk Hastings-Metropolis chain to make

draws from the posterior distribution of the model at hand. The resulting chain was

tested for convergence and after deleting an initial burn-in number of iterations, the

rest of the draws were used to compute posterior moments of our functions of interest.

In the case of the estimation experiment it was necessary, because of increased serial

correlation in the chain, to run the chain out for 50,000 iterations rather than the 10,000

iterations used in the baseline experiment. However, in all cases the numerical standard

error for all moments was significantly less than 10% of the computed standard error

for that moment. The iterations that were kept from each chain was used to compute

posterior moments for all functions of interest. The first set of functions of interest, the

structural parameters of the model, are reported in Table 3. Also reported in this table

are the computed log marginal likelihood’s for each model. These were calculated using

the method proposed by Gelfand and Dey (1994). The standard errors reported for the

log marginal likelihoods are numerical standard errors only.

The results for the baseline experiment are as follows. For the segmented markets

model, the vector of free parameters is θSM
1 = (λ, s′0)

′ and the vector of fixed parame-

ters is θ2 = (ε, κ, vech(Π), vech(Ψ))′. The prior for λ and s0 is given in Table 2. The
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Table 3: Summary of Posterior Estimates and Results

Baseline Experiment Estimation Experiment

Segmented Markets Model

Parameter Mean Std. Error. 90% HPD Mean Std. Error 90% HPD
λ 0.140 0.008 [0.126 0.153] 0.129 0.028 [0.084 0.175]
ε 1 – – 0.996 0.101 [0.817 1.180]
κ 7 – – 7.491 0.799 [5.801 9.095]

log ML -559.398 0.104 -530.771 0.022

Full Participation Model

Parameter Mean Std. Error. 90% HPD Mean Std. Error 90% HPD
λ 1 – – 1 – –
ε 1 – – 1.013 0.098 [0.833 1.170]
κ 7 – – 3.281 0.025 [3.240 3.327]

log ML -16159.02 0.025 -543.297 0.030

random-walk Hastings-Metropolis chain was used to draw 10,000 draws from the pos-

terior distribution of the segmented markets model. Various tests were performed to

check for convergence, including checking for differences in estimated moments of the

estimated parameters using different starting values of the chain. All tests suggested the

chain had converged by the 1000th iteration so the last 9000 draws were used to calculate

the results given in Table 3. The only free parameter of interest in this experiment is

λ, the proportion of households who participate in the bond market. The prior for this

parameter was chosen to be uniform over the interval [0, 1] which implies that we place

equal prior weight on all possible values of λ. The posterior mean for λ for the segmented

markets model was estimated to be 0.14 with a standard deviation of 0.008. The 90%

highest posterior density region is [0.126 0.153]. This is significantly different from 1, the
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value of λ in the full participation model.

In the full participation model, for the baseline experiment, the only parame-

ters that are freely estimated are the initial values of the state vector, s0. It is clear,

however, that the full participation model is overwhelmingly outperformed by the seg-

mented markets model as the log marginal likelihood for the segmented markets model is

overwhelmingly greater than the log marginal likelihood for the full participation model.

Given that the log marginal likelihood reflects a model’s out-of-sample prediction per-

formance for the observed sample this suggests that the segmented markets is a better

model.

In order to make sure that our results are due to the particular specification we

choose for the intertemporal elasticity of substitution, ε, and for the average return on

financial assets κ, we estimated the two models allowing for all parameters to be freely

estimated. These results can be found in the second part of Table 3 under the heading

estimation experiment. In the segmented markets model the posterior mean of λ is 0.129

with a posterior standard error of 0.028. The 90% highest posterior density region is

[0.084 0.175]. In contrast to the results from the baseline experiment, the posterior mean

for λ is slightly smaller but the posterior standard error is considerable larger. However,

as in the previous case the value of λ is substantially smaller than 1, the value of λ in

the full participation model.

The posterior mean and standard error for ε for each model is very similar and

the 90% highest posterior density regions are almost identical to the 90% highest prior

density region given in Table 2. This suggests the likelihood function is flat along the ε

dimension which implies that there is little information regarding the appropriate value

of ε to be found in the data.

The result for the average return on financial assets is, however, very different

for the two models. The posterior mean of κ for the segmented markets model is 7.49%

with a standard error of 0.799. The 90% highest posterior density region is [5.801 9.095]
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which is consistent with observed values of the return to financial assets over the period

of our sample. The posterior mean for κ for the full participation model is quite different.

The posterior mean is 3.28% with a posterior standard error of 0.025. The 90% highest

posterior density region is [3.240 3.327]. This is certainly quite different from the results

for the segmented markets model.

The overall performance of both models, as measured by the log marginal likeli-

hood, has increased. The out-of-sample prediction performance of both models is signif-

icantly better than in the baseline experiment. The most pronounced change is in the

performance of the full participation model. The log marginal likelihood for this model

has improved from -16159.02 to -543.297. The log marginal likelihood for the segmented

markets model has improved from -559.398 to -530.771. While both models’ performance

improved when we allowed for all the structural parameters to be estimated, it still is

the case that the segmented markets model is vastly superior to the full participation

model. The log Bayes Factor in favor of the segmented markets model over the full

participation model is 12.53 which implies, assuming equal prior model weights, that

the posterior probability of the segmented markets model conditional on the observed

sample is e12.53 = 2.75×105 higher than the posterior probability of the full participation

conditional on the observed sample. That is, allowing for only a fraction of agents to

participate in financial markets significantly improves the ability of the model to explain

the observed data.

The above results suggest that there is overwhelming statistical evidence that the

segmented markets model is a better model at explaining the observed data than the full

participation model. An important question, however, is whether the segmented mar-

kets model makes better economic, or qualitative, predictions than the full participation

model. To investigate this question, we consider the model impulse response function

of the growth rate of money, µt, and the growth rate of prices, πt to a monetary policy

shock, and we compare it to the empirical impulse responses documented in Christiano,
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Eichenbaum and Evans (1999). Referring to the empirical impulse responses documented

in other VAR studies, like Sims, Leeper and Zha (1996), and Bernanke and Mihov (1998)

would not overturn our conclusions.

Following arguments in Bernanke and Blinder (1992) and Bernanke and Mi-

hov (1998), we identify a contractionary monetary policy shock as a one-percent unantic-

ipated increase in the short-term nominal interest rate with no contemporaneous effect

on real output. We then identify it ordering real output first and the federal funds rate

second and last in the VAR(1) defined in (3), and using a Cholesky decomposition of the

covariance matrix. The impulse response function is a function of the structural param-

eters of the model and so, given our draws of parameters from the posterior distribution

of the various versions of the models, we can easily characterize the posterior distribution

of these impulse response functions.

The impulse response functions to µt and πt for the baseline experiment can be

found in Figure 1. The first row of this figure reports the response of the growth rate of

money to a contractionary monetary policy shock. The second row reports the response of

inflation to a contractionary monetary shock. The first column is the impulse response

calculated using the segmented markets model while the second column of the figure

reports the impulse response function generated from the full participation model. The

solid line in the graphs represent the posterior mean impulse response function and the

dotted lines reflect the 90% highest posterior density region for each impulse response

function. For the full participation model there are no dotted lines as all structural

parameters are fixed.

The impulse response functions generated by the two models are very different

qualitatively and quantitatively. In both responses, the initial impact of a contractionary

shock is negative. The magnitude of the initial impact, however, varies greatly between

models. The initial impact of a 1% increase in the federal funds rate is around -0.8%

for both money growth and inflation in the segmented markets model, and around -5.5%
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Figure 1: Posterior Estimates of Impulse Response Functions to a Monetary Policy Shock:
Baseline Experiment
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for the full participation model, which we regard as an unrealistic value for the initial

response to the monetary policy shock. Consider, for instance, Figure 2 in Christiano,

Eichenbaum and Evans (1999), which shows the empirical response to a contractionary

monetary policy shock. The shock has an impact effect on the federal funds rate of

about 75 basis points. The impact effect on the logarithm of M1 is less than 0.1, and the

impact effect on the logarithm of M2 is less than 0.3. There is almost no effect on prices.

Equivalently, the impact effect on the annualized M1 and M2 growth rate is respectively

less than 0.4% and 1.2%, while the impact effect on the inflation rate is about zero.

The segmented markets model does an excellent job in replicating the impact effect on

the money growth rate, although it fails to replicate the lack of effect on the inflation

rate. The full participation model, however, grossly fails to predict the magnitude of the
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impact effect on the money growth rate, and counterfactually predicts a much stronger

effect on prices.

Furthermore, the impulse response functions of the full participation and the seg-

mented markets models differ importantly with regard to how the shock propagates over

time. In the segmented markets model, the responses of the money growth rate and

the inflation rate are much smoother and more persistent and remain negative for four

and three quarters respectively. This is not the case for the impulse response functions

obtained from the full participation model, where the response of money growth and

inflation is positive for all periods after the initial period. Figure 2 in Christiano, Eichen-

baum and Evans (1999) shows that, empirically, the M1 growth rate is negative for three

quarters, the M2 growth rate is negative for five quarters, while the response of prices is

not statistically significant. Differently from the full participation model, the segmented

markets model succeed in replicating the response of the money growth rate, both qual-

itatively and quantitatively. It cannot replicate the lack of response of the inflation rate,

although the magnitude of the response is much smaller and much closer to data than in

the full participation model.

The impulse response functions obtained from the two models under the estima-

tion experiment have similar qualitative properties to the ones reported above. These

new impulse response functions can be found in Figure 2. The estimation of the struc-

tural parameters has affected, not surprisingly, the impulse responses generated by the

full participation model the most. Now the initial response to a 1% increase in the federal

funds rate leads to a decrease in money growth and inflation of approximately -0.06%.

This is much smaller than in the baseline experiment but the overall shape of the re-

sponse has remained the same, so the response is positive for all periods except the first.

The responses generated by the segmented markets model, on the other hand, look very

similar to the baseline case. The initial response is negative and the response for the first

five and four periods are negative for money growth and inflation respectively.
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Figure 2: Posterior Estimates of Impulse Response Functions to a Monetary Policy Shock:
Estimation Experiment
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5 Conclusion

In this paper we used likelihood methods to evaluate the impact of including a mar-

ket segmentation friction in equilibrium monetary models. To do this we estimated a

benchmark full participation monetary model and compared it to a model in which only

a fraction of households participate in financial markets. There were two parts to this

comparison: First we compared the statistical properties of both models and then we

compared their qualitative predictions.

A major finding is that the segmented markets model statistically dominates the

full participation model in that the out-of-sample prediction performance of the seg-

mented markets model, as measured by the log marginal likelihood, is vastly superior to

the full participation model. Moreover, when we allow the fraction of the households who
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participate in financial markets to be estimated, we find this fraction to be approximately

13%. This is in contrast to the full participation model, where all agents participate in

financial markets.

Christiano, Eichenbaum and Evans (1999) argue that comparing the model re-

sponse to monetary policy shocks with the empirical response is also an important cri-

terion for selecting a framework for monetary analysis. The segmented markets model

dominates the full participation model along this dimension as well. The impulse re-

sponse functions to monetary policy shocks generated by the segmented markets model

are more persistent and more realistic. The response of the money growth rate closely

matches the corresponding response documented in the empirical literature. The initial

response of the money growth rate to a contractionary monetary policy shock is approx-

imately -0.7%, and remains negative for three quarters, like in the data, whereas in the

full participation model the initial response is only -0.06%, and becomes positive im-

mediately after the impact period. The segmented markets model also predicts that the

magnitude of the impulse response function of the inflation rate is much smaller and much

closer to the empirical response relative to the full participation model. Our results, both

statistical and qualitative, therefore strongly suggest that taking the presence of market

segmentation into account is important in understanding the short-run dynamics of the

monetary sector.
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