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Abstract

We consider a monetary economy with directed multilateral matching between buy-

ers and sellers. A buyer chooses how much money to hold, observes the location of

all sellers, and decides which seller to visit. The number of buyers that arrive at a

particular seller is random due to lack of coordination. Every seller has a single in-

divisible good and all buyers have the same valuation for the good, though they may

hold different amounts of money. The good is allocated according to a second price

auction where buyers bid with their money rather than valuations. We show that in

equilibrium ex ante identical buyers choose different money holdings: carrying more

money is costly but it increases the probability of winning the auction. The unique

equilibrium distribution of money holdings is analytically characterized. The entry of

sellers is efficient at the Friedman rule but is suboptimal for higher inflation rates.
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1 Introduction

In recent years a large literature has developed that models trading frictions explicitly to

deliver environments with micro-foundations for the existence of fiat money.1 While successful

in addressing many issues, some of the assumptions that are commonly used to describe

decentralized trade have attracted criticism. In particular, trade is usually modeled to occur

in random bilateral meetings between the agents in the economy, where ‘random’ refers to

the fact that an agent may or may not meet someone with whom he would like to trade.

However, the randomness of the matching process is at odds with the presumption that

economic agents are generally aware, or can easily learn, where some commodity is traded.2

Moreover, the assumption of pairwise meetings results in a bilateral monopoly which typically

leads to bargaining as a way of determining the terms of trade.3 Since the outcome of the

bargaining game becomes intractable in the presence of private information, it is usually

assumed that the money holdings of the agents is common knowledge. This is a particularly

stringent and unnatural condition on the environment’s information structure.

In this paper we try to address these two issues by modeling decentralized trade in a very

different way which yields new insights while keeping with the spirit of the money search

literature. First, we assume that matching between agents is directed: in every period the

agents who want to consume (buyers) know where each productive agent (seller) is located

and hence the actual process of finding a suitable match is deterministic.4 Frictions are

introduced by assuming that buyers can only visit one seller at a time and they cannot

coordinate their decisions of which location to go to. Hence they randomly choose which

seller to visit which results in stochastic local demand realizing at each seller’s location. To

simplify matters, we assume that the supply at each location is fixed and, in particular, that

1See Kiyotaki and Wright (1993) for the canonical model.
2For instance, see Howitt (2005) for a formulation of this critique.
3See Trejos and Wright (1995) or Shi (1995). Exceptions include Green and Zhou (1998, 2002).
4We should emphasize that our use of the term ‘directed’ rests on the fact that a buyer knows where he

can find the agents with whom he would like to trade and he does not have to randomly search for them.
This definition is different from the directed search literature (e.g. Burdett, Shi, and Wright (2001)) where
a buyer’s visit is directed by the (publicly observable) posted price of a seller.
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each seller has a single indivisible good for sale. The additional frictions of anonymity and

lack of double coincidence of wants make fiat money essential for trade in these meetings (see

Kocherlakota (1998) and Wallace (2001)).

The second innovation of our paper is to use an auction to allocate the good among the,

potentially multiple, buyers. Since there is a single unit for sale at each location, the price

has to adjust to balance supply and demand. A natural way to model the price formation

process is to have buyers compete in price for the good, i.e. to have Bertrand competition

from the side of the buyers. This is equivalent to an ascending bid, or second price, auction

where agents bid with their money holdings (as opposed to their valuations). The results is

that the ‘wealthiest’ buyer purchases the good and pays the second highest money holdings to

the seller. It is important to note that a buyer may hold less money than his actual valuation

for the good, i.e. he may be willing to spend more but unable to do so. To summarize, we

model the allocation of the good as a second price auction where buyers bid with their money

holdings, rather than their valuations.5

This mechanism allows the money holdings of the agents to be revealed in a natural

way. The terms of trade do not depend on how much money the winning buyer has but on

how much he has to pay in order to outbid all competing buyers. It is worth stressing that

agents in our model face randomness in consumption because local demand conditions are

stochastic: a buyer can always visit a seller, but it may turn out that the seller’s price is

above the buyer’s liquidity due to high demand. This is in contrast to models of random

search where consumption uncertainty is typically due to the randomness of the matching

process, i.e. due to whether a suitable match is found or not. This difference has important

implications for the incentives to hold fiat money, as we elaborate below.

To introduce the explicit choice of liquidity for the agents and to keep our model tractable

we embed the idea presented above in the framework of Lagos and Wright (2005), henceforth

LW. That is, agents have periodic access to a centralized Walrasian market where they trade

5This is also known as a budget constrained auction. See Che and Gale (1998).
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in a competitive way and they can re-balance their portfolios of fiat money. Furthermore, as

in LW, we assume that the agents’ preferences are quasi-linear which implies that there are

no wealth effects in the demand for money. This means that the trading history of an agent

does not affect his choice of money holdings, though, as we describe in the next paragraph,

the resulting distribution of money holdings is non-degenerate in our set-up.

The main trade-off facing a buyer when he chooses how much money to carry is the

following. Bringing more money allows a buyer to outbid more of his potential competitors,

leading to a higher probability of consuming. On the other hand, holding fiat money is costly

because the value of any unspent balances depreciates due to inflation and discounting. It

turns out that even if buyers have the same valuation for the sellers’ good, in equilibrium they

choose to bring different amounts of money to the decentralized market. The distribution

of money holdings is unique and it is characterized analytically. The intuition behind this

result is not hard to see: if all buyers brought the same balances, then a deviant with

infinitesimaly more money would win all the auctions and enjoy discretely higher probability

of consuming for negligible additional cost. As a result, identical buyers are indifferent in

equilibrium between holding a range of potential money balances.6 Dispersion in money leads

to dispersion in prices since the sale price depends on how many buyers visit a particular

seller.7

To evaluate the welfare properties of our model we introduce an entry decision on the

side of the sellers, as in Rocheteau and Wright (2005).8 The main result is that entry is

suboptimal except when the money supply contracts at the rate of time preference – the

Friedman rule. The reason is that for inflation rates above the Friedman rule the value of

fiat money depreciates over time and hence buyers bring less money than their real valuation

for the sellers’ good. This means that sellers receive less on average than their social value

6Dispersion of money holdings is typically a feature of models where an agent’s liquidity does depend on
his history of trades, e.g. Molico (2006), Green and Zhou (1998, 2002), or Camera and Corbae (1999).

7Price dispersion is also an equilibrium outcome of the monetary model of Head and Kumar (2005) where
it results from informational asymmetries among buyers.

8Entry is the only efficiency margin because every meeting between a seller and some buyer(s) results in
a trade, which is the efficient outcome.
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to a match and therefore fewer sellers enter to the market than is optimal. At the Friedman

rule, holding fiat money is costless leading buyers to bring balances equal to their valuation

of the good because the intra-buyer competition dominates. It is interesting to note that in

Rocheteau and Wright (2005) the number of sellers can be below or above the optimal.

The paper of Corbae, Temzelides, and Wright (2003) also introduces directed matching,

though in a different cooperative way. Furthermore, they focus on bilateral meetings. The

paper of Camera and Selcuk (2005) is close in spirit to ours. They consider a non-monetary

environment with posted prices which are subject to renegotiation depending on realized

local demand.

The rest of the paper is organized as follows. Section 2 describes the model and proves

some preliminary results. The following section solves the buyer’s problem and derives the

equilibrium distribution of money balances, while section 4 describes the entry decision of

sellers. Section 5 examines the efficiency properties of inflation and section 6 considers a

number of extensions. Section 7 concludes.

2 The Model

Time is discrete and runs forever. Each period is divided in two subperiods, following LW:

a centralized market (‘day’) characterized by Walrasian trading and a decentralized search

market (‘night’) characterized by trading frictions that are modeled explicitly. There is a

continuum of infinitely-lived agents who belong to one of two different types, called buyers

and sellers (types b and s, respectively). The difference is that while both types produce

and consume in the Walrasian market, in the search market a buyer can only consume and

a seller can only produce. Meetings in the decentralized market occur between subsets of

the population in a way described in detail below. There are two main frictions in the

decentralized market. First, all meetings are assumed to be anonymous. This means that

all trades have to be quid pro quo since anonymity precludes credit. Second, it is clear from
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the assumptions on agents’ types that there there is no double coincidence of wants: some

agents can only produce while others can only consume. Hence, the agents cannot use barter

to exchange goods. These frictions mean that a medium of exchange is essential for trade.9

There is a single storable object, fiat money, which can be used as a medium of exchange

in the decentralized market. The stock of money at time t is given by Mt and it is perfectly

divisible. The money stock changes at gross rate γ, so that Mt+1 = γ Mt, and new money

is introduced, or withdrawn if γ < 1, via lump sump transfers to all agents in the Walrasian

market. Concentrating on lump sum transfers ensures that money injections do not affect

the agents’ behavior. We focus on policies with γ ≥ β δ, where β δ is the discount factor as

discussed below, as it is easy to check that there is no equilibrium otherwise. Furthermore,

to examine what happens when the rate of money growth is exactly equal to the discount

factor (the Friedman rule) we take the limit of equilibria as γ → β δ.

We denote the measure of buyers and sellers by B and S, respectively, and introduce a

participation choice to the decentralized market for sellers. In particular, a seller can pay

an entrance cost of K units of utility to enter the night market. We interpret this as the

fixed cost of going to the market and preparing for production. We normalize the measure

of buyers to 1 and let λ be the buyer-seller ratio (i.e. the measure of sellers that enter in the

night market is 1/λ). We continue most of the analysis with a fixed λ, and we endogenize it

in section 4.10 We assume that S is large enough such that entry is given by an indifference

condition for sellers.

Let W j
t (m) be the value of an agent of type j ∈ {b, s} who enters the Walrasian market

at time t holding m units of money. His instantaneous utility depends on consumption,

x, and hours of work, h. We assume that preferences are quasi-linear and take the form

U(x)− h, where an hour of work produces a unit of the consumption good x. Furthermore,

we assume that U ′(x) > 0 and U ′′(x) < 0 for all x and the Inada conditions limx→0 U ′(x) = ∞,

9See Kocherlakota (1998) and Wallace (2001).
10Alternatively, one can think of a fixed number of agents who decide every period whether to become a

buyer or a seller in the decentralized market. This generalization is straightforward in our setup.
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limx→∞ U ′(x) = 0. Let the discount rate between day and night be β and denote the value

of carrying m′ dollars to the night market of period t by V j
t (m′). The agent’s value function

in the day market at time t is

W j
t (m) = max

x,h,m′
{U(x)− h + β V j

t (m′)} (1)

s.t. x ≤ h + φt(T̂t + m−m′)

where φt is the value of money in consumption terms,11 and T̂t is the nominal monetary

transfers to (or from) the agent, i.e. T̂t = (γ − 1) Mt−1/(B + S). Throughout the paper,

nominal variables carry a hat superscript.

It will prove useful to solve some of the simple non-monetary choices of the agents at

this stage so that we can concentrate on the the more interesting decisions relating to money

holdings. Substituting the constraint into equation (1) with equality gives

W j
t (m) = φt (m + T̂t) + max

x,m′
{U(x)− x− φt m′ + β V j

t (m′)}

Note that the quasi-linearity of preferences simplifies the optimal choice of the agent signif-

icantly by eliminating wealth effects: current balances, m, do not have any marginal effect

on the decision of consumption or future money balances. Furthermore, the optimal choice

of x and m′ dichotomizes. This means that the optimal consumption of the general good

can be immediately calculated by setting the first order conditions with respect to x equal to

zero. Our assumptions on U(·) ensure that the condition U ′(x∗) = 1 is both necessary and

sufficient for the optimal choice of x. As a result the problem can be further simplified to

W j
t (m) = φt (m + T̂t) + U∗ + max

m′
[−φt m′ + β V j

t (m′)] (2)

for j ∈ {b, s}, where U∗ = U(x∗)− x∗ and U ′(x∗) = 1.

11That is, the price of x is normalized to 1.
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The choice of future money balances is more involved and we first need to describe the

decentralized market in order to see the relevant incentives.

The search market operates as follows. There is a continuum of locations, and every

location is populated by one seller. Each seller has the capacity to produce a single indivisible

good at zero marginal cost.12 Buyers get utility u > 0 from consuming the good. Matching

between buyers and sellers occurs in a different way from most of the literature. Instead of

searching at random, we assume that buyers know the exact location of all sellers. Therefore,

they can direct their search to a particular location and meet with a seller for sure. However,

buyers cannot coordinate with each other about which location to visit due to the fact that

this is a large market. We capture this inherent lack of coordination by assuming that every

buyer randomly chooses which seller to visit. This is crucial because it implies that the

number of buyers that visit a particular seller is a random variable (hence multiple buyers

may visit the same seller) and there is a single good for sale at each location. Therefore, the

good may get rationed and some of the buyers may end up not consuming. Before describing

the allocation process, note that we have urn-ball matching and so the number of buyers

follows a Poisson distribution with parameter λ.13 This matching function exhibits constant

returns to scale and therefore the buyer-seller ratio is the only relevant statistic.

The way the good is allocated is a further innovation of this paper: we assume that

an auction takes place, as opposed to the more commonly used bargaining. As already

mentioned, each seller has a single good to be allocated to one of the potentially multiple

buyers that visit his location. All buyers have the same valuation for the good, but they

may hold different amounts of money.14 We assume that the good is allocated according to

12Having a positive cost of production does not significantly change the results but it does complicate the
analysis. It is therefore relegated to section 6.1.

13Suppose k buyers are allocated randomly across l sellers. The number of buyers that visit a particular
seller follows a binomial distribution with probability 1/l and sample size k. As k, l → ∞ keeping k/l = λ
the distribution converges to a Poisson distribution with parameter λ.

14This is a budget constrained auction as in Che and Gale (1998). One contribution of our paper is that
the budget constraint of buyers is determined endogenously.
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a second price auction with zero reserve price. This is equivalent to the buyers bidding up

against each other (as in an ascending bid auction) with the seller accepting any non-negative

bids since his reservation value for the good is 0. As a result, the buyer with most money (or,

one of the buyers with the highest money holdings in the case of a tie) buys the good and

the price that he pays is equal to the money holdings of his ‘richest’ competitor. Of course,

if a single buyer appears he acquires the good for the price of zero, which is the reservation

price of sellers.

The incentives to hold money are now clear: holding more money increases the probability

of consuming because it allows the buyer to outbid more of his potential competitors; on the

other hand it is costly because the value of any unspent money balances depreciates over

time because of discounting and inflation.

It is worth noting that the reason why an agent may not spend his fiat money is very

different than in most of the monetary search literature. In this paper, the amount of money

a buyer spends depends on how many other buyers visit the same location and on how much

money they hold (essentially, local demand). Hence, despite the fact that a buyer is matched

with some seller with probability one he does not spend all of his money, in general. In most

of the literature, the cost of holding money arises from the fact that the money holder may fail

to meet someone whose good he wants to buy due to the randomness of the matching process.

We now turn to characterizing the buyers’ value function analytically. The probability

(and price) of a purchase of a particular buyer depends on how much money other buyers

hold. Hence we need to introduce some more notation to describe the money holdings of all

buyers: aggregating the choices of m′ across buyers gives the distribution of money holdings

at the end of centralized trading, or equivalently the beginning of the search market, which

we denote by F̂t(·).

Let V b
t (m,n) denote the expected payoff of a buyer who carries m dollars and meets n

other buyers at the location that he visits. Poisson matching implies that the probability
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that he meets exactly n competitors is given by Pn = (λn e−λ)/n!. The value of entering the

decentralized market with m dollars is thus given by

V b
t (m) =

∞∑
n=0

Pn V b
t (m,n) (3)

To calculate V b
t (m, n), let m(n) be the highest money holdings among the n competitors

that the current buyer faces. If m < m(n) the buyer with m dollars does not transact and

he keeps all his money for the next Walrasian market. If m > m(n) the buyer with m dollars

buys the good and pays m(n) to the seller. If m = m(n) there is a tie and the good is allocated

at random to one of the buyers with m(n) dollars, who then transfers his full money holdings

to the seller. Therefore, m(n) is the only statistic needed in order to calculate the buyer’s

payoff when paired with n competitors.

Since buyers are allocated at random across sellers each buyer’s money holdings is a

random draw from F̂t(·). Hence, the highest money holdings among the n other buyers is the

nth order statistic among n iid draws from F̂t(·) which is distributed according to F̂t(·)n.15

Furthermore, observe that two randomly chosen buyers hold exactly the same amount of

money only if F̂t(·) has a mass point at that level. To denote this possibility, we define

µt(m) ≡ F̂t(m) − F̂t(m
−), where F̂t(m

−) = limm̃↗m F̂t(m̃). This definition implies that

µt(m) > 0 if and only if there is a mass point at m. Conditional on all competitors holding

weakly less than m dollars, the number of competing buyers (out of n) who have exactly

m dollars follows a binomial distribution with sample size n and probability µt(m)/F̂t(m).16

Let qnk(m) denote the probability that k out of the other n buyers hold exactly m dollars

conditional on none of them having more than m dollars. If there is no mass point at m,

then qn0(m) = 1 and qnk(m) = 0 for k ≥ 1.

15This is standard result from statistics. For instance, see Hogg and Craig (1994).
16Conditional on all buyers holding weakly less than m dollars, the money holdings of an agent is a random

draw from F̂t(·) truncated at m. Hence, the probability that the result of any draw is exactly equal to m is
given by µt(m)/F̂t(m). The binomial distribution follows since there are n draws.
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The value of meeting n competitors at time t when holding m dollars is given by

V b
t (m, n) = [1− F̂t(m)n] δ W b

t+1(m) +∫ m−

rt

[u + δ W b
t+1(m− m̃)] dF̂t(m̃)n +

F̂t(m)n

n∑
k=1

qnk(m) [
u + δ W b

t+1(0)

k + 1
+

k δ W b
t+1(m)

k + 1
] (4)

where δ is the discount factor between night and day. The term in the first square brackets

gives the probability that at least one competitor holds strictly more money than m dollars,

which means that the current buyer does not purchase the good and he keeps his money

for next period’s centralized market. The second term denotes the expected payoff when all

other buyers hold strictly less money and hence the buyer with m dollars gets the good and

pays the amount that his ‘richest’ competitor holds. The integral gives the instantaneous

utility from consuming the good (u) plus the continuation value after accounting for the

capital loss due to the payment.

Last, if none of the competitors brings more than m dollars but k ≥ 1 of them hold

exactly m dollars, then the current buyer gets the good with probability 1/(k+1), consumes,

and continues to the next Walrasian market without any money; with probability k/(k + 1)

he does not purchase and he keeps all his money for the next day. It should be clear from this

discussion that the probability of purchase is discontinuous at m if F̂t(·) has a mass point at

that level. Moreover, as mentioned above, the last term of equation (4) drops out if there is

no mass point at m.

We now turn to the sellers. First, note that sellers can derive no benefit from holding

money and therefore they choose to carry no money at night. A seller can choose whether

to enter the decentralized market or not. If he does, he gives up K units of utility and may

earn some revenues which he can spend in the following centralized market. Let Π̂t be the

seller’s expected revenues if he enters the search market at time t. Note that Π̂t is a sufficient
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statistic for next period’s value due to the linearity of W s
t (·). If the seller chooses not to

enter he continues to the following Walrasian market without money. As a result, the night

value to the (potential) seller is given by

V s
t = max{−K + δ W s

t+1(Π̂t), δ W s
t+1(0)}

In equilibrium sellers are indifferent between the two options which means that, using equa-

tion (2), the following condition has to hold for all t:

δ φt+1 Π̂t = K (5)

To determine Π̂t, note that the price a seller receives is equal to the second highest

money holdings among the buyers that show up in his location. When n buyers visit

a particular seller, the (n − 1) order statistic is distributed according to F̂
(n−1, n)
t (m) =

n F̂t(m)n−1 [1 − F̂t(m)] + F̂t(m)n.17 The probability that n buyers show up is given by Pn,

and we define the distribution of prices by Ĝt(m) ≡
∑∞

n=1 Pn F̂
(n−1, n)
t (m). In other words,

Ĝt(m) denotes the probability that a seller receives no more than m dollars in the decentral-

ized market at time t, after summing over all the possible number of buyers. Therefore, the

expected revenues of a seller at t are given by Π̂t =
∫∞

0
m̃ dĜt(m̃).

Last, we need to define market clearing in the market for money. Since sellers have zero

balances, the money demand at time t is given by the amount that buyers want to hold, i.e.

MDt =
∫∞

0
m̃ dF̂t(m̃). Hence, the money market is in equilibrium at time t if

MDt = Mt. (6)

Now that the value functions are well-specified, we can define an equilibrium.

17See Hogg and Craig (1994).
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Definition 2.1 An equilibrium is a list {W j
t , V j

t , F̂t, φt, λ
∗
t} where W j

t and V j
t are the value

functions, F̂t is the distribution of money holdings at the beginning of the night market at t,

φt are the prices, λ∗t is the buyer-seller ratio such that the following conditions are satisfied

for all t.

1. Optimality: given prices, any m′ ∈ suppF̂t solves (2),

2. Market Clearing: equation (6) holds.

3. Free entry: Equation (5) holds.

Throughout this paper we concentrate on monetary equilibria, so φt > 0 ∀ t. Furthermore,

we only examine stationary equilibria, in the sense that the real value of average money

balances remains constant over time. In other words, we look at equilibria where φt MDt =

φt+1 MDt+1. Since the money supply grows at a constant rate γ and MDt = Mt we have

that φt = γ φt+1.

At this stage we should remark that there are two important decisions that agents make

in our environment: buyers choose how much money to hold and sellers choose whether to

enter. More specifically, a buyer takes as given λ, φt, and other buyers’ decisions in order to

pick his optimal holdings. Aggregating across buyers, this results in F̂t(·) as a function of

λ and φt. In equilibrium, φt is such that money demand equals Mt, which pins down prices

as a function of market tightness and money supply. Last, free entry of sellers gives λ as a

function of the cost of entry. We proceed to characterize the buyers’ decisions in the next

section. Section 4 looks at sellers.

3 The Buyer’s Problem

In this section we examine the choice of money holdings of the buyer. We characterize the

resulting distribution of balances for a given buyer-seller ratio, λ. We then redefine the prob-

lem in terms of real variables.
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At the beginning of every period the problem of the individual buyer is to choose the

optimal money holdings, taking as given the choices of all other buyers and prices. It is

immediate that the utility of consumption puts an upper bound on the range of the optimal

decision. More specifically, let m∗
t be such that a buyer is indifferent between spending m∗

t to

consume or keeping the full amount for the next Walrasian market. This amount exists since

u < ∞, and it is defined by the equation: u+δ W b
t+1(0) = δ W b

t+1(m
∗
t ) ⇒ m∗

t = u/(δ φt+1). It

is easy to verify that in equilibrium a buyer never brings more than m∗
t to the search market,

since any additional amount is not spent and hence it simply depreciates. Letting mt and

mt denote the infimum and supremum, respectively, of the support of F̂t(·) this discussion

implies that 0 ≤ mt ≤ mt ≤ m∗
t .

We can reformulate the buyer’s problem on a period-by-period basis as

max
m∈[0,m∗

t ]
−φt m + β V b

t (m) (7)

taking F̂t(·) and φt as given (stationarity implies that knowing the price of money for some

t pins down the whole path of prices). The first proposition follows.18

Proposition 3.1 In equilibrium F̂t(·) is non-atomic on [0, m∗
t ), the support of F̂t(·) is con-

nected, and the infimum of the support is at 0.

Proof: Suppose that F̂t(·) has a mass point at some m̌ ∈ [0, m∗
t ) and recall that equation

(4) implies that the probability of buying is discontinuous at m̌. Purchasing the good for

m̌ dollars gives positive net utility (since m̌ < m∗
t ) and hence V b

t (m̌) < V b
t (m̌+). Since the

cost of bringing infinitesimally more money is negligible it is clear that bringing m̌ + ε yields

strictly higher payoff than m̌ and therefore in equilibrium a buyer never brings m̌ yielding a

contradiction.

18The logic of this proposition is similar to Burdett and Judd (1983), though the context is very different.
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Suppose that there is no buyer whose money holdings belong to some interval (m1, m2),

with mt ≤ m1 < m2 ≤ mt. We now show that the buyer with m1 dollars is strictly better

off. The reason is that the m1-buyer trades in exactly the same events as the buyer with

m2 dollars since they both ‘beat’ exactly the same competitors (except when there is a

mass point at m2 which can only occur if m2 = m∗
t ; however in that case the additional

trades that the m2-buyer can perform do not yield any extra utility since he is indifferent

between keeping his money or consuming). It is therefore easy to verify that V b
t (m2) =

V b
t (m1) + φt+1 (m2 − m1). Examining the initial decision of how much money to hold, we

have that −φt m1 + β V b
t (m1)− [−φt m2 + β V b

t (m2)] = (m2 −m1) [φt − β δ φt+1] which is

strictly positive since φt = γ φt+1 and γ > β δ. This means that choosing to carry m1 dollars

gives higher value than holding m2 which cannot hold in equilibrium.

Last, a buyer bringing mt dollars can only transact when he does not meet any competi-

tors, in which case the price he pays is equal to 0. This means that Vt(mt) = Vt(0)+δ φt+1 mt,

which implies that mt > 0 cannot occur in equilibrium for the same reason as above. QED

The reason why F̂t(·) is non-atomic in its interior is straightforward to see. If there is a

mass point in the distribution of money holdings, then it is very likely to meet a competitor

holding exactly that amount of money. In that case, a buyer who brings infinitesimally more

money has discretely higher probability of winning the auction for a negligible additional cost.

Therefore, this buyer enjoys a higher expected payoff which cannot happen in equilibrium.

Later on, we prove that there cannot be a mass point at m∗
t either.

One important implication of this result is that the optimal decision of buyers is corre-

spondence valued: there is a range of values of m that, in equilibrium, yield the same expected

payoff and therefore buyers are willing to randomize over them. Furthermore, equation (7)

means that Vt(m) is not strictly concave, but rather it has to be linear in the domain of

solutions.
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For the remainder of the paper we only consider F̂t(·) that are continuous on [0, m∗
t ) with

F̂t(0) = 0 and suppF̂t = [0, mt]. We can now rewrite equation (3) as

V b
t (m) = δ W b

t+1(m) +
∞∑

n=0

Pn {u F̂t(m)n − δ φt+1

∫ m

0

m̃ dF̂t(m̃)n} (8)

This expression is very intuitive: the first term is the value that the buyer can guarantee

himself without a purchase; inside the curly brackets, the first term is the probability of

buying the good times the instantaneous utility of consumption while the second term is the

expected capital loss from a purchase.

Note that equation (8) holds even if there is a mass point at m∗
t . The reason is that the

payoff to a buyer with m dollars from meeting a competitor holding m∗
t dollars is equivalent

to not purchasing regardless of m. This is obvious when m < m∗
t ; when m = m∗

t , the price is

bid up to m∗
t which means that the buyer is indifferent between buying the good or continuing

with all his money. As a result, whether he actually buys the good or not does not change

his utility and we can disregard the possibility of buying the good at that, maximum, price.

We now turn to the explicit characterization of the solution to the buyer’s problem. In

equilibrium, −φt m + β V b
t (m) has to be constant on [0, mt]. Our strategy is to construct

F̂t(·) so that this condition holds.

Proposition 3.2 In equilibrium, the distribution of money holdings is uniquely defined by

F̂t(m) = 1
λ

log{1− eλ [γ/(β δ)− 1] log[1− δ φt m
γ u

]}. Furthermore, mt < m∗
t .

Proof: Equation (7) implies that V b′
t (m) = φt/β for m ∈ [0, mt]. For V b

t (·) to be differentiable,

any equilibrium F̂t(·) has to be differentiable on (0, mt). We start by assuming differentiability

and we then verify that our solution fulfills this property.

Taking the derivative of (8) with respect to m we get (using Leibniz’s rule and noting
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that m does not enter the integrant)

V b′
t (m) = δ φt+1 +

∞∑
n=0

Pn {u n F̂t(m)n−1 F̂ ′
t(m)− δ φt+1 m n F̂t(m)n−1 F̂ ′

t(m)}

= δ φt+1 + (u− δ φt+1 m) F̂ ′
t(m)

∞∑
n=0

Pn n F̂t(m)n−1

= δ φt+1 + (u− δ φt+1 m) F̂ ′
t(m) λ e−λ (1−F̂t(m)) (9)

where the last step follows from the fact that n ∼ Po(λ) and some algebra.

Equating (9) with φt/β and rearranging yields the following differential equation:

λ F̂ ′
t(m) eλ F̂t(m) = eλ δ φt+1 it

u− δ φt+1 m

where it ≡ φt/(φt+1 β δ) − 1 is the nominal interest rate at t. We can integrate both sides

over m and use the initial condition F̂t(0) = 0 to arrive at the explicit characterization of the

distribution of money balances in equilibrium:

F̂t(m) =
1

λ
log{1− eλ it log[1− δ φt+1 m

u
]} (10)

Recalling that φt = φt+1 γ yields the desired expression.

The maximum money balances, mt, can be calculated by using the fact that F̂t(mt) = 1:

mt =
u

δ φt+1

(1− e
− 1−e−λ

it ) (11)

Since m∗
t = u/(δ φt+1) it is clear that all buyers bring less money than m∗

t and hence there

is no mass point in the distribution of money holdings. QED

The next step is to close the buyers’ side of the model by equating the demand of money

with exogenous supply Mt in order to find the equilibrium ‘price of money’ φt.
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Proposition 3.3 There is a unique φ∗t such that MDt = Mt.

Proof: Using the expressions derived in the previous proposition, we can define money de-

mand at t as a function of φt, MDt(φt). We first prove that money demand decreases

monotonically in φt by showing that the F̂t(·) that results from a low φt first order stochasti-

cally dominates the money distribution that results from high φt. Using equation (10), some

algebra shows that

∂F̂t(m)/∂φt =
eλ it δ m

λ2 {1− eλ it ln[1− (δ φt m)/(γ u)]} [γ u− δ φt m]
> 0

which implies that the proportion of buyers holding no more than m dollars increases with

φt and hence ∂MDt/∂φt < 0.

To complete the proof we need to show that MDt(∞) < Mt < MDt(0) for some arbi-

trary Mt. Note that limφt→∞mt = 0 ⇒ limφt→∞MDt(φt) = 0. Also, limφt→0 mt = ∞ and

limφt→0 F̂t(m) = 0, ∀m < mt imply that limφt→0 MDt(φt) = ∞. QED

To simplify notation, we now denote all variables in real terms. We express a dollar in

terms of the consumption utility that it can bring in the next centralized market. That is, m

dollars in the decentralized market of time t are worth z = δ φt+1 m units of utility in the

next centralized market. Furthermore, we let Gt(·) denote the distribution of real revenues

for the seller and note that the expected real revenues are given by Πt = δ φt+1 Π̂t. Since

φt+1 = φt/γ, from now on we dispense with the time subscript. Using real balances, we

rewrite the value functions for the two types of agents:

W b(z) = (z + T ) γ/δ + U∗ + max
z′

{−z′ γ/δ + β V b(z′)} (12)

V b(z) = δ W b
+1(z) +

∞∑
n=0

Pn {u F (z)n −
∫ z

0

z̃ dF (z̃)n} (13)

W s(z) = (z + T ) γ/δ + U∗ + β V s (14)

V s = max{W s(Π)−K, W s(0)} (15)
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where T ≡ φ T̂ denotes real transfers. Note that the real money balances that the buyer

chooses are in terms of what the money is worth in the next period and hence W+1(z) =

(z/γ) (γ/δ)+W+1(0) = z/δ+W+1(0), where the real balances are divided by γ today because

next period’s inflation is taken into account.

We can also rewrite the distribution of real balances as

F (z) =
1

λ
ln{1− eλ i ln(1− z

u
)} (16)

where i = γ/(δ β)− 1. This also means that the highest money holdings are given by

z = u (1− e−
1−e−λ

i ) (17)

Note that z < u as long as i > 0. As γ → β δ and the rate of money growth approaches

the Friedman rule, i → 0. This implies that F (z) → 0 for any z < z and the distribution

of real balances collapses to a single mass point at u. Moreover, at the Friedman rule z = u

which means that the real balances of every buyer equal his valuation for the good.
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Figure 1: Density of real money balances for different levels of the interest rate i and u = 1,
λ = 1.

Figure 1 shows the density of real money holdings for different levels of the interest rate

and λ = 1. At very high interest rates the density is decreasing. In the intermediate range

it is U-shaped. For low interest rate is is increasing.
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4 Sellers: Entry Decision

We proceed to evaluate the entry decision by sellers. We prove that equilibrium is unique

and it exists if and only if the inflation rate is below some threshold value.

For equilibrium, we need to determine λ∗, the buyer-seller ratio, such that Π = K. The

first proposition establishes the uniqueness of equilibrium.

Proposition 4.1 The expected profits of sellers increase in λ.

Proof: We show that ∂Π/∂λ > 0. To do that, we prove that the distribution of prices for

high λ first order stochastically dominates the one for a low λ, or ∂G(z)/∂λ < 0. As a result,

the expected price is strictly higher when there are more buyers per seller.

To get the exact equation for G(z) note that

G(z) =
∞∑

n=0

Pn F (n−1)(z)

=
1− F (z)

F (z)

∞∑
n=0

Pn n F (z)n +
∞∑

n=0

Pn F (z)n

= (1 + λ− λ F (z)) e−λ (1−F (z))

Using equation (16), it is easy to show that

∂F (z)

∂λ
= −F (z)

λ
+

−e−λ i ln(1− z/u)

λ [1− e−λ i ln(1− z/u)]

=
1

λ
[1− F (z)− e−λ F (z)] (18)

The last step is to note that with some algebra

∂G(z)

∂λ
= −λ (1− F (z)) [1− F (z)− λ

∂F (z)

∂λ
] e−λ (1−F (z))

= −λ (1− F (z)) e−λ < 0 (19)
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where the second equality results from inserting equation (18). This completes the proof.

QED

It is now easy to see that limλ→0 Π = 0. Therefore, if limλ→∞Π > K the (unique)

equilibrium exists.

Proposition 4.2 An equilibrium exists if and only if K < K̄(γ) where K̄(γ) = u (1−e−1/i).

Proof: Note that as λ → ∞ a seller is visited by some buyer for sure. Furthermore, the

seller’s revenues converge to the highest money holdings. Recalling that z = u (1− e−
1−e−λ

i ),

lim
λ→∞

Π = lim
λ→∞

z = u (1− e−1/i)

which completes the proof. QED

Observe that K̄(γ) is decreasing in the inflation rate. As a result, it is ‘more difficult’ to

have an equilibrium with high inflation, in the sense that the set of costs that can support

it is smaller. Therefore, for given market fundamentals (K), when the inflation rate is too

high the decentralized market closes down. The value of fiat money depreciates too fast and

buyers are not able to transfer enough real resources to make it worthwhile for seller to enter.

5 Efficiency and Inflation

In this section we examine the effects of inflation on efficiency. We show that efficiency is

attained only at the Friedman rule, when the stock of money decreases at the rate of time

preference.

The relevant margin for efficiency is the entry of sellers. Since every meeting between a

seller and some buyers results in a purchase, the question of interest is whether the efficient

number of sellers enter into the market. Furthermore, the rate of inflation affects the amount

of money that buyers are willing to hold, which affects the sellers’ incentives to enter.
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We start by solving the planner’s problem and we then show that efficiency is attained

only when the inflation rate approaches the Friedman rule. A planner chooses the level of λ

to maximize the surplus in a given decentralized market. In other words, he maximizes the

following objective function:

W =
(1− e−λ) u

λ
− K

λ
(20)

The first term gives the total number of sellers (1/λ), times the probability that a seller

trades (1− e−λ), times the surplus that is generated from a trade (u). The second term gives

the total entry cost of 1/λ sellers.

Setting the first order conditions with respect to λ to zero yields

(1− e−λP − λP e−λP

) u = K

It is easy to check that the second derivative is negative, hence the first order condition is

necessary and sufficient. The planner’s optimal buyer-seller ratio is given by λP .

This expression suggests that the market should operate (i.e. λ < ∞) whenever u > K.

This implies that if the inflation rate is so high that the market closes down, this leads

to an immediate inefficiency. Furthermore, suppose that an equilibrium exists The buyer-

seller ratio is determined by the free entry condition Π = K. This means that efficiency

is attained only if Π = (1 − e−λ − λ e−λ) u. Recall that as γ → β δ, all buyers bring

real balances that are equal to their valuation of the good, u. In that case the seller enjoys

the full surplus of any match as long as two or more buyers appear, which happens with

probability 1 − P0 − P1 = 1 − e−λ − λ e−λ. If zero or one buyer show up, then the seller

receives zero. Therefore, in that case the revenues of the seller are equal to the left hand side

and entry is efficient. Last, if the inflation rate is more than the Friedman rule, then the

sellers appropriate a strictly lower part of the surplus. As a result, entry is suboptimal for
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any inflation rate that is above the Friedman rule.

6 Extensions

We now consider three extensions to the basic framework developed above: positive marginal

cost for sellers, and buyers that are heterogeneous in the utility they derive from consumption

and belong to either discrete or continuous types.

6.1 Positive Marginal Cost

We start with the case where sellers incur marginal cost c > 0 when they produce a good

for some buyer, in addition to the fixed entry cost K. The main difference is that now the

sellers have a positive reservation price. This makes it costly for buyers to participate in the

decentralized market because they need to bring a minimum amount of money in order to

have a chance of purchasing (as opposed to being able to buy even if they bring zero dollars,

which was the case in section 3). Since that amount may remain unspent, and hence lose

value, this introduces a positive participation cost. We proceed the analysis by first fixing the

number of sellers that are in the market to some S̄ and analyzing the participation decision

of buyers. We then look at the entry problem of sellers.

Let r be the minimum price that the seller is willing to receive for the good and note that

it is defined by δ W s
+1(0) = −c+δ W s

+1(r) ⇒ r = c/γ. It is immediate that bringing balances

in (0, r) is dominated by bringing zero, since a positive (but insufficient) amount cannot be

used for any purchase and hence it simply depreciates. We label the buyers that bring r real

dollars or more to the market as effective buyers and denote their measure by B̄. The effective

buyer-seller ratio is then given by λE = B̄/S̄. The decision problem of effective buyers is

almost identical to the one in section 3 and is characterized in the following proposition.

Proposition 6.1 If λE > 0, the distribution of money holdings of effective buyers in equilib-

rium is non-atomic in [r, z∗) and it is given by F (z) = 1
λE

ln{1− eλE [γ/(β δ)− 1] ln[u−z
u−c

]}.
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Also, z < z∗.

Proof: The proof is identical to propositions 3.1 and 3.2 and is therefore omitted. QED

We turn to the buyers’ decision to participate in the search market. We want to compare

the expected payoffs of participating in the decentralized market versus staying out. Since

all effective buyers earn the same expected payoffs regardless of how much money they carry,

a simple way to characterize their value is to consider a buyer holding r. This buyer only

purchases if there is no competitor at the location he visits (which occurs with probability

e−λE) in which case he spends all of his money. Otherwise, he continues to the next centralized

market with r dollars. Therefore, this buyer prefers participating in the market only if

β δ W+1(0) ≤ −r γ/δ + β [e−λE (u + δ Wt+1(0)) + (1− e−λE) δ Wt+1(r)] ⇒

i c ≤ u e−λE (21)

recalling that W+1(r) = r γ/δ + W+1(0), i = γ/(β δ)− 1, and r = c/γ. This condition puts

an upper bound on the buyer-seller ratio, as a function of the inflation rate:

λ̄(γ) ≤ − log(c i/u) (22)

It is obvious that as the inflation rate increases, the buyers are willing to participate in the

market only if the face less competition from each other. Note that when γ ≥ β δ (u/c + 1),

the right-hand side of (22) is non-positive, hence there is no trade in the decentralized market.

This occurs because it is too costly for buyers to bring even the minimum amount required by

sellers to produce (this effect is similar to the case where no sellers enter into the decentralized

market, as described in section 4). If the inflation rate is below that threshold, the number of

buyers is determined by the indifference condition that results from setting (21) to equality,

for a given number of sellers S̄.

Turning to the entry decision of sellers, note that their profits are still characterized by
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the expressions derived in section 4. The only difference is that now the upper bound for

profits is given by Π(λ̄) which is strictly lower than limλ→∞ Π(λ). As a result, the set of Ks

that can support trading in the decentralized market is strictly smaller than in section 4.

6.2 Heterogeneous Buyers: Discrete Types

Consider the case of two types of buyers who differ in how much they enjoy consuming the

good of the night market. In particular, share αH are high type buyers and they receive uH

when consuming; the complementary proportion, αL ≡ 1 − αH , are low types and receive

uL < uH . We show that every low type buyer hold less money than any high type buyer. We

then characterize the distributions of money balances of each type.

Let Fi(·) denote the distribution of real balances and Zi ≡ suppFi(·) denote the support

of that distribution for an agent of type i ∈ {L, H}. Then, F (z) = αH FH(z) + αL FL(z)

gives the unconditional distribution of money balances. Let z be the highest balances of

any agent. An argument similar to proposition 3.1 shows that suppF = [0, z] and F (·) is

non-atomic on [0, z], if z < z∗. While we cannot guarantee that F (·) is differentiable, an

argument similar to the one in section 3 shows that Fi(·) is differentiable in the interior of

Zi. As a result we can meaningfully evaluate the first order conditions of buyers.

Buyer optimization implies that V ′
i (z) = γ/(β δ) when z ∈ Zi for both types. The

derivative of Vi(·) can be evaluated on the interiors of ZL and ZH . Therefore, for z ∈

int(ZL) ∪ int(ZH)

V ′
i (z) =

γ

δ
+

∞∑
n=0

Pn{ui n F ′(z) F n−1(z)− n z F ′(z) F n−1(z)}

=
γ

δ
+ (ui − z) λ F ′(z) e−λ (1−F (z)) (23)

It is now easy to see that V ′
H(z) > V ′

L(z) for z ∈ suppF (·). As a result, all low type buyers

hold less money that any high type buyer. Furthermore, the support of the two distributions

are adjacent, which implies that F (·)4 is not differentiable at their common point.
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The above analysis means that ZL = [0, zL] and ZH = [zL, z]. To replicate the analysis

of proposition 3.2, note that the decentralized market value functions for the two types of

agents are given by

VL(z) = δ WL
+1(z) + e−λH

∞∑
n=0

PL
n {uL FL(z)n −

∫ z

0

z̃ dFL(z̃)n} (24)

VH = δ WH
+1(z) +

∞∑
n=0

PH
n {uH FH(z)n −

∫ z

0

z̃ dFH(z̃)n} (25)

where P i
N is the probability the n buyer of type i show up. Note that a low type buyer has a

chance to buy only if no high type buyers appear at the location he visits, which occurs with

probability e−λH . Also, it does not matter to a high type whether any low types are visiting

his location, since they hold less money with probability one.

We can now replicate the analysis of section 3 to arrive at the explicit characterization of

the distributions of real money balances for the two types. The initial conditions for the two

distributions are FL(0) = 0 and FH(zL) = 0, where FL(zL) = 1. Therefore we have:

FL(z) =
1

λL

log{1− eλ i ln(1− z

uL

)}, ∀ z ∈ [0, zL]

zL = uL (1− e−e−λH (1−e−λL )/i)

FH(z) =
1

λH

log{1− eλH i ln(
uH − z

uH − zL

)} ∀ z ∈ [zL, zH ]

zH = uH (1− e−(1−e−λH )/i) + zL e−(1−e−λH )/i

6.3 Heterogeneous Buyers: Continuous Types

Turning to continuous types, suppose that the buyers’ utility is distributed according to

u ∼ H(·) which is non-atomic, with u ≡ infu suppH(u) > 0. To solve this case, we assume

that there exists a bidding function z(u) such that the optimal strategy for a buyer of type

û is to bring z(û), when all other buyers follow the same bidding function. The discussion in
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the previous section shows that a buyer who values the good more brings more money to the

market and we therefore restrict attention to bidding functions that are strictly increasing.

It is also straightforward to show that z(u) has to be continuous in any equilibrium, for the

same reasons why F (·) is continuous. We now proceed to characterize z(u) which in turn

pins down F (·).

First, observe that F (z(u)) = H(u) since z(u) is strictly increasing. As a result, in

equilibrium a buyer ‘beats’ all competitors with lower valuations and loses from buyers who

value the good more. Therefore, when examining potential deviations for the buyer, we look

at the cases where he ’pretends’ to be of a different type. Hence, given z(u), the problem of

a type-u buyer when choosing his money holdings is

max
û

−z(û) γ/δ + β [δ W+1(z(û)) +
∞∑

n=0

Pn{u H(û)n −
∫ û

0

z(ũ) dH(ũ)n}] (26)

The first order conditions of this problem have to equal to zero at û = u for the buyer to

bring the amount prescribed by the bidding function. In other words

−z′(u) γ/δ + β [z′(u) +
∞∑

n=0

Pn{u n H ′(u) H(u)n−1 − z(u) n H ′(u) H(u)n−1}] = 0 ⇒

−z′(u) i + (u− z(u)) λ H ′(u) e−λ (1−H(u)) = 0 (27)

Furthermore, equation (27) has to hold for all u. This means that z(u) is defined by the

following first order linear differential equation:

z′(u) + z(u) λ H ′(u) e−λ (1−H(u))/i = u λ H ′(u) e−λ (1−H(u))/i (28)

We can multiply both side with the integrating factor ev(u), where

v(u) =

∫
λ H ′(ũ) e−λ (1−H(ũ))/i dũ (29)

= e−λ (1−H(u))/i (30)
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The left-hand side is then given by d[z(u) ev(u)]/du, and we can use the fundamental theorem

of calculus to arrive at the explicit formulation for the equilibrium bidding function:

z(u) = u− z ee−λ (1−H(u))/i −
∫ u

u

ee−λ(H(u)−H(ũ))/i

dũ (31)

While this equation does not look particularly attractive, it gives a unique and explicit

solution for the bidding function, given H(·).

7 Conclusions

This model extends recent monetary theory by considering environment with directed match-

ing and auctions. Fiat money is still essential for trade due to the assumptions of anonymity

and lack of double coincidence of wants. However most of characterization results for the

equilibrium are novel. The fact that buyers compete directly with each other to consume the

good leads to very different incentives when choosing their money holdings. In particular, we

show that there is money dispersion in all equilibria, which leads to price dispersion. Despite

the non-degeneracy of the distribution of money holdings, the equilibrium characterization

remains tractable and admits an analytical solution. Furthermore, we show that only the

Friedman rule allows for full transferable utility between buyer and seller, and only in this

case are sellers able to recover the social surplus of their investment, yielding an efficient

outcome.
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