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Abstract
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move to occupations with similar task requirements and that the distance of moves declines with
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1 Introduction

The distinction between general and speci�c human capital is a central concept in labor economics

(Becker, 1964). Speci�c human capital, de�ned as skills that are productive only in a particular

�rm or with a certain technology, plays an important role for answering several economic questions.

For example, reallocation costs of worker displacement and the speed of adjustment to technological

change depend crucially on how transferable speci�c skills are across jobs.1

The empirical literature has followed two approaches to isolate the value of speci�c skills: �rst,

a number of studies have estimated the e¤ects of �rm tenure on wages (Abraham and Farber, 1987;

Altonji and Shakotko, 1987; Altonji and Williams, 2005; Topel, 1991). The second approach infers

the value of speci�c skills from wage losses of displaced workers (Jacobson et al, 1993; Kletzer,

1989). While the �rst approach �nds con�icting estimates of the returns to �rm tenure, the latter

reports substantial wage losses from displacement.

Firm tenure might however be a poor measure of speci�c skills. For example, �rms and workers

could split the costs and returns of investment in speci�c skills in such a way that �rms pay for

the training and workers do not receive any wage compensation. In this case, the coe¢ cient on

tenure in a wage regression would be zero despite investment in speci�c skills (Farber, 1999).

Recent evidence also suggests that speci�c skills are more general than previously considered.

Several studies using US data have shown that the coe¢ cient on �rm tenure in a wage regression

is no longer statistically di¤erent from zero once controls for occupational or industry tenure are

included (Gibbons et al, 2005; Kambourov and Manovskii, 2002; Parent, 2000). Similarly, evidence

from displaced workers shows that wage losses are much lower for workers returning to the sector

of their pre-displacement job (Neal, 1999). This suggests that speci�c skills might be tied more to

an occupation than to a particular �rm.

This paper analyzes how general or speci�c human capital accumulated in the labor market is.

Our strategy to answer the question di¤ers from previous research in three important ways: �rst,

1Recent macroeconomic models have argued that the speci�city of skills with respect to the current technology
plays a crucial role in explaining the divergent growth experience of the United States and Europe (Krueger and
Kumar, 2004; Wasmer, 2005) and the rise in wage inequality over the past two decades (Violante, 2002).
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the existing literature assumes that skills are either general or fully depreciate when workers leave a

�rm or occupation.2 We in contrast ask whether human capital is speci�c to an occupation or more

generally transferable across occupations. Second, our analysis uses for the �rst time patterns in

occupational mobility together with information on wages to demonstrate that skills are partially

transferable across occupations. Finally, our empirical strategy combines two unusually rich data

sources: a large survey on tasks performed in occupations and a panel of individual labor market

careers spanning almost three decades.

The economic intuition behind our approach is that individual�s occupational choices also in-

volve the choice of a particular set of skills. Suppose there are two types of skills in the labor

market, for example analytical and manual skills. Both skills are general in the sense that they

are productive in di¤erent jobs. Occupations combine the two skills in di¤erent ways. For exam-

ple, one occupation might rely heavily on analytical skills, a second more on manual skills, and a

third might combine the two in equal proportion. Human capital accumulated while working in

an occupation is then �speci�c�to that occupation to the extent that occupations place di¤erent

values on combinations of skills (see also Lazear, 2004).

This setup would predict that individuals are more likely to move to an occupation with skill

requirements similar to the occupation of origin.3 Mobility costs arise naturally in our framework

from the limited transferability of skills across occupations. These costs of mobility are rising in

the distance between the skill requirements of the current and potential future jobs. Furthermore,

wages after a move should be higher in a similar occupation because more of the skills from the

last occupation are valuable in the new occupation.

To analyze the transferability of human capital across occupations empirically, we require high-

quality panel data on worker mobility as well as information on the skill requirements in di¤erent

occupations. In the absence of reliable data for the United States, we combine information from

2There are two exceptions to this. Keane and Wolpin (1997) provide evidence that human capital in blue-collar
occupations is rewarded in white-collar occupations and vice versa. Their dynamic discrete choice setup however
constrains them to two occupational choices. Shaw (1987) in contrast constructs a measure of occupational distance
based on actual worker �ows. She also provides evidence that skills are partially transferable across occupations.

3Job ladder models in contrast assume that there is only one type of skill in the labor market or have little
to say about whether skills are transferable across rungs of the ladder (Galor and Sicherman, 1990; Gibbons and
Waldman, 2006).
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two di¤erent data sources in Germany. The �rst data set is a large survey that provides detailed

information on 19 di¤erent tasks performed in occupations at four separate points in time. The

data allows us to characterize whether two occupations require similar or very di¤erent skills.4

Using this variation in skill requirements across occupations, we construct measures of �distance�

between occupations. Based on the task data, the skill requirements of a baker and a cook are

very similar. In contrast, switching from a banker to an unskilled construction worker would be

the most distant move observable in our data.

Our second data source is a large panel that follows individual labor market careers fom 1975

to 2001. The data, derived from a two percent sample of all social security records in Germany,

provides a complete picture of job mobility and wages in each job with more than one million

observations. Its administrative nature ensures that there is little measurement error in wages and

occupational coding. Both are serious problems in datasets like the PSID or NLSY used in the

previous literature on occupational mobility. In addition, we have much larger samples available

than in typical household surveys.

Matching the information on tasks and distance between occupations to the individual panel

data on mobility and wages, we can link observable patterns in mobility and wages to the trans-

ferability of skills in an innovative way.

Our results suggest that task human capital is partially transferable across occupations, but is

not a general skill like labor market experience. More speci�cally, we show that individuals are

much more likely to move to similar occupations than we would expect if mobility was random.

The result stands in stark contrast to the standard turnover models, which assume that worker

productivity is unrelated across jobs (Jovanovic, 1979a; 1979b; Flinn, 1986; Topel and Ward,

1992).5 This suggests that there is much more mobility between occupations than switches in

tasks performed on the job.

If individuals move to a distant occupation, this switch occurs very early in their career, mostly

4Note that the data do not allow us to analyze specialization and the accumulation of speci�c skills within a
given occupation, for example the type of law practiced by a lawyer.

5More recently, models consider both occupational and �rm mobility (Miller, 1984; Neal, 1998; Pavan, 2005).
These models assume however that all speci�c skills are lost when an individual switches occupations.
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within �ve years of labor market entry. Both the distance of actual moves and the propensity to

switch occupations declines sharply with labor market experience. This is consistent with the idea

that the accumulation of task-speci�c human capital makes occupational mobility increasingly

costly.

If human capital is task speci�c and therefore in part transferable across occupations, this

should also be re�ected in individuals�wages. Our framework can explain why tenure in the pre-

displacement job has been found to have a positive e¤ect on the post-displacement wage (Kletzer,

1989). We also show that for movers the correlation of wages in old and new occupations is much

higher if the two occupations require similar skills.

Using a nonlinear instrumental variable approach, we show that task-speci�c human capital is

an important source of wage growth, in particular for the high-skilled. @All our empirical results

are much stronger for university graduates than for the other two education groups. We interpret

this as evidence that the high-skilled have a comparative advantage in learning tasks.

In contrast, skills speci�c to the �rm and occupation are most important for the low-skilled.

These di¤erences by education are consistent with previous evidence on the returns to �rm tenure

and experience from Germany (Dustmann and Meghir, 2005).

The structure of the paper is as follows. The next section outlines a model of task human capital

and occupational choice. Section 3 introduces the two data sources and how we relate occupations

to each other in terms of their skill requirements. The empirical results on the similarity of

occupational moves and its implications for wages across occupations are presented in Section 4.

Section 5 estimates the importance of task human capital for wage growth. Finally, Section 6

discusses future extensions and concludes.

2 Speci�c Skills, Mobility and Wages

Our goal is to analyze the nature of speci�c skills that individuals accumulate over their labor

market career. To this end, we outline a simple framework of occupational choice with task-

speci�c human capital that highlights how skill requirements of occupations are related to each
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other. We start out with a one-period occupational choice model. We then extend it to a dynamic

setting to allow for human capital accumulation.

2.1 Static Occupational Choice Model

The labor market consists of N di¤erent occupations. Output in an occupation is produced by

combining di¤erent tasks, for example negotiating, writing or calculating. Occupations di¤er in

the tasks they require and in the relative importance of each task for production. To simplify

notation, we consider the case of two tasks, denoted by j = A;M . We think of them as manual

and analytical tasks.

There is a continuum of risk-neutral workers indexed by i. Workers are endowed with pro-

ductivities in each task. Let TAi and TMi denote worker i0s productivity in task A and M: These

productivities are drawn from a joint normal distribution with mean T
A
; T

M
; variance �2A; �

2
M ;

and correlation �:

Wages of individuals working in occupation o are given by

Wio = PoSio;

where Po is the occupation-speci�c price for skill Sio:6 We specify Sio to be log-linear in task-speci�c

productivity, i.e.

Sio = e
�oT

A
i +(1��o)T

B
i :

Here, 0 � �o � 1 is the relative weight on the analytical task. For example, if in an occupation

analytical tasks are more important than manual tasks, �o > 0:5: In another occupation, only the

manual task might be performed, so �o = 0: By restricting the weights on the tasks to sum to one,

we focus on the relative importance of each task in an occupation, not on their intensity.7 Two

6Skill prices are determined endogenously in equilibrium. Let Lo denote the labor input in occupation o (Lo
aggregates the skill units Sio over workers employed in occupation o). Each occupation�s output is a concave
function of its labor input: yo = Fo(Lo): Let �o denote occupation product prices. Firms behave competitively in
both the product and labor market, and tak product prices �o and skill prices Po as given. Competition implies
that Po = �oF 0o(Lo):

7Our setup is a restricted version of the classic Roy model. In that model, each sector has its own task, and
productivity can be arbitrarily correlated across occupations. However, this setup becomes quickly untractable as the
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occupations o and o0 are similar if they employ analytical and manual tasks in similar proportions,

i.e. �o is close to �o0 . The occupation that fully specializes in the analytical task (�o = 1) and the

occupation that fully specializes in the manual task (�o = 0) are the two most distant occupations.

Workers choose where to work by comparing wages across occupations. They prefer occupation

o over occupation o0 if

lnPo + �oT
A
i + (1� �o)TBi > lnPo0 + �o0T

A
i + (1� �o0)TBi :

Assuming �o > �o0 ;

TAi >
lnPo0 � lnPo
�o � �o0

+ TBi

Figure 1 illustrates occupational choice when there are four occupations with �1 > �2 > �3 > �4:

Occupation 1 mostly requires the analytical task, while occupation 4 primarily relies on the manual

task. Occupation 2 and 3 put a more equal weight on both tasks.

Workers with a high productivity in the analytical task relative to the manual task sort into

occupation 1 that puts a high value on the analytical task. Similarly, workers with a high produc-

tivity in the manual task relative to the analytical task choose occupation 4. Workers with more

similar relative endowments will be found in occupations 2 and 3. Note that occupations 2 and

3 will have positive employment in equilibrium only if they pay higher skill prices (Po) than the

occupations 1 and 4 that focus on only one task.

2.2 Dynamic Model with Mobility and Human Capital Accumulation

We now extend the model to a dynamic setting with two periods. Individuals accumulate human

capital in their occupation through learning-by-doing. To keep the model tractable, we assume in

number of occupations increases. We reduce the dimensionality by restricting occupational output to be a weighted
function of a number of tasks strictly smaller than the number of occupations N: Assuming that productivities in
analytical and manual tasks are uncorrelated, the population variance of productivities in the log-linear setup is
given by V ar(ln yo) = (�o)

2 �A + (1� �o)2 �M : The population covariance of productivities between occupation o
and o0 is

Cov(ln yo; ln yo0 ) = (�o�o0 )�1 + ((1� �o)(1� �o0 )�2 + (�o(1� �o0 ) + (1� �o)�o0 )�12
Instead of allowing for an arbitrary covariance between the productivities, our model imposes a linear factor

structure, where the factors are the population variances and covariance of the two tasks and the factor loadings
are a function of the occupation-speci�c weights on the skills.
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addition that each individual accumulates the same amount of task human capital in each task

and occupation. This implies that the learning rate does not depend on the occupational choice

in the �rst period (as in Rosen, 1983; Murphy, 1986) or an individual�s initial endowment (as

in Ben-Porath, 1967). These restrictions allows us to focus our analysis on the types of move we

observe and the relative importance of task human capital relative to general or more speci�c skills

(see Section 5).

If a worker switches occupation, the similarity of the source and target occupation determines

how much of the task human capital can be transferred to the new job. In particular, we assume

that workers can transfer a fraction 1 � j�o � �o0 j of their human capital if they switch from

occupation o to o0: For example, if workers move from an occupation that fully specializes in the

analytical task (�o = 1) to an occupation that fully specializes in the manual task (�o0 = 0), none

of the acquired skills can be transferred. In contrast, if workers move from an occupation that

mostly uses the analytical task (e.g. �o = 0:75) to an occupation that employs both tasks in equal

proportions (i.e. �o0 = 0:5), they are able to transfer around 75 percent of their acquired skills.
8

Since task-speci�c human capital has the highest value in workers� current occupation, no

worker would ever switch occupations between period 1 and 2 in the absence of uncertainty. We

formalize uncertainty as individual-speci�c shocks to task-speci�c productivities, and denote these

shocks by uji ; j = A;M: Task shocks occur with probability p; and are revealed only after the �rst

period.9 Thus, task-speci�c productivity in the second period equals

T j2i = T
j
i +D

j
iu
j
i ; j = A;M:

Here, Dj
i is an indicator function equal to 1 if worker i experienced a shock at task j; and 0

otherwise.
8A more general model of occupational choice and human capital accumulation would allow workers to invest

separately in task-speci�c skills A and M . For instance, learning could depend on the usage of a task in an
occupation. If a worker chooses an occupation that mainly specializes in task A; he would mainly accumulate skills
in task A: This ties the skill investment decision to the choice of an occupation. See Murphy (1986) or Rosen (1983)
models along these lines. The more general model would however not lead to an empirical speci�cation we could
estimate with the data available to us. Our more restricted setting allows us estimate the importance of task-speci�c
human capital relative to purely general or occupation-speci�c human capital.

9This type of shocks has the advantage that they induce mobility both from occupation o to o0 and vice versa.
This is consistent with the empirical observation that gross mobility is much more important than net mobility.
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The productivity shocks are assumed to be independent of each other, and are drawn from a

joint normal distribution with mean uA = uM = 0 and variance �2uA = �
2
uB : One interpretation of

the shocks is that the productivity of an individual is only revealed through performing that task.

Our setup says that task-speci�c shocks do not depend on occupational choice in the �rst period;

in particular, they are independent of the relative usage of a task in the occupation.

Our assumptions on human capital accumulation and productivity shocks imply that log-wages

in the �rst period can be written as

lnwio1 = lnPo + �oT
A
i + (1� �o)TBi (1)

while in the second period, wages are given as

lnwio2 = lnPo + �o(T
A
i +D

j
iu
A
i ) + (1� �o)(TBi +D

j
iu
B
i ) +H � TSi (2)

= lnwio1 + �oD
j
iu
A
i + (1� �o)D

j
iu
B
i +H � TSi:

In (2),TSi denotes worker i�s �task-speci�c tenure�, and H is the return to task-speci�c human

capital or tenure. TSi is equal to 1 if the worker does not switch occupations; it is equal to

1 � j�o � �o0 j if he moves from occupation o to o0: This speci�cation can easily be extended

to incorporate purely general human capital accumulation that is fully transferable across all

occupations, and purely occupation-speci�c human capital accumulation that fully depreciates if a

worker leaves the occupation. Note that task-speci�c human capital is more speci�c than general

human capital - since skills can only be partly transferred across occupations -, but more general

than occupation-speci�c human capital - since skills do not fully decpreciate when a worker switches

occupations.

Workers choose occupations by maximizing expected life-time income. In the second period,

occupational choice is like in the static model. Given their accumulated task human capital,

occupation-speci�c skill prices Po and realizations of the productivity shocks uA and uM , individ-

uals choose the occupation that pays them the highest wage.
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In the �rst period, in contrast, choosing the occupation that o¤ers the highest wage may no

longer be optimal. This is because occupational choice in the �rst period a¤ects the applicability

of skills in the second period, and thus also occupational choice in the second period10 . Formerly,

in the �rst period workers maximize

max
o

EWio1 +
1

1 + r
Emax

l
[Wil2jo] ;

where r is a common interest rate, and o and l denote the optimal occupational choice in the �rst

and second period, respectively. Occupational mobility between period 1 and 2 is purely driven by

the task-speci�c shocks uA and uM : A worker will not move unless the productivity shocks o¤set

the loss in task human capital from switching to a di¤erent occupation.

2.3 An Illustration of the E¤ect of Task-Speci�c Human Capital on

Mobility and Wages using Simulations

Since there is no analytical solution to the model, we illustrate the equilibrium choices using

simulations. Our model economy consists of 15000 workers and four symmetric occupations; �1 =

1; �2 =
2
3 ; �3 =

1
3 ; and �4 = 0: Hence, occupation 1 and 4 are specialized occupations that use

only one task, while occupations 2 and 3 are general occupations that use both tasks.

Task-speci�c productivity is independently jointly normally distributed with means TA =

TM = 1 and variances �2A = �2M = 1. Productivity shocks occur with probability p = 0:25,

and the variance of the productivity shocks is �2uA = �2uB = 0:2: Task-speci�c human capital

is accumulated at rate H = 0:1: Occupation- speci�c skill prices are set at P1 = P4 = 2 and

P2 = P3 = 2:1:1112 These parameter values replicate wage growth and occupational mobility in

our data during the early years in the labor market. Table 1a shows the transition matrix from

10�2uA 6= �2uB would also make occupational choice in the �rst period dynamic.
11 In a future version of the paper, we plan to endogenously derive aggregate skill prices .
12The chosen parameter values imply that the four occupations are symmetric, i.e. average wages and mobility

will be similar in occupations 1 and 4 as well as in occupations 2 and 3. Suppose instead that �2A > �
2
M : In this case,

occupations can be ordered with respect to the relative usage of task A: Similar to the standard Roy model, average
wages in an occupation will be the higher the more heavily task A is used. Suppose further that �2uA > �2uB : In
this case, occupations with a higher relative usage of task A face more uncertainty and thus a higher option value.
Since the focus of this paper is the transferability of skills across jobs, we abstract from these asymmetries.
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Table 1: Occupational Choice in Period 1 and 2

period 1nperiod 2 1 2 3 4 Fraction

1
89:54 %
�

6:22 %
59:46 %

2:73 %
26:10 %

1:51 %
14:43 %

25:18 %

2
13:01 %
49:74 %

73:85 %
�

7:58 %
29:00 %

5:56 %
21:26 %

24:71 %

3
5:72 %
21:19 %

8:03 %
29:77 %

73:02 %
�

13:23 %
49:04 %

24:49 %

4
1:38 %
13:15

3:12 %
29:78

5:98 %
57:07

89:51 %
� 25:62 %

Fraction 27:52 % 22:58 % 21:97 % 27:93 %

N=15000 (workers), simulated data. The �rst entry shows the fraction of workers employed in
occupation 1-4 in the second period, conditional on occupational choice in the �rst period. The
second entry shows the fraction of workers employed in occupation 1-4 in the second period,
conditional on switching occupations.

the simulated data. Rows refer to occupational choice in the �rst period, while columns refer to

occupational choice in the second period. The �rst entry in each cell reports the fraction of workers

who are employed in occupations 1 to 4 in the second period, conditional on occupational choice

in the �rst period. The second entry in each cell shows the fraction of workers who are employed

in occupations 1 to 4 in the second period conditional on switching occupations.

Two things are noteworthy in Table 1a. First, occupational mobility is substantially higher in

occupations 2 and 3 than in occupations 1 and 4, which focus on only one task. This is because

occupations 2 and 3 have two neighboring occupations where 2/3 of the acquired human capital

can be transferred, while occupations 1 and 4 only have one such neighboring occupation.

Second, workers are more likely to move to similar occupations. For instance, among workers

who chose occupation 1 in the �rst period and move to another occupation in the second period,

59:46 % move to the closest occupation and 14:43 % to the most distant occupation. This is so

for two reasons. First, the amount of human capital that can be transferred from one occupation

to another is higher if the worker moves to a similar occupation. Second, it is unlikely that a

worker who preferred a certain occupation in period 1 receives so high productivity shocks that in

period 2 a distant occupation becomes optimal. Table 1b shows the correlation between �rst and

second period wages by the distance of the move under observed mobility, and compares it with the
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Table 2: Correlation of Wages in Period 1 and 2 under Observed and Random Mobility

observed mobility random mobility
occupational stayers 0.8773 0.8229

occupational movers: close 0.5705 0.6434
medium 0.4765 0.3038
distant 0.3507 0

N=15000 (workers), simulated data. Column 1: Correlation of wages in period 1 and 2 under
observed mobility. Column 2: Correlation of wages in period 1 and 2 under random mobility.
Close occupational movers: Movers from 1 to 2 and vice versa, 2 to 3 and vice versa, 3 to 4 and
vice versa. Medium occupational movers: Movers from 1 to 3 and vice versa, movers from 2 to 4
and vice versa. Distant occupational movers: Movers from 1 to 4 and vice versa.

correlation we would observe if workers were randomly assigned to occupations. Not surprisingly,

the correlation is highest for workers who do not switch occupations. More interestingly, �rst and

second period wages are more strongly correlated for workers who move to similar occupations -

since productivity is more strongly correlated across similar occupations.

Also note that di¤erences by the distance of the occupational move are lower under observed

mobility than under random mobility. This is because it is workers at the edge of an occupation

who are most likely to leave the occupation, and for these workers, productivity is more strongly

correlated across occupations. Table 1c reports results from Mincer-type wage regressions from

Table 3: Returns to General, Occupational, and Task-Speci�c Tenure

1 2 3 4 5
general experience 0.1237 0.0980 0.0389 0.0523 0.0859

(0.0033) (0.0058) (0.0177) (0.0118) (0.0211)
occupational tenure 0.0314 -0.0145

(0.0059) (0.0143)
task-speci�c tenure 0.1050 0.0776 0.1050

(0.0296) (0.0123) (0.0341)

N=15000 (workers). General experience: 0 in period 1, 1 in period 2. Occupational tenure: 0 for
occupation movers, 1 for occupation stayers. Task-speci�c tenure: 1 for occupation stayers, 1- for
occupation movers.

the simulated data. In the �rst column, we regress log-wages on experience only. Overall wage

growth in our model economy is about 13 %, and thus higher than the rate of (task-speci�c)

human capital accumulation. This is because of selection; since workers have the option to switch
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occupations, they are partially insured against low realizations of productivity shocks. The second

column adds occupational tenure. Although there is no true general or occupation-speci�c human

capital in our model, both coe¢ cients are positive and signi�cant.

The third column additionaly includes task-speci�c tenure. This greatly reduces the coe¢ cient

on experience and occupational tenure; the coe¢ cient on occupational tenure even becomes nega-

tive. The coe¢ cient on task-speci�c tenure is close to the true rate of human capital accumulation

of 10 %. The next column excludes occupational tenure. This increases the return to general ex-

perience, and decreases the return to task-speci�c tenure. The �nal column restricts the analysis

to workers who switch occupations. The return to task-speci�c tenure is again close to the true

return of 10 %.

We now turn to the data to demonstrate that mobility behavior and wages are consistent with

the predictions of our task-speci�c human capital model.

3 Data Sources and Descriptive Evidence

To study patterns in mobility and wages across occupations, we combine two di¤erent data sources

from Germany. We describe each of them in turn.13

3.1 Data on Tasks Performed in Occupations

Our �rst data set contains detailed information on tasks performed in di¤erent occupations, which

we use to construct a measure of how similar or distant occupations are in their skill requirements.

The data come from the repeated cross-section German Quali�cation and Career Survey, which is

conducted jointly by the Federal Institute for Vocational Education and Training (BiBB) and the

Institute for Employment (IAB) to track skill requirements of occupations. The survey, previously

used for example by DiNardo and Pischke (1997), is available for four di¤erent years: 1979, 1985,

1991/92 and 1998/99. Each wave contains information from 30,000 employees between the ages of

16 and 65. In what follows, we restrict our analysis to men since men and women di¤er signi�cantly

13Further details on the de�nition of variables and sample construction can be found in Appendix A and B.
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in their work attachment and occupational distribution.

In the survey, individuals are asked whether they perform any of nineteen di¤erent tasks in

their job. Tasks vary from repairing and cleaning to buying and selling, teaching, and planning.

For each respondent, we know whether he performs a certain task in his job and whether this is

his main activity. Table A1 lists the fraction of workers performing each of the nineteen di¤erent

tasks.14 Following Autor et al. (2003), we combine the 19 tasks into three aggregate groups:

analytical tasks, manual tasks and interactive tasks. On average, 55 percent report performing

analytic tasks, 72 percent manual tasks, and 49 percent interactive tasks. The picture for the

main task used is similar: 32 percent analytical, 57 percent report manual tasks and 28 percent

interactive tasks as their main activity on the job.

The last two columns in Table A1 show the distribution of tasks performed on the job for two

popular occupations: teacher and baker. According to our task data, a teacher primarily performs

interactive tasks (95,3%) with teaching and training others being by far the most important one

(91.4%). Two other important tasks are correcting texts or data (39.6%) and organize, coordinate,

manage personnel (39.4%). A baker in contrast is a primarily manual occupation (96.4%) with

manufacturing, producing, installing as the most important task (87.9%) followed by teaching and

training others (34.3%) as well as organizing, coordinating and managing personnel (29.9%).

To see how task usage varies across occupations, Table A2 lists the fraction of workers per-

forming manual, analytical, and interactive tasks for all 64 occupations. The table shows that

there is a lot of variation in task usage across occupations. For example, while the average use of

analytical tasks is 48 percent, the mean varies from 10 percent as an unskilled construction worker

to 68 percent for a banker. The variation is similar if we focus on the main activity performed in

occupations instead.

We next explain how we use information on task usage to characterize the distance between

occupations in terms of their skill requirements.

14The survey does not report how much time workers spend on each task. Our task data and derived measures
thus use variation in task requirements across occupations and over time. They will not re�ect changes over time in
the task itself like for example, computing skills. Also, the data does not allow us to analyze individual specialization
within tasks (for example, what type of law or medicine is practiced).
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3.2 Measuring the Distance between Occupations

In our model, two occupations have similar skill requirements if they put similar weights on tasks,

i.e. individuals perform the same set of tasks. With two tasks, the maximum distance between

two occupations occurs if one only uses task TA (� = 1), and the other only task TM (� = 0).

The framework extends naturally to our case with more than two tasks.

As our empirical measure of distance between occupation o and occupation o0; we use the

di¤erences in reported usage summed over all the ninenteen tasks. More formally, the distance

measure is

Disoo0 =
JX
j=1

����qjoqo � qjo0qo0
���� (3)

where qjo
qo
denotes the fraction of workers in occupation o who perform task j.15

Our primary distance measure is thus the sum of the di¤erence in average task usage between

occupations over all the 19 tasks. Theoretically, the maximum distance between occupations is

given if two occupations use complementary skill sets. For example, if all workers in occupation A

use task 1-10 and none of the others, while in occupation B all workers perform only tasks 11-19.

We normalized the measure to vary between 0 and 1 by dividing by the total number of tasks.

The mean observed distance between occupations in the data is 0.052 with a standard deviation of

0.025. To account for changes in skill requirements over time, we calculated the distance measures

separately for each wave. For the years 1975-1982, we use the measures from the 1979 cross-section,

for 1983-1988 the task measures from the 1985 wave; for the years 1989-1994, we use the measures

based on the 1991/2 wave; and the 1997/8 wave for the years 1995-2001. While there have been

changes over time in the distance measures, the four measures are with 0.7 highly correlated. Our

results are robust to assigning di¤erent time windows to the measures.16

15Alternatively, qjo in (3) can be computed as follows. Let Dji be a dummy variable which is equal to 1
if individual i performs task j: We weigh each observation by the number of tasks reported by the individual,
i.e.qjo =

P
i2o

Dji�PJ
j=1Dji

� : The correlation between these two measures is over 0.95, and both measures lead to
very similar results.
16Since our data cover nearly three decades, it is not surprising that there are shifts in the composition of tasks

used in occupations. In particular, we observe that the requirement for analytical and to a lesser extent interactive
skills has increased in the 1990s. Similar results have been documented by Autor et al. (2003) for the United States
and Spitz (2006) for West Germany using the same task data. Two-thirds of the overall increase in the demand for
analytical skills occurs within occupations and only one-third between (i.e. occupations with a higher demand for
analytical skills grow relative to others). As a result, the average distance between occupations declined somewhat
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Table 2 lists at the top the three most similar and most distant pairs of occupations. The most

distant move observed in the data is between a banker and a metal processor, unskilled worker or

assembler. The occupations most similar in their task requirements are carpenter, a bricklayer or

mason and a joiner or cabinet maker.

The bottom panel in Table 2 shows the three most common occupational moves observed in

the data for each education group. For the low-skilled, the most occupational moves are observed

in and out of the occupation as a store and warehouse keeper. For individuals with a vocational

degree, popular moves are from an o¢ ce clerk to being employed as sales personnel or from working

as an electrician to being a chemist or physicist. For the high-skilled, we observe many moves into

and out of entrepreneurship and in and out of engineering.

The distance measure just described is one way of combining the information on task usage

into a one-dimensional index. We also construct two alternative distance measures to check the

robustness of our results. Our second measure is the angular separation or uncentered correlation

between two vectors. This distance measure has been used extensively in industrial organization

to calculate potential spillover e¤ects from R&D between �rms with similar technologies (see for

example, Ja¤e, 1986).17 The measure also varies from 0 to 1. The more two occupations overlap

in their skill requirements, the closer the measure is to 0. The mean distance with this measure in

our data is 0.48 with a standard deviation of 0.21. The most similar occupational moves for this

measure are between occupations in wood processing (carpenter, lumber and timber processing)

as was the case for our main measure.

The third measure we calculate uses the average di¤erence in task usage across occupations, but

accounts for the fact that some of the nineteen tasks are more similar than others.18 To calculate

it, we use the three aggregate task categories, analytical, manual, and interactive, and normalize it

in the late 1990s making occupations more similar.
17The measure is calculated as

AngSepoo0 = FoF
0
o0= [(FoFo0 ) (Foo0 )]

1=2

where Fo contains the fraction of workers using a task in occupation o and Fo0 is de�ned analogously. The measure
varies from 0 to 1. In order to make it comparable to our main distance measure, we rescaled it such that the two
most distant occupations have a value of 1 (their vectors of skill requirements are orthogonal).
18Our main measure treats all tasks symmetrically and thus ignores that some tasks are more similar than others.

To see this, suppose that workers in occupation A mostly clean, while workers in occupation B mostly repair
machines. Workers in occupation C predominantly teach. It may be argued that the two tasks �cleaning� and
�repairing�are more similar than the two tasks �cleaning�(or �repairing�) and �teaching�.
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to lie between zero and one. The most distant moves for this third measure are between a banker

and an unskilled worker and an unskilled construction worker, while the most similar occupations

are between a bricklayer or mason and a lumber or wood processor.

The correlation between our three measures is with 0.5 reasonably high, and the three measures

yield very similar results as we demonstrate below.19 The results we present in the following

sections are based on our main measure using all nineteen tasks.

3.3 The German Employee Panel

Our second data set is a two percent sample of administrative social security records in Germany

from 1975 to 2001 with more than two million observations. The data has at least three advantages

over household surveys commonly used in the US literature to study mobility. First, its adminis-

trative nature ensures that we observe the exact date of a job change and the wage associated with

each job. Second, measurement error in earnings and occupational titles are much less of a problem

than in typical survey data as misreporting is subject to severe penalties. Finally, occupational

titles are consistent across �rms as they form the basis for wage bargaining between unions and

employers.

The data is representative of all individuals covered by the social security system, roughly 80

percent of the German workforce. It excludes the self-employed, civil servants, and individuals

currently doing their compulsory military service. As in many administrative data sets, our data

is right-censored at the highest level of earnings that are subject to social security contributions.

Top-coding is below one percent for unskilled workers and those with an apprenticeship, but can

reach almost 10 percent for university graduates.

We restrict our sample to men who entered the labor market in or after 1975. This allows us to

construct precise measures of actual experience, �rm and occupation tenure. Since the level and

structure of wages di¤ers substantially between East and West Germany, we drop all workers who

19While di¤erent distance measures yield the same results, they might still be biased if occupations that are
similar with respect to observed tasks di¤er with respect to tasks we do not observe. Since the goal of the survey
is to track changes in skill requirements in occupations, it seems unlikely that major tasks were omitted. One way
we can assess the magnitude of this problem is through a Monte Carlo analysis, which omits an observed tasks and
tests how sensitive our distance measures are to this omission.
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were employed at least once in East Germany. Finally, we exclude all those working in agriculture.

Table 3 reports summary statistics of the main variables. In our sample, about 16 percent are

low-skilled workers with no vocational degree. The largest fraction (68.5 percent) are medium-

skilled workers with a vocational degree (apprenticeship). The remaining 15.4 percent are high-

skilled workers with a tertiary degree from a technical college or university.

Wages are measured per day and de�ated to 1995 German Marks. For medium-skilled workers,

the median daily wage in our sample is 141 DM or $86 at 1995 prices. Median wages are about 10

percent lower for the low-skilled and 53 percent higher for the high skilled.

Our experience and tenure variables are measured in years, and exclude periods of unemploy-

ment and apprenticeship training. Actual experience is highest for low-skilled workers as they enter

the labor market at a younger age (7.9 years vs 7.05 and 6.7 years for medium- and high skilled

workers respectively). The average time a medium skilled worker spends in the same occupation

is 5.32 years, while the average tenure in a �rm is with 4.28 years about one year lower.

3.4 Occupational Mobility

Occupational mobility is an important feature of labor market careers in Germany. On average,

annual mobility rates are 15 percent for our 64 two-digit occupations compared to 21 percent of

job changers between �rms. As Table 3 shows, occupational mobility is higher for the low-skilled

(20.3%) and lowest for the high-skilled (10.9%). The same is true for �rm mobility (26% and 18%

for the low- and high-skilled respectively).

To see how mobility changes with time in the labor market, the top panel of Figure 3 plots

annual mobility rates over the �rst twenty years of labor market experience, separately by education

group. Occupational mobility rates are very high in the �rst �ve years of the labor market career

and highest for the low-skilled.

For comparison, the bottom panel shows mobility across �rms. While �rm mobility is somewhat

higher throughout, it exhibits a very similar decline with time in the labor market. For example,

in the �rst year after labor market entry, 26 percent of all low-skilled switch their occupation,
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while 29 percent switch �rms. Ten years into the labor market, 8 percent of the low-skilled

switch occupations and 10 percent switch �rms. The numbers for the high-skilled are 5 percent

(occupations) and 8 percent (�rms).20

The type of popular occupational moves however changes very little over the life-cycle for all

education groups. The three most popular moves within the �rst 5 years after labor market entry

are the same we observe for individuals with 15 or more years of labor market experience.

We merged our distance measures, which varies across the four time periods and by occupation,

to our panel of labor market careers and wages. The next section provides evidence that there are

strong patterns in mobility and wages across occupations with respect to our distance measures.

4 Patterns in Occupational Mobility and Wages

This section uses the sample of occupational movers to demonstrate that skills are partially trans-

ferable across occupations. We �rst study mobility behavior, while the second section analyzes

wages before and after an occupational move.

4.1 Occupational Moves are Similar

Our model predicts that workers are more likely to move to occupations, in which they can perform

similar tasks as in their previous occupation. In contrast, standard job search models (Kambourov

and Manovskii, 2004; Neal, 1999; Pavan, 2005) or human capital models with �rm-speci�c and

general skills (Topel, 1991; Farber, 1999) assume that workers�current occupation does not a¤ect

the direction of occupational mobility.

We �rst show that individuals switching occupations are much more likely to go to an occupation

that requires similar skills. In particular, we compare the distance of observed moves to the

distribution of occupational moves we would observe if mobility was purely random. We compute

20Figure 2 shows average mobility rates. However, some workers switch occupations multiple times. On average,
medium-skilled workers have worked in 2.5 occupations and in 3.5 �rms after 10 years of potential experience.
40 percent of medium-skilled workers have never switched occupations, while 25 percent never switched �rms. In
contrast, about 10 percent have switched occupations and 26 percent switched �rms at least �ve times. Low-skilled
workers are considerably more likely, while high skilled workers are considerably less likely to switch both occupations
and �rms multiple times.

19



the distribution under random mobility by assuming that the decision to move to a particular

occupation is solely determined by its relative size. For example, if occupation A employes twice

as many workers as occupation B, the probability that a worker joins occupation A would then be

twice as high as the probability that he joins occupation B.21

Figure 4 plots the density of the distance measure under observed and random mobility. The

horizontal axis is the distance measure where larger values are associated with movements to more

distant occupations. The distribution of the distance measure under observed mobility is more

skewed to the right than the distribution under random mobility. Therefore, observed moves are

more similar than we would expect under random mobility. The two distributions are statistically

di¤erent at the 1 percent level based on a Kolmogoro¤-Smirnov test:

To allow a more detailed comparison, Table 4 compares selected moments of the distribution

of our distance measure under observed and random mobility. The observed mean is much lower

than what we would expect under random mobility. The same is true for the 10th, 25th, 50th,

75th and 90th percentile of the distance distribution. The results are qualitatively the same for

our alternative distance measure and even more for our distance measure based on the three task

groups.

Both Table 4 and Figure 4 demonstrate that individuals are more likely to move to similar

occupations in their career. This speaks against the assumption of standard search models that

workers�past occupation has no impact on the type of occupation chosen.

If individuals accumulate task-speci�c human capital over time, we would also expect that

distant moves occur early in the labor market career, while moves become increasingly similar

with time in the labor market. Table 5 provides empirical support for both implications. It shows

the results from a linear regression where the dependent variable is the distance of an observed move

separately by education group. Column (1) contains experience and experience squared as well as

year and occupation dummies, while column (2) adds regional and sector dummies to control for
21Observed moves are calculated as the percentage of moves for each value of the distance measure. To compare

this to expected distance under random mobility, we calculate the fraction of individuals leaving an occupation
that would end up in any of the 63 occupations in proportion to their relative size. Each random source-target
occupation combination is then multiplied with the appropriate distance measure. The way we calculate random
mobility ensures that we account for shifts in the occupational structure, i.e. the fact that some occupations have
increasing or decreasing employment shares.
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di¤erences in local labor markets and across industries. For all education groups, the distance of

an occupational move declines with time spent in the labor market, though at a declining rate.

The declining e¤ect is strongest for the high-skilled, who also make more similar moves on

average (see last row). For the high-skilled, 10 years in the labor market decrease the distance of

a move by 0.018 or three-quarter of the standard deviation. For the medium-skilled, the decline is

only about 0.008 or one-third of the standard deviation.

Column (3) adds the time spent in the last occupation, while column (4) reports the results

from a �xed-e¤ects estimator to account for heterogeneity in mobility behavior across individuals.

More time spent in the previous occupation decreases the distance of an occupational move in

addition to labor market experience. The within estimator shows that occupational moves become

more similar for the same individual. The results are therefore not driven di¤erences between low-

and high experience workers. The decline in the distance becomes even more pronounced for the

high-skilled in the �xed e¤ects estimation.

The �nding that occupational moves become increasingly similar over the labor market career is

very robust across alternative measures of distance. For speci�cation 1 and 2, di¤erences between

education groups are weaker when the second measure is used. However, if we condition on

occupational tenure or �xed worker e¤ects (speci�cation 3 and 4), both measures give very similar

results (see Table A4, column (1) and (2) for each education group).

Table 4 imposed a quadratic relationship between actual labor market experience and the

distance of moves. In Figure 5, we relax this restriction. The �gure displays the average distance

of a move by actual experience, separately for the three education groups. The average distance is

obtained from a least-squares regression of the distance on dummies for actual experience as well

as year dummies. The �gure shows that occupational moves become more similar at all experience

levels and for all education groups. The decline between the �rst and 15th year of actual labor

market experience is statistically signi�cant at the 1 percent level.

Since the overall propensity to move declines sharply over the career, movers become a smaller

and more selected sample with time spent in the labor market. To adjust for that, the bottom
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panel shows the average distance of moves by experience for the whole sample, where occupational

stayers are assigned a distance of zero. The decline in distance is now even more pronounced for

all education groups. As before, the decline is statistically signi�cant at the 1 percent level.

Among movers (top panel), high-skilled workers move to more distant occupations than medium

or low-skilled workers early in their career. However, later in the career, occupational moves of

high-skilled workers are much more similar than those of low- and medium-skilled workers. If we

include stayers in the sample (bottom panel), the high-skilled have actually a lower decline than

the low skilled, in particular early in their labor market career. This is because the propensity

to switch occupations is smaller for the high-skilled at all stages of the labor market career (see

Figure 3).

In sum, individuals are more likely to move to occupations in which similar tasks are performed

as in their source occupation. Our model in Section 2 proposes a simple explanation for this pattern.

The basic mechanism is that human capital is more transferable between occupations with similar

skill requirements.

4.2 Wages in the Current Job depend on the Distance of Move

If individuals move to more similar occupations because skills are more transferable, we would

expect the wage at the source occupation to be a better predictor for the wage at the target

occupation. Table 5 reports estimates from a wage regression, where the dependent variable is

the log daily wage. To account for censoring, we estimate tobit models. All results are reported

separately by education. As a benchmark for comparison, the �rst speci�cation (column (1))

estimates the correlation of wages for stayers. Wages in the same job are highly correlated over time

with the correlation being highest for university graduates. All speci�cations include experience

and experience squared, an indicator for right censoring, year and occupation dummies as well as

state and sector dummies.

In the next speci�cation, we restrict the sample to movers who start out with zero occupational

tenure. We split the sample into movers from similar occupations (column (2)) and those from
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distant occupations (column (3)) where the median observed distance is used to split the sample.

For all education groups, the wage at the source occupation is positively correlated with the wage at

the target occupation. Moreover, the predictive power of the wage at the source occupation is larger

for movers from similar occupations. Interestingly, the di¤erence in the correlation is strongest for

the high-skilled workers, the group that is also most likely to move to similar occupations.22

As a second test of skill transferability, we estimate whether tenure in the last occupation

matters for wages in the new occupation. Table 6 reports results from wage regressions as a

function of past occupational tenure and the same controls as in Table 5. To allow for di¤erences

by distance, we estimated a linear spline function of past occupational tenure on wages where the

switching point is the median distance.

Past occupational tenure is positively correlated with wages in the target occupation, and the

correlation is stronger if source and target occupations are similar. In line with our previous

results, the impact of past occupational tenure declines more sharply with distance for university

graduates. Our results are consistent with previous evidence that post-displacement wages depend

positively on tenure in the pre-displacement job (Kletzer, 1989).

The analysis thus far has restricted the e¤ect across occupations to be linear. Figure 6a

provides a nonparametric analysis of the correlation of wages across occupations as a function of

their distance. The x-axis shows the distance with one being the most similar occupational moves

and 10 the most distant ones, while the y-axis reports the coe¢ cient on the wage in the source

occupation for each of the 10 categories. The coe¢ cient is obtained form a tobit regression that

controls for actual experience, actual experience squared, year dummies, the wage at the source

occupation, 9 dummies for the distance of the move and the 9 dummies interacted with the wage

at the source occupation (see column (1) in Table 6).

Three things are noteworthy: �rst, the �gure highlights that the wage at the source occupation

has a stronger explanatory power for the wage at the target occupation if the source and the target

occupation are similar. Second and in line with our results on mobility and wages, the decline is

22We also estimated a regression with an interaction e¤ect between distance of move and wage in the source
occupation for movers instead of a switching regression model. The results were similar. Since the coe¢ cients from
the switching regression model can be interpreted more easily, we prefer the speci�cation reported in Table 5.
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strongest for the high-skilled. The partial correlation coe¢ cient between wages in the old and new

occupation drops from 40 percent for the most similar move to around 23 percent for the most

distant move is statistically signi�cant. Third, the largest decline occurs from the �rst category

(very similar moves) up to the �fth category (the median move). The correlation of wages does

not decline further for moves more distant than the median. This pattern holds for all education

groups.

Figure 6b provides a similar analysis for past occupational tenure. The y-axis are now the

coe¢ cients on the 9 distance measure dummies from a tobit regression that also controls for

actual experience, actual experience squared and year dummies. The correlation between past

occupational tenure and wages in the new occupations is declining roughly linearly with the distance

of the move. The overall decline is statistically signi�cant for all education group at the 1 percent

level. As before, the declining pattern is strongest for the high-skilled, particularly for very distant

occupational moves.

We also performed several additional tests to check the robustness of our results to alternative

sample de�nitions and measures of distance. First, our sample of movers contains both occupational

switches between �rms as well as within the same �rm. The latter account for roughly 10 percent of

all occupational movers. If some skills are tied to a �rm, internal movers would have more portable

skills than �rm switchers. We therefore reestimated our speci�cations in Table 4 to 6 using only

external movers to test whether any of our results are sensitive to this sample de�nition. The

results shown in the top panel of Table A3 show that movers switching occupations and �rms

exhibit the same patterns in mobility and wages we observe for the whole sample of movers.

Second, our original sample of movers contains everybody switching occupations irrespective of

the duration of intermediate un- or nonemployment spells. To the extent that those remaining out

of employment for an extended period of time are di¤erent from for example job-to-job movers,

our results might again not be valid for those with high attachments to the labor market. To

account for this, we reestimated the results only for the sample of workers with intermediate un-

or nonemployment spells of less than a year. As the bottom panel in Table A3 shows, this again
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does not change our results on mobility and wages.

As a �nal robustness test, we reestimated the speci�cations in Table 4 to Table 6 for our two

alternative distance measures, the uncentered correlation and the one based on the three task

groups. As shown in Table A4 in the appendix, the results are remarkably similar to the ones

we presented here. Occupational mobility becomes increasingly similar over the life-cycle and

productivity (as measured by wages) in two di¤erent occupations is more highly correlated if the

two occupations are similar.

4.3 Can these Patterns be Explained by Unobserved Heterogeneity?

The empirical analysis presented above deliberately imposed very little structure on the data. The

strong patterns we �nd for both mobility and wages are consistent with our theoretical model,

in which individuals accumulate task-speci�c human capital that is partially transferable across

occupations. This section discusses whether our �ndings could possibly be rationalized by pure

unobserved heterogeneity between workers.

Note �rst that all results presented in the last section are based on the sample of occupational

movers. The patterns in mobility and wages can therefore not be accounted for by a simple mover-

stayer model, where movers have a higher probability of leaving a job and thus possibly lower

productivity because of lower investments in speci�c skills. To the extent that movers di¤er from

stayers in terms of observable and unobservable characteristics, this sample restriction reduces

selection bias.23

While focusing on the sample of movers reduces the selection problem, there are still possible

sources of unobserved heterogeneity that might drive our results. We discuss each of them in

turn. Suppose �rst that the sample of movers di¤ers in their taste for particular tasks. Some

individuals prefer research over negotiating, while other prefer negotiating over managing personnel

etc. Taste heterogeneity can explain why we see similar moves in the data. If individuals choose
23 It is indeed the case that movers are on average negatively selected. We estimated a censored wage regression of

log wages in the current occupation on an indicator whether a person moves in the next period on the whole sample
of workers and a set of controls (experience, experience squared, occupational tenure as well as year and occupation
dummies). The coe¢ cient on the indicator is negative for all education groups and speci�cations implying that
movers earn on average 10.7 (low-skilled), 11.3 (medium-skilled) and 20.5 percent (high-skilled) lower wages than
stayers. This implies that occupational movers are on average negatively selected in their source occupations.
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their occupations by the combination of earnings and preferences for tasks, individuals would want

to move to occupations with similar task requirements.

However, a story based on taste heterogeneity alone cannot explain the observed patterns in

wages. Suppose all individuals make their occupational choices optimally at the beginning of their

career. If there are compensating wage di¤erentials for preferences over tasks, moves to more

distant occupations (which use di¤erent tasks and are therefore not preferred to the current one)

would carry a higher wage to compensate for the move away from the preferred task set. Thus,

wages of more distant moves should be more highly correlated or the wage growth of a move should

be increasing with distance just the opposite of what we �nd in the data.

Alternatively, one might argue that the similar moves in the data are voluntary job-to-job

transitions, while the distant moves are by workers laid o¤ from their previous job. The data

does not allow us to distinguish between the two reasons for observed occupational changes. If

the type of job change is correlated with a worker�s productivity on the job, this would explain

why wages are more highly correlated between similar occupations and also why past occupational

tenure has a higher return in a similar occupation. However, the distinction between voluntary

and involuntary movers does not explain why voluntary movers move to similar occupations in the

�rst place.24

Finally, assume that individuals di¤er in their unobserved ability, which is equally valued in all

sectors, for example by increasing one�s productivity in each task. Individuals with high unobserved

ability are then the high-wage workers in all occupations. This could account for the fact that the

time spent in the last occupation has a positive e¤ect on wages in the current occupation. This is

because past occupational tenure would act as a proxy for unobserved ability in the wage regression

(Table 6). However, unobserved ability per se cannot explain why the e¤ect of past occupational

tenure should vary with the distance of the move or why we see the patterns in mobility to similar

occupations.
24 It is however the distant movers have lower wages in their source occupation than those moving to more similar

occupations. To get at this result, we again estimated a censored wage regression of log wages in the current
occupation on an indicator whether a person moves in the next period on the sample of movers and a set of controls
(experience, experience squared, occupational tenure as well as year and occupation dummies). The coe¢ cient on
the indicator is negative for all education groups implying that distant occupational movers are on average negatively
selected in their source occupations.
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The above discussion makes clear that a simple story based on unobserved heterogeneity cannot

explain the results on movers we presented in the last section. In order to generate the patterns

in mobility and wages, we would require not only that unobserved ability has a di¤erent value in

occupations, but also that its return is similar in similar occupations. In the next section, we turn

to an analysis of speci�c skills and wage growth that incorporates unobserved heterogeneity within

an econometric framework.

5 Skill Tenure and Wage Growth over the Life-Cycle

An important conclusion emerging from the observed patterns in mobility and wages is that ac-

cumulated skills are partially transferable across occupations. However, skills accumulated in the

labor market are not universally transferable as suggested by the low task distance of observed

moves and the fact that occupational mobility declines sharply with experience. This section pro-

vides a quantitative assessment of the importance of skill tenure for wage growth relative to other

commonly used measures of speci�c skills.

5.1 Empirical Speci�cation

Our empirical model of wages needs to incorporate observable characteristics and specify the

structure of unobservables. Assume that wages depend on observables and task human capital as

follows

lnWiot = Po + 
0Xit +

�
�oT

A
it + (1� �o)TMit + "it

	
(4)

where "it denotes any remaining measurement error in wages and Xit = [Expit SkillT enureit

OccTenureit]
0:where T jit = T jit�1 + u

j
it; i.e. task human capital is subject to productivity shocks

that do not depend on occupational choice. �oT
A
it +(1� �o)TMit may be viewed as an unobserved

individual-occupation-speci�c match that varies over time. "it is an iid error term re�ecting for

instance measurement error.

Note that this speci�cation allows for sorting into occupations on the basis of the initial en-
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dowment in task human capital and the productivity shocks. To keep the framework empirically

tractable, we abstract for now from sorting with respect to returns in observable skills (like expe-

rience, occupational tenure).

It is clear that both OLS and �rst-di¤erenced estimates will be biased. For OLS, the unobserved

task human capital is correlated with occupational choice, which in turn determines the value of

the regressors.25 While �rst-di¤erencing would eliminate the initial task endowment for those

remaining in the occupation, it does not so for occupational movers. To estimate (4), we therefore

use a nonlinear instrumental variable approach similar to Lemieux (1998) and Gibbons et al.

(2005). The details of the estimation approach are provided in Appendix C.

5.2 Estimation Results

We �rst report the OLS estimates from a censored regression of the log daily wage on our measures

of speci�c human capital. The �rst column in Table 8 includes only occupation-speci�c and

general human capital, while the second column also adds our measure of task human capital. All

speci�cations include occupation dummies to absorb the occupation-speci�c constant. In addition,

year, state and sector dummies are included to control for aggregate, local labor market and

industry-speci�c shocks respectively.

The �rst panel (Panel A) uses the whole sample. There are several noteworthy patterns. First,

returns to general experience are higher than returns to occupational tenure for all education

groups. Second, returns to skill tenure are sizeable, especially for university graduates. Third,

including skill tenure results in a decline in the return to experience by ten percent for the low-

and medium-skilled, but by 50 percent for the high-skilled. Finally, returns to occupational tenure

decline by 30 percent for the two lower educated groups. For the high-skilled in contrast, the

return to occupational human capital is no longer statistically di¤erent from zero once we include

our measure of skill tenure.

Panel B focuses on the sample of occupational movers to reduce a possible selection bias. This

25Since elements of the speci�c skill vector X are highly correlated, it is di¢ cult to sign the bias of OLS estimates.
See Altonji and Williams (2005) for a closely related discussion on the bias of �rm tenure and experience in a wage
regression.
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decreases the return to general experience and increases the return to occupational tenure, but has

little impact on the return to skill tenure.

In Panel C, we restrict the sample to occupational movers who exerience an intermediate

unemployment spell. Note that the distance of an occupational move is much higher after an

unemployment spell (3x for low-skilled, 10 times for high-skilled). The return to experience and

occupational tenure are now lower than for the sample that includes job-to-job switchers (Panel

B), while the return to skill tenure remains again unchanged. One explanation for this �nding is

that after an involuntary job loss and unemployment spell, workers start their search for a good

match from the full distribution of job o¤ers. Voluntary job-to-job movers, in contrast, only accept

job o¤ers that strictly dominate the current job o¤er. Hence, returns to experience are likely to

be upward biased in a sample that includes voluntary job-to-job movers, but not necessarily in a

sample that excludes them.

These results suggest that task-speci�c human capital that is partially transferable across oc-

cupations is an important source of wage growth for all education groups. For the low- and

medium-skilled, truely general skills seem to play the most important role; and task-speci�c skills

are of similar importance as truely occupation-speci�c skills. For the high-skilled in contrast task-

speci�c human capital is the dominating source of wage growth. This is also the education group

that experienced a steeper decline in the distance of occupational moves over their career. Further,

the relationship between the distance of the occupational move and the correlation of wages at the

old and new occupation as well as the e¤ect of past occupational tenure on current wages is much

stronger among the high-skilled.

6 Conclusion

Most studies of the labor market assume that skills are either fully general (like education and

experience) or speci�c (for example, tied to a particular �rm). Recent studies however suggest that

speci�c skills might be more general than previously considered. Following the evidence on the

importance of occupational skills, this paper analyzes whether skills are speci�c to an occupation
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or more generally transferable across occupations.

Our main innovation is to use patterns in occupational mobility together with information on

wages to analyze the speci�city of skills. The empirical analysis combines data from a large admin-

istrative panel on individual labor market careers with detailed information on tasks performed in

di¤erent occupations. Using the task data, we construct new measures of how similar occupation

are in terms of their skill requirements. This allows us to characterize the relationship between

occupations in much more detail than the previous literature.

We �nd strong evidence that labor market skills are at least partially transferable across oc-

cupations. The transferability however declines rapidly if individuals move to occupations that

require very di¤erent skills. Second, our result show that task speci�c human capital is especially

important for the high-skilled. We interpret this result as evidence that university graduates have

a comparative advantage in learning new skills in the labor market. In contrast, wage growth

for the low-skilled is largely driven by �rm-speci�c and to some extent occupation-speci�c human

capital.

The evidence we presented is di¢ cult to reconcile with a standard human capital model with

either fully general or �rm-speci�c skills. The results also contradict undirected search models of

turnover, where the current occupation has no e¤ect on future choices, and skills are not transfer-

able across occupations (e.g. Kambourov and Manovskii, 2003; Neal, 1999; Pavan, 2005).

We think that the importance of task human capital in Germany is likely to be a lower bound for

the United States. First, �rm-speci�c human capital is relatively more important in Germany than

in the United States even controlling for occupational and task-speci�c human capital. Second,

Germany�s system of vocational training focuses much more on speci�c skills than for example a

college education. The assumption of more general skills in the United States has been the basis

for several recent models of the productivity di¤erential between the US and Europe (Krueger and

Kumar, 2004; Wasmer,2005). This assumption is in principle empirically testable provided reliable

data on task usage and labor market mobility were available for the United States.

The framework and results of this paper suggest at least two other avenues for future research.
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First, our results imply that reallocation costs, after a job loss, crucially depend on the probability

of �nding a job in an occupation with similar skill requirements. Reallocation costs might be

lower or higher for more educated individuals: on the one hand, we �nd that the high-skilled have

accumulated more task human capital and therefore more to lose. On the other hand, they can

learn new skills faster, which would reduce the costs of an unemployment spell. Estimating the

size and distribution of reallocation costs would have important implications for how training and

other active labor market programs should be targeted.26

Second, our framework and data can be used to analyze how technological change and changes

in the organization of production a¤ected skill requirements. Have speci�c skills become more or

less transferable over time? Our task data provides a unique opportunity to address this question

as it not only contains data on tasks, but also detailed information on the type of technology and

machines used in an occupation.
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A Data Sources

A.1 Employee Sample (1975-2001)

Our main dataset is the Employee Sample, a 2 percent sample of all German social security records

administered by the Institute for Employment Research from 1975 to 2001. The data contains an

unusually in-depth set of background information for each individual, including age, education,

gender, nationality, occupation, etc.

33



By law, employers are required to report the exact beginning and end of any employment

relation of all new hires and employees leaving the �rm which are subject to social security contri-

butions. In addition, employers provide information about all their employees at the end of each

year. We therefore know the exact date of employer changes and movements into and out of paid

employment. The dataset does not distinguish between voluntary quits and layo¤s, though the

quality of this distinction in survey data has been questioned.

The occupational categories of employees and apprentices in the social security records are

highly accurate as the classi�cation forms the basis of wage agreements between unions and em-

ployers�association. In the 2% sample, we have 130 occupations available. To make this classi�ca-

tion comparable to the tasks performed in occupations from the BIBB data, we aggregated them

further into 64 occupations at the 2-digit level.

Employers are not required to notify an occupational switch if the employee remains with the

same �rm, but we do know the employee�s occupation at the end of each year. This leads us to

underestimate occupational mobility. To see this, consider �rst a worker who switches �rms on

April 1st. For this worker, we observe two spells: the �rst from January 1st to March 31st and

the second from April 1st to December 31st. Suppose that the individual works in occupation A

in the �rst spell, and B in the second spell. For this worker, and �rm switchers in general, it is

reasonable to assume that he worked on January 1st at occupation A, and April at occupation B.

He may have switched occupations once more between January and April, and between April and

December. Next, consider a worker who stayed with the same employer for at least two years. For

this worker, we observe two spells, both from January 1st to December 31st. Suppose that the

�rst spell classi�es the worker as in occupation A, while this spell classi�es him as in occupation

B. For this worker, it is reasonable to assume that on January 1st he was working in occupation

A, and on January �rst one year later in occupation B. He may have switched occupations more

than once. Since most of our analysis focuses on switches of both occupations and employer, this

is of minor concern.

In addition to the sample restrictions mentioned in the text, we also dropped all spells in

vocational training and those job spells that started prior to an apprenticeship or tertiary education.

In addition, we excluded observations that were still in vocational training at the end of the sample

period in 2001 or pursued more than one apprenticeship, that is where employed as an apprentice

for more than 7 years. We also require a person to be below a certain age when we �rst observe

them. This ensures that we can follow them from day one of their entry into the labor market.

The age restriction is 19 if unskilled (no vocational degree), 21 if medium-skilled (vocational or

highschool degree) and 29 if high-skilled (university or equivalent degree). Finally, we drop all

observations we observe less than a year, with missing education or nationality, and observations

with no valid wage during an employment spell.

We converted the dataset into two datasets: annual observations and quarterly data. In both

cases, all tenure variables are measured at the beginning of each spell. If a worker returns to an

occupation with at least one year lag in between, we assume that his occupational experience has

depreciated and set occupational tenure to zero. As in many administrative datasets, observations

on wages are censored if they exceed the upper limit for social security contributions. In our

sample, around 4 percent of the observations have right-censored wages. Censoring is less than 1

percent for the low and medium skilled, but almost 10 percent among the high-skilled. Among the

high-skilled with more than 10 years of labor market experiences, almost 23 percent of the wage

observations are top-coded. To account for right-censoring in wages, we estimate tobit models

34



whenever appropriate. After 1984, �rms have to report wages inclusive of fringe bene�ts, which

a¤ects mostly the wages of high-skilled workers. To control for that and other aggregate shocks,

we always include year e¤ects in the estimation.

A.2 Data on Occupational Tasks (1979-1999)

We use four cross-sections of the German Quali�cation and Career Survey conducted in 1979, 1985,

1991/92 and 1998/99 by the Federal Institute of Vocational Training (BIBB) and the Institute for

Labor Market Research (IAB). The data with a sample size of 30,000 covers individuals between

16 and 65, who are employed at the time of the survey. Just as in our main dataset, we restrict

our sample to men employed in West Germany and exclude the self-employed, civil servants and

those working in agriculture. We also exclude those without German nationality since they were

not included in each wave. We use the same 64 occupations based on a classi�cation system by

the Federal Employment O¢ ce, which is standardized over time. The aggregation at the 2-digit

level decreases well-known measurement error problems of occupational classi�cations in survey

data and allows us to match the data to our main dataset.

For each respondent of the survey, we know whether he performs certain tasks in his job and

whether this is his main activity on the job. Unlike the Dictionary of Occupational Titles (DOT) in

the United States, we do not know how intensively a particular task is used beyond the distinction

of main activity, task performed and not performed. Overall, we have information on 19 di¤erent

tasks workers perform in their jobs. Following Autor et al (2003), we also group the 20 tasks into

three groups of tasks: analytical tasks, manual tasks and interactive tasks. The assignment of tasks

is as follows: manual tasks (equip or operate machines, repair, reconstruct or renovate, cultivate,

manufacture, cleaning, serve or accomodate, construct or install, pack or ship or transport, secure,

nurse or treat others), analytical tasks (research or evaluate or measure, design or plan or sketch,

correct texts or data, bookkeeping or calculate, program, execute laws or interpret rules) and

interactive tasks (sell or buy or advertise, teach or train others, publish or present or entertain,

employ or manage personnel or organize or coordinate).

A.3 Nonlinear Instrumental Variable Estimation

As dicussed in Section 5, least-squares estimates of log wages on our skill measures are biased. This

appendix shows that we can use a nonlinear instrumental variables estimator (similar to Gibbons

et al.,2005; Holtz-Eakin et al, 1988; Lemieux, 1998) to determine the contribution of skill tenure

to wage growth over the life-cycle. The setup is the same as in the main text with wages given as

lnWiot = Po + 
0Xit +

�
�oT

A
it + (1� �o)TMit + "it

	
(5)

First, de�ne the task human capital di¤erential (which is a su¢ cient statistic for sectoral choice)fTit as fTit = �TAi � TMi �+ �"Ait � "Mit � (6)

Second, write log wages in each sector as

lnWit =
OX
o=1

DiotPo + 
0Xit +

OX
o=1

Diot�ofTit + TMi + "Mit + uit (7)
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where Diot = 1 if individual i works in occupation o in time t and zero otherwise.

Third, solve the above equation for fTit
fTit = lnWit �

PO
o=1DiotPo � 0Xit �

�
TMi + "Mit + uit

�PO
o=1Diot�o

Fourth, use wages in the past period to solve for the task endowment di¤erential
�
TAi � TMi

�
TAi � TMi =

lnWit�1 �
PO

o0=1Dio0t�1Po0 � 0Xit�1 �
�
TMi + "Mit�1 + uit�1

�PO
o0=1Dio0t�1�o0

where Diot = 1 if individual i works in occupation o0 in time t and zero otherwise. Plugging the

two previous equations into the de�nition of the task human capital di¤erential (6) yields

lnWitPO
o=1Diot�o

=
lnWit�1PO

o0=1Dio0t�1�o0
+

PO
o=1DiotPo + 

0XitPO
o=1Diot�o

�
PO

o0=1Dio0t�1Po0 � 0Xit�1PO
o0=1Dio0t�1�o0

+ eit

where the error term is

eit =
�
"Ait � "Mit

�
+

�
TMi + "Mit + uit

�PO
o=1Diot�o

�
�
TMi + "Mit�1 + uit�1

�PO
o0=1Dio0t�1�o0

Current sector a¢ liation and our skill variables are correlated with the error term. However, the

twice or more lagged variables and any interactions are uncorrelated since neither Diot�s and Xit�s
for s � 2 help to predict "Mit or "

M
it�1; likewise, future realizations of productivity shocks do not

in�uence current sectoral choices (and thus skill tenure and occupational tenure). Denote a set of

valid instruments for time period t by Zit:

Stacking the error terms eit into a large vector e and likewise the set of instruments into Z; the

orthogonality condition becomes
1

N
(e0Z) = 0 (8)

The nonlinear instrumental variable estimator �nds the parameter vector (Po; ) by minimizing

1

N
(e0Z)WM (e0Z)

0

where WM is the weighting matrix. If error term is homoscedastic, use inverse of variance of

(Z 0Z)
�1
: If heteroscedastic, we can use two-step procedure to get the robust variance-covariance

matrix (e¢ cient GMM). The latter might be harder to estimate/get convergence.
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Occupation 1 Occupation 2 Distance

Mean 0.0523
Standard Deviation 0.0245

Most Similar (all Education Groups)
Carpenter Bricklayer, Mason 0.0061
Joiner, Cabinet Maker Bricklayer, Mason 0.0065
Joiner, Cabinet Maker Carpenter 0.0078

Most Distant (all Education Groups)
Banker Assembler 0.1611
Banker Unskilled Worker 0.1633
Banker Metal Presser and Moulder 0.1635

Most Common Occupational Moves (Low-Skilled) 
Conductor Store or Warehouse Keeper 0.0228
Unskilled Worker Store or Warehouse Keeper 0.0632
Assembler Store or Warehouse Keeper 0.0695

Most Common Occupational Moves (Medium-Skilled) 
Chemist, Physicist Electricians, Electrical Installation 0.0464
Sales Personnel Office Clerk 0.0259
Conductor Store or Warehouse Keeper 0.0235

Most Common Occupational Moves (High-Skilled) 
Engineers Chemist, Physicist 0.0230
Entrepreneurs Office Clerk 0.0257
Entrepreneurs Engineers 0.0270

Notes : The table shows at the top summary statistics of the distance measure as well as the three most 
similar and distant occupations and their corresponding distance. The distance measure is based on the 
relative differences in using the 19 different tasks (see Table A1 for a list of tasks) and normalized to vary 
between 0 and 1. The bottom part of the table shows the three most commonly observed moves in the 
data by education group and the corresponding distance measure.  

Distance Measure (19 Tasks)

Table 2: Measuring Distance between Occupations



Low Skill Medium Skill High Skill

Percentage in Sample 16.10% 68.48% 15.41%

Age (in Years) 27.07 28.07 32.61
(5.96) (5.14) (5.35)

Not German Citizen 0.31 0.05 0.05
(0.46) (0.21) (0.21)

Median Daily Wage 126.3 141.03 216.29
(56.905) (51.708) (53.259)

Log Daily Wage 4.659 4.973 5.364
(0.635) (0.438) (0.367)

Actual Experience (in Years) 7.9 7.05 6.7
(5.56) (4.81) (4.88)

Occupational Tenure (in Years) 5.21 5.32 5.02
(4.64) (4.25) (4.22)

Firm Tenure (in Years) 4.37 4.28 3.82
(4.36) (3.88) (3.55)

Occupational Mobility 0.203 0.12 0.109
(0.403) (0.325) (0.311)

Similarity of Move 0.0556 0.0536 0.045
(0.024) (0.025) (0.024)

Firm Mobility 0.26 0.191 0.179
(0.439) (0.393) (0.383)

Most Common Occupations Warehouse Keeper (10%) Electrical Installation (7%) Engineer (25%)
Assembler (7%) Locksmith (8%) Technician (12%)
Conductor (6%) Mechanic, Machinist (6%) Accountant (9%)
Unskilled Worker (4%) Office Clerk (7%) Office Clerk (8%)
Office Clerk (4%) Conductor (5%) Researcher, Clergymen (5%)

Number of Observations 225,900 1,005,802 198,229
Number of Individuals in Sample 18,414 78,315 17,627

Source : Employee Sample (IAB), 1975-2001

Notes : The table reports summary statistics for the administrative panel data on individual labor market histories and wages from 1975 to
2001. Low skilled workers are those without a vocational degree, medium skilled have either a high school or vocational degree and the high-
skilled have an advanced degree from a technical college or university. Experience, occupational and firm tenure are measured from actual
spells and exclude periods of unemployment or out of the labor force. The wage is measured in German Marks at 1995 prices and is subject to
right censoring.  

Table 3: Summary Statistics of West German Employee Panel



Random Mobility Observed Mobility Random Mobility Observed Mobility

Mean 0.061 0.058 0.286 0.198

10th Percentile 0.027 0.021 0.052 0.043

25th Percentile 0.049 0.034 0.105 0.074

50th Percentile 0.065 0.058 0.246 0.127

75th Percentile 0.077 0.071 0.466 0.241

90th Percentile 0.083 0.078 0.573 0.425

Notes : The table reports selected moments of the distribution of observed occupational moves in terms of their distance ("Observed
Mobility"). Observed moves are compared against what we would expect to observe under random mobility ("Random Mobility"). We
calculate random mobility as follows: for each mover, we assume that the probability of going to any other occupation in the data is
solely determined by the relative size of the target occupation. We then multiply this "random move" with its distance to get the
distribution of the distance measure under random mobility. The results in the first 2 columns are based on the weighted average
over all 19 tasks and one the distance based on 3 task groups in the last 2 columns. Since all moments of the observed distribution
are below those under random mobility, individuals are much more likely to move to similar occupation. 

Table 4: Observed Moves are More Similar than under Random Mobility 

Main Distance Measure (19 Tasks) Distance (3 Groups)



Distance (19 Tasks) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

Experience -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 0.000 -0.001 -0.002 -0.002 -0.002 -0.004
(0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.001)**

Experience Squared 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)**

Occupational Tenure -0.001 0.000 -0.001
(0.000)** (0.000) (0.000)**

Constant 0.057 0.059 0.058 0.054 0.055 0.055 0.055 0.048 0.061 0.060 0.061 0.041
(0.003)** (0.003)** (0.003)** (0.003)** (0.004)** (0.004)** (0.004)** (0.003)** (0.005)** (0.005)** (0.005)** (0.007)**

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Occupation Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Region Dummies No Yes Yes Yes No Yes Yes Yes No Yes Yes Yes
Industry Dummies No Yes Yes Yes No Yes Yes Yes No Yes Yes Yes
Individual Fixed Effects No No No Yes No No No Yes No No No Yes
Observations 43,051 43,051 43,051 43,051 118,169 118,169 118,169 118,169 20,709 20,709 20,709 20,709
R Squared 0.15 0.15 0.15 0.09 0.12 0.12 0.12 0.07 0.16 0.17 0.17 0.1

Mean Distance of Move 0.0556 0.0556 0.0556 0.0556 0.0536 0.0536 0.0536 0.0536 0.045 0.045 0.045 0.045
(0.024) (0.024) (0.024) (0.024) (0.025) (0.025) (0.025) (0.025) (0.024) (0.024) (0.024) (0.024)

Notes : The table reports results from a regression where the dependent variable is the distance between two occupations based on the 19 tasks. The sample consists of all occupational movers and results are reported
separately by education group. Column (1) only includes experience and experience squared. Column (2) adds state and industry dummies, while Column (3) adds actual tenure in the current occupation. Finally, Column (4)
includes fixed effects to control for individual unobserved heterogeneity. All specifications include year and occupation dummies. Robust standard errors are reported in parentheses. Coefficients with * are statistically significant
at the 5 percent level, those with ** at the 1 percent level. 

Table 5: Distance of Move Declines with Time in the Labor Market

Low-Skilled Medium-Skilled High-Skilled



Y: Log Daily Wage
(1) (2) (3) (1) (2) (3) (1) (2) (3)

Wage Last Period 0.775 0.204 0.15 0.743 0.297 0.222 0.822 0.353 0.233
(0.002)** (0.006)** (0.006)** (0.001)** (0.004)** (0.004)** (0.001)** (0.009)** (0.010)**

Actual Experience 0.011 0.037 0.038 0.01 0.034 0.039 0.009 0.038 0.047
(0.000)** (0.002)** (0.002)** (0.000)** (0.001)** (0.001)** (0.000)** (0.003)** (0.003)**

Actual Experience Squared 0 -0.001 -0.001 0 -0.001 -0.001 0 -0.001 -0.002
(0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)**

Constant 1.084 3.589 3.854 1.234 3.266 3.605 0.895 3.048 3.687
(0.014)** (0.043)** (0.047)** (0.009)** (0.030)** (0.031)** (0.023)** (0.084)** (0.077)**

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Occupation Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
State Dummies Yes Yes No Yes No Yes Yes Yes Yes
Sector Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Indicator for Wage Censoring Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 154,506 21,226 21,222 801,117 58,897 58,863 156,278 10,269 10,022

Table 6: Similar Moves and the Correlation of Wages Across Jobs

High-Skilled Medium-SkilledLow-Skilled

Notes : The table reports censored wage regressions where the dependent variable is the log daily wages. Results are reported separately by education group. All specifications include the log daily wage in the last period,
actual experience, actual experience squared, year and occupation dummies as well as sector and state dummies as controls. Column (1) uses the sample of stayers as a benchmark for comparison. The next two columns
split the sample of movers into those that move from a similar occupation (column (2)) and those moving from a distant occupation (column (3)) where the split point is the median distance of an observed move. Standard
errors in parentheses are bootstrapped with replacement and 50 replications to allow for clustering at the occupation and period level. The distance measure used is based on all 19 tasks. We report results from the two
alternative distance measures in Table A4. Coefficients with * are statistically significant at the 5 percent level, those with ** at the 1 percent level.



Y: Log Daily Wage after Move (1) (2) (1) (2) (1) (2)

Past Occupational Tenure 0.009 0.006 0.011
(0.001)** (0.000)** (0.001)**

Past Tenure * Similar Move 0.111 0.055 0.108
(0.016)** (0.009)** (0.030)**

Past Tenure * Distant Move -0.011 0.027 -0.232
(0.092) (0.040) (0.173)

Distance -1.107 -1.389 -2.644
(0.087)** (0.049)** (0.140)**

Experience 0.0440 0.044 0.043 0.044 0.0814 0.071
(0.001)** (0.001)** (0.001)** (0.001)** (0.002) (0.002)**

Experience Squared -0.0010 -0.001 -0.001 -0.001 -0.0031 -0.002
(0.000)** (0.000)** (0.000)** (0.000)** (0.000) (0.000)**

Year Dummies Yes Yes Yes Yes Yes Yes
Occupational Dummies Yes Yes Yes Yes Yes Yes
Sector Dummies Yes Yes Yes Yes Yes Yes
Region Dummies Yes Yes Yes Yes Yes Yes
Observations 42,478 42,478 117,760 117,760 20,291 20,291

Table 7: Past Occupational Tenure Matters for Wages

Low-Skilled Medium-Skilled High-Skilled

Notes : The table reports censored wage regressions where the dependent variable is the log wages in the target occupation after an occupational move.
Estimates are reported for each education group separately. Column (1) in each specification controls for past tenure in the source occupation, experience,
experience squared, as well as year and occupation dummies. Column (2) allows the coefficient on past occupational tenure to differ for similar and distant moves,
where the mediam move is used as the breakpoint. The distance measure used is based on all 19 tasks (see Table A4 for results from other distance measures).
Standard errors in parentheses are bootstrapped with replacement and 50 replications to allow for clustering by occupation and time period. Coefficients with * are
statistically significant at the 5 percent level, those with ** at the 1 percent level. 



Y: Log Daily Wage in t (1) (2) (3) (4) (1) (2)

A: Whole Sample 
Skill Tenure 0.01 0.011 0.063

(0.001)** (0.000)** (0.002)**
Actual Experience 0.069 0.063 0.043 0.036 0.08 0.039

(0.001)** (0.001)** (0.000)** (0.000)** (0.001)** (0.001)**
Experience Squared -0.002 -0.002 -0.001 -0.001 -0.003 -0.003

(0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)**
Occupational Tenure 0.013 0.009 0.011 0.007 0.013 -0.007

(0.000)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001)**

Year Dummies Yes Yes Yes Yes Yes Yes
Occupation Dummies Yes Yes Yes Yes Yes Yes
State Dummies Yes Yes Yes Yes Yes Yes
Sector Dummies Yes Yes Yes Yes Yes Yes
Observations 225,007 225,007 1,001,459 1,001,459 194,756 194,756

B: Sample of Movers 
Skill Tenure 0.008 0.014 0.082

(0.003)** (0.002)** (0.006)**
Actual Experience 0.052 0.048 0.038 0.03 0.091 0.042

(0.001)** (0.002)** (0.001)** (0.001)** (0.003)** (0.004)**
Experience Squared -0.002 -0.002 -0.002 -0.002 -0.004 -0.004

(0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)**
Occupational Tenure 0.02 0.017 0.025 0.02 0.028 -0.001

(0.001)** (0.002)** (0.001)** (0.001)** (0.002)** (0.003)

Year Dummies Yes Yes Yes Yes Yes Yes
Occupation Dummies Yes Yes Yes Yes Yes Yes
State Dummies Yes Yes Yes Yes Yes Yes
Sector Dummies Yes Yes Yes Yes Yes Yes
Observations 41,006 41,006 100,653 100,653 16,976 16,976

C. Movers with Intermediate Unemployment Spell 
Skill Tenure 0.006 0.01 0.06

(0.006) (0.005)* (0.017)**
Actual Experience 0.027 0.023 0.025 0.02 0.052 0.016

(0.003)** (0.005)** (0.003)** (0.004)** (0.010)** (0.014)
Experience Squared -0.001 -0.001 -0.001 -0.001 -0.002 -0.002

(0.000)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)**
Occupational Tenure 0.013 0.01 0.014 0.01 0.02 -0.005

(0.003)** (0.004)* (0.002)** (0.003)** (0.009)* (0.011)

Year Dummies Yes Yes Yes Yes Yes Yes
Occupation Dummies Yes Yes Yes Yes Yes Yes
State Dummies Yes Yes Yes Yes Yes Yes
Sector Dummies Yes Yes Yes Yes Yes Yes
Observations 7,156 7,156 14,611 14,611 1,365 1,365

Table 8: The Importance of Skill Tenure for Wage Growth

Notes : The table reports results from a censored regression of the log daily wage on measures of general human capital (experience, 
experience squared), occupation-specific tenure and skill tenure (see Section 2 for how we calculate the skill tenure measure). All 
specifications also include year and occupation dummies as well as state and sector dummies. The results are reported for three 
different samples and separately by education group. Panel A estimates the wage regression on the whole sample (job stayers and 
movers). Panel B restricts the sample to those moving occupations; finally, Panel C uses only those that are both occupational movers 
and an intermediate unemployment spell. Standard errors are reported in parentheses. Coefficients with * are significant at the 5 percent 
level, those with ** at the 1 percent level. 

Low-Skilled Medium-Skilled High-Skilled



Figure 1: Occupational Choice in the Static Model 
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Figure 2: Histogram of Distance Measure 

0
.0

5
.1

.1
5

F
ra

ct
io

n

.04 .06 .08
 



Source : Employee Panel (IAB), 1975-2001

Figure 3: Occupational and Firm Mobility Over the Life-Cycle
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Source : Employee Panel (IAB), 1975-2001

Figure 4: Observed Mobility is More Similar than Random Mobility
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Source : Employee Panel (IAB), 1975-2001

Figure 5: Distance of Occupational Moves Declines over Career

Notes : The figure shows the distance of occupational moves by labor market experience for movers (top panel) 
and for all individuals in the labor market (bottom panel) where stayers are assigned a distance of zero. All 
results are reported separately for the three education groups: no vocational degree (low), vocational degree 
(medium) and university degree (high). The values are coefficients from a regression that controls for each year 
of actual labor market experience as well as year dummies.  
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Source : Employee Panel (IAB), 1975-2001

Figure 6a: Correlation of Wages Decreases with Distance of Move

Figure 6b: Return to Past Occupational Tenure by Distance
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Mean Std.Dev Example: Teacher Example: Baker

Analytical Tasks 55.02 49.75 63.73% 32.42%
Research, evaluate or measure 25.11 43.37 34.02% 13.56%
Design, plan or sketch 10.21 30.28 17.62% 3.60%
Correct texts or data 23.85 42.62 39.64% 6.36%
Calculate or bookkeeping 26.02 43.87 11.34% 22.46%
Program 8.35 27.66 8.43% 0.42%
Execute laws or interpret rules 7.85 26.89 17.24% 0.85%
Analytical is Main Task 31.56 46.48 15.93% 13.14%

Manual Tasks 72.42 44.69 25.59% 96.40%
Equip or operate machines 19.98 39.99 7.03% 27.12%
Repair, renovate or reconstruct 31.38 46.40 8.15% 10.38%
Cultivate 1.77 13.19 2.25% 1.91%
Manufacture, install or construct 11.97 32.46 1.97% 87.92%
Cleaning 3.50 18.38 1.78% 6.14%
Serve or accommodate 1.21 10.92 0.28% 3.60%
Pack, ship or transport 18.76 39.04 2.72% 15.25%
Secure 15.72 36.40 7.22% 18.01%
Nurse or treat others 9.76 29.67 11.53% 7.84%
Manual is Main Task 57.46 49.44 10.50% 88.77%

Interactive Tasks 48.48 49.98 95.31% 44.07%
Sell, buy or advertise 29.21 45.48 12.00% 16.53%
Teach or train others 17.15 37.69 91.38% 34.32%
Publish, present or entertain others 9.58 29.43 26.24% 3.81%
Employ, manage personnel, organize, coordinate37.09 48.31 39.36% 29.87%
Interactive is Main Task 27.55 44.68 85.94% 14.83%

Observations 52,718 1,067 472

Source : Qualification and Career Survey: 1979, 1985, 1991/2, 1997/8

Notes : The table reports the percentage of individuals in the career survey that report performing the type of task in their job. We grouped the
19 different tasks into three task groups (analytical, manual and interactive skills) following Autor et al. (2003) and Spitz (2006). The fraction for
main tasks sum to more than 100 percent as around 10 percent reported performing more than one main task. The last two columns show the
distribution of task usage for two common occupations: teachers (which include university or technical college professors) and baker.

Table A1: Summary Statistics of Task Data 



Title of Occupation Employed (%) Manual Tasks Analytic Tasks Interactive Tasks

Miners, Stone-Breaker, Mineral Processing 0.56 0.724 0.166 0.255
Concrete and Cement Finishers, Stone Processing 0.22 0.851 0.203 0.287
Potter, Ceramicist, Gaffer 0.27 0.845 0.276 0.257
Chemical Processing 1.01 0.839 0.329 0.291
Plastics and Polymer Processing 0.19 0.854 0.270 0.304
Paper and Pulp Processing 0.24 0.865 0.305 0.429
Printer, Typesetter, Typographer 1.02 0.781 0.338 0.357
Wood, Lumber and Timber Processing 0.16 0.836 0.218 0.180
Metal and Iron Manufacturer 0.31 0.857 0.192 0.199
Moulding, Shaping 0.24 0.899 0.179 0.169
Metal Presser and Moulder 0.24 0.899 0.225 0.191
Metal Polisher, Sanders, Buffers, Lathe Operators 1.51 0.912 0.261 0.223
Welder, Brazing, Soldering 0.53 0.818 0.183 0.155
Blacksmith, Farrier, Forger, Plumber and Pipe Fitters 2.42 0.754 0.300 0.374
Locksmith 5.47 0.735 0.246 0.256
Mechanic, Machinist, Repairmen 3.83 0.591 0.321 0.362
Tool and Dye Maker, Instrument Mechanic 0.96 0.863 0.283 0.313
Metal Craftsmen 0.47 0.772 0.367 0.476
Electricians, Electrical Installation 5.06 0.650 0.362 0.398
Assembler 0.79 0.855 0.194 0.179
Weaver, Spinner, Knitters, Wool Trade 0.18 0.913 0.291 0.338
Tailor, Textile Worker 0.24 0.802 0.270 0.284
Shoemaker 0.24 0.754 0.241 0.473
Baker 0.90 0.947 0.279 0.458
Butcher 0.65 0.845 0.268 0.438
Cook 0.62 0.799 0.339 0.565
Beverage Production, Milk Production, Grease Processing 0.27 0.870 0.332 0.426
Bricklayer, Mason 2.72 0.765 0.213 0.292
Carpenter 1.09 0.748 0.226 0.316
Road Builder 0.68 0.697 0.193 0.248
Unskilled Construction Worker 1.00 0.746 0.109 0.124
Plasterer 0.93 0.710 0.254 0.312
Interior Decorator, Interior Designer 0.26 0.755 0.289 0.474
Joiner, Cabinet Maker 2.01 0.879 0.272 0.333
Painters 1.72 0.529 0.189 0.324
Product Tester 0.92 0.536 0.330 0.297
Unskilled Worker 2.20 0.799 0.164 0.131
Crane Driver, Crane Operator, Skinner, Machine Operator 2.00 0.836 0.238 0.245
Engineers 3.68 0.263 0.596 0.758
Chemist, Physicist, 6.19 0.439 0.540 0.661
Technical Service Personel 1.09 0.267 0.474 0.371
Sales Personnel 5.34 0.316 0.573 0.928
Banker 3.15 0.127 0.679 0.833
Traders, Trading Personnel 1.18 0.299 0.594 0.826
Conductor 5.24 0.690 0.170 0.260
Sailor, Seaman, Navigator, Mariner 0.31 0.590 0.337 0.576
Mail Carrier and Handlers, Postal Clerks 0.58 0.662 0.326 0.318
Storekeeper, Warehouse Keeper 2.77 0.685 0.271 0.333
Entrepreneurs 3.14 0.206 0.654 0.917
Politicians, Member of Parliament 1.28 0.113 0.633 0.812
Accountant, Book Keeper 2.35 0.279 0.622 0.582
Office Clerk 8.55 0.196 0.671 0.652
Guards, Watchmen, Police, Security Personnel 3.07 0.287 0.456 0.499
Publicist, Journalist, Authors 0.36 0.193 0.606 0.810
Musicians 0.66 0.434 0.291 0.649
Physicians 0.51 0.155 0.498 0.728
Nurses, Dietitians, Physical Therapists 1.04 0.191 0.430 0.512
Social Worker 0.93 0.197 0.497 0.917
Teacher (except university) 2.02 0.148 0.426 0.945
Scientist, Clergymen 0.94 0.149 0.553 0.822
Personal Hygiene Technician 0.22 0.112 0.267 0.729
Waiter, Barkeeper, Innkeeper 0.66 0.241 0.333 0.655
Janitor, Home Economics, Housekeeper 0.06 0.360 0.392 0.765
Cleaning Service Workers 0.58 0.353 0.152 0.182

Mean 0.803 0.481 0.449

Source : Qualification and Career Survey: 1979, 1985, 1991/2, 1997/8

Table A2: List of Occupations and Task Usage

Notes : The table shows the title of the 64 occupations, the percentage of individuals employed in it and the fraction of individuals that report
performing analytical, manual and interactive tasks on their job following the classification of Autor et al (2003). For a description of the tasks
underlying the three aggregate task groups, see Table A2. 



distance distance wages wages tenure distance distance wages wages tenure distance distance wages wages tenure

A. Occupational Movers that Also Switch Firms 

Experience (Years) -0.001 -0.001 -0.001 -0.001 -0.002 -0.004
(0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.001)**

Experience Squared 0 0 0 0 0 0
(0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)**

Wage Last Occupation 0.164 0.118 0.23 0.181 0.303 0.177
(0.006)** (0.007)** (0.004)** (0.004)** (0.009)** (0.010)**

Past Tenure * Similar Move 0.009 0.005 0.01
(0.001)** (0.001)** (0.002)**

Past Tenure * Distant Move 0.008 0.005 0.004
(0.001)** (0.001)** (0.002)*

Mean Distance 0.0553 0.0553 0.0535 0.0535 0.0453 0.0453
(0.024) (0.024) (0.024) (0.024) (0.023) (0.023)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Occupation Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Sector Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Fixed Effects No Yes No No No No Yes No No No No Yes No No No
Observations 38,412 38,439 18,692 18,831 37,523 105,370 105,476 51,627 51,916 103,543 18,388 18,399 8,896 8,625 17,521

B. Occupational Moves with Intermediate Un- or Nonemployment of less than a Year 

Experience (Years) -0.001 -0.002 0 -0.001 -0.002 -0.004
(0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.001)**

Experience Squared 0 0 0 0 0 0
(0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)**

Wage Last Occupation 0.188 0.146 0.255 0.202 0.33 0.221
(0.006)** (0.007)** (0.004)** (0.004)** (0.009)** (0.009)**

Past Tenure * Similar Move 0.012 0.006 0.013
(0.001)** (0.001)** (0.002)**

Past Tenure * Distant Move 0.011 0.008 0.009
(0.001)** (0.001)** (0.002)**

Mean Distance 0.0557 0.0557 0.0536 0.0536 0.0446 0.0446
(0.025) (0.025) (0.025) (0.025) (0.023) (0.023)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Occupation Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Sector Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Fixed Effects No Yes No No No No Yes No No No No Yes No No No
Observations 39,651 39,680 19,080 18,796 37,904 113,486 113,599 55,269 55,234 110,614 19,994 20,006 9,702 8,894 18,607

Notes : The table reports estimation results for two alternative sample definitions of movers in Section 4. Panel A uses only those occupational movers that also switch firms in order to get rid of any firm effects. Panel B restricts the sample of movers to those that get reemployed in 
a new occupation within a year of leaving the old oneThe first two specifications are replicated from Table 4 (columns "distance") using a fixed effects estimator in the second column. The third and fourth column ("wages") replicate results from the correlation of wages for similar 
and distant movers (column (2) and (3) in Table 5). Finally, the last column "tenure" replicates the spline regression from Table 6 (column (2)). See notes to the previous tables for the other controls included and the treatment of censoring and standard errors. Bootstrapped 
standard errors are reported in parentheses.

Table A3: Alternative Sample Definitions: Restriction to External Movers and Job-to-Job Transitions

Low -Skilled Medium -Skilled High -Skilled



distance distance wages wages tenure distance distance wages wages tenure distance distance wages wages tenure

A. Uncentered Correlation

Experience (Years) -0.005 -0.006 -0.005 -0.007 -0.022 -0.021
(0.001)** (0.002)** (0.001)** (0.002)** (0.003)** (0.004)**

Experience Squared 0 0 0 0 0.001 0.001
(0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)**

Wage Last Occupation 0.211 0.15 0.306 0.214 0.279 0.307
(0.006)** (0.006)** (0.004)** (0.004)** (0.009)** (0.010)**

Past Tenure * Similar Move 0.024 0.018 0.033
(0.003)** (0.001)** (0.004)**

Past Tenure * Distant Move -0.016 -0.029 -0.089
(0.006)** (0.003)** (0.012)**

Mean Distance 0.541 0.541 0.533 0.533 0.404 0.404
(0.219) (0.219) (0.206) (0.206) (0.194) (0.194)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Occupation Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Sector Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Fixed Effects No Yes No No No No Yes No No No No Yes No No No
Observations 43,021 43,021 21,056 21,392 42,448 118,054 118,054 58,819 58,941 117,760 20,697 20,697 10,158 10,133 20,291

B. 3 Task Groups 

Experience (Years) -0.002 -0.001 -0.001 -0.003 -0.014 -0.025
(0.001)** (0.001) (0.001)* (0.001)* (0.003)** (0.005)**

Experience Squared 0 0 0 0 0.001 0.001
(0.000)** (0.000) (0.000) (0.000) (0.000)** (0.000)**

Wage Last Occupation 0.194 0.164 0.291 0.228 0.335 0.243
(0.006)** (0.006)** (0.004)** (0.004)** (0.009)** (0.010)**

Past Tenure * Similar Move 0.03 0.007 0.062
(0.005)** (0.002)** (0.010)**

Past Tenure * Distant Move -0.042 0.019 -0.154
(0.023) (0.011) (0.061)*

Mean Distance 0.1681 0.1681 0.1821 0.1821 0.1818 0.1818
(0.135) (0.135) (0.151) (0.151) (0.157) (0.157)

Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Occupation Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Sector Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Fixed Effects No Yes No No No No Yes No No No No Yes No No No
Observations 43,021 43,021 21,201 21,247 42,448 118,054 118,054 58,747 59,013 117,760 20,697 20,697 10,245 10,046 20,303

Table A4: Results from Alternative Distance Measures

Notes : The table reports estimation results using two alternative distance measures separately by education group. Panel A uses the uncentered correlation known from innovation studies in industrial organization (see for example, 
Jaffe, 1986). Panel B uses a distance measure that accounts for the fact that some of the 19 tasks are more similar than others. The first two specifications are replicated from Table 4 (columns "distance") using a fixed effects estimator 
in the second column. The third and fourth column ("wages") replicate results from the correlation of wages for similar and distant movers (column (2) and (3) in Table 5). Finally, the last column "tenure" replicates the spline regression 
from Table 6 (column (2)). See notes to the previous tables for the other controls included and the treatment of censoring and standard errors. Bootstrapped standard errors are reported in parentheses. Coefficients with * are statistically 
significant at the 5 percent level, those with ** at the 1 percent level. 

Low -Skilled Medium -Skilled High -Skilled



Y: Log Daily Wage in t (1) (2) (3) (4) (1) (2)

Distance to Target in t+1 -1.869 -0.891 -0.325 -0.161 -0.754 -0.249
(0.086)** (0.086)** (0.009)** (0.009)** (0.033)** (0.035)**

Actual Experience 0.058 0.053 0.03 0.028 0.109 0.088
(0.002)** (0.002)** (0.001)** (0.001)** (0.003)** (0.003)**

Experience Squared -0.002 -0.002 0.000 0.000 -0.004 -0.003
(0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)**

Occupational Tenure 0.04 0.039 0.064 0.06 0.055 0.054
(0.002)** (0.002)** (0.001)** (0.001)** (0.004)** (0.004)**

Tenure Squared -0.001 -0.001 -0.003 -0.003 -0.003 -0.003
(0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)**

Year Dummies Yes Yes Yes Yes Yes Yes
Occupation Dummies No Yes No Yes No Yes
Observations 42,478 42,478 117,875 117,875 20,303 20,303

Table A: Selection of Distant and Similar Occupational Movers

Notes : The table reports censored regression estimates where the dependent variable is the log daily wage in the current job. We 
compare wages earned in the current job for movers that go to a similar occupation relative to those that move to a distant occupation in 
the next period. Results are reported separately by education group. Robust standard errors that are boostrapped with replacement and 
50 replications to allow for clustering by occupation and time period are in parentheses.      

Low-Skilled Medium-Skilled High-Skilled


