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Abstract

In this paper we study theoretically the dynamics of the distribution of wealth in
an Overlapping Generation economy with bequest and various forms of redistribu-
tive taxation. We characterize the transitional dynamics of the wealth distribution
and as well as the stationary distribution.
We show that, in our economy, the stationary wealth distribution is a power

law, a Pareto distribution in particular. Wealth is less concentrated (the Gini
coefficient is lower) for both higher capital income taxes and estate taxes, but the
marginal effect of capital income taxes is much stronger than the effect of estate
taxes.
Finally, we characterize optimal redistributive taxes with respect to an utili-

tarian social welfare measure. Social welfare is maximized short of minimal wealth
inequality and with zero estate taxes.
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1 Introduction

Rather invariably across a large cross-section of countries and time periods income and
wealth distributions are skewed to the right and display a heavy upper tail (slowly
declining top wealth shares). These observations have lead Vilfredo Pareto, in the Cours
d’Economie Politique (1897), to introduce the distributions which take his name1 and to
theorize about the possible economic and sociological factors generating wealth distrib-
utions of such form. The results of Pareto’s investigations take the form of the "Pareto’s
Law," enunciated e.g., by Samuelson (1965) as follows:

In all places and all times, the distribution of income remains the same. Nei-
ther institutional change nor egalitarian taxation can alter this fundamental
constant of social sciences.

Since Pareto, economists have lost confidence in "fundamental constant(s) of social
sciences". Nonetheless distributions of income and wealth which are very concentrated
and skewed to the right have been well documented over time and across countries.
E.g., Atkinson (2001), Moriguchi-Saez (2005), Picketty (2001), Piketty-Saez (2003), and
Saez-Veall (2003) document large top income shares consistently over the last century,
respectively, in the U.K., Japan, France, the U.S., and Canada. Large top wealth shares
in the U.S. since the 60’s are documented e.g., by Wolff (1987, 2004).2 Also, heavy upper
tails (power law behavior) of the distributions of income and wealth is a well documented
empirical regularity; see e.g., Nirei-Souma (2004) for income in the U.S. and Japan from
1960 to 1999, Clementi-Gallegati (2004) for Italy from 1977 to 2002, and Dagsvik-Vatne
(1999) for Norway in 1998.
While Pareto argued that "egalitarian taxation" did not have any significant effect

on the distribution of income, many have later concluded that the redistributive taxation
regimes introduced after World War II did in fact significantly reduce income and wealth
inequality; notably, e.g., Lampman (1962) and Kuznets (1955). Most recently, Piketty
(2001) has argued that redistributive taxation may have prevented large income shares
from recovering after the shocks that, he documents, they experienced during World War
II in France.3

1Pareto distributions are power laws. They display heavy tails, in the sense that the frequency of
events in the tails of the distribution declines more slowly than e.g., in a Normal distribution. They
represent a subset of the class of stable Levy distributions, that is, of the distributions which are obtained
from the version of the Central Limit Theorem which does not impose finite mean and variance; see
e.g., Nolan (2005).

2While income and wealth are correlated and have qualitatively similar distributions, wealth tends
to be more concentrated than income. For instance the Gini coefficient of the distribution of wealth in
the U.S. in 1992 is .78, while it is only .57 for the distribution of income (Diaz Gimenez-Quadrini-Rios
Rull, 1997); see also Feenberg-Poterba (2000).

3This line of argument has been extended to the U.S., Japan, and Canada, respectively, by Piketty-
Saez (2003) and Moriguchi-Saez (2005), Saez-Veall (2003).
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In this paper we study theoretically the dynamics of the distribution of wealth in
an Overlapping Generation economy with bequest and various forms of redistributive
taxation. We characterize the transitional dynamics of the wealth distribution as well
as the stationary distribution.
More specifically, our economy is populated by a continuum of age structured over-

lapping generations of agents with a constant probability of death as in Blanchard (1985)
and Yaari (1965). The population is stationary and each agent who dies is substituted
by his/her child. A subset of the agents has ("joy of giving") preferences for bequests.
Agents are born with an initial wealth which is composed of the bequests of their parents
(for those born from parents with preferences for bequests) and, if they qualify, welfare
subsidies from the government. Agents face a constant interest rate. They choose an
optimal consumption-savings plan, which includes the allocation of their wealth between
annuities and assets (which become bequests at their death). The government taxes
capital income and estates to redistribute wealth in the form of welfare subsidies. The
government budget is balanced.
While this economy is very stylized, the stationary distribution of wealth we obtain

has the main qualitative properties which, we have argued, characterize wealth distribu-
tions: skewedness and fat tails. We show in fact that the stationary wealth distribution
in our economy is a power law, a Pareto distribution in particular.4 The level of con-
centration and of inequality of wealth at the stationary distribution depends on the
demographic characteristics of the economy, its structural parameters, as well as on the
endogenous growth rate of the economy. Most specifically, for instance, wealth is less
concentrated (the Gini coefficient is lower) the lower is the growth rate of individual
wealth accumulation and the higher is the growth rate of aggregate wealth. We study
analytically the dependence of the distribution of wealth, of wealth inequality in partic-
ular, on various redistributive fiscal policy instruments like capital income taxes, estate
taxes, and the form and extent of welfare subsidies. In particular, wealth is less con-
centrated (the Gini coefficient is lower) for higher capital income taxes and estate taxes.
Furthermore we show that the marginal effect of capital income taxes is much stronger
than the effect of estate taxes.
Finally, we characterize optimal redistributive taxes with respect to an utilitarian

social welfare measure. We show that, even with such an "egalitarian" welfare measure,

4Importantly, we obtain this result without the help of any specific assumptions regarding the dis-
tribution of income or earnings. Of course the specific quantitative properties of the distribution of
wealth are instead closely related to the underlying distribution of earnings. For instance, Castaneda-
Diaz Gimenez-Rios Rull (2003) show that a detailed model of the stochastic process of skills calibrated
to the U.S. distribution of earnings accounts quantitatively well for the U.S. wealth distribution in
equilibrium; see also De Nardi (2000). Cagetti-De Nardi (2000, 2003) stress instead the importance of
entrepreneurship and of borrowing constraints to account quantitatively for the wealth distribution of
the U.S.
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maximizing social welfare is not equivalent to minimizing the concentration or inequality
of wealth. This is because minimizing wealth inequality would require excessively (and
hence inefficiently) reducing the economy’s growth rate. Most interestingly we find that
social welfare is maximized with zero estate taxes. Social welfare maximizing capital
income taxes, on the contrary, are positive and, in the simulation we have run, close to
the value which minimizes the Gini coefficient.

A large literature has studied theoretically models of the dynamics of individual
wealth which result in power laws and particularly in Pareto distributions.5 Notably,
Champernowne (1953), Rutherford (1955), Simon (1955), Wold-Whittle (1957) and most
of the subsequent literature study dual accumulation models, that is, models in which
different stochastic processes drive wealth accumulation for low and high wealth ranges.
Champernowne (1953), Rutherford (1955), and Simon (1955) obtain Pareto distribu-
tions from multiplicative wealth accumulation processes with stochastic rates of return.
Wold-Whittle (1957) study instead a birth and death process with population growth and
exogenous exponential wealth accumulation and bequests. Most recently, the analysis
of stochastic processes generating power laws in the distribution of wealth has become
an important subject in Econophysics (see Mantegna-Stanley, 2000) and many such
processes, often along the lines of the cited pioneering studies of the 50’s, have been ana-
lyzed.6 The characteristic feature of this literature is that the stochastic processes which
generate power laws are exogenous. In particular they are not the result of agents’ opti-
mal consumption-savings decisions and hence they are not related to the deep structural
parameters of the economy nor to any policy parameter of interest. It is then impossible
in the context of these models to study for instance the dependence of the distribution

5More general power laws have also been obtained. E.g., Mandelbrot (1960) introduces stochastic
processes to obtain Pareto-Levy distributions; Reed-Jorgensen (2003) obtain instead Double Pareto-
Lognormal distributions. An early alternative mechanism to produce skewed (but not Pareto) distri-
butions of wealth has been proposed by Roy (1950). If wealth is proportional to talent and talent is
composed of many independent attributes interacting multiplicatively, then a simple application of the
law of large numbers implies that wealth would be distributed lognormally, hence skewed to the right.
The independence of attributes need not be taken literally in practice: Haldane (1942) has shown that, in
the case of three correlated but normally distributed variables, the distribution under the independence
assumption provides a close approximation as long as the coefficients of variations (ratios of standard
deviations to the means) of the individual components are close enough.

6For instance, Nirei-Souma (2004) study multiplicative wealth accumulation models with stochastic
rates of return and a reflective lower barrier (Kesten processes); Levy (2003) studies the implications
of differential rate of return across groups; Solomon (1999) and Malcai et. al. (2002) study similar
processes in which the rate of return on wealth accumulation is interdependent across different groups
of individuals (Generalized Lotka-Volterra models); Levy (2003) shows that different rates of returns
across non-interdependent groups generate wealth distributions which are Pareto only in the tail. Also,
Das-Yargaladda (2003) and Fujihara-Ohtsuki-Yamamoto (2004) study stochastic processes in which
individuals randomly interact and exchange wealth, and Souma-Fujiwara-Aoyama (2001) add network
effects to such random interactions.
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of wealth on fiscal policy. To our knowledge this paper is the first to derive analytically
the distribution of wealth from an equilibrium economy with optimizing agents and a
well-defined government sector responsible for fiscal policies.

2 Wealth accumulation in an OLG economy with
bequests

Consider the Overlapping Generation (OLG) economy in Yaari (1965) and Blanchard
(1985).7 Each agent at time t has a probability of death π (t) = pe−pt.8 Let c(s, t) and
w(s, t) denote, respectively, consumption and wealth at t of an agent born at s. All
agents have identical momentary utility from consumption u (c (s, t)) satisfying the stan-
dard monotonicity and concavity assumptions. Agents may care about the bequest they
leave to their children. We assume that agents have a single heir. At any time t an
agent allocates his wealth between an asset and an annuity. The asset pays a return
r (constant for simplicity), gross of taxes. In perfect capital markets, by no-arbitrage,
the annuity pays a return p+ r, where p is the probability of death. Let ω(s, t) denote
the amount invested in the asset at time t by an agent born at s, with wealth w(s, t).
Therefore w(s, t)− ω(s, t) denotes the amount that an agents invests in the annuity. If
the agent dies at time t the amount bequeathed is ω(s, t). Letting b denote the estate
tax on bequeathed wealth, the agent’s heir inherits (1 − b)ω(s, t). The agent’s utility
from bequests is χφ ((1− b)ω(s, t)), where φ denotes an increasing bequest function. We
assume that a subset of agents have no preferences for bequests, that is, have χ = 0. An
agent born at time s receives, at birth, initial wealth w(s, s) (and, again for simplicity,
no labor income). We let τ denote the capital income tax9.

The maximization problem of an agent born at time s is:

max

Z ∞

t

e(θ+p)(t−v) (u (c (s, t)) + pφ ((1− b)ω (s, v))) dv (1)

subject to:

w (s, t) = w (s, s) +

Z t

s

((r + p− τ)w (s, v)− pω (s, v)− c (s, v)) dv (2)

In the interest of closed form solutions we assume

u(c) = ln(c), φ (ω) = lnω

7More specifically, we consider the formulation with endogenous bequests in Yaari (1965).
8Therefore, an agent lives t periods with probability

R∞
t

pe−ptdt = e−pt, and his expected life at any
time t is

R∞
t
(s− t) pe−(s−t)pds = p−1.

9We assume for simplicity that the tax τ is imposed on both the asset and the annuity.
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The characterization of the optimal consumption-savings path is then straightforward10.

Proposition 1 The consumption-savings path which solves the agent’s maximization
problem (1) is characterized by:

c = ηw, ω = χηw, (3)

with η = (p+θ)
pχ+1

; and
ẇ(s, t) = (r − θ − τ)w(s, t) (4)

Notably, the growth rate of an agent’s wealth, g = r − θ − τ , is independent of the
preference parameter for bequests χ. Agents who care about leaving bequests to their
children consume a smaller fraction of wealth than agents who do not (and invest all
their wealth in annuities), but grow at the same rate g. As a consequence, g decreases
with the capital income tax τ but is independent of estate taxes b.

2.1 The aggregate economy

To study the dynamics of the aggregate economy we need to specify its demographics.
We assume that the population is constant, and normalized to 1. As a consequence,
for any agent who dies at any time there is a new agent born. Since each agent in the
economy dies with probability p, at any time s p agents die.11 Of the p agents dying at
any s, only q < p leave an inheritance, while p− q die with no estate, e.g., because they
have no preferences for bequests, χ = 0.12 Correspondingly, p− q agents are born with
no wealth and q with the inherited wealth.13

Let the aggregate economy’s growth rate be denoted g0. Aggregate wealth is defined
as:

W (t) =

Z t

∞
w(s, t)pep(s−t)ds

Let W (s, t) denote the aggregate wealth at time t of all agents born at time s. Then

˙W (t) =W (t, t)− pW (t) +

Z t

−∞

dW (s, t)

dt
pep(s−t)ds

10We restrict parameters so that interior solutions obtain.
11At any time t the size of the cohort born at 0 is pe−pt. The total population of the economy, at

any time t is therefore 1:
R t
−∞ pe(s−t)pds = e(s−t)p |t−∞= 1.

12In other words, a fraction p−q
p of the agents have no preferences for bequests.

13It is straightforward to show that the analysis of the distribution of wealth in our economy is is
equivalent to the analysis of the distribution of pre-capita wealth in an economy in which all agents
have preferences for bequests, and hence all agents in the economy inherit, but at any time s there is an
inflow of p − q agents with minimal wealth from outside, e.g., from immigration. Notably, in this case
the population of the economy is not constant but rather grows at a constant rate.
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Since the growth rate of wealth is constant across all agents in our economy, dW (s,t)
dt

=
(r − τ − θ)W (s, t) and

˙W (t) =W (t, t)− pW (t) + (r − τ − θ)W (t) (5)

The growth rate of W (t) is determined once we specify the initial wealth of all
newborn agents at each time t, W (t, t). In our economy the distribution initial wealth
w(t, t) across agents is determined by i) any component of wealth that is inherited in
addition to the financial wealth inherited from parents, notably e.g., some component of
human capital, and ii) wealth subsidies due to the government welfare policy, notably
fiscal subsidies to support a minimal wealth at birth. For simplicity and without loss
of generality we assume that no initial human capital component is present. Instead
we study different welfare policies. All such policies have the property that aggregate
subsidies constitute a fixed proportion, say γ, of aggregate wealth. This is to asure
a constant aggregate economy’s growth rate g0. Let the fraction of wealth invested in
annuity be denoted μ. The fraction of assets carried by an agent as a fraction of total
assets, and inherited upon death, is then denoted by 1 − μ and, from (1), it can be
written as:

1− μ =
ω

w
=
(p+ θ)χ

pχ+ 1
; (6)

As a consequence the aggregate wealth of newborn at t is comprised of the aggregate
inherited wealth and of the government subsidies: W (t, t) = q (1− μ) (1− b)W (t) +
γW (t). It follows that the dynamics of aggregate wealth is

Ẇ (t) = (r − τ − θ − p)W (t) + q (1− μ)W (t) + γW (t)

and

g0 = r − τ − θ − p+ q (1− μ) (1− b) + γ (7)

The wealth distributed in welfare subsidies, γW , is the main liability of the gov-
ernment. Its revenues are derived from i) the revenues of the capital income tax, τW ;
ii) the revenues of the estate tax, pb(1 − μ)W . The requirement that government run
a balanced budget at any period t determines the proportion γ of wealth that it can
distribute as welfare subsidies:14

γ = τ + qb(1− μ)

As a consequence, under a balanced budget, the growth rate of the economy g0 is:

14We should note at this point that we could also allow some of the tax collections to finance exogenous
government expenditures or a public good that enters the preferences of agents separably and does not
influence their other decisions. For example we could specify that the government has expenditures
proportional to wealth, μW .
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g0 = r − θ − p+ q(1− μ)

It follows from (6) that μ is independent of estate taxes b. Then the aggregate
economy’s growth rate g0 is decreasing in capital income taxes τ and is independent of
estate taxes b. Capital income taxes in fact depress the savings rate by reducing the net
interest rate on savings. Estate taxes, on the other hand, have no effect on savings when
bequests are optimally chosen under logarithmic preferences, as we have assumed.
It will be important in the following to restrict parameters so that individual wealth

accumulates faster than aggregate wealth, that is:

g − g0 = p− q(1− μ)− τ > 0 (8)

Note also that g − g0 is independent of b, and decreases with τ .

2.2 Welfare policy

The growth rate of aggregate wealth, g0, does not depend on the specifics of the welfare
policy, but only on the proportion of wealth distributed as subsidies in the aggregate.
The distribution of wealth, on the other hand, does depend on the welfare policy. We
shall study two main welfare policies which are distinct in terms of their redistributive
means. Both policies guarantee that all agents born at any time t with no inheritance
receive a transfer of wealth to bring them to a minimum wealth level w(t) which grows
at the aggregate economy’s rate g0, that is w(t) = weg

0t. The two welfare policies differ
instead on how they support the wealth of tagents born with an inheritance:

Lump-sum subsidies. All agents born at any twith an inheritance receive a lump-sum
subsidy equal to x(t) which grows at the aggregate economy’s rate g0: x(t) = xeg

0t.15

Means-tested subsidies. All agents born at any t with inheritance less than w(t) get
a transfer of wealth to bring them to w(t).

In the case of lump-sum subsidies, the total amount of subsidies paid by the govern-
ment at any time t is independent of the distribution of wealth at t and is a constant
fraction of wealth at each time t:

(p− q)w + qx

15We assume for simplicity that

(1− μ)(1− b)w(t) + x(t) ≥ w (9)

so that no inheriting agent has initial wealth smaller that the minimal wealth.
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A fiscal policy (τ , b) determines the set of feasible welfare policies (w, x), which satisfies

(p− q)w(t) + qx(t) = τW (t) + qb(1− μ)W (t)

In the case of means-tested subsidies the total amount of subsidies paid by the gov-
ernment at any time t depends on the distribution of wealth at t. In particular, the policy
subsidizes the wealth of those newborn whose parents are relatively poor at death, that
is, have wealth between w(t) and ((1− b)(1− μ))−1w(t). Let f(w, t) denote the distri-
bution of wealth at time t. Total subsidies (government expenditures) at time t are:

(p− q)w(t) + q

Z ((1−b)(1−μ))−1w(t)

w(t)

(w(t)− (1− b)(1− μ)w) f(w, t)dw (10)

It is important to note that such subsidies can be supported by a stationary tax policy
(with constant rates τ , b, as we have assumed) only if the distribution of wealth is
stationary (independent of t) or if we allow the government to run fiscal deficits and
surpluses and only require a balanced budget intertemporally, rather than for all t.16

3 The distribution of wealth in the OLG economy

We study the dynamics of the distribution of wealth of the OLG economy with in-
heritance and estate taxes introduced in the previous section. We solve for both the
transitional dynamics and the stationary distribution. We study conditions under which
the stationary distribution is Pareto.17

Let the distribution of wealth at time t be denoted f(w, t). Its dynamics are described
by a linear partial differential equation (PDE) with variable coefficients, an initial con-
dition for the initial wealth distribution, and a boundary condition that reflects the
injection of wealth to newborns under ourwelfare policies.

16Recall that we have assumed that agents value net bequests, (1− b)(1− μ)w. Importantly, they do
not value the subsidies received by their children through the welfare state. This is just for analytical
tractability so that μ remains constant for all wealth levels. An alternative numerically tractable formula-

tion for the utility of bequests the under means-tested subsidies could be χmax{0, ln
³
(1− b)(1− μ)ww

´
},

which guarantees that agents will not give any bequests if they die with discounted wealth smaller than
((1− b)(1− μ))

−1
w. For lump-sum subsidies, where all agents receive x at birth and start life with

w ≥ w, the utility function could be ln(
³
(1− b)(1− μ)w+xw

´
. In either case however μ would depend

on wealth.
17Wold-Whittle (1957) pioneered the methods of analysis of the dynamics of the distribution of wealth

that we adopt in this paper. They studied an economy with dual accumulation. Below a cut-off wealth is
assumed to simply grow exponentially. The distribution of wealth above the cut-off is instead determined
by a birth-death process. While Wold-Whittle (1955) assume full inheritance and do not study any fiscal
policies, population growth in their economy dilutes wealth across children and hence its effect are related
to the effects of partial inheritance and estate taxes in our economy.
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Let σ(w) denote the wealth a parent needs to have at time of death t for his heir
born at t +∆ to inherit wealth w. The expression σ(w) takes a different form for the
two specification of welfare policies that we study.18 At time 0 the distribution of wealth
w ∈ (w,∞) is exogenous. Let it be denoted h(w). We assume for simplicity that at time
t = 0 all agents have wealth greater than minimal wealth:

h(w) = 0 for any w ≥ w

The PDE describing the evolution of the distribution of wealth is obtained as the
Chapman-Kolmogorov equation which governs the dynamics of f(w, t) (its derivation is
detailed in Appendix A):

∂f (w, t)

∂t
= − (p+ g) f (w, t) + q

∂σ(w)

∂w
f (σ(w), t))− gw

f (w, t)

∂w
(11)

with initial condition is

f(w, 0) = h(w) (12)

The distribution of wealth at time t must also satisfy the boundary condition (derived
in Appendix A):

f (w(t), t) =
p− q

g

1

w(t)
+ q

Z σ(w(t))

w(t)

f(w, t)dw (13)

This boundary condition guarantees that, at each t, the population size is constant and
normalized to 1; that is,

R
f(w, t)dw = 1. Note that f (w(t), t), the density of wealth at

w = w(t), is composed of the density of wealth corresponding to the p − q agents who
do not receive any inheritance, p−q

g−g0
1
w
, and of the the agents whose inheritance at t is

below w(t), q
R σ(w(t))
w(t)

f(w, t)dw. Recall that under our assumptions this last component
is positive only with a welfare policy characterized by means-tested subsidies, and is zero
with lump-sum subsidies.
Formally, our problem is the following: Find a density f(w, t) which satisfies the PDE

(11) for all w > w(t), the initial condition (12), and the boundary condition (13).It will,
however, be much more convenient to work in variables discounted by the aggregate
economy’s growth rate g0. For this purpose define z = we−g

0t. Note that the support

18With lump-sum subsidies

σ(w) =
w − x

(1− μ)(1− b)
;

while with means-tested subsidies
σ(w) =

w

(1− μ)(1− b)
.
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of z is stationary and equal to (w,∞). The PDE which we obtain after the necessary
transformations is:

∂f (z, t)

∂t
= − (p+ g − g0) f (z, t) + q

∂σ(z)

∂z
f (σ(z), t))− (g − g0) z

f (z, t)

∂w
(14)

with initial condition:
f(z, 0) = h(z) (15)

and boundary condition:

f(w, t) =
p− q

g − g0
1

w
+ q

Z σ(w)

w

f(z, t) : dz (16)

To solve (11) under (15) and (16) we apply the "method of characteristics" as detailed
in Appendix C.

Lemma 1 There exists a distribution of discounted wealth f(z, t) which satisfies PDE
as well as (15). It is characterized by:

f (z, t) =⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

³
z
w

´− p
g−g0−1

f (w, t− τ (z, w))+

+q
R z
w

∂σ(y)
∂y

f (σ(y) , t− τ (z, y)) (y)
p

g−g0 (g − g0)−1 (z)−
p

g−g0+1 dy for z ∈ ¡w,we(g−g0)t¢
e−(p+g−g

0)th
¡
ze(g−g

0)t
¢

+q
R z
w

∂σ(y)
∂y

f (σ(y) , t− τ (z, y)) (y)
p

g−g0 (g − g0)−1 (z)−
p

g−g0+1 dy for z ≥ we(g−g
0)t

(17)
where τ(z, y) = ln z

ln y
1

g−g0

Proof. See Appendix D.
This characterization has an interesting economic interpretation. Notice that τ(z, y) =

ln z
ln y

1
g−g0 represents the age of an agent who has wealth z at time t and was born with

wealth y. The age of an agent who has wealth z at time t and was born with wealth w
is then τ(z, w). Consider the density of any discounted wealth level z ∈ ¡w,we(g−g0)t¢.
The first component of the density f(z, t) in (17) is

³
z
w

´− p
g−g0−1

f (w, t− τ (z, w)). It
represents the density of agents who have entered the economy with wealth w, have
never died since, and have reached wealth z at t. It is determined by the boundary
condition at time t − τ(z, w). Similarly, the second component of the density f(z, t)

in (17) is q
R z
w

∂σ(y)
∂y

f (σ(y) , t − τ (z, y)) (y)
p

g−g0 (g − g0)−1 (z)−
p

g−g0+1 dy. It represents
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the density of agents who have entered the economy with some wealth y, have never
died since, and have reached wealth z at t. Consider instead the density of discounted
wealth levels z at time t greater than we(g−g

0)t. The only agents who can possess such a
discounted wealth level are: i) those agents who were born at time 0 and have never died
, ii) the children of those agents who have died at some time t0 < t and left inheritance
larger than we(g−g

0)t0. The density of these agents is represented by the second line of
(17).
The distribution of wealth f(z, t) must then satisfy (17) as well as (16). It is in

general impossible to find a closed form solution unless the boundary condition (16) has
the property that f(w, t) is constant in t, which in fact is the case if no agent leaves any
inheritance. We will discuss this as a special case in Section 3.
We can nonetheless study the limit distribution of the dynamics of f(z, t). First of

all we can show that (see the proof of Proposition 2 in Appendix A) the density of of
discounted wealth levels z at time t greater than we(g−g

0)t, represented by the second line
of (17), declines with time. It is in fact bounded above by e−(p−q+g−g

0)th
¡
ze−(g−g

0)t
¢
. It

therefore declines at a rate (greater than) p− q + g − g0, due to the rate p− q at which
agents die with no inheritance and the rate at which the density "spreads" on account
of growth, g − g0.

Proposition 2 The distribution of wealth f(z, t) which satisfies (17) as well as (16) has
a stationary distribution, f(z), which solves the following integral equation:

f (z) =

µ
z

w

¶− p
g−g0+1

f(w) + q

Z z

w

∂σ(y)

∂y
f (σ(y)) (y)

p
g−g0 (g − g0)−1 (z)−

p
g−g0+1 dy

(18)
for

f(w) =
p− q

g − g0
1

w
+ q

Z σ(w)

w

f(z)dz. (19)

The integral equation (18) can be solved for quite generally. To provide intuition, we
proceed by studying various special cases first.

No inheritance We first study the special case in which agents have no preferences
for bequests, χ = 0. In this case agents only invest in annuities and leave no bequests,
μ = 1. All p newborns at time t receive w (q = 0). Furthermore, from (8), g−g0 = p−τ .
In this economy, the density of wealth at the boundary w is constant over time and the
boundary condition is reduced to:

f(w, t) =
p

g − g0
1

w
, (20)

while the initial condition is the same as in (15).

12



Proposition 3 The economy without bequests has the following distribution of discounted
wealth at each time t:

f(z, t) =

(
p

p−τ w
p

p−τ z−(
p

p−τ+1) for z ∈ ¡w,we(p−τ)t¢
e−(p+p−τ)th

¡
ze−(p−τ)

¢
for z ≥ we(p−τ)t

(21)

f(z, t) is a truncated Pareto distribution in the range
¡
w,we(p−τ)t

¢
. The ergodic distrib-

ution of discounted wealth is

f(z) =
p

p− τ
w

p
p−τ z−(

p
p−τ+1)

which is a Pareto distribution with finite mean.19

Full inheritance, no estate taxes We now study another special case, in which
agents leave all of their wealth as inheritance to their heirs and no estate taxes are
imposed. This requires that χ be large enough and b = 0. Recall however that at
each time t, nonetheless, p− q agents die without heirs and p− q agents are born with
minimal wealth w. Furthermore, from (8), g − g0 = p− q − τ . If μ = 0, x = 0, it follows
immediately that the boundary condition (16) requires:

f (w, t) =
p− q

g − g0
1

w
,

Proposition 4 The economy with full inheritance and no estate taxes has the following
distribution of discounted wealth at each time t:

f(z, t)

(
p−q

p−q−τ w
p−q

p−q−τ z−(
p−q

p−q−τ+1) for z ∈ ¡w,we(p−q−τ)t¢
e−(p+p−τ)th

¡
ze−(p−q−τ)t

¢
for z ≥ we(p−q−τ)t

(22)

It is a truncated Pareto distribution in the range
¡
w,we(p−q−τ)t

¢
. The ergodic distribution

of discounted wealth is

f(z) =
p− q

p− q − τ
w

p−q
p−q−τ z−(

p−q
p−q−τ+1)

which is a Pareto distribution with finite mean.20

Note that in fact this economy is observationally equivalent to an economy without
bequest in which all agents die without heirs with probability p − q. (The fraction q of
agents who die at any t leaving full inheritance to the offspring effectively do not die).

19The mean is finite since p
p−τ > 1.

20The mean is finite since p−q
p−q−τ > 1.
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Means-tested subsidies We are now ready to study the case in which in which
agents leave part of their wealth as inheritance to their heirs and estate taxes are imposed;
that is, the case in which 0 < μ, b < 1. We first study the economy in which welfare
policies are characterized by means-tested subsidies.
We study directly the stationary distribution as in this case we cannot analyticaly

solve (17) for the transititional dynamics of f(z, t). We can therefore look for a function
f(z) which satisfies the integral equation (18) and the boundary condition (19). For this
economy (see footnote 18), we have

σ(y) =
y

(1− μ)(1− b)

We use the transformation j = σ(y) = y
(1−μ)(1−b) and obtain, from (18):

f (z) =
³

z
w

(1−μ)(1−b)

´− p
g−g0+1

f (w)

+q (g − g0)−1
R z

(1−μ)(1−b)
w

(1−μ)(1−b)
f (j)

∙
((1− μ)(1− b)j)

p
g−g0 z

− p
g−g0+1

¸
dj

(23)

Recall that, from (8), g − g0 = p − q (1− μ) − τ We proceed by guessing a Pareto
distribution for f(z):

f(z) =
p− aq (1− μ) (1− b)

p− q (1− μ)− τ
w

p−aq(1−μ)(1−b)
p−q(1−μ)−τ z−(

p−aq(1−μ)(1−b)
p−q(1−μ)−τ +1) (24)

and then solve for the parameters a to satisfy, respectively, (23) and the boundary
condition (19).
After some algebra, we can show that the guess (24) satisfies (23) if and only if a

solves the fixed point equation:

a = ((1− μ) (1− b))(
p−aq(1−μ)(1−b)
p−q(1−μ)−τ −1) (25)

It is straightforward to show that (25) has a unique fixed point, which we denote a∗, and
that 0 < a∗ < 1. The boundary condition (19) is also satisfied and

R∞
w

f(z)dz = 1. The

quantity a (1− μ) (1− b) = q ((1− μ) (1− b))
p−aq(1−μ)(1−b)
p−q(1−μ)−τ is one minus the value of the

cumulative Pareto distribution at w ((1− μ) (1− b))−1 and represents the fraction of the
q agents that inherit wealth greater than w, and receive no subsides to supplement their
wealth at birth.
We summarize this analysis with the following result.

Proposition 5 The economy with inheritance, estate taxes, and means-tested subsidies
has a stationary distribution of discounted wealth

f(z) = p−a∗q(1−μ)(1−b)
p−q(1−μ)−τ w

p−a∗q(1−μ)(1−b)
p−q(1−μ)−τ z

− p−a∗q(1−μ)(1−b)
p−q(1−μ)−τ +1

,

for 0 < a∗ < 1 satisfying (25)

(26)
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which is a Pareto distribution with finite mean.21

Lump-sum subsidies We now study the economy for which 0 < μ, b < 1 where
welfare policies support a minimal discounted wealth w and provide all agents with
discounted wealth greater that or equal to w with discounted lump-sum subsidies x.
Under our assumptions it follows immediately that the boundary condition (20) holds,
that is f (w, t) = p−q

g−g0
1
w
.

The stationary distribution satisfies the integral equation (18). For this economy (see
footnote 15), we have

σ(y) =
y − x

(1− μ)(1− b)
, and hence σ(w) = w,

∂σ(z)

∂z
=

1

(1− b)(1− μ)

We operate the transformation j = σ(y) = y−x
(1−μ)(1−b) and obtain, from (18):

f (z) =
³

z
w

´− p
g−g0+1

f (w)

+q (g − g0)−1
R z−x

(1−μ)(1−b)
w

f (j)

∙
((1− μ)(1− b)j + x)

p
g−g0 (z)

− p
g−g0+1

¸
dj

(27)

While we do not have of a closed form solution to this integral equation, a unique
solution exists (see Appendix D). Moreover we can show that, for large z, the distribution
of discounted wealth is approximately Pareto. We summarize the analysis with the
following result.

Proposition 6 The economy with inheritance, estate taxes, and welfare policies with
minimal wealth support and lump-sum subsidies has a stationary distribution of dis-
counted wealth with the following properties:

i) for any z, it is bounded below by a Pareto distribution with exponent

p

p− q(1− μ)− τ
(28)

and it is bounded above by a Pareto distribution with exponent

p− a∗q (1− μ) (1− b)

p− q (1− μ)− τ
> 1, for 0 < a∗ < 1 satisfying (25)

ii) for large z, it is approximated by a Pareto distribution with exponent

p− a∗q (1− μ) (1− b)

p− q (1− μ)− τ
> 1, for 0 < a∗ < 1 satisfying (25)

21The mean is finite since p−a∗q(1−μ)(1−b)
p−∗q(1−μ)−τ > 1.
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3.1 Fiscal Policy Effects

In this section we study the effects fiscal policy changes, that is changes in estate taxes
b and capital income taxes τ on the aggregate growth rate of the economy and on
the stationary distribution of discounted wealth. Furthermore we characterize optimal
redistributive taxes with respect to an utilitarian social welfare measure. We restrict our
analysis to welfare policies with means-tested subsidies.

Positive effects of fiscal policies We have shown in the previous section that, with-
out lump-sum transfers, the stationary distribution of discounted wealth is a Pareto
distribution with finite mean whose exponent depends on the policy parameters, on
the deep preference parameters, on the demographics, and on the interest rate. More
specifically, for parameters such that 0 < μ < 1 the Pareto exponent of the stationary
distribution, denoted by P , is22

P =
p− a∗q (1− μ) (1− b)

p− q (1− μ)− τ
, with a∗ = (1− μ)

p−a∗q(1−μ)(1−b)
p−q(1−μ)−τ −1

For a Pareto distribution the Gini coefficient, the standard measure of inequality, is
inversely related to the Pareto exponent. In particular, as noted by Chipman (1974),
letting G denote the Gini coefficient,

G =
1

2P − 1
We proceed by characterizing the effects of policy variables b ∈ [0, 1] and τ ∈ [0, p− q (1− μ)]
on P . The upper bound on τ is required so that g − g0, and therefore P, remain non-
negative.

Proposition 7 The Pareto coefficient of the economy’s stationary distribution of dis-
counted wealth is increasing in capital income taxes τ , ∂P (τ,b)

∂τ
> 0, and non-decreasing

in estate taxes b, ∂P (τ,b)
∂b

≥ 0. Perfect equality (G = 0, P = ∞) is attained for τ =
p− q (1− μ) for any b.

To better illustrate the effects of fiscal policies on the Pareto coefficient we calibrate
a simple economy. We choose the following parameter values:

p = 0.016, q = 0.013, θ = 0.04, χ = 10, r = 1.08 (29)

We choose p for an expected productive life of p−1 = 62 years, and χ = 10 implying
that agents with a positive bequest motive hold 0.49% of their wealth in inheritable,
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Figure 1:

non-annuitized assets. The fraction of the population that leave bequests to their heirs
is q

p
= 0.812 5. Figure 1, shows the the relationship between P and the taxes (b, τ).
The effect of capital income taxes on P is essentially due to their effect on the differen-

tial growth rate g−g0 = p−q(1−μ)−τ . As τ rises towards its upper bound p−q (1− μ),
the Pareto exponent becomes large and tends towards infinity. Consequently the Gini
coefficient is reduced, and the wealth distribution becomes more equal. As the distribu-
tion becomes more highly peaked, the expression a∗ (1− μ) (1− b) = ((1− μ) (1− b))P ,
representing the fraction of the q agents that inherit wealth above w, declines. Con-
sequently, the effect of estate taxes b decline as well: with small a∗ the effect of b on
P = p−a∗q(1−μ)(1−b)

p−q(1−μ)−τ becomes negligible. It follows that the higher is the value of τ , the
more insignificant is the effect of the estate taxes b on the Pareto and Gini coefficients.23

22Note that P = p
p−τ if μ = 1, while, if μ = 0, P =

p−q
p−q−τ .

23Interestingly, Castaneda-Diaz Gimenez-Rios Rull (1993) also find small effects of estate taxes on the
distribution of wealth in an equilibrium economy calibrated to match the U.S. distribution of earnings.
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This can be seen from Figure 2 which plots the effect of b on P for various values of τ .
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Figure 2:

It is also of interest to note the effect of bequests on the Pareto coefficient. An increase
of the preference for bequest, χ, (or of the fraction of agents with such preference, q)
increases the fraction of wealth left as inheritance, 1−μ. As a consequence, the aggregate
growth rate of the economy increases without raising the growth rate of individual wealth,
and the Pareto coefficient rises, decreasing wealth inequality.
Fiscal policies (b, τ) do not only affect the Gini coefficient, but also the minimal

wealth that can be supported by welfare, w. Since tax collections finance subsidies so
that the government budget remains balanced, discounted mean wealth, M, which we
normalize to unity in our simulations, remains constant over time. At the stationary
Pareto distribution, (26), we have

w =
P − 1
P

M (30)
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Thus as P →∞, G→ 0, perfect equality is reached where the minimum wealth is equal
to mean wealth: w =M.24

Normative effects of fiscal policies Instead of focusing on inequality, we may take
social welfare to be the main target of fiscal policy. This of course requires the choice
of a social welfare function.25 Chipman (1974), restricting his attention to Pareto dis-
tributions, showed that with additively separable social welfare functions, increasing the
Pareto coefficient (and thus decreasing the Gini coefficient) does indeed increase social
welfare if the mean (rather than the lower bound) of the distribution is kept constant.
These results however are derived in a static context and cannot be applied directly to
our model, as discussed below.
In the context of an additively separable (utilitarian) welfare criterion, we can inquire

into the welfare properties of the stationary distribution of wealth f(z). We can in fact
express the social welfare of the agents alive at an arbitrary time t as a function of
the Pareto exponent P . Consider a representative agent who solves the maximization
problem (1-2). Her optimal consumption-savings choice path is characterized in Section
2. Given an arbitrary discounted wealth z at time t, this time t discounted utility along
the optimal path can be written as (see the derivation in Appendix A):

U(z) =
1

θ + p

µ
g (1 + pχ)

θ + p
+ ln η + pχ ln (ηχ) (1− b)

¶
+
1 + pχ

θ + p
ln z (32)

It is independent of t. Recall that a fraction p−q
p
of the agents have no preferences for

bequests, that is, they have χ = 0. For these agents, given an arbitrary discounted
wealth z at time t, their time t discounted utility along the optimal path can be written
as:

U0(z) =
1

θ + p

µ
g

θ + p
+ ln(p+ θ)

¶
+

1

θ + p
ln z

24At the stationary distribution (26), the government budget constraint, under which tax collections
exactly finance subsidies each period, can be written as (see the derivation in Appendix A):

w =
τ + bq(1− μ)M

p− q(1− μ)(1− b)
³
a∗ + P

P−1(1− a∗)
´ (31)

where a∗ solves (25). Of course, (30) and (31) are equivalent. This can be easily verified: substitute for
M from (30) into (31), eliminate w, solve for P

P−1 , and verify that the solution is consistent with the
definition of the Pareto exponent.
25A large literature has explored the properties of social welfare functions, in particular those that

are additively separable in individual utilities and that are increasing in the mean of the distribution
of income and decreasing in a measure of its dispersion for all possible income or wealth distributions;
see Samuelson (1965) for an early contribution to the subject. Atkinson (1970) and Newbery (1970)
demonstrated that if individual utilities are strictly concave there exists no additively separable social
welfare function that satisfies these properties; and later Sheshinski (1972) demonstrated that a Rawlsian
welfare criterion would indeed satisfy them.
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The utilitarian social welfare of the agents alive at an arbitrary time, at the station-
ary wealth distribution f(z) defined by (26), a Pareto distribution with mean M and
exponent P , is:

Ω (w,P ) =
q

p

Z ∞

w

U(z)f(z)dz +
p− q

p

Z ∞

w

U0(z)f(z)dz

However, we set w so that the government budget remains balanced. As discussed
in footnote 3.1 above, the mean wealth M remains constant, and w = M P−1

P
. It is

straightforward to show then that

Ω (M,P ) =
1

p+ θ

µ
g (1 + pχ)

p+ θ
+ ln η + pχ ln (ηχ (1− b)) +

(1 + pχ)

p+ θ

µ
ln

µ
P − 1
P

M

¶
+ P−1

¶¶
where g = r − θ − τ . Therefore,

∂Ω (M,P )

∂P
=
(1 + pχ)

(p+ θ)2
P−2

P − 1 > 0 (33)

We can now consider the welfare effects of different fiscal policies, that is, of different
combinations of estate taxes b and capital income taxes τ which satisfy government
budget balance, (31). A policy (b, τ) affects on the Pareto exponent P of the stationary
distribution f(z) as P depends on τ and b. In a static framework without growth and
without a bequest motive, the utilities of agents and the social welfare function does not
directly depend on b or on τ except through the Pareto coefficient. Maximizing social
welfare would then be equivalent to maximizing P, and given the egalitarian social welfare
function, not surprisingly, it follows from (33) that social welfare would be maximized
under complete equality: P = ∞ and G = 0. However this is no longer the case in a
dynamic context because both τ and b enter the social welfare function through g and
through the bequest motive, in addition to entering through the Pareto coefficient. The
derivatives of the social welfare function with repect to τ and b now become

∂Ω (M, b, τ)

∂τ
= (p+ θ)−2

µ
(1 + pχ)

P−2

P − 1
∂P

∂τ
− 1
¶

(34)

= (p+ θ)−2

⎛⎝ (P − 1)−1 (1 + pχ)

p− q
n
((1− μ) (1− b))

P

(1 + P ln ((1− μ) (1− b)))
o − 1

⎞⎠
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∂Ω (M, b, τ)

∂b
(35)

= (p+ θ)−1
µ
(1 + pχ)

p+ θ

P−2

P − 1
∂P

∂b
− pχ (1− b)−1

¶

= (p+ θ)−1

⎡⎣ (1+pχ)
(P−1)(p+θ)

χP−1(p+θ)P (1+pχ)−1(1−b)P−1q
p−q{((1−μ)(1−b))P (1+P ln((1−μ)(1−b)))}

−p (1− b)−1

⎤⎦χ
where Ω (M, b, τ) is the social welfare function expressed explicitely as a function of
the policy parameters b, τ ; also ∂P

∂τ
and ∂P

∂b
are defined by (49) and (50) in the proof

of Proposition 7 in Appendix A. From Proposition 7 we know that when the Pareto
exponent is maximized at τ = p− q (1− μ) , we have ∂P

∂b
= 0, so for χ > 0 social welfare

would decline in b due to the bequest motive, as is clear from( 35 ). Consequently, the
optimal b would be zero. If however τ has an interior solution so that ∂P

∂b
> 0, we cannot

determine whether or not b will be interior.26 In fact it is clear from inspecting (34) that
the value of τ that maximizes social welfare has to be less than p− q (1− μ) because for
τ → p− q (1− μ) we have (P − 1)→∞, ((1− μ) (1− b))

P

P → 0 and ∂Ω(M,b,τ)
∂τ

< 0.
Another interesting feature of social welfare function is that for small values of the

bequest parameter χ we have ∂Ω(M,b,τ)
∂b

< 0, so that the maximizing social welfare requires
setting b = 0. The reason is that for small values of χ, the agent sets a high μ and therefore
leaves a small bequest. The negative effect of b on social welfare through its reduction
of bequests, given by −pχ (1− b)−1 , dominates the positive effect of b on social welfare
through the Pareto exponent. This is because as χ → 0, (1− μ)P → 0 as χP with
P > 1, so that for small χ the expression in square brackets in the last two lines of (35)
is negative.
For the parameters given by (29), Figure 3 shows the plot of the social welfare func-

tion.
Welfare is maximized at (b, τ) = (0, 0.0095) where the maximum value of τ is

p− q (1− μ) = 0.0097, so τ is indeed interior. Figure 4a below shows that social welfare
does decline with b for τ = 0.0095 for χ = 10. The Pareto exponent is P = 71.3846,
the lower bound on wealth is w = 0.986, the fraction of the q agents who inherit
more than w is (1− μ) (1− b) a∗ = (1 − μ)71.3846 = (2.658582224432109) (10)−23 and
the fraction of wealth that the q agents hold in non-inheritable annuitized form is
μ = 0.5172. Figure 4b shows the same, but for for a much smaller bequest parame-
ter, χ = 0.01. Despite the small χ, welfare still declines with b for the reasons discussed
above, and it is maximized at (b, τ) = (0, 0.0158) where the maximum allowed value
of τ is p − q (1− μ) = 0.0159987. Now however the welfare maximizing capital tax is
higher27 at τ = 0.0157, the Pareto exponent is lower at P = 53.4631, the lower bound

26Note that even if χ goes to zero, (1− μ) = (p+θ)χ
1+pχ goes to zero as well.

27The capital taxes are higher despite the direct effect of a lower bequest motive χ because a low χ
implies a higher μ and a lower pareto exponent, which tends to make wealth distribution more unequal.
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on wealth is w = 0.9813, the fraction of the q agents who inherit more than w is
(1− μ) (1− b) a∗ = (1− μ)53.4631 = 4.8385 (10)−228 and the fraction of wealth that the q
agents hold in non-inheritable annuitized form is μ = 0.9999.
Thus for both χ = 10 and χ = 0.001, at the social welfare optimum of for the

stationary distribution f (z) estate taxes b = 0, capital taxes are interior but close to
their maximum allowed value of p−q (1− μ) , and in both cases almost all the population
is concentrated just below the mean wealth of 1. However, the egaltarianism implicit in
the social welfare function is implemented through capital rather than through estate
taxes. Depending on the bequest motive χ, this comes at the expense of growth of almost
1% to 1.5%.
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3.2.1 Appendix A: Proofs - for completeness

Proof of Prop. 1. The dynamic equation for wealth accumulation is

dw (s, t)

dt
= (r + p− τ)w (s, v)− pω (s, v)− c (s, v)

First order conditions include

ω (s, t) = χc (s, t) (36)

ċ (s, t) = (r − τ − θ) c (s, t) (37)

The aggregate dynamics for the agent can then be written as:

ẇ (t, s) = (r + p− τ)w (t, s)− (pχ+ 1) c (s, v)
Postulating c = ηw, after some algebra,

dc (s, t)

dt
= ((r + p− τ)− η (pχ+ 1)) c (s, v) (38)

So that, equating 37 and 38 we verify that in fact

c = ηw, with η =
(p+ θ)

pχ+ 1
(39)

Furthermore, by (36),

ω = (1− b)−1 χηw, with η =
(p+ θ)

p (1− b)−1 χ+ 1

Finally, using

ẇ (t, s) = (r + p− τ)w (t, s)− (pχ+ 1) ηw (t, s)
and

η =
(p+ θ)

pχ+ 1

we can solve for the growth of the agent’s wealth, which we denote g:

g = r − τ − θ (40)

Derivation of the PDE, equation (11). Consider the Chapman-Kolmogorov
equation which governs the dynamics of f(w, t). Let w1 > wl(t). The mass of wealth in
the interval (w1, w) at time t+∆ is

R w
w1
f (w, t+∆) dw. At a first order approximation
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this mass has two components. First, since individual wealth grows at rate g, it contains
the mass of agents who have wealth in the interval ((1− g∆)w1, (1− g∆)w) at time
t and are alive at t + ∆. Secondly, through the boundary condition it contains the
contribution of those newborns who inherit a fraction of their parents’ wealth: the
newborns at time t who do not inherit from their parents, or whose inheritance fall
below wl (t) add to the density at wl(t)).
Summarizing, the Chapman-Kolmogorov equation can then formally be written as:

Z w

w1

f (w, t+∆) dw = (1− p∆)

Z (1−g∆)w

(1−g∆)w1
f (w, t) dw + q∆

Z σ(w)

σ(w1)

f (w, t) dw + o (∆)

Differentiating with respect to w and ignoring second-order terms (terms in ∆2),

f (w, t+∆) = (1− p∆) (1− g∆) f ((1− g∆w), t) + q∆
∂σ(w)

∂w
f (wσ(w), t))

Rearranging,

f (w, t+∆)− f (w, t)

∆
=

=
f ((1− g∆w), t)− f (w, t)− (∆p+∆g) f ((1− g∆w), t) + q∆∂σ(w)

∂w
f (wσ(w), t))

∆

and, letting ∆→ 0,

∂f (w, t)

∂t
= − (p+ g) f (w), t) + q

∂σ(w)

∂w
f (wσ(w), t))− g

∂f (w, t)

∂w

Derivation of the boundary condition, (13). The two terms of (13) are, respec-
tively, the density of the newborns with no inheritance and the density of the newborn
with inheritance lower that w.
The first term of (13) can be derived from the age distribution. In particular the

density of newborn agents (agents of age a = 0) with no inheritance is p− q. The wealth
w(a) of an agent of age a born with wealth w is w(a) = wega. Operating the appropriate
change of variable to obtain the distribution of wealth from the distribution of age, and
evaluating at w = w, we obtain p−q

g
1
w
. The second term is straightforwardly derived.

Proof of Lemma 1 To solve (11) under (16) and (15) we apply the ”method of
characteristics” as detailed in Appendix C. Let the characteristic space (τ , t) be defined
by

dz

dτ
= (g − g0)z,

dt

dτ
= 1.

Let z(0) = m and t(0) = 0. In the characteristic space the PDE (11) is then reduced to
the following differential equation:
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d (f (z(τ), τ))

dτ
= − (p+ g − g0) f (z(τ), τ) + q

∂σ(z)

∂z
f (σ(z(τ)), τ) (41)

It can be verified that (41) has solution:

f (z (τ) , τ) = e−(p+g−g
0)τf (m, 0) +

Z τ

0

q
∂σ(z)

∂z
f (σ(z(η)) , η) e(p+g−g

0)(η−τ)dη (42)

The characteristic space is split along the characteristic z = we(g−g
0)τ . In particular,

for z ≥ we(g−g
0)τ the solution to the PDE is determined by the initial condition, while

for z < we(g−g
0)τ the solution is instead determined by the boundary condition through

the inverse transformation τ(z, y) = ln z
y

1
(g−g0) . Then, substituting back into the original

space (z, t), we obtain

f (z, t) =⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

³
z
w

´− p
g−g0−1

f (w, t− τ (z, w))+

+q
R z
w

∂σ(y)
∂y

f (σ(y) , t− τ (z, y)) (y)
p

g−g0 (g − g0)−1 (z)−
p

g−g0+1 dy for z ∈ ¡w,we(g−g0)t¢
e−(p+g−g

0)th
¡
ze(g−g

0)t
¢

+q
R z
w

∂σ(y)
∂y

f (σ(y) , t− τ (z, y)) (y)
p

g−g0 (g − g0)−1 (z)−
p

g−g0+1 dy for z ≥ we(g−g
0)t

Proof of Prop. 2. Consider the dynamics of f(z, t) as characterized by (17) in
Lemma 1. Consider discounted wealth levels z ≥ we(g−g

0)t. In this region, the density
an any time t is

e−(p+g−g
0)th

³
ze(g−g

0)t
´
+q

Z z

w

∂σ(y)

∂y
f (σ(y) , t−τ (z, y)) (y) p

g−g0 (g − g0)−1 (z)−
p

g−g0+1 dy

Notice that, if σ(y) = y, the density in the region z ≥ we(g−g
0)t at time t is larger

than in the case σ(y) > y. But, when σ(y) = y (17) can be easily solved to obtain that

f(z, t) = e−(p−q+g−g
0)th

³
ze−(g−g

0)t
´
, for z ≥ we(g−g

0)t.

It is now straightforward to notice that = e−(p−q+g−g
0)th

¡
ze−(g−g

0)t
¢
vanishes for t→∞.

We conclude that at the stationary distribution the whole mass is in the region
z ∈ ¡w,we(g−g0)t¢. As a consequence, then, from (17),

f(z) =

µ
z

w

¶− p
g−g0−1

f (w) + +q

Z z

w

∂σ(y)

∂y
f (σ(y)) (y)

p
g−g0 (g − g0)−1 (z)−

p
g−g0+1 dy
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Proof of Prop. 3. Substituting (20), (8), and μ = 1, q = 0 into (17) reduces it to

f(z, t)

⎧⎨⎩ p
p−τ

1
w

³
z
w

´−( p
p−τ+1)

for z ∈ ¡w,we(p−τ)t¢
e−(p+p−τ)th (z) for z ≥ we(g−g

0)t
(43)

Proof of Prop. 4 Consider z ∈ ¡w,we(g−g0)t¢. In this range, substituting (20),
and b = 0, in (17), it follows that f(z, t) is stationary (independent of t), and hence it
satisfies the integral equation (18), which in this case takes the form:

f (z) =

µ
z

w

¶− p
g−g0+1

f(w) + q

Z z

w

(y)
p

g−g0 (g − g0)−1 (z)−
p

g−g0+1 f (y) dy (44)

This is a Volterra integral equation of the second type, with separable kernel, for which
a closed form solution exists and is discussed in Appendix D. Applying this solution, we
obtain,

f (z) =
³

z
w

´− p
g−g0+1

f (w)

+q (g − g0)−1
R z
w
z
− p

g−g0+1−q(g−g0)
−1

j
p

g−g0−q(g−g0)
−1 ³

j
w

´− p
g−g0+1

f (w) dj

(45)

Straightforward algebraic manipulations, together (20), are now enough to produce the
result.
Proof of Prop. 5 The integral equation in this case, after the transformation

j = σ(y) = y
(1−μ)(1−b) is reduced to:

f (z) = (46)µ
z

w

¶− p
g−g0+1

f (w) + q (g − g0)−1 ·

·
Z z

(1−μ)(1−b)

w
(1−μ)(1−b)

f (j)

∙
((1− μ)(1− b)j)

p
g−g0 z

− p
g−g0+1

¸
dj

where g − g0 = p− q (1− μ)− τ . We guess:

f(z) =
p− aq (1− μ) (1− b)

p− q (1− μ)− τ
w

p−aq(1−μ)(1−b)
p−q(1−μ)−τ z−(

p−aq(1−μ)(1−b)
p−q(1−μ)−τ +1) (47)

and substitute into the integral equation. Let f(w) = p−aq(1−μ)(1−b)
p−q(1−μ)−τ

1
w
. We obtain
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z

w

−( p−aq(1−μ)(1−b)p−q(1−μ)−τ +1)
f(w) =

z

w

− p
g−g0+1

f (w) + q (g − g0)−1 (z)−
p

g−g0+1 ·

·
Z ((1−μ)(1−b))−1z

((1−μ)(1−b))−1w

µ
j

w

¶− p
g−g0+1−aq(g−g0)

−1(1−μ)(1−b)
f (w) (1− μ) (1− b) j

p
g−g0 dj

and, after some algebraic manipulations,

z

w

−( p−aq(1−μ)(1−b)p−q(1−μ)−τ +1)
f(w) =

z

w

− p
g−g0+1

f (w) +

+q (g − g0)−1 ((1− μ) (1− b))
p

g−g0 z

w

− p
g−g0+1

w−aq(g−g
0)−1((1−μ)(1−b))f (w) ·

·
Z ((1−μ)(1−b))−1z

((1−μ)(1−b))−1w
j−1+aq(g−g

0)−1(1−μ)(1−b)dj

and hence
z

w

−( p−aq(1−μ)(1−b)p−q(1−μ)−τ +1)
f(w) =

=
z

w

− p
g−g0+1

f (w)

⎛⎝ 1 + a−1w−aq(g−g
0)−1(1−μ)(1−b) ((1− μ) (1− b))

p−aq(1−μ)(1−b)
g−g0 −1

·
³
zaq(g−g

0)−1(1−μ)(1−b) − waq(g−g0)−1(1−μ)(1−b)
´ ⎞⎠

=
z

w

− p
g−g0+1

f (w)

⎛⎝ 1 + a−1 ((1− μ) (1− b))

p−aq((1−μ)(1−b))
g−g0 −1³

z
w
aq(g−g0)−1(1−μ)(1−b) − 1

´
⎞⎠

Let a−1 ((1− μ) (1− b))

p−aq(1−μ)(1−b)
g−g0 −1

= 1, or

a = ((1− μ) (1− b))

p−aq(1−μ)(1−b)
g−g0 −1

This is fixed point equation which has a unique solution, a∗ < 1. In fact, it is easily

checked that ((1− μ) (1− b))

p−aq((1−μ)(1−b))
g−g0 −1

= ((1− μ) (1− b))
p−aq(1−μ)(1−b)
p−q((1−μ))−τ −1

is strictly
positive for a = 0, it has a negative derivative with respect to a, and it is less than 1 for
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a = 1. Consequently,

z

w

− p−a∗q((1−μ)(1−b))
g−g0 +1

f (w) =

=
z

w

− p
g−g0+1

f (w)

µ
1 +

µ
z

w

a∗q(g−g0)−1(1−μ)(1−b) − 1
¶¶

=
z

w

− p−a∗q((1−μ)(1−b))
g−g0 +1

f (w)

and the guess is verified.
Proof of Prop. 6 The integral equation in this case, after the transformation

j = σ(y) = y−x
(1−μ)(1−b) is reduced to:

f (z) =
³

z
w

´− p
g−g0+1

f (w)

+q (g − g0)−1
R z−x

(1−μ)(1−b)
w

f (j)

∙
((1− μ)(1− b)j + x)

p
g−g0 (z)

− p
g−g0+1

¸
dj

A lower bound on f(z), l(z) is obtained by the solution to

l (z) =
³

z
w

´− p
g−g0+1

l (w)

+q (g − g0)−1
R w
w
f (j)

∙
((1− μ)(1− b)j + x)

p
g−g0 (z)

− p
g−g0+1

¸
dj =

=
³

z
w

´− p
g−g0+1

f (w)

l(z) is a power function with exponent p
p−q(1−μ)−τ , which is a Pareto distribution inte-

grating to unity if defined over w ≥ f (w)
³

p
p−q(1−μ)−τ

´−1
.

An upper bound on f(z), u(z) is obtained by the solution to

u (z) =
³

z
w

´− p
g−g0+1

u (w)

+q (g − g0)−1
R z

(1−μ)(1−b)
w

u (j) j
p

g−g0 z
− p

g−g0+1 dj

since 1 − μ)(1 − b)j + x ≤ j by construction. Adapting the proof of Prop. 5, we can
show that u(z) is a power function with exponent

p− a∗q (1− μ) (1− b)

p− q (1− μ)− τ
> 1, for 0 < a∗ < 1 satisfying (25)
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which is a Pareto distribution integrating to one if defined forw ≥ f (w)
³
p−a∗q(1−μ)(1−b)

p−q(1−μ)−τ
´−1

.The

distribution f(z) for z ≥ f (w)
³
p−a∗q(1−μ)(1−b)

p−q(1−μ)−τ
´−1

lies in between u(z) and l (z) 28, both
of which converge to zero for large z and therefore it is approximated by

f (z) =
³

z
w

´− p
g−g0+1

f (w)

+q (g − g0)−1
R z

(1−μ)(1−b)
w

f (j)

∙
((1− μ)(1− b)j)

p
g−g0 (z)

− p
g−g0+1

¸
dj

which has the solution derived in the proof of Prop. 5: a Pareto distribution with
exponent

p− a∗q (1− μ) (1− b)

p− q (1− μ)− τ
> 1, for 0 < a∗ < 1 satisfying (25)

Proof of Proposition 7: Since

P =
p− ((1− μ) (1− b))

P

q

p− q((1− μ))− τ
(48)

The right side 48 is increasing in P, for P = 1 it is larger than 1, and for P → ∞ it is
finite. Therefore we focus on the unique solution of P ≥ 1. Since p− q((1− μ))− τ ≥ 0,
and 0 ≤ ((1− μ) (1− b))P ≤ 1 it follows that limτ→(p−q((1−μ))P = ∞. Computing the
derivatives of P, and substituting for p− q((1− μ) from 48 we get

dP

dτ
=

P 2

p− q
n
((1− μ) (1− b))

P

(1 + P ln ((1− μ) (1− b)))
o > 0 (49)

dP

db
=

P 2 ((1− μ) (1− b))
P−1

q (1− μ)

p− q
n
((1− μ) (1− b))P (1 + P ln ((1− μ) (1− b)))

o ≥ 0 (50)

Note that dP
db
= 0 would obtain only if P →∞ and (1− μ) (1− b) < 1. As shown, this is

indeed the case only if τ → (p− q((1− μ)) and may also be ascertained directly by apply-
ing L’Hopital’s rule to 50. To do this first apply L’Hopital’s rule twice to P 2

((1−μ)(1−b))−P−+1

and once to P
((1−μ)(1−b))P by differenting with respect to τ , and show that both expressions

converge to zero as τ → (p− q((1− μ)) because limτ→(p−q((1−μ))P =∞. Then substitute
into the expression dP

db
to see that limτ→p−q((1−μ) dPdb =

0
p
.

Derivation of the government budget constraint, (31).

28Alternatively the solution of f(z) may be explicitly written as the limiting solution obtained by the
successive approximation method (see Polyanin and Manhzirov, section 9.9). The it is possible to show
that the iterated kernels of f(z) lie below the iterated kernels of u(z).
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Consider the government expenditures (10), written in terms of discounted wealth
and evaluated at the stationary distribution f(z):

(p− q)w + q

Z ((1−b)(1−μ))−1w

w

(w − (1− b)(1− μ)z) f(z)dz (51)

Furthermore, the stationary distribution is

f(z) = f (w )
z

w

− p−a∗q((1−μ)(1−b))
(p−q((1−μ))−τ) +1

=

=
p− aq ((1− μ) (1− b))

(p− q((1− μ))− τ)
w

p−a∗q((1−μ)(1−b))
p−q((1−μ))−τ z

− p−a∗q((1−μ)(1−b))
p−q((1−μ))−τ +1

We proceed first by computing
R ((1−b)(1−μ))−1w
w

(1− b)(1− μ)zf(z)dw:

p− aq ((1− μ) (1− b))

(p− q((1− μ))− τ)
w

p−aq((1−μ)(1−b))
p−q((1−μ))−τ ·

·
Z ((1−μ)(1−b))−1w

w

z−(
p−aq((1−μ)(1−b))
p−q((1−μ))−τ +1) (1− μ) (1− b) zdz

=
p− aq ((1− μ) (1− b))

(p− q((1− μ))− τ)
w

p−aq((1−μ)(1−b))
p−q((1−μ))−τ ·

·
µ
−p− aq ((1− μ) (1− b))

p− q((1− μ))− τ
+ 1

¶−1
(1− μ) (1− b)

·
³
((1− μ) (1− b))(

p−aq((1−μ)(1−b))
p−q((1−μ))−τ −1) − 1

´
w−

p−aq((1−μ)(1−b))
p−q((1−μ))−τ +1

=

µ
p− aq ((1− μ) (1− b))

−p+ aq ((1− μ) (1− b)) + p− q((1− μ))− τ

¶
w³

((1− μ) (1− b))(
p−aq((1−μ)(1−b))
p−q((1−μ))−τ ) − 1

´
(1− μ) (1− b)

= (1− μ) (1− b)
p− aq ((1− μ) (1− b))

q (1− μ) (1− a (1− b)) + τ³
1− ((1− μ) (1− b))

p−aq((1−μ)(1−b))
p−q((1−μ))−τ −1

´
w
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Furthermore we compute
R ((1−b)(1−μ))−1w
w

f(z)dw:

p− aq ((1− μ) (1− b))

(p− q((1− μ))− τ)
w

p−aq((1−μ)(1−b))
p−q((1−μ))−τ

Z ((1−μ)(1−b))−1w

w

³
z−(

p−aq((1−μ)(1−b))
p−q((1−μ))−τ +1)

´
dz

=

⎧⎨⎩
³
p−aq((1−μ)(1−b))
(p−q((1−μ))−τ)

´
w(

p−aq((1−μ)(1−b))
p−q((1−μ))−τ )

³
−p−aq((1−μ)(1−b))

p−q((1−μ))−τ
´−1

·
³
((1− μ) (1− b))

p−aq((1−μ)(1−b))
p−q((1−μ))−τ − 1

´
w−

p−aq((1−μ)(1−b))
p−q((1−μ))−τ

⎫⎬⎭
=

³
1− ((1− μ) (1− b))

p−aq((1−μ)(1−b))
p−q((1−μ))−τ

´
Substituting the computations in (51), we conclude that government expenditures are:

(p− q)w + qw

⎛⎜⎜⎝
³
1− ((1− μ) (1− b))

p−aq((1−μ)(1−b))
p−q((1−μ))−τ −1

´
− (1− μ) (1− b) p−aq(1−μ)(1−b)

q(1−μ)(1−a(1−b))+τ³
1− ((1− μ) (1− b))

p−aq(1−μ)(1−b)
p−q(1−μ))−τ −1

´
⎞⎟⎟⎠

and therefore that the government budget constraint can be written as:

w

⎛⎝ (p− q) + q
³
1− ((1− μ) (1− b))

p−aq((1−μ)(1−b))
p−q((1−μ))−τ −1

´³
1− (1− μ) (1− b) p−aq(1−μ)(1−b)

q(1−μ)(1−a(1−b))+τ
´ ⎞⎠

= (τ + bq (1− μ))W (0)

where without loss of generality we set M =W (0) = 1.
Derivation of the discounted utility along the optimal path, (32). In our

economy, the optimal consumption-savings path of an arbitrary agent is characterized
by (3). Along this path, it is straightforward to compute

U(z) =

Z ∞

t

e(θ+p)(t−ν) (ln ηw(t, ν) + pχ ln(1− b)χηw(t, ν)) dν

where w(t, ν) = zeg(ν−t); or,

U(z) =

Z ∞

t

e(θ+p)(t−ν) (ln η + ln z + g(ν − t) + pχ ln(1− b)χη + pχ ln z + pχg(ν − t)) dν

We proceed to analyze separately three components of U(z):
i)
R∞
t

e(θ+p)(t−ν) (ln η + pχ ln(1− b)χη) dν;
ii)
R∞
t

e(θ+p)(t−ν) (1 + pχ) g(ν − t)dν; and finally,
iii)

R∞
t

e(θ+p)(t−ν) (1 + pχ) ln zdν.
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i) Integrating,Z ∞

t

e(θ+p)(t−ν) (ln η + pχ ln(1− b)χη) dν =
1

θ + p
(ln η + pχ ln(1− b)χη)

ii) Integrating by parts, Z ∞

t

e(θ+p)(t−ν) (1 + pχ) g(ν − t)dν =

= g (1 + pχ)

µ
− 1

θ + p

£
e(θ+p)(t−ν)(ν − t)

¤∞
t
+

1

θ + p

Z ∞

t

e(θ+p)(t−ν)dν
¶
=

= g (1 + pχ)

µ
− 1

θ + p

£
e(θ+p)(t−ν)(ν−t)

¤∞
t
− 1

(θ + p)2
£
e(θ+p)(t−ν)

¤∞
t

¶
=

=
g (1 + pχ)

(θ + p)2

iii) Integrating, Z ∞

t

e(θ+p)(t−ν) (1 + pχ) ln zdν =
1 + pχ

θ + p
ln z

Adding up,

U(z) =
1

θ + p

µ
g (1 + pχ)

θ + p
+ ln η + pχ ln (1− b)χη

¶
+
1 + pχ

θ + p
ln z
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3.2.2 Appendix B: On the mechanisms possibly underlying a Pareto distri-
bution of wealth

Various stochastic processes for individual wealth are known to aggregate into a Pareto
distribution of wealth in the population; see Sornette (2000) for a technical review and
Chipman (1976) for a careful and outstanding account of the historical contributions of
this subject; see also Levy (2003).
One such process is exemplified here; its mathematical formulation first appears in

Cantelli (1921).29 Suppose a variable determining wealth (e.g., talent, age), which we
denote α, is exponentially distributed. That is the number of people with α = α0 is

N (α0) = pe−pα0

Suppose wealth increases exponentially with α:

w = aegα, a > 0, g ≥ 0 (52)

Therefore, we can solve for α = g−1 ln w
a
, operate a change of variables and express the

distribution of wealth as

N(w) = N
³
g−1 ln

w

a

´ dα

dw

that is,
N(w) =

p

g
a−

p
gw−(

p
g
+1)

This is a Pareto distribution with the exponent p
g
.30

The underlying mechanism which makes wealth Pareto distributed in our basic model
is a similar one in which the factor α is represented by age. This is clearly illustrated by
considering the simple economy with no bequests. At any time t, in this economy, the
distribution of the population by age t− s implied by the demographic structure of the
economy is in fact

N (t− s) = pe−p(t−s)

Moreover, abstracting from the complications of inheritance, each optimal consumption-
savings choices imply a wealth accumulation process results in wealth increasing expo-
nentially with age.

29See also Fermi (1949)’s study of cosmic rays.
30A notable literature appeared in Italian in the first decades of the twentieth century which studies

the wealth distribution resulting from different assumptions regarding the distribution of the generating
factor we called α and on the functional dependence of wealth on this factor; see Chipman (1976) for a
detailed discussion of these contributions.
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3.2.3 Appendix C: On the basic PDE and its solution by the "method of
characteristics"

We illustrate in this Appendix the "method of characteristics" for the solution of partial
differential equation (PDE’s) by applying to a linear PDE with variable coefficients, a
simple form of the PDE we solve in the paper. Consider the following PDE:

∂f

∂t
= −af − bz

∂f

∂z
(53)

with initial condition
f(z, 0) = h(z)

Suppose first of all that the PDE is to be solved for z ∈ <, that is, that there is no
boundary condition. The Method of Characteristics (see e.g., Farlow (1982), Ch. 27)
requires solving the PDE in the characteristic space, (τ , t), implicitly constructed as
follows:

dz

dτ
= bz,

dt

dτ
= 1

that is,
z(τ) = c1e

−bτ , t(τ) = τ + c2 (54)

Let z(0) = m and t(0) = 0, so that c1 = m and c2 = 0. This construction has the
property that the chain rule

df

dτ
=

∂f

∂z

∂z

∂τ
+

∂f

∂t

∂t

∂τ

and (53) imply
df

dτ
= −af (55)

a simple ordinary differential equation. The initial condition in characteristic space
is f(m, 0) = h(m). The differential equation, together with the initial condition has
solution

f(z(τ), τ) = h(m)e−aτ

Substituting back into the original space (z, t), using (54):

f(z, t) = h
¡
ze−bt

¢
e−at (56)

In words: the density on z at time t is the same density that at time 0 was on ze−bt

dampened at a rate a.

Suppose now that the PDE is to be solved for z ≥ z, and that there is a boundary
condition

f(z, t) = B,
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The Method of Characteristics applies to this class of problems, boundary value prob-
lems, as follows (see e.g., Hood (2003) and Strickwerda (2004), Ch. 1.2). The charac-
teristic space is split along the characteristic z = zebτ . In particular, for z ≥ zebτ the
solution to the PDE is determined by the initial condition, and

f(z, t) = h
¡
ze−bt

¢
e−at

For z < zebτ the solution is instead determined by the boundary condition through the
inverse transformation τ(z, y) = ln z

y
1
b
and

f(z, t) = B
1

b

µ
z

z

¶a
b

Summarizing, the solution to the boundary value problem is:

f(z, t) =

(
B 1

b

³
z
z

´a
b

for z < zebt

h
¡
z e−bt

¢
e−at for z ≥ zebt

(57)
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3.2.4 Appendix D: On Volterra-Fredholm integral equations of the second
type

In this Appendix we report some results for the class of integral equations that we study
in the paper. We consider Volterra-Fredholm integral equations of the second type with
separable kernel:

f (z) = h (z) + λ

Z σ(z)

a

K(y)H(z)f(y)dy

where the real maps h, σ, K, and H are continuously differentiable. It is convenient to
study the following equivalent equation:

f (z) = h (z) + λ

Z ∞

a

K̃(z, y)H(z)f(y)dy, K̃(z, y) = K(y)I[a,σ(z)](z, y) (58)

where I[a,σ(z)](z, y) is the indicator function of the interval [a, σ(z)],

I[a,σ(z)](y) =

½
1 for y ∈ [a, σ(z)]
0 otherwise

. Note that K̃(z, y) is not continuous. The the-

ory of Volterra-Fredholm integral equations is, however, developed for square integrable
kernels (see Tricomi (1957)), a condition which is obviously satisfied by K̃(z, y)H(z). For
the uniqueness of such solutions (excluding solutions that are zero almost everywhere)
see Tricomi (1957), p. 10 and Chapter II and also p.63.
A simple explicit solution is reported by Polyanin-Manzhirov (1998), Ch. 2.1-7 (equa-

tion 50), for the following integral equation:

f (z) = h (z) + λ

Z z

a

yα1zα2f(y)dy, for α1 + α2 = −1

It corresponds to a special case of (58) in which:

σ(z) = z, K̃(z, y) = K(y) = yα1 , H(z) = z−α1−1

Its solution is:

f(z) = h(z) +

Z z

a

R(z, y)h(y)dy, for R(z, y) = azα2−λyα1+λ
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