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ABSTRACT 

 
This paper makes five contributions to the modeling of societies organized 

primarily according to age. First, it models the social rules adhered to by a particular age-
group society, the Rendille of Northern Kenya. Second, it shows that their age-group 
rules are well represented by the standard overlapping generations (OLG) model. Third, we 
develop a genealogical OLG model that closely captures lifecycle transitions and lineages. 
Fourth, despite heterogeneity in the timing of marriage and birthing, the model can be 
calibrated using standard aggregate demographic data.  Fifth, the model permits an analysis 
of institutions that reveals the intergenerational conflicts between the lineages in 
changing the social rules. 
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1. Introduction  
 

Anthropologists have identified a number of societies, in various parts of the 

world, where social and economic life are regulated closely by synchronized transitions 

through the various stages of life.  The rules governing these transitions are closely linked 

to chronological age and/or age relative to that of the person's father. Ethnographers call 

societies with these homogenous lifecycle characteristics age-group societies.1 The 

definitive work in this area is Stewart’s Fundamentals of Age-Group Systems (1977).  

 

In a recent paper, Engineer and Welling (2004) show that a standard overlapping 

generations system can exactly represent the transitions of Stewart’s standard graded 

age-set system, the simplest type of age-group system.  The overlapping generations 

(OLG) structure captures both the generation dimension (age-set affiliation) and the 

lifecycle dimension (age grades that assign social roles) of males by age. Where Engineer 

and Welling (2004) provide set-theoretic equivalence results between age-cohort systems, 

they do not develop a dynamic model nor do they examine genealogical systems.  

 

This paper develops a dynamic model of a particular age-group society, the 

Rendille tribe of Northern Kenya. The analysis is of interest to economists because we 

show that the age-group rules followed by the Rendille imply standard and genealogical 

OLG models. Paying careful attention to the evidence, the rules are modeled in three 

parts. First, the paternal age-group rules are shown to imply what Engineer and Welling 

(2004) term a standard OLG system. Second, the marriage rules are shown to incorporate 

women by age and lineage into the OLG system. Third, the rules restricting fertility are 

described. From these foundations, the OLG models are derived.  

 

The genealogical OLG model implies restrictions on standard demographic 

variables and we are able to calibrate it using limited aggregate data on marriage timing 

and net reproductive rates. The simulations capture population proportions, track 

lineages, and permit the historical analysis of institutions. A particular marriage 
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institution termed Sepaade is shown to dramatically affect the demographics in favor of 

one of the lineages. A simple voting analysis reveals the different interests of the 

generations in the recent decision to eliminate Sepaade.   

 

An outline of the Rendille social rules quickly reveals the stylized OLG structure 

of the society. In Rendille society, similar aged males are assigned to an age set. Age sets 

span 14 years and we model individuals as potentially 6-period lived (where each period 

is the duration of an age-set). At the beginning of the third period of their lives, males are 

initiated into the warriorhood grade. At the end of this period, all warriors marry en 

masse and then become elders and can have children. (The lifecycle of father’s and sons 

is illustrated in Figure 1 in Section 2.)   

 

Men typically marry younger women. These women-marrying-young marry at the 

end of their second period of life. They give birth to early-born children in the third 

period of their lives and late-born children in their fourth period of life. A peculiar feature 

of the Rendille age-group system is that daughters of every third age set have a special 

designation as Sepaade. By convention, the marriage of early-born Sepaade is delayed by 

one period.  These women-marrying-old only give birth to children in the fourth period of 

their lives. (The timing of marriage is shown in Figure 2 in Section 2.) 

 

The fact that Sepaade have lower fertility has been much commented on in the 

anthropology literature as an example of an institution for population regulation. The 

OLG model captures the heterogeneity in the timing of birthing and marriage and reveals 

that Sepaade dramatically reduces the level and the growth rate of the population. The 

model also reveals that Sepaade dramatically favors one of the lineages, the Teeria, 

consistent with evidence that this is the most populous and well-off lineage.   

 

A fascinating aspect of Rendille society is their paternal age-group rules 

governing lineage. Among the Rendille, age-set lines represent a well-ordered 

                                                                                                                                  
1 Spencer (1997) describes the overarching premise of such societies as the respect for age. This contrasts 
with premises such as honor, associated with integrity of kinship, and purity, linked to status and caste.  
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genealogical lineage that relate father’s age set and the eldest son’s age set to the same 

age-set line. The fact that three age sets separate the birth of fathers and eldest sons, 

indicates that there are three age-set lines and the length of a generation group is 42 

years.2 The Teeria, or “first born” lineage, is the age-set line (line X) that starts a fahan, a 

new generation group. The daughters of Teeria men are Sepaade. The models reveal how 

the interaction of lineage and Sepaade rules act to benefit the paternal Teeria age-set line. 

(The OLG progression of age sets and age-set lines is illustrated in Figure 3 in Section 3.) 

 

The model is used to examine the intergenerational political economy around the 

institution of Sepaade. We start with a counterfactual analysis of the origin, persistence 

and recent dissolution of this institution.  Our analysis is consistent with Rendille oral 

history that Sepaade arose in 1825 as a reaction to external threat: it mobilized women’s 

labor for camel herding while the men battled marauders. We speculate that Sepaade 

persisted because it favoured the Teeria age-set line and the dominant position of the 

Teeria allowed them to block attempts to reverse it. Sepaade was recently discontinued in 

1998. Our analysis suggests this might have happened for two reasons. First, the society 

was becoming too demographically lopsided towards the Teeria line to the substantial 

detriment of the overall fitness of the society. Second, the institution became unviable as 

women disadvantaged by the tradition found it easier to emigrate in recent times.  

 

 We are aware of no direct precedents for our analysis. In the economics literature, 

only recently have economist been able to operationalize the OLG model due to 

computational complexity and data limitations. The few attempts have concentrated on 

modeling macro variables rather than accurately capturing the heterogeneous transitions 

of agents through life cycle stages by modeling marriage, fertility and tracking lineages.3 

The analysis in this paper is supported by the anthropological analysis in Engineer, Roth 

                                            
2 The word “generation” is often confused in two uses -- as a measure of time associated with a cohort of 
individuals versus genealogical distance between parent and child. In the OLG literature, the term 
“generation” most often corresponds to an age set versus a generation group.   
3 Applications of the OLG model that include considerable demographic detail include Auerbach and 
Kotlikoff (1987), Gokhale et. al. (2001), and the related work on generational accounting and social 
security. Huggett (1996) calibrates an OLG model to describe the U.S. wealth distribution. Greenwood et. 
al. (2003) calibrate an OLG model that includes marriage and fertility to the wealth distribution.    
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and Welling (2005). Kang and Engineer (2005) derive the analytical solution to our 

genealogical OLG model paper using mathematical methods used in population ecology.   

 

The paper proceeds as follows. Section 2 outlines the social rules of the Rendille 

age-group society. Section 3 models the social rules and develops a standard OLG model. 

Section 4 develops the genealogical overlapping generations model, which is calibrated 

in Section 5. Section 6 develops a simple voting analysis of the decision to abolish 

Sepaade. Section 7 concludes.  

 

2.    The Age-Group System of the Rendille  

 

The Rendille are a Cushitic–speaking people with a population of approximately 

30,000, who live in Northern Kenya.  In the northern Kenyan lowlands the land is too dry 

for farming; nomadic pastoralism is the most efficient - and possibly the only - way to 

sustain life in this environment.  For descriptions of Rendille society see Beaman (1981), 

and Roth [(1993), (1999), (2001), (2004)].  

 

Our focus is on Rendille age-group organization which goes back well before 

1825 when the institution of Sepaade was introduced. The key social rules in the Rendille 

system are summarized in 15 rules by Beaman (1981, p380-423). For brevity we list in 

Table 1 only those rules that pertain to our model. For a complete list of Beaman’s rules 

and a fuller description of Rendille society with references to further evidence supporting 

our modeling choices see Engineer et. al. (2005). 

(Table 1 here) 

 

2.1  The Paternal Age-Group System 

 

The rules in Table 1 relate to the paternal age-group system, marriage, and fertility. Rules 

(i)-(ix) describe the lifecycle of men, and the assignment of men and their sons to age 

groups or “age sets”. The circumcision of a group of boys marks the beginning of a new 

age-set and the transition from boyhood to warriorhood.  The group of warriors initiated 
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in period t is then identified as age-set t.  The next circumcision occurs 14 years later, at 

which point age-set t+1 forms.  After 11 years as warriors, men become eligible for 

marriage and elderhood (following the nabo ceremony). After 3 years adaptation to new 

roles, the next age-set is opened; thus, during the transition there are technically no 

warriors. These men are putative elders and, if need be, the effective warrior group. 

 

The timelines for a father and his son are described in Figure 1, using 14-year 

periods.  The father is of age-set t, the period during which he is a warrior. Suppose he is 

born at the beginning of period t-2.  After two periods in boyhood, this male enters 

warriorhood at age 28 and marries when he is aged 39 to 42.4 Rule (iv) requires that 

males can only claim paternity of children from marriage.   

    (Figure 1 here) 
 

Now consider sons. Rule (vi) restricts the minimum age distance between the 

inaugurations of fathers’ and “early-born” sons to be three age sets or 42 years. Thus if 

the father is inaugurated into age-set t, the early-born sons are inaugurated into age-set 

t+3. By rule (viii), every third age set belongs to the same age-set line so that age-set t 

and t+3 belong to the same age-set line. Age-set lines preserve the generation-group 

relationship between fathers and the eldest sons (who receive all the family wealth, 

primogeniture). “Late-born” sons (born after period t+1) join later age sets and change 

their age-set line accordingly.  

 

Figure 1 depicts early-born sons as born in the interval starting one year after the 

period t nabo ceremony and extending through period t+1.  Typically most sons are born 

in this 16-year interval. These “early-born” sons are between ages 14-30 at the beginning 

of period t+3 and are old enough to be initiated into age-set t+3. Sons born in period t+2, 

“late-born” sons, are too young to be circumcised at t+3 and are circumcised at the same 

time as their “age mates” at the beginning of t+4.5  

                                            
4 The oldest males in an age set are those “first-born” sons born one year after the nabo ceremony of their 
fathers (at age -2 in the figure). They enter warriorhood at age 30. In contrast, an age-set t male born at the 
end of the period t-2 enters warriorhood at age 14 and marries when he is 25-28.   
5 The minimum “enrolment age” into an age set is 14. Beaman (p389) states: “…boys younger than 
fourteen are seldom among the initiates”. Sons sired by age-set t fathers in period t+3 are initiated into age-
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Rule (viii) specifies that every age set is assigned to one of three age-set lines in 

rotation. For example, consider the Teeria line, identified in Rule 9 as the senior age-set 

line. If age-set 0 is in the Teeria line then so are age sets 3, 6, 9, … . As early-born sons 

are normally enrolled in the third age set following their fathers', they are in the same line 

as their fathers. Late-born sons are usually enrolled in the subsequent line.  

 

2.2  Marriage 

 

Traditionally, all men are strongly encouraged to marry as soon as possible, and most 

men of a given age-set marry in a mass ceremony shortly after their nabo ceremony. Poor 

men who cannot raise bridewealth cannot marry at the nabo ceremony but instead do 2-3 

years of bride service for their prospective in-laws before marrying. Thus, almost all men 

marry by the end of the three year period to elderhood.  

 

The Rendille permit polygyny. However, the vast majority of marriages were 

monogamous. If a man took a second wife it would typically be years after the first 

marriage, in a separate ceremony. Roth (1993) states that the chief reason for taking a 

second wife was to have a son if there was no male issue from the first marriage.  

(Figure 2 here) 
 

Figure 2 illustrates the timing of marriage for males of age-set t. These men marry 

shortly after the nabo ceremony at the end of period t. In the absence of Sepaade, the 

usual practice is for men to marry younger women one age-set their junior. We denote 

these women as women-marrying-young.  In the figure, such a women born at the 

beginning of period t-1 (age 0 in the figure) would be 25 when she marries. “First-born” 

daughters born one year after their father’s nabo ceremony (age –2 in figure), would be 

27 when they marries.6 In contrast, females born (well after their father marriage) in the 

last two years of period t-1 would be 11-13 at the time of the next nabo ceremony. Since 

                                                                                                                                  
set t+ 5. However, the number of such sons is likely to be very small. First, Rule (xi) requires that no 
women with sons circumcised in period t+3 shall raise sons in that period or later. Second, husbands and 
wives are often being too old to have children.  
6 There are two reasons to believe this is the case. First, “first-born” daughters are valuable to the families 
for the work they do. Second, Roth’s (1993, 1999) data has few married women in the age range of 14-18.   
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girls are typically not eligible for marriage until age 14, such girls usually marry a few 

years later to men doing bride service (or wealthy men taking second wives).  

 

Women whose marriage is delayed by a full nabo ceremony we term women-

marrying-old. In the figure, women-marrying-old to age-set t men are born in period t-3.  

Thus, women-marrying-old marry into the age-set of their same-aged brothers and will be 

as old as 41 at the time of the nabo ceremony.  Most women-marrying-old do so because 

they are held back from marrying by the institution of Sepaade.  

 

Rule (x) indicates that all daughters of Teeria men (age-set line X) are designated 

Sepaade. The social rules on Sepaade delay marriage and in its place assign special work. 

Typically, the rules delay the marriage of early-born Sepaade daughters by one age-set so 

that they become women-marrying-old as described above (see Figure 2).7 Sepaade 

women delayed in marriage do the same work as sons, herding camels for their fathers.  

For the work they do and the fact that they marry back into the Teeria lineage, Sepaade 

are considered by the Rendille as the main reason why the Teeria are more numerous and 

wealthy than the other age-set lines.    

 

2.3 Reproduction 

 

Rule (xi) requires that a women-marrying-young in period t and bearing an early-born 

son in period t+1 can not have a very late-born son in period t+3. Beaman mentions 

several additional important restrictions on fertility that she does not list as rules.  First, 

unmarried women are forbidden to bear children. Second, polygyny is allowed. This 

implies the shortage of men will not affect the timing of marriage. Third, widows cannot 

remarry but can continue to bear children.  Fourth, any children born to widows are 

assigned as if they were the husband's.  Thus the husband’s death does not interrupt the 

usual passing down of lineage and does not restrict fertility.  These restrictions indicate 

that only the females age at time of marriage matters for lifetime fertility.  
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3.  Modeling the Age-Group Rules and the Standard OLG Model 

 

Almost all Rendille demography can be naturally and parsimoniously represented relative 

to the initiation of age sets as described in Figures 1 and 2.  

 

Assumption 1 (Time and Period Length). Time is partitioned into discrete 14-year 

periods. The period begins with the initiation of an age set and ends with the initiation of 

the subsequent age set. Periods are indexed by whole numbers.  

 

This assumption allows us to trace the life passages of cohorts by their period of 

birth and their age in periods. However, there is one obvious feature that is “out of joint” 

with the period increment. Not all early-born children are born in the same period. Early-

born children of men age-set t in Figure 1 are born over a 16-year interval that straddles 

the last two years of period t and extends for all of period t+1. The children born in the 

last two years of period t are first-born children. These first-born children do not pose a 

problem for the analysis because, as discussed in Section 2, the social rules treat all early-

born children the same (the age-set designation and marriage timing is determined by 

their father’s age set). Thus, there is no loss of generality in technically lumping the first-

born children in the period following the marriage of their parents.  

 

Simplifying Assumption (Early-born children). All early-born children are born in the 

period immediately following the marriage of their parents.  

 

3.1 Modeling the Paternal Age-Group System 

 

Rendille paternal demography can be almost exactly modeled using 14-year periods.  

 

                                                                                                                                  
7 Anthropologists accounts suggest this timing. An exception is Roth (2001, p1017) who interprets the 
Sepaade rule as potentially further delaying marriage for a small fraction of daughters. As shown in 
Engineer et. al. (2005) this leads to similar results with slightly lower growth rates.   
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Assumption 2 (Individuals and Age Sets). The lifespan of an individual potentially spans 

six contiguous 14-year periods. Males born in period t-2 are inaugurated into age-set t at 

the beginning of period t; this period defines the age-set number for that cohort.  

 

In Assumption 2 age-set assignment is by age whereas it is by paternity in rule 

(vi).  The two coincide under the Simplifying Assumption. The role of males is 

determined by their age-grade assignment.  

 

Assumption 3 (Age-Grades). Age grades are assigned to males in a way that coincides 

with periods. The period of his birth and the following period are Boyhood. The third 

period of life is Warriorhood. The remaining periods of life correspond to Elderhood.     

 

The lifecycles of males is illustrated in Figure 3.  Consider age-set j males. These 

males are boys in periods j-2 and j-1, warriors in period j, and elders in periods j+1, j+2, 

and j+3.  The number of boys is denoted B1(j-2) and B2(j-1), where the subscript indicates 

their age in periods. Similarly, warriors are denoted Wr3(j), and elders are E4(j+1), 

E5(j+2), and E6(j+3). Since births of individuals (who are recruited into any cohort) occur 

throughout the period, the variables count people at the end of the period. This captures 

the extant population in the age-set. 

(Figure 3 here) 
 

Figure 3 is typical of depictions in the OLG literature and exactly corresponds to 

what Engineer and Welling (2004) define as a standard OLG system.8 The system 

describes both the generation and the lifecycle stages of individuals. The generational 

dimension captures the age-set affiliation; while, the lifecycle dimension captures the 

grades (social roles) of males by age.9 The figure illustrates the complete cross-section of 

                                            
8 The definition includes six elements: time, agents and generations, endpoints, period length, lifecycle 
stages, and stationarity. Stationarity refers to the unique mapping from age to lifecycle stage that is 
independent of the time period. Figure 3 satisfies all of these elements for a “perpetual economy” with no 
endpoints. The proof is straightforward but tedious and therefore is omitted.  
9 Conversely, Assumptions 2 and 3 satisfy what Stewart defines as a graded age-group system. In fact, 
because initiations are at the beginning of periods and all periods are of equal length, it describes a 
particularly well-behaved system that Engineer and Welling (2004) term a standard graded age-set system. 
Engineer and Welling (2004) show that this system is equivalent to a standard OLG system. 
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males in different grades for period j+3.  Figure 3 depicts one feature not found in 

economic depictions. Every third Rendille age set belongs to the same age-set line.  

 

Assumption 4 (Age-Set Lines). The three Rendille age-set lines follow a cycle as follows: 

age-set line X includes age-sets j = 0, 3, 6, 9, 12, 15…; age-set line Y includes age-sets 

j+1 = 1, 4, 7, 10, 13…; and age-set line Z includes age-sets j+2 = 2, 5, 8, 11, 14, ….  

Age-set line X is the Teeria age-set line.   

 

Age-set lines organize fathers and their early-born sons in the same lineage. By 

Assumption 2, sons are initiated two periods after their birth. Early-born sons of fathers t 

are born in t+1 and are initiated into age-set t+3 which is in their father’s age-set line; 

whereas, late-born sons of father’s t are born in t+2 and are initiated into age-set t+4 and 

fall into the subsequent line. In Figure 3, fathers j are in line X and so are their early-born 

sons, age-set j+3. Late-born sons j+4 fall into line Y.10   

 

3.2.  Modeling Marriage     

 

In Rendille society polygyny is allowed, implying there need not be a shortage of 

husbands. The usual pattern is for a man to have either one or two wives.  

 

Assumption 5 (Marriage, and Polygyny) All women marry. All men marry (if possible), 

and no man has more than one more wife than any other man.   

 

The distribution of marriages is easily derived.  For example, if the polygyny ratio 

R of married women to men is R=1.1, 10% of males have 2 wives and 90% have 1 wife.   

 

Males of age-set t, Wr3(t), marry after the nabo ceremony near the end of period t. 

Under the Simplifying Assumption, they marry females who are either women-marrying-

young born in period t-1, or women-marrying-old born in period t-2.  

                                            
10 Stewart (1977, 104) notes that negative paternal linking does not preclude the age-set model. Engineer 
and Welling (2004) show that the age-set model is consistent with the standard OLG system.    
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Assumption 6 (Marriage Timing) All men of age-set t marry at the end of period t.  They 

marry to women-marrying-young born in period t-1 and to women-marrying-old born in 

period t-2. These are the only groups of women from whom they draw marriage partners.   

 

 The factors that determine whether a female marries young or old are the lineage 

of her father and whether she is early- or late- born. In particular, Sepaade restricts most 

early-born daughters of Teeria men to be women-marrying-old. The following definition 

develops notation for modeling the timing of marriage.  

 

Definition. Let pX, pY and pZ denote the proportions of early-born daughters in lines X, 

Y, and Z respectively that are women-marrying-young. Similarly, let pX’, pY’ and pZ’ 

denote the proportions of late-born daughters in lines X, Y, and Z respectively that are 

women-marrying-young.  

 

Sepaade implies that pX is small or, equivalently, that 1-pX is large. That is, most 

early-born daughters in line X are women-marrying-old. Complete Sepaade is pX=0.   

   

Assumption 7 (Marriage Proportions by Line) Sepaade restricts most early-born 

daughters of Teeria men to be women-marrying-old, pX ≤ 0.4. The vast majority of early-

born daughters in other lines are women-marrying-young, pY = pZ = p ≥ 0.8. Almost all 

late-born daughters are women-marrying-young pX’= pY’ = pZ’ = p’, and p ≤ p’.   

  

We state the assumption this way to give a sense for the magnitudes consistent 

with the evidence (in Section 5).  Our analysis of Sepaade maintains pX < p ≤ p’. As we 

have no evidence to the contrary, we equate the proportions in the other lines: pY = pZ = 

p; also pX’= pY’= pZ’ = p’. The analysis isolates Sepaade as the key asymmetry.  

  

The lifecycle of females depends on their birth order and timing of marriage. 

Girlhood in the period of birth is denoted G1, if the female is early-born and G1’ if she is 

late-born. Females who marry at the end of the second period of their lives are called 
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women-marrying-young. They are denoted WMY2 if they are early-born, and WMY2’ if 

they are late-born. Females that are women-marrying-old go through another grade 

denoted G2 or G2’ in the second period of their lives. They marry at the end of the third 

period of their lives and are denoted WMO3 if early-born and WMO3’ if late-born.   

 

There are potentially four groups of women who marry men of age-set t, Wr3(t): 

early- and late-born women-marrying-young, WMY2(t) and WMY2’(t), and early- and late-

born women-marrying-old, WMO3(t) and WMO3’(t). Recall from Assumption 6 that 

women-marrying-young in period t are born at t-1 and that women-marrying-old in 

period t are born at t-2. Thus, we can track the women groups back through their 

lifecycle to the new-born girl groups from which they are drawn.  This is done is Table 2 

(ignoring attrition). As in Figure 3, men marrying in period j, Wr3(j), are from line X.  

(Table 2 here ) 

 

Table 2 extends the OLG system to incorporate females. A sense for how Sepaade 

impacts the dynamics is revealed by the polygyny ratio for age-set j men from line X:    

 

R(j) = [WMO3(j) + WMY2(j) + WMY2’(j) + WMO3’(j)]/ Wr3(j).       (1) 

       = [(1-pX)G1(j-2) + pYG1(j-1) + pX’G1’(j-1) + (1-pZ’)G1’(j-2)]/ Wr3(j).       

 

Sepaade benefits line X men -- a reduction in pX increases the number of line X girls 

G1(j-2) marrying into line X. Consider an extreme case with “Complete Sepaade”, where 

pX =0 and p=p’=1. Then the number of women that line X men Wr3(j) marry is WMO3(j) 

+ WMY2(j) + WMY2’(j) = G1(j-2) + G1(j-1) + G1’(j-1). In contrast, line Z men Wr3(j-1) 

marry only WMY2’(j-2) = G1’(j-2) women.  This Sepaade induced asymmetry shows up 

in the difference equations derived below and can result in line Z dying out.   

 

3.3  Modeling Reproductive Rates 
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The next assumption specifies female net reproductive rates.11 For each female reared, we 

assume that g=1 males are reared, as that is consistent with Roth’s (1993, 1999) data.  

 

Assumption 8 (Net Reproductive Rates). No children are reared before marriage. 

Women-marrying-young each rear daughters born in the first period after marriage, 

and rear n daughters born in the second period after marriage, where > 0.  

Women-marrying-old each rear n daughters born in the first period after marriage. 

Lifetime net reproductive rates are restricted: n n  and > 0.  

1
yn

2
y

1
yn n≥

2
yon n≥

2
y

                                           

o

1 2
y yy on n≡ + ≥

 

We restrict n because women-marrying-young bear children for two periods 

(roughly 28 years) following marriage whereas women-marrying-old only bear for one 

period (roughly 14 years) following marriage. The period net reproductive rates are 

declining with the number of periods following marriage, n  > . These fecundity 

rates and intervals roughly match Roth’s (1993, 1999) data.   

y on≥

1
y

2
yn

 

The reproductive rates are conditional only on the female’s age at time of 

marriage.12 This type of female-based fecundity assumption is often made in 

anthropological demography. We believe that if there is any society that fits this 

assumption the Rendille are an excellent candidate. Recall, in Rendille society child 

rearing is only permitted after marriage. All children born of a married woman are 

brought up as if they were the husband’s (even well after the husband is deceased). 

  

3.4 The Standard OLG Model  

 

The OLG system described in Table 2 can be combined with the net reproductive 

rates to derive the dynamic equations of the OLG model. The equations relate mothers to 

 
11 The net reproductive rate is the number of surviving daughters per mother. The simulation program 
allows for gross reproductive rates and a schedule of mortality rates as well as various values of g. 
12 Rearing rates are independent of the presence of the husband, number of other wives, or whether mothers 
were early- or late-born. Even if these factors are important (and we have no evidence that they are), it is 
not clear that they would affect the population proportions, unless they impacted the lines asymmetrically. 
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daughters through time. Consider all daughters born in period t+1. Early-born daughters, 

G1(t+1), are daughters of E4(t+1) men. Suppose these men belong to age-set j and line X. 

From Table 2, we know that these men in the previous period, Wr3(j), married four 

groups of women: women-marrying-young WMY2(j)=pYG1(j-1) and WMY2’(j)= pX’G1’(j-

1), and women-marrying-old WMO3(j)= (1-pX)G1(j-2) and WMO3’(j)= (1-pZ’)G1’(j-1). 

Hence, ignoring attrition early-born daughters born to line X fathers are: 

 

    G1(j+1) = {pYG1(j-1) + pX’G1’(j-1)}+ n {(1-pX)G1(j-2) + (1-pZ’)G1’(j-2)} . 1
yn o

 

Late-born daughters born in j+1 are from women-marrying-young in period j-1: WMY2(j-

1) and WMY2’(j-1). Hence, late-born daughters born to line Z fathers, E5(j +1), are: 

 

    G1’(j+1) = {pXG1(j-2) + pZ’G1’(j-2)}. 2
yn

 

Similarly we can derive the girls born in periods j+2 and j+3.     

 

     G1(j+2) = {pZG1(j) + pY’G1’(j)}+ {(1-pY)G1(j-1) + (1-pX’)G1’(j-1)} 1
yn on

    G1’(j+2) = {pYG1(j-1) + pX’G1’(j-1)}. 2
yn

     G1(j+3) = {pXG1(j+1)+pZ’G1’(j+1)}+ {(1-pZ)G1(j)+(1-pY’)G1’(j)} 1
yn on

    G1’(j+3) = {pZG1(j) + pY’G1’(j)}. 2
yn

 

This completes the rotation through lines X, Y, and Z, after which the system repeats.  

 

4.   The Genealogical OLG Model and Dynamics 

 

The above OLG model is cast in age-set periods of 14 years and describes a three-period 

rotation through lines X, Y, and Z that relates one fahan, generation-group, to the next. 

This section recasts the analysis into a genealogical OLG model with generation-group 

periods of 42 years (see Figure 3). The recast model not only reveals the relationship 

between fahans but also more closely fits the rules and can be solved analytically.     
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The OLG model is readily recast because age-set lines are well-ordered X, Y, and 

Z in 14-year intervals within each generation-group period and the age-group rules relate 

father’s and early-born sons age-sets to the same age-set line. Specifically rule (vi) 

requires that early-born sons of fathers age-set j, fahan n, lineage X are initiated into age-

set j+3, fahan n+1, lineage X. The standard OLG model makes this linkage by age rather 

than paternity. Assumption 2 counts two age-sets between birth and initiation; those born 

in period j+1 are initiated in j+3. However, “first-born” sons are out of joint with this 

time. In particular, the Simplifying Assumption is invoked to shift these early-born sons 

that are actually born at the end of period j into period j+1 (see Figure 1).  

 

The genealogical OLG model uses two indexes, lineage and fahan. Thus, it maps 

early-born sons of fathers, fahan n, lineage X, directly to fahan n+1, lineage X. Early-

born sons are identified as those sons born before their fathers enter their second period 

of elderhood (here, before the initiation of age-set, lineage Z, fahan n), and late-born sons 

are born thereafter. Early- and late-born daughters are similarly related to their fathers. 

The Simplifying Assumption is not needed to sort out the temporal overlap in birthing 

across age-sets. Thus, the genealogical model exactly captures Beaman’s rules (i)-(xiii).13 

The following table describes how generation groups marry and rear children. 

 
Men of generation- 
group … 

… Are eligible to marry 
women-marrying-old 
(women-marrying-young) 
from groups: 

… Rear daughters 
belonging to groups: 

Xn Z'n-1, Xn ( X'n,Yn ) Xn+1, X'n+1 
Yn X'n,Yn ( Y'n, Zn ) Yn+1, Y'n+1 
Zn Y'n, Zn ( Z'n, Xn+1 ) Zn+1, Z'n+1 

 

 
The first two columns of the table transform of the marriage matrix Table 2 into 

the new variables. The transformation of the standard model in our new notation is: 

                                            
13 The model does not capture a rule (omitted in Table 1) where by special prearrangement a late-born son 
can “climb” an age-set so as to be in their father’s age-set line. As discussed in Engineer et. al. (2005), this 
rule is an exception that applies to about 5% of sons. It does not affect the dynamics of the maternal model. 
In simulations it only slightly changes the proportions of males in age-set lines.  
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       Xn+1 = {(1-pZ')Z'n-1 + (1-pX)Xn} + {pX'X'n + pY
on 1

yn Yn} 

       X'n+1 = n {pX'X'n + pYYn} 2
y

       Yn+1 = {(1-pX')X'n + (1-pY)Yn} + {pY'Y'n + pZZn} on 1
yn

       Y'n+1 = n {pY'Y'n + pZZn} 2
y

       Zn+1 = {(1-pY')Y'n + (1-pZ)Zn} + {pZ'Z'n + pX
on 1

yn Xn+1} 

       Z'n+1 = {pZ'Z'n + pX2
yn X

o

n+1} 
 

Using matrix population methods from mathematical ecology, Kang and Engineer (2005) 

are able to prove the existence of a unique globally stable dynamic path that converges to 

a (periodic) steady-state growth path. They find necessary and sufficient conditions for 

growth of the age-set lines under realistic restrictions 2
yn n≤ and .14  As might be 

expected when marriage rates are symmetric across age-set lines, all lines are the same 

size and grow at the same rate in the steady state. In contrast, the sepaade rule, pX < p, 

induces both a negative level and growth rate effect on the population. There is also a 

pronounced composition effect where line X dominates. In the extreme case of “complete 

sepaade”, pX =0, the other lines tend to die out quickly and the growth rate of line X will 

be negative for the historically relevant case < 1. Technically, in this case, age-set line 

X becomes an absorbing lineage. The following simulations describe the transition 

dynamics to these steady states.    

2 1'y pn ≤

on

  
4.1 Symmetry  

   

Symmetry among the age-set lines requires p = pX = pY = pZ and p’ = pX’= pY’ = 

pZ’. As might be expected, when y on n=  =1 (each mother rearing one daughter) the 

steady state population is constant, and when  the steady state displays 

growth. The level of the steady state population path increases when more children are 

born early and less late, i.e. increasing p, p’ or  (holding 

1y on n≥ >

1
yn 1

y yn n n+ 2
y=  constant). 

                                            
14 Engineer et. al. (2005) examine the available data and find that the upperbound for is 0.8 so that the 
later restriction follows from the former.  

on
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This is because the average lag between birth and bearing children is reduced. 

Interestingly, both population growth and more early-born daughters increase polygyny.15  

 

More relevant to our data, population growth occurs when > 1 is sufficiently 

large even if < 1.16  This is illustrated in Simulation 1, which uses the same 

parameters (except for pX) derived in the calibration analysis of Section 5.  

yn
on

(Simulation 1 here) 

 
Though < 1, population growth occurs because =1.286 is sufficiently large. The 

age-set lines are symmetric except for being in different phases. (every third period each 

line includes two groups of women, one just married and women about to die). The 

steady state net average growth rate of the population is 16.36% per (14-year) period, and 

R= 1.1455. Increasing p or p’ increases the growth rate and R. 

on yn

 

4.2 A Compete Sepaade Shock 

 

The effects of the institution of Sepaade can be examined by “shocking” the pre-

existing symmetric steady state by lowering pX = p to pX < p. The dynamic impact of this 

asymmetry is most clearly revealed by examining the extreme case pX = 0, what we call a 

Complete Sepaade Shock.  In this case, the Teeria population (line X) often comes to 

completely dominate the population, as illustrated in Simulation 2.    

    (Simulation 2 here) 

  

Apart from pX =0, Simulation 2 uses the same parameters as Simulation 1.  After the 

shock in period 5, line X initially dramatically grows and the other lines (Y and Z) 

dramatically fall off. The other lines essentially disappear by period 20 and the Teeria 

                                            
15 With p=p’ and g=1, the polygyny ratio described in (1) reduces to R(t) = (1-p) + p*r(t), where r(t) is the 
growth rate of women.  When r(t) > 1, R(t ) > 1, even though there is gender balance, g=1. 
16 With p=p’ the model reduces to two difference equations in G1(t+1) and G1’(t+1).  In the zero growth 
steady state, G1(t+1) = G1(t) and G1’(t+1) = G1’(t) for all t. Solving yields  pny + (1-p)no =1. Engineer and 
Kang (2005) prove that the steady state population grows if and only if pny + (1-p)no >1.  
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line comprises the entire population but rapidly declines. The steady state growth rate 

converges to ( )1/3 – 1 =  -37.34%.  Below we show this is a general pattern.  on
 

The startling result that lines Y and Z disappear is due to line X becoming an 

“absorbing state”. Introducing Complete Sepaade at the beginning of period 5 results in 

all early-born daughters of line X fathers (age-set 3) working in period 5 rather than 

marrying young to line Z men (age-set 5). Instead, they become women-marrying-old and 

marry line X men (age-set 6) in period 6. With Complete Sepaade, all early-born X 

daughters marry back into line X, and most late-born X daughters also marry into line X 

(as the Sepaade rule only applies to early-born daughters). In addition, most early-born 

daughters in line Y marry into line X. Thus, there is a net drain of women into line X and 

the other lines retain women at a rate that is well below replacement and die out.   

 

In the steady state, all line X daughters are Sepaade and marry back into line X as 

women-marrying-old. Thus, the steady state net growth rate, ( n )1/3 – 1,  is negative as 

long as n < 1. This result is conditional on the other lines dying out, a sufficient 

condition for which is that < 2.  In the next section we show that historically < 2 

and < 1. Thus, these results are applicable to the Rendille under Complete Sepaade. 

But, the evidence suggests that Sepaade rule has been incompletely applied, 0 < pX < p. 

With incomplete Sepaade the other lines do not disappear. Nevertheless, the Complete 

Sepaade results are indicative, as the steady state line proportions are continuous in pX.17 

The next section explores the incomplete Sepaade case.  

o

o

yn yn
on

 

5.   Data and Calibration of the OLG Model  

   

5.1    Demographic Data 

 

                                            
17 These results are developed in Engineer and Kang (2005). They identify both a negative growth effect as 
well as a negative level effect from the introduction of Sepaade.  
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Roth (1993, 1999) analyzes survey data on daughters of men from three adjacent 

age-sets that span the age-set lines. These age sets correspond to age-set 10 from line Y 

initiated in 1895, age-set 11 in line Z initiated in 1909, and age-set 12 in line X (Teeria) 

initiated in 1923. The sample contains 101 Teeria daughters (Sepaade) and 107 non-

Teeria daughters (non-Sepaade). Though Roth makes no claims for this being a 

representative sample, it is the best evidence we have of the cross-section of daughters by 

line. We use the data ratio of non-Sepaade to Sepaade, 107/101 = 1.06, as a final 

touchstone in the calibration. The predominance of Sepaade in the sample lends credence 

to the idea that the Sepaade rule leads to the dominance of the Teeria line.  

 

Roth (1999) presents strong direct evidence that the Sepaade rule reduces fertility 

and delays marriage. The female net reproductive rate for Sepaade is NRRX = .76, 

whereas for non-Sepaade it is much higher, NRR =1.39.  Roth’s data on age at marriage 

is presented in 5-year intervals. Among Sepaade, 34% marry before they are 25 and 52% 

before they are 30. Among non-Sepaade, 78% marry before they are 25 and 92% before 

they are 30. For purposes of the model, we are interested in the proportion of women-

marrying-young (28 years and younger). One issue is how to divide those in the 24-29 

year age cohort. We use two benchmarks. Extrapolation, using the weights in the adjacent 

cohorts, yields the proportion of women-marrying-young among Sepaade as PX =. 40 and 

among non-Sepaade as P = .89. In contrast, the “strictest adherence” to rules consistent 

with the data gives PX =.34 and P = .92. In the analysis below we concentrate on ranges: 

0.34 ≤ PX ≤ 0.4 and 0.89 ≤ P ≤ 0.92.    

  

5.2   Ranges for the Model’s Parameters  

 

From the demographic data we can uncover ranges for the model parameters. 

First, consider the following decompositions:  

 
NRR = nyP + no(1 – P) ,      
NRRX = nyPX + no(1 – PX).  
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Here the average net reproductive rate is decomposed into the net reproductive rates of 

women-marrying-young, ny, and women-marrying-old, no. These two equations can be 

solved for the unknowns ny and no, given our data for NRR, NRRX, P, and PX. The 

following table explores how ranges of (P, PX) impact (ny, no).18 

  

P PX ny no

0.92 0.34 1.477 0.391
0.92 0.4 1.487 0.275
0.9 0.34 1.503 0.378
0.9 0.4 1.516 0.256

 

The first row describes the “strictest adherence to Sepaade” case (largest ratio P/PX = 

.92/.34). This case gives the largest no
 and smallest ny, and hence we can bound the ratio 

(no/ny) ≤ 0.391/1.477 = 0.265.  The delay in marriage reduces the net reproductive rate by 

about 75% or more.  

 

Now consider the decomposition ny = 1
yn n2

y+  and ratio ( /ny ).  The restriction no 

≥  requires ≥ ny - no.  The “strictest adherence to Sepaade” case gives the smallest 

difference ny - no = 1.086. Thus,  ≥ 1.086, and we can bound the ratio ( n /ny ) ≥ 

1.086/1.477 =.735.  Women-marrying-young predominantly rear children that are born in 

the first period after marriage. If the restriction does not bind, no > , then we get a 

higher lower bound on /ny. For the reason that a higher bound seem less plausible and 

for the reason that the binding restriction identifies parameter values, we assume no =  

in the following analysis.  

1
yn

2
yn 1

yn

1
yn 1

y

2
yn

1
yn

2
yn

 

The proportions P and PX can be decomposed into early-born and late-born 

daughters who are women-marrying-young: 

 

P = pw + p’(1 – w) 

                                            
18 The calculations are rounded to 3 decimal places. For extreme value PX = 0, the net reproductive rate for 
women-marrying-old in line X is equal to the net reproductive rates for Sepaade, no =NRRX = .76. This is 
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PX = pXwX + p’(1 – wX), 

 

where w and wX are the proportions of early-born daughters in the respective cohorts. It 

can be shown that wX ≥ w ≥ /ny ≥ 1.086/1.477 =.735. 1
yn

 

First consider pX, the proportion of Sepaade who are women-marrying-young.  

Since pX ≤ p ≤ p’, it follows that pX ≤ PX ≤ 0.4, consistent with Assumption 6.  Realistic 

values of pX are likely smaller than this upper bound. For example, if p’ =.9 and wX =.82, 

then late-born Sepaade who are women-marrying-young account for  (.9)(1-.82) =.162 of 

women. If the total women-marrying-young is PX =.4, it follows that pX = .290.  The 

value of pX is increasing in PX and wX, and decreasing in p’.  Thus, using values PX =.34, 

p’=1 and wX = 0.735, we can establish a lower bound, pX > 0.10.  The data is inconsistent 

with Complete Sepaade.  

 

Similarly, consider the lower bound for p. The value of p is increasing in P and w, and 

decreasing in p’. If P =.89, p’=1 and w = .7353, then p = .85. This is well within the 

lower bound of p ≥ .8 specified in Assumption 6. In contrast, the highest value of p 

corresponds to p = p’= P =.92. 

  

5.3   Calibration  

 

Using standard demographic variables, the model can be calibrated to find the 

extent to which the Sepaade rule applies. The marriage timing parameter p, pX and p’ 

depend on w and wX, the proportions of daughters that are early born. In turn, w and wX 

are generated from the simulation and depend on all the model parameters. Since our data 

does not correspond to the steady state, w and wX also depend on the initial conditions. 

As described above, Sepaade is analyzed as a shock from the symmetric steady state.  

The following table presents calibration results for various (P, PX) combinations under 

the assumption that  = no.   2
yn

                                                                                                                                  
the extreme upper bound for no. Conversely, when P = 1, ny = NRR=1.39. This is the lower bound for ny. 
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(Table 3 here) 

 

As described before, each (P, PX) pair uniquely yields a (ny, no) pair. Given (ny, 

no), the model is calibrated by finding values of p, p’ and pX that generate (P, PX) output 

over the sample (periods 10-12) consistent with the inputted (ny, no). Given (ny, no), for 

each p’ there is a unique solution for p and pX. The polar cases p’= p and p’=1 are 

reported. The lowerbound for p’, p’ = p = P, corresponds to the upperbound for p, p = P. 

The values of p’ and p move inversely, so that p’=1 corresponds to p being at its 

lowerbound. Similarly, all the simulations display an inverse relationship between p’ and 

pX and between p’ and NSR (the Non-Sepaade to Sepaade Ratio).  

        

The first four (P, PX) pairs in the table are the cases discussed in the data Section 

5.1. None of these entries give calibrations with NSR = 1.06, the ratio of Non-Sepaade to 

Sepaade found in the data. However, the “base case” (P, PX) = (.9, .4) comes surprisingly 

close, and (P, PX) = (.89, .40) yields ratios 1.048 ≤ NSR ≤ 1.075. With (P, PX) = (.89, 

.40), the unique calibration that exactly matches NSR =1.060 has p =.88, p’=.945, and pX 

=.3125. As pX = .3125, the calibration indicate a substantial level of non-compliance with 

the Sepaade rule. Simulation 3 illustrates the dynamics.  

(Simulation 3 here) 
 

After the shock the total population continues to grow and converges to a 

(average) growth rate of 4.2% per period.  This is in stark contrast to the Complete 

Sepaade case (Simulation 2 which has the same except for pX =0), where the total 

population starts to falls by period 13 and converges to a very negative  (average) growth 

rate of –35.0%. Nevertheless, the incomplete adherence to the Sepaade rule does reduce 

the growth rate very substantially from the 16.4% that would arise in the absence of the 

rule (see Simulation 1). Also, in contrast to the Complete Sepaade case, lines Y and Z 

exist in the steady state where the ratio of Non-Sepaade to Sepaade daughters in the 

steady state is 1.078. Thus, in the transition, this ratio overshoots its steady-state level.     
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Of course, this is not the only possible exact calibration. The follow chart shows 

that by varying P and PX together there is a substantial region of plausible (P, PX) 

parameters for which we can generate calibrations with NSR =1.06.  

(Figure 4 here) 

 

The lowerbound in the chart corresponds to simulations with p = p’= P; whereas, the 

upperbound has p < P < p’=1. Overall these parameters range p ∈[.82,.92] and p’ ∈[.85, 

1].  In contrast, the calibrations provide a much narrower range for pX ∈[.293, .327]. 

Thus, for calibrations with NSR=1.06, we can conclude that slightly less than a third of 

early-born Sepaade marry young in violation of the rule. Generically, all of these 

calibrations have similar features to Simulation 3: there is positive population growth and 

lines Y and Z produce about half the total daughters.  

 

Of course, these conclusions are based on fitting the model to NSR = 1.06. But as 

mentioned in the data section, this data ratio is suspect (as representative of a random 

cross-section). The natural question is: How robust are the conclusions to all plausible (P, 

PX) pairs?  In particular, are there any (P, PX) pairs that give negative growth and highly 

skewed population proportions? Consider the first entries in the table, (P, PX) = (.92, .34). 

This corresponds to the “strictest interpretation of Sepaade”. Not surprisingly, these 

entries have the highest values of p and p’ and lowest values for pX. The entry with the 

smallest pX has the lowest NSR value and a growth path with the smallest population and 

the lowest growth rates. The growth path is illustrated in Simulation 4.  

(Simulation 4 here) 

 

The growth path is similar to Simulation 3 but with less growth converging to a 

steady state growth rate of 1.5%. Thus, even with the “strictest adherence to Sepaade, 

growth is positive and lines Y and Z exist in the steady state (the ratio of Non-Sepaade to 

Sepaade in the steady state is 0.793, also indicating overshooting). This contrasts with a 

steady state growth rate of –23.9% that results when pX = 0 and a growth rate of 15.5% 

when pX = p, ceteris paribus.   
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5.4   Discussion 

 

The candidate values of (P, PX) consistent with the data, yield calibrations with 

quite different growth rates and proportions. Nevertheless, several strong conclusions 

emerge. First, the Sepaade rule is incompletely adhered to: it holds back the majority but 

not all early-born Sepaade daughters from marrying young, 0.15 < pX < 1/3. Second, 

though the Sepaade rule is incompletely adhered to, it substantially reduces the growth 

rate of the population from high rates (15.5 % and 16.4%) to low rates (1.5% and 4.2%). 

Third, the Sepaade rule results in the Teeria line being about as populous as the other two 

lines together (NSR about 1).   

 

Other evidence supports these conclusions. Beaman (1981) survey of Teeria age-

set 12 finds that approximately one quarter of all eligible women do not follow the 

Sepaade role, so pX =.24. Though there is no good historical data, it would appear that the 

Rendille population has been growing fairly slowly. In 1990 they numbered at about 

30,000.19   Rendille elders report that the Teeria is by far the largest and most powerful 

line, as large and as powerful as the other two lines combined.20   

 

The analysis also reveals other interesting features. After the shock the total 

population displays a marked three-period population cycle, which persists in the steady 

state. This cycle is the same length as a fahan (a rotation through the age set lines). The 

steady state of our model does not produce the six-period cycles of boom and bust 

believed to exist among the Rendille and termed termed fahano.21  If this cycle is to show 

up in the demographics it must come from another source (e.g. war, disease, ecology). 

Indeed, the progression of fahano is usually associated with alternating periods of peace 

                                            
19 By lowering the steady state population growth, Sepaade also lowers the steady state polygyny ratio on 
average.  Our analysis probably underestimates the extent of polygyny because we do not allow for the 
emigration of sons who receive no inheritance because of primogeniture. Nevertheless, the historical 
observation is that most men had one wife and very few had more than two wives. 
20 Information revealed in interviews taped by Merwan Engineer in 2001.   
21 Beaman’s rule 14 is “Fahano influence history for good or ill in alternating periods of 42 years for a 
cycle of 84 years. Thus, every age-set is associated with a period of historical influence characterized by 
either peace or war which alternates every 42 years as predictably as the seasons.” 
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then war. The three period demographic cycles would provide the natural building block 

of a six-period cycle.   

 

6.  The Political Economy of Sepaade  

 

The origin, role, and the recent end of the Sepaade tradition are detailed in Roth 

(2001). An emic view is that Sepaade was an institutional response to prolonged heavy 

warfare with Somali neighbours in the early 19th century.  Young women of marrying age 

were recruited to take care of the camels when the warriors engaged the enemy. This 

precluded them from marrying. It also made the nomadic Rendille more mobile, not 

having to carry young children when relocating. According to this account, the institution 

results from a cultural group selection arising as an emergency response to a crisis.  

While the institution may have been beneficial to the community, it seriously constrained 

women’s fertility and thus is considered disadvantageous to Sepaade.  

 

The institution of Sepaade was introduced in years 1825-1839, period 5 in the 

model. The impact of the institution was to prevent women of line X from marrying 

young to men of line Z in 1836. Instead, these women marry when old to men from line 

X in 1851, period 6 in the model. The, Sepaade shock results in line X men enjoying 

extra wives at the expense of line Z men. This shows up in the simulations with a 

dramatic increase in polygyny in line X in period 6. There is a dramatic decrease in 

polygyny in line Z in period 5, but if many line Z men had died in battle the actual 

polygyny ratio may not have fallen.22  

 

Sepaade has major implications for work and wealth. Sepaade keeps women from 

line X doing hard work for their fathers for an extra period rather than marrying when 

young. Thus, the institution generates an immediate and ongoing increase in labour from 

women of line X. Furthermore, Sepaade keeps wealth within the Teeria line -- the bride 

wealth of four camels is paid to a Teeria father. (Men in line X eventually inherit their 
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wealth from their Teeria fathers.) Thus, introducing Sepaade unambiguously benefits 

men of the Teeria age set line.  Conversely, it is disadvantageous to men in the other 

lines.    

 

Why did the Sepaade institution persist, well after the external threat had pasted?  

This is puzzling for at least two reasons (ignoring population regulation).  First, the 

dynamics reveal that the composition effect from Sepaade makes the lineages 

unbalanced. Thus, the Rendille are increasing at a disadvantage for wars breaking out in 

periods in which line Y and Z men are warriors.  The second reason is that Y and Z men 

were at least initially in the majority and their self-interest would have been to abolish the 

institution.   

 

 In fact, there was at least one earlier attempt to abolish the institution. Engineer in 

interviews with Rendille elders in 2001 was told that the Rendille had convened a council 

to consider the abolition of Sepaade in 1966 (period 15). In that council, all elders but 

those from two senior Teeria families were for abolition. Nevertheless, they were able to 

block abolition. In 1998 (period 17) they relented and the institution was abolished. The 

interviews revealed that Rendille collective decision-making normally requires a very 

high plurality. Further, the Teeria elders, as powerful members of the “first-born” 

lineage, have extra clout in decision-making. This would explain why Sepaade persisted. 

But the dynamics would suggest that the Teeria with time would be in an even stronger 

position. So a puzzle remains: if the Teeria were able to block abolition in the past they 

should be to block it in 1998.  

 

An answer to this puzzle was provided in interviews, which included a key elder 

from the most powerful Teeria family that blocked the move in 1966.  The elders 

confirmed that the Teeria stood to gain substantially from Sepaade and for that reason 

had blocked the change in 1966. However, all the Teeria had agreed to abolition in 1998 

because the early-born Sepaade daughters were already starting to escape in anticipation 

                                                                                                                                  
22 The impact is somewhat muted if men of age set line Z can marry late in period 6, at the end of the fourth 
period of their lives. Sons unless they climb join line X. Daughters on the other hand are married to line Z.  
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of being forced to hard work (instead of being allowed to marry in 2004). Apparently, 

Sepaade escaping to neighbouring tribes, including traditional enemies, had occurred in 

1966. However, the exodus was forecast to be worse this time, perhaps because of the 

ability to escape to the cities. Faced with the inability to keep their young daughters from 

running away the Teeria elders agreed to the abolition.  Thus, it would appear that it is a 

change in the participation constraints facing Sepaade that explain abolition.   

 

7.   Conclusion 

  

In this paper, we draw on anthropologists' reports to model the social rules of a 

particular age-group society, the Rendille of northern Kenya. We show that the social 

rules are surprisingly well captured by a standard overlapping generations (OLG) model. 

More interesting, we develop a genealogical OLG model that almost exactly captures the 

ways males are incorporated into age-sets, transit the lifecycle, and are joined in 

intergenerational lineages.  

 

The age-group rules of the Rendille are naturally and parsimonious modeled using 

individuals who are potentially six-period lived. This permit us to captures the essential 

heterogeneity in the timing of marriage and birth. The Rendille provide a particularly 

good case study because their age-group system has lineages integrated with their age-set 

system. This allows us to track lineages and examine the intergenerational political 

economy behind the social rules. As far as we are aware, there are no applied OLG 

models that are structurally exact, capture marriage and birth timing heterogeneity, or 

track lineages.  

 

Another novel feature of the paper is that the OLG model can be calibrated out of 

the steady state using standard (time and group aggregated) cross-section demographic 

data. The calibration allows us to derive parameters that correspond to specific individual 

lifecycle transitions: period fertility rates conditional on age at marriage and marriage 

                                                                                                                                  
Changing this initial specification does not change the steady state impact of Sepaade.  
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timing probabilities conditional on birth order. The parameters can also be derived 

according to age groups.  

 

In our application, we examine the marriage timing parameters by lineage groups, 

and the asymmetry implied by the Sepaade rule. Strict application of the Sepaade rule 

requires that no early-born daughters of a particular lineage (the Teeria, line X) marry 

early, pX = 0, whereas it is the usual practice in other lineages, p > 0.8.  Our calibration 

analysis finds 0.15 < pX < 1/3 and p > 0.85 implying that the rule is incompletely applied.   

Nevertheless, the implied delay in marriage dramatically lowers the path of the 

population, leading to almost zero population growth. Interestingly, the Sepaade rule 

favours line X as this line quickly becomes almost as populous as the other two lines 

combined. These effects are much more pronounced if the rule is strictly followed. Then 

the population falls after 7 periods and converges to negative growth; line X quickly 

comprises the entire population as the other lines disappear.   

 

Our results are consistent with the view in the anthropology literature that the 

Sepaade rule strongly regulates constant population.23 However, our analysis reveals that 

it is the incomplete application of the rule that maintains constant population. This raises 

questions about how the rule is regulated and questions about the intergenerational 

political economy supporting the rule. The Sepaade institution was shown not only to 

favour the Teeria by increasing their numbers but also by increasing their wealth. Both 

factors added to their political clout in blocking attempts to abolition the institution by the 

other lines.  

 

The model throws up the possibility that the institution was abolished in 1998 

because it was leading to a society which was too lopsided and hence vulnerable to 

attack. However, interviews with Rendille elders suggest the more plausible reason that it 

was the increased ability of Sepaade daughters to escape to the neighbouring tribes and 

                                            
23 Roth (1993) reviews this literature, which argues that Sepaade prevents overpopulation and thereby 
helps achieve homeostasis with the environment.        
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the cities that explains the recent abolition. Thus, a change in the participation constraints 

of the Sepaade appears to be decisive factor in limiting the power of the Teeria men.    

 

Whereas we have explored the rich dynamic implications of the structural rules of 

Rendille society, our analysis falls substantially short of a full account. The gold standard 

in economics is to specify an environment and preferences and then examine the 

equilibrium behavioral choices for consumption, production and reproduction.24 In future 

work we hope to acquire more data and knowledge to model important aspects of 

individual choice in a general equilibrium framework.25 Nevertheless, we believe that the 

structural analysis shows that the OLG model is a powerful tool for investigating the 

nature and dynamics of actual societies. We hope that this exercise helps points the way 

to modifying the OLG model as an applied framework for societies that less exactly fit 

the standard model.  
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Table 1: 

BEAMAN’S RULES ON  

RENDILLE AGE-GROUP ORGANIZATION (ABRIDGED)* 

 
(i) There are three grades: boyhood (from birth to initiation; this may be termed a 

pre-grade); warriorhood (from initiation to marriage); and elderhood (from 
marriage until death). 

 
(ii) A new age-set is formed every fourteen years upon the initiation, by 

circumcision, of all eligible boys into warriorhood. 
 

(iii) Only one age-set occupies the warrior grade at a time. 
 

(iv) Warriorhood confers the right to engage in sexual relations but not the right to 
claim paternity in any child, which comes only from marriage. 

 
(v) Warriors remain unmarried for eleven years after initiation, and then all members 

of set become eligible for marriage and elderhood at one time.  
 

(vi) A son is normally circumcised into the third age-set to follow that of his father; 
late-born sons may join later sets, but no son may be circumcised with an earlier 
set.   

 
(vii) The age-sets are organized into three lines of descent as a result of Rule No. 6, 

such that every third set is composed largely of sons of the first. Fathers and sons 
thus tend to fall into the same age-set lines. One set in each line is inaugurated 
before any line recurs. 

 
(viii) One age-set line is named Teeria, and is considered the senior line of the three. 

The sons of any Teeria man, if they are initiated into the third set after their 
father’s, will be Teeria themselves. 

 
(ix) Daughters of Teeria men are called Sebade (or Sepaade), and in most lineages 

they are not allowed to marry until their brothers have become eligible to do so. 
 

(x) No son born to a woman after her eldest son has been circumcised may be raised, 
and such a son should be killed at birth. 

 
 

*From Beaman (1981); a complete list of the rules is found in Engineer et. al. (2005).  
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Table 2 
Marriages of Daughters by Line to Men by Line  

 

 

 Line, 

Men 

 

 

Daughters of X (Teeria) 

 

 

Daughters of Y 

 

 

Daughters of Z 

X (Teeria),  

Wr3(j) 

WMO3(j)=(1-pX)G1(j-2) 

WMY2’(j)=pX’G1’(j-1)  

WMY2(j)=pYG1(j-1) WMO3’(j)=(1-pZ’)G1’(j-1) 

Y,   

Wr3(j+1) 

WMO3’(j+1)= 

            (1-pX’)G1’(j-1) 

WMO3(j+1)=(1-pY)G1(j-1) 

WMY2’(j+1)=pY’G1’(j) 

WMY2(j+1)= pZG1(j) 

Z,   

Wr3(j+2) 

WMY2(j+2)=pXG1(j+1) WMO3’(j +2)=(1-pY’)G1’(j) WMO3(j+2)=(1-pZ)G1(j) 

WMY2’(j+2)=pz’G1’(j+1) 

 
 
 

Table 3 
Calibrations by (P, PX) holding  = no 

2
yn

(P, PX) ny no p p’ pX NSR 

.92 .92 .189 .795 
(0.92, 0.34) 1.477 0.391 .892 1 .168 .774 

(0.92, 0.4) 1.487 0.275 .92 .92 .302 1.008 

(0.9, 0.34) 1.503 0.378 .9 .9 .315 .825 

.9 .9 .315 1.051 
(0.9, 0.4) 1.516 0.256 .88 1 .30 1.023 

(0.89, 0.39) 1.529 0.269 .89 .89 .303 1.030 

.89 .89 .322 1.075 

.87 1 .305 1.048 (0.89, 0.40) 1.531 0.246 

.88 .945 .3125 1.060 

(0.89, 0.41) 1.534 0.222 .872 1 .325 1.095 
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Figure 1 

Father and sons 
 
 
Period:         t-2     t-1       t       t+1        t+2        t+3        t+4     t+5        t+6 
 
         Boy          Warrior       Elder 
          
Father:   /--/----------/----------/------\---/----------/----------/---------/ 
 
  Age:  -2  0         14          28    39  42        56         70         84 
  
 

Early-born son        /--/----------/----------/------\---/----------/----------/---------/ 
Age:         -2  0         14          28     39 42        56        70         84 

 
Late-born son:           /----------/----------/------\---/----------/----------/--------/ 

Age:                0         14          28     39 42        56        70       84 
 
 
 

Figure 2 
Husbands and Wives  

 
Period:         t-2     t-1       t       t+1        t+2        t+3        t+4      

 
       
                  Marriage and Fatherhood       
    Male age-set t:      /--/----------/----------/------\---/----------/----------/---------/ 
 
             Age:     -2  0         14          28    39  42        56         70         84 
  
            Marriage and Motherhood 
             
Women-marrying-young:       /--/----------/-------\---/---------/----------/----------/---------/ 
                 Age:                 -2  0         14      25 28       42        56        70         84 
 
Women-marrying-old:                       

         /--/----------/----------/------\---/----------/----------/---------/ 
              Age:   -2  0         14          28    39  42        56         70         84 
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Figure 3 
Paternal Graded Age-Set System 

 Time j-2 j-1 j J+1 j+2 j+3 j+4 j+5 j+6 j+7 
            

Line Age Set           
X J B1 B2 Wr3 E4 E5 E6     
Y j+1  B1 B2 Wr3 E4 E5 E6    
Z j+2   B1 B2 Wr3 E4 E5 E6   
X j+3    B1 B2 Wr3 E4 E5 E6  
Y j+4     B1 B2 Wr3 E4 E5 E6 
Z j+5      B1 B2 Wr3 E4 E5 
Note: B refers to Boyhood, Wr to Warriorhood, and E to Elderhood; the subscript 
refers to the period of life.    
 
 
 
 
 

Figure 4 
Non-Sepaade and Sepaade Proportions Marrying Young  

Consistent with Sample Population Ratio 

(P , P x) Region Consistent with NSR = 1.06
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Simulation 1: Symmetric age-set lines 
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Simulation 2:  Complete Sepaade  
Shock starting in period 5  
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Simulation 3: Calibration to NSR =1.06 
Shock starting in period 5  
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Simulation 4: Strictest Adherence to Sepaade 

Shock starting in period 5  
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