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Abstract
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compensated via the standard CAPM argument, and the idiosyncratic volatility generates
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1 Introduction

Real investment activities play a fundamental role in the economy. A real investment often has

three important characteristics. First, it is often partially or completely irreversible. Second,

its future rewards are uncertain. Finally, the investment time is to some extent flexible. In the

last three decades, a voluminous literature has developed that aims to study the implications of

these three characteristics for the investment decision.1 A key insight of this literature is to view

making an investment decision as exercising an American style call option, where “American

style” refers to the flexibility of choosing the time of option exercise. Based on this analogy

and the seminal contribution on option pricing by Black and Scholes (1973) and Merton (1973),

one can apply financial option theory to analyze the irreversible investment decision. This real

options approach to investment has become a workhorse in modern economics and finance.

This real options approach relies on one of the following assumptions: (i) the real invest-

ment opportunity is tradable; (ii) its payoff can be spanned by existing traded assets; or (iii)

the agent is risk neutral. However, these assumptions are violated in many applications. For

example, consider entrepreneurial activities. Entrepreneurs combine their business investment

opportunities and ideas with their skills to generate economic profits. While entrepreneurs may

have valuable projects, these projects may not be freely traded or their payoffs may not be

spanned by existing assets because of liquidity restrictions or the lack of liquid markets. These

capital market imperfections may be due to moral hazard, adverse selection, transactions costs,

or contractual restrictions.2 Thus, the investment opportunities may have substantial undiver-

sifiable idiosyncratic risks. Owning them exposes entrepreneurs to these undiversifiable risks.

Consequently, entrepreneurs’ well-being depends heavily on the outcome of their investments.

Moreover, entrepreneurs’ attitudes towards risk should play an important role in determining

their interdependent consumption-saving, portfolio selection, and investment decisions.3

While entrepreneurial activities have other important dimensions such as how much to

invest, and how to finance the investment project, we focus on the investment timing aspect

of entrepreneurial activities. We extend the standard real options approach to analyze the

implications of uninsurable idiosyncratic risk for this decision. We use a utility maximization

1Arrow (1968) and Bernanke (1983) are among early contributions on irreversible investment. For early
stochastic continuous-time models, see Brennan and Schwartz (1985), McDonald and Siegel (1986), Pindyck
(1988) and Bertola and Caballero (1994). Abel and Eberly (1994) provide a unified model of (incremental)
investment under uncertainty. Dixit and Pindyck (1994) provide a textbook treatment of important contributions
to this literature.

2Grenadier and Wang (2005) analyze a real options model with agency issues.
3There is a fast growing literature on empirical evidence for entrepreneurship. See Gentry and Hubbard

(2004), Heaton and Lucas (2000), and Moskowitz and Vissing-Jorgensen (2002), among others.
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framework in which an agent chooses his consumption and portfolio allocations, as well as

undertakes an irreversible investment.

To facilitate the discussions of our model and results, consider real estate development as

an example. The value of the vacant land may be viewed as the option value of developing the

real estate.4 Suppose that a land owner is also the one who knows the best use of his land.

For example, the owner has superior knowledge about the local market conditions and knows

the most profitable property to construct due to his inalienable human capital. However, the

owner cannot sell this yet-to-be-developed property without incurring significant value discount

due to transactions costs or asymmetric information such as moral hazard and adverse selec-

tion. Therefore, it may be of interest for the owner to keep the land (option) and to be the

developer even though owning the land exposes himself to uninsurable idiosyncratic risks of the

most profitable property (underlying asset). It is worth noting that land is primarily held by

noninstitutional investors such as individuals and private partnerships (Williams (2001)). In

addition, individuals and private partnerships are subject to undiversifiable idiosyncratic risks

more than institutional investors like pension fund firms and life insurance companies.

While a real estate entrepreneur owns the land and will choose the time to build the property,

he may either sell the property or continue to manage the property after developing it. Of course,

choosing whether to sell or manage the property is of itself a decision. We assume this decision

is exogenous in the paper in order to focus on the effect of idiosyncratic risks on the development

decision.5 When he pays the construction cost and sells the property upon the completion of

development, he then receives a lump-sum sale price. We dub this situation the lump-sum

payoff case. Alternatively, the real estate entrepreneur may not only be the developer, but also

the manager. The entrepreneur may be the most qualified manager, because he can locate the

tenants with the highest willingness to pay and maintain the property at the lowest operating

expenses. Therefore, it may still make economic sense for the developer to manage the property

after construction is complete, even though he will face additional undiversifiable idiosyncratic

property risks after development. Under this setting, the developer receives a perpetual stream

of uninsurable rental payments (in excess of operating expenses) from managing the property

after development. We dub this scenario the flow payoff case.

4See Titman (1985), Williams (1991), and Grenadier (1996) for applications of the real options approach to
real estate development.

5We may extend our model to endogenize sale/no sale decision. Essentially, the sale situation is one where
the bidder with the highest valuation of the property is someone else who may have comparative advantages
in management. This fits reasonably well into the description of merchant builders. The no-sale scenario
corresponds to the case where the developer may also be the best manager in that he can find the tenants with
highest willingness to pay and manage the property with lowest operating expenses.
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Standard real options analysis (under complete markets) assumes that an agent can fully di-

versify the idiosyncratic property risks. One can then take the risk-adjusted present discounted

value of future cash flows as the market sale value, and thus there is no distinction between

the preceding two scenarios. However, when the investment opportunity is not tradable and

not spanned by existing traded assets, the standard replicating and no arbitrage argument does

not apply. We thus follow the certainty equivalent approach in the literature on the pricing of

nontraded assets to value cash flows by analyzing the entrepreneur’s utility maximization prob-

lem.6 We show that the lump-sum and flow payoff cases deliver different economic predictions,

and hence the equivalence between these two cases no longer holds.

We start with the lump-sum payoff case. We first analyze the effect of risk attitude. By

adopting the constant absolute risk aversion (CARA) utility specification, we derive intuitive

semi-closed-form solutions which greatly simplify our analysis.7 For this utility, the risk aver-

sion parameter also measures the precautionary saving motive (captured by the convexity of

marginal utility (Kimball (1990)). We show that a stronger precautionary saving motive results

in lower certainty equivalent wealth associated with the investment opportunity, which is also

the implied option value. Thus, risk aversion speeds up investment.

We next turn to the effect of risk. An important prediction of our model is that the idiosyn-

cratic project volatility has two opposing effects on the implied option value and hence on the

investment timing decision. On one hand, the standard real options model states that volatility

increases the option value due to its asymmetric convex payoff. On the other hand, idiosyncratic

volatility lowers the certainty equivalent wealth and consumption because of the entrepreneur’s

precautionary saving motive and the interdependence of consumption and investment under

incomplete markets. Hence, the net effect of volatility on the option value is ambiguous. When

the entrepreneur has sufficiently strong precautionary motive or the idiosyncratic volatility is

sufficiently large, the precautionary saving effect may dominate the standard option effect. If

the volatility does not directly affect the investment payoff as in the lump-sum payoff case (for

example via sale to diversified buyers such as real estate investment trusts (REITs) investors

in our real estate example), then idiosyncratic volatility under incomplete markets encourages

the entrepreneur to invest earlier, opposite to the standard real options analysis. Going back

6See Carpenter (1998), Detemple and Sundaresan (1999), Hall and Murphy (2000), Kahl, Liu and Longstaff
(2003), among others, on nontraded asset valuation such as employee stock options. See Section 2 for further
discussions.

7While power utility is more commonly used in economics, this utility will complicate our anlaysis since it
will lead to a two dimensional free-boundary problem, which is hard to analyze. See Section 2.2 for a further
discussion. We should emphasize that our key insight of precautionary saving effect still carries over for the
power utility.
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to our real estate development example, our model predicts that the entrepreneur may exercise

his development option early when he is exposed to uninsurable idiosyncratic shocks to his

investment opportunity, particularly if he plans to sell his property upon the completion of

construction. The entrepreneur’s urge to avoid the certainty equivalent wealth discount due to

idiosyncratic shocks encourages him to invest earlier, ceteris paribus.

When the entrepreneur can hedge against the project risk by trading a risky asset such as

the market portfolio, the total volatility may be decomposed into idiosyncratic and systematic

volatility. As a result, the entrepreneur’s precautionary saving demand (due to idiosyncratic

volatility) is then mitigated, which in turn makes the investment option more valuable, ceteris

paribus. When the investment payoff is independent of the idiosyncratic volatility (for example

via sale to diversified buyers), the model then predicts that the entrepreneur invests sooner

under incomplete markets than under complete markets, because the option value is lower in

the presence of idiosyncratic shocks.

We finally analyze the case where the investment payoffs are given in flow terms. In our

previous real estate development example, this case corresponds to the one where the developer

also manages the real estate after its completion. Because the developer still faces undiversifiable

idiosyncratic risk from the payoff stream after exercising the investment option, he values this

payoff stream as certainty equivalent wealth lower than the level, if the payoff steam were

marketable. Thus, the previously discussed precautionary saving effect also influences the

certainty equivalent value of the project payoffs after exercising the investment option. Because

of this additional effect, many results obtained in the lump-sum payoff case are reversed.

In addition to contributing to the investment (real options) literature, our paper also con-

tributes to the portfolio choice literature. Building on the insights behind the Black-Merton-

Scholes analysis, we study hedging against endogenously timed income under incomplete mar-

kets.8 We show that the hedging demand increases with the investment option delta.9 Since

the option delta increases in the underlying project payoff value, our model predicts that the

developer’s hedging demand increases when his development option gets closer to being “in the

money.” With regard to the consumption-saving literature, we extend the standard incomplete

markets analysis to allow the agent to endogenously determine the timing of his income process.

We show that volatility not only has a negative effect on consumption, but also a positive option

effect due to the endogeneity of the income timing choice.
8See Svensson and Werner (1993), Duffie et al. (1997), Koo (1998), Viceira (2001), Heaton and Lucas (2000),

Davis and Willen (2002), and Chapter 6 in Campbell and Viceira (2002), among others, on dynamic consumption
and portfolio choice when an investor is endowed with nontraded stochastic income.

9Delta is defined as the change in the investment option value for a unit increase of the underlying project
payoff value.
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Two recent papers, Henderson (2005) and Hugonnier and Morellec (2005), are related to

ours. Henderson (2005) assumes that the agent maximizes expected wealth at the time of

investment. Hugonnier and Morellec (2005) assume that the manager trades off his incentives to

exercise an option under incomplete markets pre-maturely in order to lower the idiosyncratic risk

exposure and the cost of increasing the likelihood of control challenge due to efficiency loss and

firm value destruction. While both papers study real options models under incomplete markets,

neither paper studies an agent’s consumption decision and its interaction with investment and

portfolio choice decisions. As in our lump-sum payoff case, both papers show that market

incompleteness encourages an agent to exercise the investment option earlier. Importantly,

we show that investment may also be delayed due to market incompleteness when investment

payoffs are delivered over time in flows rather than delivered once in lump-sum payment. Our

results demonstrate that the timing of payoffs after investment is important in determining the

investment timing decision.

The remainder of the paper proceeds as follows. Section 2 analyzes a self-insurance model

when the payoff from real investment is given in lump sum. Section 3 generalizes the model

in Section 2 to allow for the hedging opportunity. Section 4 extends the models in Sections 2

and 3 to settings in which the real investment payoffs are given in flows. Section 5 concludes.

Technical details are relegated to appendices.

2 A Self-Insurance Model with Lump-sum Payoff

This section provides a simple model that allows us to develop intuition for how the agent’s at-

titude towards risk affects his investment decisions when he cannot fully insure himself against

the idiosyncratic shocks from investment. In order to achieve this objective in the simplest pos-

sible setting, we integrate a canonical consumption/saving model with a standard real options

based irreversible investment model.10

2.1 Model Setup

Time is continuous and the horizon is infinite. There is a single perishable consumption good

(the numeraire). The agent derives utility from a consumption process C according to

E

∙Z ∞

0
e−βtU (Ct) dt

¸
, (1)

10See Leland (1968) for early studies on precautionary savings. See Zeldes (1989), Caballero (1991b), and
Deaton (1991) for dynamic incomplete markets consumption models. See Brennan and Schwartz (1985), Mc-
Donald and Siegel (1986), and Dixit and Pindyck (1994) for standard real options models.
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where U is an increasing and concave function and β > 0 is his discount rate. For expositional

convenience, we assume that β is equal to r, the risk-free interest rate.11

The agent owns an investment project and can undertake this project irreversibly at some

endogenously chosen time τ . Note that the investment time τ is stochastic from today’s per-

spective. The investment costs I > 0. The agent pays this cost only at the investment time

τ . This cost is financed from the agent’s own wealth. If there is a shortage of fund, the agent

may borrow at the risk-free rate r. In order to focus on the effect of market incompleteness in

the simplest possible setting, we do not consider borrowing constraints or costly external fi-

nancing. Instead, we impose the conventional transversality condition for the agent to rule out

Ponzi games. After the agent exercises the investment option at time τ , the project generates

a lump-sum payoff Xτ . We also assume that the payoff process X is governed by an arithmetic

Brownian motion process

dXt = αx dt+ σx dZt, X0 given, (2)

where αx and σx are positive constants and Z is a standard Brownian motion.12 This process

implies that payoffs may take negative values. We interpret negative values as losses. We

choose the arithmetic Brownian motion purely for analytical convenience and for being in line

with further analysis in Section 4 when the payoffs are given in flow terms over time. We may

obtain essentially the same insights by using a geometric Brownian motion process to model

the payoffs.

As discussed earlier, investing in the project is analogous to exercising a perpetual American

call option, in the sense that the agent has the right but not the obligation to invest at some

future time of his choosing. Importantly, unlike for financial options, the underlying asset for

the real option may not be traded in the market. For example, the building (the underlying

asset in the real estate development example) before it is set up is not traded in the market.

If we further assume that existing financial assets do not completely span the payoffs for the

underlying asset (the building), then we cannot apply the dynamic replication argument in

the standard option pricing theory such as the Black-Merton-Scholes model. In this section,

the only financial asset available for the agent to trade and to smooth his consumption is the

risk-free asset. Hence, the agent inevitably bears the project risk, which are all undiversifiable.

11 It is straightforward to extend our analysis to allow for differences between the agent’s subjective discount
rate and the interest rate. We choose not to, however, because no additional insight will be gained for the issue
that we are after.
12Unlike the often adopted geometric Brownian motion process, the specification in (2) proves more conve-

nient within our setup. Wang (2005) derives a closed-form consumption-saving rule using affine processes and
exponential utility.
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Let {Wt : t ≥ 0} denote a wealth process. Then the wealth dynamics are given by

dWt = (rWt − Ct) dt, W0 given. (3)

That is, the agent accumulates wealth at the rate of (rWt − Ct), the difference between the

interest income rWt and consumption rate Ct. At the investment time τ , the agent pays the

investment cost I and obtains the lump-sum payoff Xτ , and hence his wealth is raised by the

amount (Xτ − I) . That is, the agent’s wealth jumps by a discrete amount (Xτ − I) at τ , in that

Wτ =Wτ−+Xτ−I, whereWτ− andWτ denote the agent’s wealth just before and immediately

after the agent exercises the investment option, respectively. The agent’s optimization problem

is to choose both his investment timing strategy τ and consumption process C to maximize his

utility given in (1) subject to (3) and a transversality condition specified later.

2.2 Optimality Conditions

We solve the agent’s decision problem by working backwards using dynamic programming. We

consider first the problem after the agent exercises the investment option. In this case, the

agent’s optimization problem is a standard deterministic consumption-saving problem without

income. Let V 0 (w) be the corresponding value function. By a standard argument, V 0 (w)

satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:13

rV 0(w) = max
c∈R

U(c) + (rw − c)V 0w(w) . (4)

Under the deterministic setting, the agent’s consumption is constant over time and is equal to

the annuity value rw of his wealth, and therefore, his wealth remains constant at w at all times.

This is the familiar consumption smoothing result.14 It is immediate to conclude that the value

function is thus given by V 0(w) = U(rw)/r.

We next consider the case before the option is exercised. It is worth noting that the agent’s

value function depends on both his wealth w and the current value x of his investment opportu-

nity. Let V (w, x) denote the corresponding value function. The standard dynamic programming

argument implies that V (w, x) satisfies the following HJB equation:

rV (w, x) = max
c∈R

U(c) + (rw − c)Vw(w,x) + αxVx(w,x) +
σ2x
2
Vxx(w, x) . (5)

The above HJB equation is similar to an asset pricing equation. It states that the agent chooses

his consumption optimally by setting the return rV (w,x) of his value function to equal the sum
13The transversality condition limT→∞ e−rTJ (WT ) = 0 must also be satisfied.
14This result follows from two steps: (i) the equality between the agent’s discount rate and the interest rate

implies that the marginal utility is constant at all times (U 0(Ct) = U 0(Cs)); (ii) The strict concavity of the utility
function further implies that Ct = Cs.
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of his instantaneous utility U(c) and the total expected changes of his value function (due to

the change in wealth and also in the investment opportunity).

We now specify boundary conditions. First, the no-bubble condition limx→−∞ V (w, x) =

V 0 (w)must be satisfied. This condition states that when the investment payoff goes to negative

infinity, the agent will never exercise the investment option and his value function is equal to

that without the investment option. Next, as is standard in the optimal stopping problems, at

the instant of investment, the following value-matching condition must hold:

V (w, x) = V 0(w + x− I). (6)

This equation implicitly defines an investment boundary x = x (w) . In general, this boundary

x (w) depends on the agent’s wealth level w. Finally, because this boundary is chosen optimally,

the following smooth-pasting condition is satisfied:15

∂V (w, x)

∂x

¯̄̄̄
x=x(w)

=
∂V 0 (w + x− I)

∂x

¯̄̄̄
x=x(w)

, (7)

∂V (w, x)

∂w

¯̄̄̄
x=x(w)

=
∂V 0 (w + x− I)

∂w

¯̄̄̄
x=x(w)

. (8)

The first smooth-pasting condition (7) states that the marginal change of the investment oppor-

tunity has the same marginal effect on the agent’s value functions just before and immediately

after exercising the option. Similarly, the second smooth-pasting condition (8) states that the

marginal effect of wealth must be the same on the agent’s value functions just before and im-

mediately after exercising the option. Unlike the conventional irreversible investment models

(Dixit and Pindyck (1994)), here the agent’s wealth enters as an additional state variable, which

gives rise to the second smooth-pasting condition (8).

2.3 Model Solution for CARA Utility

We have now formulated the agent’s optimization problem as a combined control (consumption)

and stopping (investment) problem, which is generally difficult to solve. Our objective is to

understand the economic effects of uninsurable idiosyncratic risk and the attitude towards risk

on investment and consumption decisions. In order to achieve this objective in the simplest

possible way, we assume that the agent has CARA utility U (c) = −e−γc/γ, where the parameter
γ > 0 is the coefficient of absolute risk aversion. It is also equal to the coefficient of absolute

prudence −U 000 (c) /U 00 (c), which captures the precautionary saving motive (Kimball (1990)).
While CARA utility does not capture the wealth effect, we emphasize that the main results and
15See, for example, Krylov (1980), Dumas (1991) and Dixit and Pindyck (1994).
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insights of this paper do not rely on the choice of this utility function. As we will see below,

the driving force of the paper is the precautionary saving, which can be captured by any utility

function having convex marginal utility. We leave generalization to incorporate wealth effects

for future research.

Given CARA utility, we may immediately conclude that the value function after investment

is given by

V 0 (w) = − 1
γr
exp (−γrw) . (9)

Next, we conjecture that the value function before the option exercise takes the following form:

V (w, x) = − 1
γr
exp [−γr (w +G(x))] , (10)

where G (x) is a function to be determined. One can interpret G (x) as the certainty equivalent

wealth derived from the agent’s investment opportunity. Specifically, we follow the consump-

tion literature to define certainty equivalent wealth as the value wce satisfying the equation

V 0(w+wce) = V (w, x); that is, the agent is indifferent between the situation where he receives

stochastic income in the future and the situation where he has no income but a total wealth level

of (w + wce). Using the explicit functional forms of V 0(w) and V (w, x), we have wce = G (x) .

The boundary conditions (6)-(8) and the additive separability of wealth w and certainty

equivalent wealth G(x) in the exponent of the value function V (w, x) indicate that the invest-

ment boundary is flat, in that x (w) is independent of wealth w. This property substantially

simplifies our analysis. The following proposition summarizes the solution to the agent’s com-

bined consumption and investment problem.

Proposition 1 The agent exercises the investment option the first time the process X hits the

threshold x̄ from below. After exercising the option, the agent’s value function and consumption

rule are given by (9) and c (w) = rw, respectively. Before exercising the option, his value

function and consumption rule are, respectively, given by (10) and

c (w, x) = r (w +G (x)) , (11)

where (G (x) , x̄) is the solution to the following free boundary problem:

rG(x) = αxG
0(x) +

σ2x
2
G00(x)− γrσ2x

2
G0(x)2, (12)

subject to the no-bubble condition limx→−∞G (x) = 0, and the boundary conditions:

G (x̄) = x̄− I, (13)

G0 (x̄) = 1 . (14)
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Moreover, G is increasing.

We now analyze the intuition behind this proposition and discuss its implications.

2.4 Interdependence of Investment and Consumption

As in the standard real options approach, the agent trades off between holding the investment

option to obtain an implied option value of waiting and exercising this option to obtain in-

vestment payoffs. The key to our analysis is to derive the implied option value. We show

below that, unlike the standard real options approach, risk aversion and consumption play an

important role in the determination of the option value under incomplete markets.

Implied Option Value. Proposition 1 demonstrates that the certainty equivalent wealth

G (x) solves a free-boundary problem (12)-(14). These equations are similar to, but different

from, the valuation equations and boundary conditions in the standard real option models

of McDonald and Siegel (1986) and Dixit and Pindyck (1994). Based on this similarity, we

interpret x as the project value and the certainty equivalent wealth G (x) as the implied option

value to invest in the underlying project. More formally, we follow the literature on the pricing

of nontraded assets by defining the implied option value Q of the project as the solution to the

equation V (w−Q,x) = V 0(w); that is, the agent is indifferent between the situation where he

has no investment opportunity and the situation where he pays the price Q and obtains the

investment opportunity. Given the functional form of V 0 and V in (9) and (10), we see that

Q = G (x) .

The two interpretations of G (x) — the certainty equivalent wealth and the implied option

value — are the same in our setup. This is due to the absence of the wealth effect under CARA

utility. We will thus use certainty equivalent wealth (from the consumption literature per-

spective) and implied option value (from the investment literature perspective) interchangeably

throughout the remainder of the paper.

Proposition 1 nests the standard (risk neutral) real options problem as a special case. Setting

γ = 0 in equation (12) enables us to derive the following explicit solutions for the option value

G(x) and the investment threshold x̄:

G (x) =
1

λ0
eλ0(x−x̄), for x ≤ x̄ , and x̄ = I +

1

λ0
, (15)

where λ0 = −σ−2x αx +
q
σ−4x α2x + 2rσ

−2
x for σx > 0, and λ0 = r/α for σx = 0. It is straight-

forward to verify that both the option value G (x) and the investment threshold x̄ increase in
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volatility σx of the payoff. These are the main results of the real options literature. The agent

can capture the upside gains by investing and limit the downside losses by simply waiting until

the option is sufficiently “in the money.” This asymmetric convex payoff generates the positive

effect of volatility on the option value and investment threshold.

The main difference between our model and the standard (risk neutral) real options model

is that option value G(x) depends not only on the parameters describing the risk-free rate r,

drift αx and volatility σx, but also depends on the agent’s precautionary motive. The latter

dependence captures the notion that the agent’s risk attitude matters not only for consumption

decisions, but also for investment decisions when markets are incomplete. The last nonlinear

term on the right side of (12) captures the agent’s precautionary savings motive. It confirms

the intuition that the implied option value G(x) is lower when the precautionary motive is

stronger, ceteris paribus. Since the project payoff value x does not depend on the agent’s risk

attitude, the net effect of an increase in γ is to encourage earlier investment. Figure 1 plots

the implied option value G (x) versus the value of the underlying investment opportunity x

for two values of γ. Note that the payoff line (x− I) is independent of risk aversion γ, this

figure clearly illustrates that the investment threshold decreases with the agent’s precautionary

motive or risk aversion γ.

[Insert Figure 1 Here]

Investment Threshold. To gain further intuition, we use the asymptotic approximation

method to compute approximate solutions for the implied option value G (x) and the investment

threshold x̄.16 We expand the option value G (x) and the investment threshold x̄ to the first

order of σ2x, in that G (x) ≈ G0 (x) + G1 (x)σ
2
x and x̄ ≈ x̄0 + δ1σ

2
x ≡ x̄1. Plugging these

expansions in (12)-(14), we show in the appendix that x̄0 = I + αx/r and

x̄1 = x̄0 +

µ
1

αx
− γ

¶
σ2x
2
. (16)

This approximate solution indicates that, to a first-order approximation with respect to σ2x, a

stronger precautionary motive (higher γ) lowers the investment threshold, consistent with our

earlier discussions based on the non-linear ODE (12) and the boundary conditions (13)-(14).

The above approximate solution also helps us to understand the effect of volatility on in-

vestment threshold. An increase in volatility σx has two opposing effects. On one hand, a

higher volatility increases option value and hence encourages waiting, as in standard real op-

tion models. On the other hand, an increase in σx also raises the precautionary savings demand
16See Judd (1998). Kogan (2001) applies this method to solve an irreversible (incremental) investment model.
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and hence lowers the certainty equivalent wealth G (x), and hence lowers the threshold, ceteris

paribus. Both effects are reflected in the last term on the right side of (16). When γ is suffi-

ciently small, the option effect dominates the precautionary saving effect. Thus, an increase in

volatility σx raises the implied option value and delays investment, same as the predictions in

the standard real options models. By contrast, when γ is sufficiently large, the precautionary

saving effect may dominate the option effect. Therefore, an increase in σx lowers the certainty

equivalent wealth G(x), and hence encourages the agent to exercise his option sooner, opposite

to the standard real options result.

Finally, we use numerical solutions to confirm our intuition. We apply the projection method

detailed in the appendix to solve the free boundary problem characterized by (12)-(14). We

find that, for a small σx, our preceding approximate solution is very close to the “true” solution

delivered by the projection method. For a large range of parameter values, Figure 2 plots

the investment threshold as a function of the volatility σx and the parameter γ. This figure

demonstrates that our preceding results and intuition extend to general parameter values.

[Insert Figure 2 Here]

Consumption. We now turn to the agent’s consumption policies. After exercising the option,

the agent solves a deterministic consumption smoothing problem. As noted earlier, his wealth

remains constant and consumption is equal to the interest income at all times. Before exercising

the option, the agent’s consumption rule (11) is given by the annuity value of the sum of his

financial wealth w and his certainty equivalent wealth G(x).

Even though the agent does not receive payoff x before exercising the option, he rationally

anticipates that he will exercise his investment option some time in the future. Thus, the

future investment payoff matters not only for his future consumption, but also for his current

consumption. Our model captures the forward-looking consumption smoothing intuition in an

incomplete markets setting with endogenous stochastic income.

The standard intuition in the consumption literature is that volatility lowers consumption

because of precautionary motive. Here, we show that consumption may potentially increase in

volatility because the option effect may dominate the precautionary saving effect on G(x). This

effect is not present in the consumption literature, because almost all models in the consumption

literature take stochastic income as exogenously given and hence rules out the option effect of

income volatility on consumption.

In summary, the uninsurable idiosyncratic risk alters results in the standard real options

and consumption literature. When idiosyncratic risk is large or the precautionary motive is

12



strong, the option value and the investment threshold may decrease in volatility, contrary to

the standard real option results. Therefore, applying the real options analysis and ignoring

consumption smoothing motive to settings where the idiosyncratic risk is likely to matter such

as entrepreneurial investments, is potentially misleading and incorrect.

3 Lump-sum Payoff Case with Hedging Opportunities

In the previous section, the agent can trade only a risk-free asset to partially insure himself

against the project risk. The restriction that the agent can only insure via the risk-free asset

is obviously strong. We now generalize the setting by allowing the agent to trade a risky

asset to partially hedge against the project risk. We may interpret this financial asset as the

market portfolio. Unlike the self-insurance model in the previous section where all risks are

idiosyncratic and uninsurable, investing in the risky asset allows the agent to partially hedge and

hence separate systematic volatility from idiosyncratic volatility. We show that distinguishing

idiosyncratic volatility from systematic volatility is of fundamental importance, because these

two volatilities play different roles in determining the option value and the exercising decisions.

Our analysis nests the standard complete-markets analysis as a special case.

3.1 The Model

Let {Pt : t ≥ 0} denote the risky asset’s price process and assume that the return is governed
by the following process:

dPt/Pt = μedt+ σedBt, (17)

where μe and σe are positive constants, and B is a standard Brownian motion correlated with

the Brownian motion Z, which drives the innovations of the project payoff as given in (2). Let

ρ ∈ [−1, 1] be the correlation coefficient between the return on the risky asset and the agent’s
project payoff, and let η = (μe − r)/σe > 0 denote the Sharpe ratio of the market portfolio.

One can alternatively rewrite the observed payoff process {Xt : t ≥ 0} given in (2) as follows:

dXt = αxdt+ ρσxdBt + x d eBt, (18)

where B and eB are two independent standard Brownian motions, and

x =
p
1− ρ2 σx. (19)

One may think of B as the Brownian motion describing the systematic (market) risk, and

thus ρσx is the systematic component of the volatility for the project payoff. One may then
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interpret eB as the Brownian motion describing the idiosyncratic project risk, and thus x is the

idiosyncratic volatility. A higher absolute value of the correlation coefficient |ρ| implies that
systematic volatility has a larger weight, ceteris paribus.

Let πt be the amount allocated to the risky asset at time t, measured in units of the

consumption good. The agent’s problem is to choose a consumption process C, a portfolio

allocation rule π, and an investment timing strategy τ to maximize his utility (1) subject to his

wealth dynamics:

dWt = (rWt + πt (μe − r)− Ct) dt+ πtσedBt, W0 given. (20)

Similar to Section 2, the agent’s wealth jumps immediately after he invests, in that Wτ =

Wτ−+Xτ−I, whereWτ− andWτ are his wealth just before and immediately after his investment

at time τ , respectively. Note that (20) is the same both before and after the option exercise.

We use the same dynamic programming method as in Section 2 to solve the agent’s problem

and summarize the results below.

Proposition 2 The agent exercises the investment option the first time the process X hits the

threshold x̄ from below. After exercising the option, the optimal consumption and portfolio rules

are given by

c̄ (w) = r

µ
w +

η2

2γr2

¶
, (21)

π̄ (w) =
η

γσe

1

r
. (22)

Before exercising the option, the optimal consumption and portfolio rules are given by

c̄ (w, x) = r

µ
w +G (x) +

η2

2γr2

¶
, (23)

π̄ (w, x) =
η

γσe

1

r
− ρσx

σe
G0(x) , (24)

where (G, x̄) is the solution to the following free boundary problem:

rG(x) = (αx − ρσxη)G
0(x) +

σ2x
2
G00(x)− γr 2

x

2
G0(x)2 , (25)

subject to the no-bubble condition limx→−∞G (x) = 0, and also the boundary conditions

G(x̄) = x̄− I, (26)

G0(x̄) = 1 . (27)

Moreover, G is increasing.

We next discuss the implications of this proposition and analyze the role of hedging.
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3.2 Undiversifiable Idiosyncratic Risk and Implied Option Value

Similar to the self-insurance model in Section 2, we may interpret G (x) either as the certainty

equivalent wealth, or as the implied option value. Before discussing the option value G(x),

we first sketch out the standard complete markets model when the idiosyncratic risk is fully

diversifiable. Let Φ (x) denote the option value under complete markets. Given complete

markets, standard finance theory implies that the option value and the investment threshold

are independent of preferences. Indeed, we may apply the martingale method to rewrite the

dynamic budget constraint as a static Arrow-Debreu budget constraint.17 Appendix B shows

that Φ (x) satisfies the following differential equation:

rΦ(x) = (αx − ρσxη)Φ
0(x) +

σ2x
2
Φ00(x) , (28)

and the boundary conditions limx→−∞Φ (x) = 0, Φ(x∗) = x∗ − I, and Φ0(x∗) = 1.

Equation (28) resembles a standard valuation equation in dynamic asset pricing models.18

After correcting for risk, traded securities such as the option earn the risk-free rate of return

r, as seen from the left side of (28). The right side of (28) gives the instantaneous expected

changes of the option value with respect to the underlying asset value x. The risk correction is

reflected by the drift change from αx to (αx − ρσxη) in the first term on the right side of (28).

This risk correction may be obtained from a CAPM argument and is consistent with standard

dynamic asset pricing theories, which state that only systematic risk demands a premium.

We turn to the differential equation (25) for the option value G(x). Re-writing (25) gives

rG(x) =

µ
αx − ρσxη − γr 2

x

2
G0(x)

¶
G0(x) +

σ2x
2
G00(x) . (29)

First, we note that the standard convexity effect of volatility on option value depends on the

total volatility σx, same as the one in (28) under complete markets. This is reflected by the

last (quadratic) term in (29). Also similar to the differential equation (28) for Φ(x), the change

of drift from αx to (αx − ρσxη) in the first term on the right side of (29) accounts for the

effect of systematic risk on valuation, the standard CAPM argument. Importantly, unlike the

differential equation (28) for Φ(x), the third component in the bracket of the drift term on the

right side of (29), γr 2
xG

0(x)/2 reflects the effect of the idiosyncratic risk on the implied option

value G(x). We may dub this term as the idiosyncratic risk premium.

17See Cox and Huang (1989), and Karatzas, Lehoczky, and Shreve (1987) on the martingale method. This
method and the dynamic programming method deliver the same solution. See Duffie (2001) for a textbook
treatment.
18See Duffie (2001) for a textbook treatment.
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Intuitively, when idiosyncratic risks cannot be fully diversified, the agent naturally demands

a higher risk premium for a larger idiosyncratic volatility x, ceteris paribus. A more prudent

agent (with a larger coefficient of risk aversion γ) also demands a higher risk premium. Finally,

a higher option delta G0(X) indicates that the option value is more sensitive to the change of the

underlying investment opportunity set and hence requires a higher idiosyncratic risk premium.

Moskowitz and Vissing-Jorgensen (2002) find that the private equity premium is low in the

U.S. given the amount of idiosyncratic risks that entrepreneurs face. While our model is not

designed to address this quantitative private equity premium issue, our model responds to urgent

needs to develop theories which capture the role of the idiosyncratic risk on the interdependent

consumption, investment and portfolio choices for entrepreneurs, as suggested by Gentry and

Hubbard (2004), Heaton and Lucas (2000), and Moskowitz and Vissing-Jorgensen (2002).

We now turn to the effects of idiosyncratic volatility x and risk aversion coefficient γ on the

investment threshold x̄. First, note that as in the self-insurance model of Section 2, the payoffs

upon option exercising are given by (x− I). Hence, neither idiosyncratic volatility nor risk

aversion γ matters for the project payoff values. Second, a direct comparison between (28) and

(29) implies that a larger idiosyncratic volatility x or a higher risk aversion coefficient γ lowers

the option value G(x), holding the systematic risk constant. Taking the two effects together,

we may conclude that a higher idiosyncratic volatility x and a larger risk aversion coefficient

γ lowers the investment threshold x̄, ceteris paribus. This result also implies that the agent

hastens investment under incomplete markets than under complete markets since the solution

for the latter is effectively obtained by setting γ = 0.

3.3 Consumption and Portfolio Rules

The consumption rule (21) and the portfolio rule (22) after the option exercise are solutions to

the standard Merton style consumption-portfolio choice problem with CARA utility (Merton

(1969)). After exercising the option, the agent has no more hedging demand since the lump-

sum project payoff has been realized at the exercising time τ . Equation (22) gives the standard

mean-variance efficient rule for CARA utility. The agent’s ability to invest in the risky asset to

explore the risk premium makes him better off relative to the self insurance setting in Section

2. This is reflected by η2/(2γr2), the second term in the consumption rule (21).

Next, consider the agent’s consumption decision before the option exercise. Equation (23)

states that the agent’s consumption is equal to the annuity value of the sum of three terms:

(i) financial wealth w, (ii) certainty equivalent wealth G(x), and (iii) the constant η2/(2γr2).

The forward looking agent rationally finances a certain fraction of his current consumption via
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the certainty equivalent wealth G(x) for his investment opportunity. Moreover, investing in the

risky asset makes him better off and yields a higher current consumption, ceteris paribus. This

is reflected by the third component in the consumption rule (23), same as the argument for the

after-investment consumption rule (21).

We now turn to the agent’s portfolio rule (24) before investment. In addition to the standard

Merton’s mean-variance term, the agent also has a hedging demand, because his investment

project payoff is correlated with the market portfolio. First, hedging demand is greater when

the degree of correlation |ρ| is higher, the standard and well known result. Second, the portfolio
rule (24) also suggests that hedging demand is greater when G0(x), the option ∆, is higher.

This result is less known, but is intuitive. Before the investment decision is made, the agent

holds a valuable option on a non-tradable underlying asset. Hence, the agent naturally hedges

more against the fluctuations of the option value of his investment, if this option value is more

sensitive to the change of the underlying asset (a higher option delta), ceteris paribus.

4 Models with Flow Payoffs

While some real world examples may fit in the lump-sum payoff setting that we have just

analyzed, there are many situations under which the investment payoffs are given as cash flows

over time, rather than as a lump-sum payment. We emphasize that unlike the lump-sum payoff

case where the project payoff is exogenously given, one has to derive the implied value or the

certainty equivalent value of the cash flows by solving the agent’s consumption decision after

the option exercise. Intuitively, idiosyncratic volatility also lowers the implied project value or

the certainty equivalent wealth after option exercise. Hence, the overall impact of idiosyncratic

volatility on investment decision and implied option value is less obvious. Indeed, we show that

the predictions for the flow payoff case may be reversed compared to those for the lump-sum

payoff case.

In the flow payoff case, after the agent irreversibly exercises his investment option at some

time τ , he obtains a perpetual stream of payoffs {Yt : t ≥ τ}. Assume that the flow payoff

process Y is governed by an arithmetic Brownian motion process:

dYt = αy dt+ σy dZt, Y0 given, (30)

where αy and σy are positive constants and Z is a standard Brownian motion. As will be

clear below, the arithmetic Brownian motion process allows us to obtain explicit solutions

after investment so that the problem before investment is easier to analyze. Using a geometric
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Brownian motion process to model the cash flow process will complicate the analysis without

adding many new insights.

We present our analysis in three subsections. First, we analyze the self-insurance case in

which the agent can trade only a risk-free asset and hence all risk is idiosyncratic, similar to

Section 2. Then, we allow the agent to trade a market portfolio to partially hedge against the

flow payoff risk and hence to separate idiosyncratic volatility away from systematic volatility,

similar to Section 3. Finally, we discuss empirical implications of the models in both the lump-

sum and flow payoff cases.

4.1 Self-Insurance

When the agent can trade only a risk-free asset, the agent’s wealth {Wt : t ≥ 0} after the option
exercise (τ ≤ t) evolves according to

dWt = (rWt + Yt − Ct) dt. (31)

This equation resembles that in a standard incomplete markets consumption-savings model

with a stream of labor income {Yt : t ≥ τ}. At the investment time τ , the agent pays the

cost I and hence wealth is lowered from Wτ−, the level just prior to investment, to Wτ , the

level immediately after the option exercise, in that Wτ =Wτ−− I. Before exercising the option
(0 ≤ t < τ), the agent does not receive flow payoffs and thus his wealth evolves according to (3)

as in the lump-sum case. The agent’s decision problem is to choose both an investment timing

strategy τ and a consumption process C so as to maximize his utility (1) subject to wealth

accumulation equations (31) and (3) and a transversality condition specified in the appendix.

We solve the agent’s decision problem backward by dynamic programming. Let J (w, y) be

the value function after the option exercise. Unlike the lump-sum payoff case, the payoff value y

is an additional state variable for J . By the standard argument, J (w, y) satisfies the following

HJB equation:

rJ(w, y) = max
c∈R

U(c) + (rw + y − c)Jw(w, y) + αyJy(w, y) +
σ2y
2
Jyy(w, y) . (32)

Let V (w, y) denote the value function before the option exercise.19 Similar to Section 2, V (w, y)

satisfies the following HJB equation:

rV (w, y) = max
c∈R

U(c) + (rw − c)Vw(w, y) + αyVy(w, y) +
σ2y
2
Vyy(w, y) . (33)

19Note that we use the same notation for the value function before investment as that for the lump-sum payoff
case.
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We now briefly discuss the boundary conditions for the flow payoff case and relate to the

lump-sum payoff case analyzed earlier. Similar to the lump-sum payoff case, the no-bubble

condition limy→−∞ V (w, y) = V 0 (w) must be satisfied. Similar to, but different from the

lump-sum payoff case, we have the following value matching condition:

V (w, y) = J (w − I, y) . (34)

This equation determines an investment boundary y (w) . Moreover, the agent’s optimality

further requires the following smooth pasting conditions to hold:

∂V (w, y)

∂y

¯̄̄̄
y=y(w)

=
∂J (w − I, y)

∂y

¯̄̄̄
y=y(w)

, (35)

∂V (w, y)

∂w

¯̄̄̄
y=y(w)

=
∂J (w − I, y)

∂w

¯̄̄̄
y=y(w)

. (36)

Both smoothing-pasting conditions are similar to, but different from those for the lump-sum

case, because the cash flow payoff y enters as an additional state variable even after the agent

makes the investment.

We use a procedure similar to that in Section 2 to solve the above problem and then show

that the investment threshold ȳ (w) is independent of wealth w for CARA utility agents.

Proposition 3 The agent exercises the investment option the first time the process Y hits the

threshold ȳ from below. After exercising the option, the optimal consumption rule is given by

c (w, y) = r (w + f (y)) , (37)

where f (y) is given by

f(y) =
³y
r
+

αy
r2

´
− γσ2y
2r2

. (38)

Before exercising the option, the optimal consumption rule is given by

c (w, y) = r (w + g (y)) , (39)

where (g, ȳ) is the solution to the following free boundary problem:

rg(y) = αyg
0(y) +

σ2y
2
g00(y)− γrσ2y

2
g0(y)2, (40)

subject to the no-bubble condition limy→−∞ g (y) = 0 and the boundary conditions

g(ȳ) = f(ȳ)− I, (41)

g0(ȳ) = f 0(ȳ) =
1

r
. (42)

Moreover, g is increasing.
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Comparing Propositions 1 and 3, we see that the valuation equation for the implied option

value is similar. However, the consumption rule after investment and the boundary conditions

are different. We next analyze the implications of these differences.

4.1.1 Implied Project Value and Consumption

When the payoffs are given in terms of cash flows over time, the agent continues to face the

undiversifiable idiosyncratic cash flow risk after exercising his investment option. Therefore,

the idiosyncratic risk lowers both the implied option value and also the certainty equivalent

project payoff value. After option exercise, the agent’s optimization problem is a standard

incomplete-markets consumption-savings problem with stochastic income {Yt : t ≥ τ} . Because
of the CARA utility and the arithmetic Brownian motion process specifications, we are able to

derive the explicit expression for the consumption rule given in (37)-(38).20

To understand the consumption rule (37), we define human wealth h (y) as the present

discounted value of all investment cash flows following Friedman (1957) and Hall (1978). For

the arithmetic Brownian motion income process (30), this gives

h (y) ≡ E

µZ ∞

0
e−rtYtdt

¯̄̄̄
Y0 = y

¶
=

y

r
+

αy
r2

. (43)

Note that this traditional definition of human wealth does not incorporate the effect of risk.

Using h (y), we may rewrite the consumption rule given in (37) and (38) as follows:

c(w, y) = r

Ã
w + h (y)− γσ2y

2r2

!
. (44)

When γ = 0 or σy = 0, consumption is the annuity value of the sum of financial wealth w

and human wealth h(y), in that c(w, y) = r (w + h (y)) . This is Friedman’s permanent-income

hypothesis. In terms of time series, this implies that consumption is a martingale, in that

Ct = Et (Ct+1), Hall’s random walk consumption model (Hall (1978)).

Importantly, when the agent has precautionary motive (γ > 0), a precautionary savings

demand arises in the presence of uninsurable idiosyncratic shocks. This demand after the option

exercise is reflected by the term γσ2y/
¡
2r2
¢
in (38). We may interpret f (y) as the certainty

equivalent (risk-adjusted) human wealth or the implied project value, following essentially the

same analysis in Section 2. Since f (y) = h (y) − γσ2y/
¡
2r2
¢
, the certainty equivalent human

20Caballero (1991b) derives this consumption rule in discrete time. Wang (2004) extends Caballero (1991b) to
more general bi-variate income processes with partial observability and hence increases precautionary savings de-
mand due to estimation risk. Wang(2003) shows that general equilibrium restriction eliminates the precautionary
saving demand in Caballero (1991b).
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wealth f (y) decreases in risk aversion coefficient γ and also in income volatility σy. This differs

from the lump-sum payoff case where option exercising gives a complete exit from incomplete

markets and hence precautionary motive and volatility do not affect the value of payoffs from

exercising.

Now consider consumption before investment. Equation (39) implies that the rational for-

ward looking agent finances his consumption partially out of his future payoffs from his real

investment opportunities. More formally, consumption is given by the annuity value of the

sum of financial wealth w and g(y), before the investment is made. Following our analysis in

the lump-sum payoff case, we may interpret g(y) as the certainty equivalent wealth for the

investment opportunity before investment is made, or equivalently, the implied option value on

the investment opportunity. We next turn to the analysis of g(y).

4.1.2 Implied Option Value and Investment Threshold

The implied option value g(y) and the investment threshold ȳ are determined jointly by the

the differential equation (40) and the corresponding boundary conditions (41) and (42). The

differential equation (40) is similar to its counterpart (12) for the lump-sum payoff case. How-

ever, the boundary conditions for the flow payoff case are different from those for the lump-sum

payoff case in Proposition 1 in that the agent values the stream of payoffs after option exercise

with the certainty equivalent wealth f (y) given in (38). These boundary conditions jointly

suggest that the investment threshold is determined by trading off between the option value of

waiting g(y) and the certainty equivalent wealth f(y) for the stochastic income stream (after

netting out the fixed investment cost I).

Unlike the lump-sum payoff case, the total payoff volatility σy and the precautionary motive

also lower the implied project value f (y) , because the agent is exposed to idiosyncratic shocks

after making his investment decision, and hence values the cash flow at a value lower than h(y),

the present discounted value of his future incomes.

It is transparent to analyze the impact of risk aversion coefficient γ and income volatility

σy on the investment threshold ȳ via the approximation method. We approximate g (y) and ȳ

simultaneously to the first order of σ2y. We then obtain the approximate investment threshold:

ȳ1 = ȳ0 +
1

2αy
σ2y, (45)

where ȳ0 = rI is the exactly solved investment threshold in the deterministic case (σy = 0).

Therefore, to the first-order approximation, the investment threshold ȳ1 increases in volatility

σy, and moreover, the agent’s risk attitude does not affect investment timing. This prediction
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is thus qualitatively the same as in the standard real option models to the first order.

The intuition for this result is as follows. In the flow payoff case, the agent receives a stream

of uninsurable incomes after the option exercise. Therefore, the agent’s precautionary motive

lowers both the implied project value f (y) and the implied option value g (y). It turns out

that the precautionary effect on g (y) and f (y) offsets each other to the first-order approxima-

tion. Thus, it has little impact on the investment timing since the investment threshold ȳ is

determined by the relative magnitudes of the implied option value g(y) and the project payoff

f(y). This result differs from the lump-sum payoff case where precautionary motive only affects

the implied option value, not the project payoff value. As a result, the investment threshold is

lowered by the agent’s precautionary motive to the first-order approximation in the lump-sum

payoff case. Unlike the lump-sum payoff case, exercising the option does not eliminate the effect

of uninsurable idiosyncratic shocks, when payoffs are given in flow terms over time.

To further understand the impact of the agent’s precautionary motive γ on the investment

decision, we use the second-order approximation with respect to σ2y and obtain the following

approximate investment threshold:

ȳ2 = ȳ1 +
1

α2y

µ
γ − r

2αy

¶
σ4y, (46)

where ȳ1 is given in (45). Equation (46) indicates that, to the second-order approximation,

the investment threshold increases in γ, opposite to the prediction for the lump-sum payoff

case. While the precautionary saving effect is present both before and after the option exercise

as argued earlier, the precautionary saving effect, to the second-order approximation, has a

larger impact on f (y) than on g (y). The intuition is as follows. Before exercising the option,

the agent may time when to invest in the risky investment. While the volatility effect on the

implied option value g(y) and the implied project value f(y) to the first order washes out,

this additional flexibility of timing the investment decision on the margin implies that the

precautionary saving effect is stronger after exercising the option than before. This suggests

that an increase in the precautionary motive γ lowers f (y) more than g (y) , thereby delaying

the exercise of the option. We emphasize that the effect of γ on the investment decision is of

the second order.

Finally, we use numerical solutions to conduct further analysis. Figure 3 plots the investment

threshold as a function of volatility σy and the parameter γ. This figure confirms our preceding

approximation results. Moreover, it illustrates that the effects of volatility σy on the investment

threshold are stronger when the agent is more precautionary, i.e., when γ is higher.

[Insert Figure 3 Here]
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Figure 4 illustrates the effect of changes in γ. An increase in γ raises precautionary savings

both after and before the option exercise, thereby lowering both the implied project value f (y)

and the implied option value g (y). This figure confirms our earlier analysis that f (y) is lowered

more than g (y) , so that the agent delays exercising the investment option.

[Insert Figure 4 Here]

4.2 Hedging

We now turn to the flow payoff case with hedging opportunity. Based on our previous analysis,

we anticipate that the model contains the following two features: (i) the hedging opportunity al-

lows the separation of idiosyncratic volatility from the systematic volatility, and hence captures

the different effects of these two forms of volatility on investment and consumption decisions;

(ii) the flow payoff implies that idiosyncratic volatility continues to matter after option exercise

and hence lowers the certainty equivalent payoff value, similar to the self-insurance model for

the flow payoff case.

Let πt denote the amount allocated in the risky asset with returns given in (17) at time t.

As in Section 3, we may denote y as the idiosyncratic volatility, in that

y =
p
1− ρ2 σy. (47)

We may rewrite the observed flow payoff process {Yt : t ≥ 0} given in (30) as follows:

dYt = αydt+ ρσydBt + y d eBt, (48)

where B describes the systematic (market) risk and eB describes the idiosyncratic project risk.

Before the agent exercises the investment option at time τ , his wealth accumulation is the

same as (20). After time τ , his wealth evolves as follows:

dWt = [rWt + πt (μe − r) + Yt − Ct] dt+ πtσedBt. (49)

Note that the flow payoff Y appears in (49), not in (20). As before, the agent’s wealth imme-

diately after his investment Wτ is given by Wτ =Wτ−− I, where Wτ− denotes his wealth level

just prior to his investment at time τ . The following proposition characterizes the solution.

Proposition 4 The agent exercises the investment option the first time the process Y hits the

threshold ȳ from below. After exercising the option, the optimal consumption and portfolio rules
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are given by

c̄ (w, y) = r

µ
w + f (y) +

η2

2γr2

¶
, (50)

π̄ (w, y) =
η

γσe

1

r
− ρσy

σer
, (51)

where f (y) is given by

f(y) =

µ
1

r
y +

αy − ρσyη

r2

¶
− γ 2

y

2r2
. (52)

Before exercising the option, the optimal consumption and portfolio rules are given by

c̄ (w, y) = r

µ
w + g (y) +

η2

2γr2

¶
, (53)

π̄ (w, y) =
η

γσe

1

r
− ρσy

σe
g0(y) , (54)

where (g, ȳ) is the solution to the following free boundary problem:

rg(y) = (αy − ρσyη) g
0(y) +

σ2y
2
g00(y)− γr 2

y

2
g0(y)2 , (55)

subject to the no-bubble condition limy→−∞ g (y) = 0, and the boundary conditions

g(ȳ) = f(ȳ)− I, (56)

g0(ȳ) = f 0(ȳ) =
1

r
. (57)

Moreover, g is increasing.

As in the previous subsection, we interpret f (y) as the implied project value and g (y) as

the implied option value. Unlike the lump-sum payoff model with hedging opportunities in

Section 3, hedging affects not only the implied option value g (y), but also the implied project

value f (y) . In particular, hedging reduces the agent’s exposure to idiosyncratic volatility from

σy to y =
p
1− ρ2σy. Thus, the precautionary savings demand after the option exercise is

reduced from γσ2y/
¡
2r2
¢
to γ 2

y/
¡
2r2
¢
. In addition, the portfolio rule (51) after the option

exercise consists of the standard mean-variance term and the hedging demand term.21

To compare with the complete markets solution, we assume that the agent can trade an

additional risky asset to diversify the idiosyncratic risk as in Section 3.2. Appendix B shows

that the market value of the investment option satisfies the differential equation

rΨ(y) = (αy − ρησy)Ψ
0(y) +

σ2y
2
Ψ00(y) , (58)

21See Svensson and Werner (1993) and Davis and Willen (2002) for the consumption and portfolio choice
problem under incomplete markets in a continuous-time setting and a discrete-time setting, respectively.
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and the boundary conditions limy→−∞Ψ (y) = 0, Ψ(y∗) = F (y∗)− I, and Ψ0(y∗) = 1/r , where

F (y) =
1

r
y +

αy − ρησy
r2

(59)

is the market value of the cash flow process Y . The above two equations reveal that both the

option value and the project value under complete markets are independent of preferences and

effectively are the solutions in (52) and (55) for γ = 0. In addition, both values are higher than

under incomplete markets. Similar to our analysis in Section 4.1.2, the net effect of incomplete

hedging on the investment timing depends on the relative magnitudes of changes in the implied

option value and the project value. Similar to the insights from the self-insurance model with

flow payoffs, the impact of idiosyncratic shocks on the project value is greater than on the

option value to the second order. Thus, unlike in the lump-sum payoff case analyzed in Section

3.2, incomplete hedging raises the investment threshold and delays investment, compared to

the complete markets benchmark. This result demonstrates that the timing of payoffs matters

for investment decision under incomplete markets, which is different from a complete markets

setting where the timing of payoffs does not matter as shown in Appendix B.

4.3 Empirical Implications

Our analysis has empirical implications. For example, the model in Section 2 suggests that

unlike a standard real options analysis, a positive investment-uncertainty relationship may po-

tentially arise for entrepreneurial activities, when the idiosyncratic risk is sufficiently large.

Thus, one may be cautious in interpreting some conflicting results found in empirical studies.22

Our analysis also suggests that the investment behavior of undiversified individuals is different

from that of well-diversified individuals or institutions. In particular, risk attitude plays an

important role under incomplete markets. Consider again the real estate development exam-

ple. Suppose that we have a sample containing both undiversified individual developers and

publicly traded REITs. Suppose that both individual entrepreneurs and REITs specialize in

development of and not management of the properties. That is, we may take the sales value of

the property upon completion of constructions as given. Then our model in Section 3 predicts

that the individual entrepreneurs are more likely to develop earlier than the publicly traded

REITs, because the idiosyncratic risk lowers the implied option value of waiting for individ-

ual developers. However, if they also manage the properties after completion of development,

then our models in the previous two subsections suggest that the preceding prediction may be

reversed because the properties are also less valuable to the undiversified individual developers.
22See Quigg (1993), Berger et al. (1996), Leahy and White (1996), and Moel and Tufano (1998) for empirical

works. See Caballero (1991a) for a theoretical analysis.
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5 Conclusions

Entrepreneurs’ business investment opportunities are often nontradable and their payoffs can-

not be spanned by existing traded assets due to reasons such as incentives and informational

asymmetries. These features invalidate the standard real options approach to investment. Ex-

tending this approach, we develop a utility-based real options model to analyze an agent’s

interdependent real investment, consumption, and portfolio choice decisions.

We show that project volatility has not only a positive option effect, but also a negative

effect on the implied option value. The latter effect is induced by the precautionary saving

motive. For the lump-sum payoff case, risk aversion accelerates investment. Unlike the standard

real options analysis, an increase in project volatility may accelerate investment if the agent

has a sufficiently strong precautionary motive. We further extend our model to allow for the

opportunity to hedge. We show that hedging reduces the agent’s exposure to idiosyncratic

risk, and hence raises the option value. In addition, hedging allows the decomposition of total

project volatility into systematic volatility and idiosyncratic volatility. The latter volatility

generates an idiosyncratic risk premium. We finally analyze settings where investment payoffs

are given in flow terms over time. Unlike the standard real options analysis, the lump-sum and

flow payoff cases have different implications. Because the precautionary saving effect matters

both before and after investment in the flow payoff case, many predictions in this case differ

from and may even be opposite to those in the lump-sum payoff case.

In order to analyze the effect of uninsurable idiosyncratic risk on investment in the simplest

possible setting, we have intentionally ignored the wealth effect by adopting the CARA utility.

However, the wealth effect may potentially play an important role in settings such as entrepre-

neurship. We extend our analysis to incorporate the wealth effect on entrepreneurial investment

in Miao and Wang (2005a). Finally, when entrepreneurs invest in nontradable projects, they

often need to make financing decisions jointly. For the real estate example, often the majority

part of the construction and operating expenses is financed by mortgages. We analyze the

interaction between investment and financing decisions in Miao and Wang (2005b).
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Appendices

A Proofs

Proof of Proposition 1: >From the first-order condition U 0(c) = Vw (w, x) , we can derive

the consumption policy before the option exercise given in (11). Substituting it into the HJB

equation (5), we can show that G (x) satisfies the ODE (12). Given the functional forms of the

value functions, we can also show that the no-bubble condition, the value-matching and the

smooth-pasting conditions become the boundary conditions in Proposition 1. By a standard

dynamic programming argument, one can show that V satisfies

V (w, x) = max
(τ,C)

E

∙Z τ

0
e−rtU (Ct) dt+ e−rτV 0 (Wτ +Xτ − I)

¯̄̄̄
(W0,X0) = (w, x)

¸
. (A.1)

Consider x < x0. For X0 = x0, let τ 0 be the optimal investment time and {C 0
t : 0 ≤ t ≤ τ 0} be

the optimal consumption process before investment. Since V 0 is an increasing function and,

given any sample path,

Xτ 0 ≡ x+ αxτ
0 + σxWτ 0 < X 0

τ 0 ≡ x0 + αxτ
0 + σxWτ 0 ,

we haveZ τ 0

0
e−rtU

¡
C 0t
¢
dt+ e−rτ

0
V 0 (Wτ 0 +Xτ 0 − I) <

Z τ 0

0
e−rtU

¡
C 0t
¢
dt+ e−rτ

0
V 0
¡
Wτ 0 +X 0

τ 0 − I
¢
.

Taking conditional expectations yields

E

"Z τ 0

0
e−rtU

¡
C 0t
¢
dt+ e−rτ

0
V 0 (Wτ 0 +Xτ 0 − I)

¯̄̄̄
(W0,X0) = (w, x)

#

< E

"Z τ 0

0
e−rtU

¡
C 0t
¢
dt+ e−rτ

0
V 0
¡
Wτ 0 +X 0

τ 0 − I
¢ ¯̄̄̄
(W0,X0) =

¡
w,x0

¢#
= V

¡
w, x0

¢
.

Given the wealth dynamics described in Section 2.1, {C 0t : 0 ≤ t ≤ τ 0} and τ 0 are also feasible

for X0 = x. Thus, the left side of the above equation is less or equal to V (w, x) by (A.1). So,

V (w,x) < V (w, x0) and V is increasing in x. Q.E.D.

Proof of Proposition 2: Without risk of confusion, we still use V 0 (w) and V (w, x) to

denote the value function after and before the option exercise, respectively, when the agent can

trade a risky asset. By a standard argument, V 0 satisfies the following HJB equation:

rV 0 (w) = max
(c,π)∈R2

U (c) + [rw + π (μe − r)− c]V 0w (w) +
(πσe)

2

2
V 0ww (w) . (A.2)
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The transversality condition limT→∞E
£
e−rTV 0 (WT )

¤
= 0must also be satisfied. Given CARA

utility, one can follow Merton (1969) to derive the consumption and portfolio rules in (21)-(22)

and

V 0 (w) = − 1
γr
exp

∙
−γr

µ
w +

η2

2γr2

¶¸
. (A.3)

Before the option exercise, the value function V (w, x) satisfies the following HJB equation:

rV (w,x) = max
(c,π)∈R2

U (c) + [rw + π (μe − r)− c]Vw (w, x) + αxVx (w, x) (A.4)

+
σ2x
2
Vxx (w,x) +

(πσe)
2

2
Vww (w, x) + πσeσxρVwx (w, x) .

We conjecture that the value function V takes the form

V (w,x) = − 1
γr
exp

∙
−γr

µ
w +G(x) +

η2

2γr2

¶¸
, (A.5)

where G(x) is a function to be determined. Using the first-order conditions,

U 0 (c) = Vw (w, x) , π =
−Vw (w, x)
Vww (w, x)

μe − r

σ2e
+
−Vwx (w,x)
Vww (w,x)

ρσx
σe

, (A.6)

one can derive the optimal consumption and portfolio policies before exercising the option

given in (23)-(24). Plugging these expressions back into the HJB equation gives (25). As in

Section 2, the boundary conditions are given by the no-bubble, value-matching, and smooth-

pasting conditions similar to (6)-(8). Using these boundary conditions, one can derive the

boundary conditions in Proposition 2. The rest of the proof follows a similar argument to that

in Proposition 1. Q.E.D.

Proof of Proposition 3: We conjecture that the value function after the option exercise J

takes the following form:

J(w, y) = − 1
γr
exp [−γr (w + f(y))] , (A.7)

where f(y) is a function to be determined. To solve for this function, we use the first-order

condition U 0 (c) = Jw (w, y) to derive the optimal consumption rule given in (37). Substitute it

back into the HJB equation (32) to derive the following ODE:

0 = (y − rf (y)) + αyf
0 (y) +

σ2y
2

£
f 00(y)− γrf 0(y)2

¤
. (A.8)

It can be verified that its solution is given by (38). Moreover, it is such that the value function

satisfies the transversality condition limT→∞E
£
e−rTJ (WT , YT )

¤
= 0.
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We conjecture that the value function before the option exercise, V (w, y), takes the form:

V (w, y) = − 1
γr
exp [−γr (w + g(y))] , (A.9)

where g(y) is a function to be determined. From the first-order condition U 0(c) = Vw (w, y) ,

we can derive the consumption policy before investment given in (39). Substituting it into the

HJB equation (33), we can show that g (y) satisfies the ODE (40). By a standard dynamic

programming argument, one can show that V satisfies

V (w, y) = max
τ,C

E

∙Z τ

0
e−rtU (Ct) dt+ e−rτJ (Wτ − I, Yτ )

¯̄̄̄
(W0, Y0) = (w, y)

¸
. (A.10)

Since it follows from (A.7) that J is increasing and concave in y, one can show that V is also

increasing and concave in y. The rest of the proof follows from a similar argument to that in

Proposition 1. Q.E.D.

Proof of Proposition 4: Without risk of confusion, we still use J (w, y) and V (w, y) to

denote the value function after and before the option exercise, respectively, when the agent can

also trade a risky asset. By a standard argument, J (w, y) satisfies the HJB equation

rJ (w, y) = max
(c,π)∈R2

U (c) + [rw + π (μe − r) + y − c]Jw (w, y) + αyJy (w, y) (A.11)

+
σ2y
2
Jyy (w, y) +

(πσe)
2

2
Jww (w, y) + πσeσyρJwy (w, y) .

The transversality condition limT→∞E
£
e−rTJ (WT , YT )

¤
= 0 must also be satisfied. We con-

jecture that J (w, y) takes the following form:

J(w, y) = − 1
γr
exp

∙
−γr

µ
w + f(y) +

η2

2γr2

¶¸
, (A.12)

where the function f is to be determined. By the first-order conditions,

U 0 (c) = Jw (w, y) , π =
−Jw (w, y)
Jww (w, y)

μe − r

σ2e
+
−Jwy (w, y)
Jww (w, y)

ρσy
σe

, (A.13)

one can derive the optimal consumption and portfolio policies after investment given in (53)-

(54). Substituting them back into the HJB equation (A.11), one can derive the solution for

f (y) given in (52). It can be verified that this solution satisfies the transversality condition.

The value function before the option exercise, V , satisfies the following HJB equation:

rV (w, y) = max
(c,π)∈R2

U (c) + [rw + π (μe − r)− c]Vw (w, y) + αyVy (w, y) (A.14)

+
σ2y
2
Vyy (w, y) +

(πσe)
2

2
Vww (w, y) + πσeσyρVwy (w, y) .
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We conjecture that the value function V takes the following form:

V (w, y) = − 1
γr
exp

∙
−γr

µ
w + g(y) +

η2

2γr2

¶¸
, (A.15)

where g(y) is a function to be determined. Using the first-order conditions,

U 0 (c) = Vw (w, y) , π =
−Vw (w, y)
Vww (w, y)

μe − r

σ2e
+
−Vwy (w, y)
Vww (w, y)

ρσy
σe

, (A.16)

one can derive the optimal consumption and portfolio policies before investment given in (50)-

(51). Plugging these expressions into the HJB equation gives a differential equation for g( · ).
The rest of the proof follows from a similar argument to that in Propositions 1 and 3. Q.E.D.

B Complete Markets Solution

To derive the market markets solution, we the agent can trade an additional risky asset which

spans the idiosyncratic risk generated by the Brownian motion eB. Specifically, let the return of
the second risky asset be given by dSt/St = rdt+σSd eBt, where σS is a positive constant. Since

the idiosyncratic risk is by definition independent of the market risk, this risky asset yields an

expected rate of return r and does not demand a risk premium by the CAPM. Therefore, the

implied unique stochastic discount factor ξ is given by −dξt/ξt = rdt+ηdBt with ξ0 = 1, where

η is the Sharpe ratio of the market portfolio.

The agent’s joint consumption, investment and asset allocation decision problem can then

be formulated as a two-stage problem with the agent (i) choosing an investment policy to

maximize the option value so that the agent’s total wealth is maximized; and (ii) choosing

optimal consumption given this total wealth.

We first derive the solution for the lump-sum payoff case. Using the unique stochastic

discount factor ξ, we can write the option value maximization problem as follows:

Φ (x) = max
τ

E

∙
ξτ (Xτ − I)

¯̄̄̄
X0 = x

¸
. (B.1)

By a standard argument, we can derive explicit expressions for the option value and the invest-

ment threshold,

Φ (x) =
1

λx
eλx(x−x

∗), (B.2)

x∗ = I +
1

λx
, (B.3)

where λx = −σ−2x (αx − ρησx) +
q
σ−4x (αx − ρησx)

2 + 2rσ−2x > 0.
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For the flow-sum payoff case, we can similarly write the market option value as

Ψ(y) = max
τ

E

∙Z ∞

τ
ξtYt dt− ξτI

¯̄̄̄
Y0 = y

¸
. (B.4)

By a standard argument, we derive the following explicit expressions for the option value and

the investment threshold:

Ψ (y) =
1

rλy
eλy(y−y

∗), (B.5)

y∗ = rI − αy − ρησy
r

+
1

λy
, (B.6)

where λy = −σ−2y (αy − ρησy) +
q
σ−4y (αy − ρησy)

2 + 2rσ−2y > 0.

We observe that, under complete markets, the lump-sum and flow payoff formulations are

mathematically equivalent, since we may discount cash flows using the unique stochastic dis-

count factor ξ. Specifically, by definingXt = ξ−1t Et

¡R∞
t ξsYsds

¢
= F (Yt) , we can show that the

problems (B.1) and (B.4) are equivalent. Thus, they deliver the same option value Φ (x) = Ψ (y)

and investment timing strategy. However, this equivalence fails when the investment opportu-

nity is not tradable and not spanned by the existing traded assets.

C Approximation Method

In this appendix, we provide our approximation solution methodology. We sketch out the

procedure for the self insurance model with a lump-sum payoff. Essentially identical procedures

may be applied to models in Section 3 and 4. We may divide the procedure into four steps.

Step 1. Solve for the case with deterministic payoff
¡
σ2x = 0

¢
. With σx = 0, risk attitude (γ)

does not affect the investment threshold. The implied option value G0(x) and the investment

threshold x̄0 are both known in closed form and are given by

G0 (x) =
αx
r
exp

∙
r

αx
(x− x̄0)

¸
, x ≤ x̄0, (C.1)

x̄0 = I +
αx
r
. (C.2)

Step 2. Consider small σ2x. Conjecture that the approximate option value and the investment

threshold are

G (x) ≈ G0 (x) +G1 (x)σ
2
x , (C.3)

x̄1 = x̄0 + δ1σ
2 , (C.4)

31



where G0 (x) and x̄0 are solved in Step 1, and G1 (x) and δ1 are the coefficient function and

the coefficient to be determined.

Step 3. Plugging the approximate solution (C.3) into the ODE (12) and boundary conditions

(13)-(14) and keeping the terms up to σ2x, we have the following:

αxG
0
1 (x) +

1

2
G000 (x)−

γr

2
G00 (x)

2 = rG1 (x) , (C.5)

subject to G1(x̄1) = 0 and G01(x̄1) = −rδ1/αx. Note that unlike the original nonlinear ODE
(12) for G (x), we now have a free boundary problem defined by a first-order ODE (C.5) for

G1(x) with certain boundary conditions.

Step 4. Solving the above differential equation gives our reported solution in (16) and

G1 (x) =
r

2α2x
(x̄0 − x) e−

r
αx
(x̄0−x) − γ

2

h
e−

r
αx
(x̄0−x) − e −

2r
αx
(x̄0−x)

i
, x ≤ x̄1.

D Computation Method

We describe the solution method to the free boundary problem described in Proposition 3. The

problems described in other propositions can be solved similarly. We use the projection method

implemented with collocation (Judd (1998)). We do not use the traditional shooting method

or finite difference method because these methods are inefficient for our nonlinear problem and

extensive simulations.

We first rewrite the second order ODE (40) as a system of first-order ODEs. Let ∆ (y) =

g0 (y) . Then (40) can be rewritten as

∆0 (y) =
2

σ2y
(rg (y)− αy∆ (y)) + γr∆(y)2. (D.1)

The boundary conditions are

lim
y→−∞ g (y) = 0, (D.2)

g (y) = f (y)− I, (D.3)

∆ (y) = 1/r. (D.4)

Note that condition (D.2) states that when y goes to minus infinity, the agent never exercises

the investment option, and hence the implied option value is equal to zero.

The idea of the algorithm is to first ignore the smooth-pasting condition (D.4) and then to

solve a two point boundary value problem with a guessed threshold value y0. Since the boundary

condition (D.2) is open ended, we pick a very small negative number y and set g
¡
y
¢
= 0. The
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true value of the threshold is found by adjusting y0 so that the smooth-pasting condition (D.4)

is satisfied. We then adjust y so that the solution is not sensitive to this value. The algorithm

is outlined as follows.

Step 1. Start with a guess y0 and a preset order n.

Step 2. Use Chebyshev polynomial to approximate g and ∆ :

g (y; a) =
nX
i=0

aiTi (y) , ∆ (y; b) =
nX
i=0

biTi (y) , (D.5)

where Ti (y) is the Chebyshev polynomial of order i, and a = (a0, a1, ..., an) and b = (b0, b1, ..., bn)

are 2n+2 constants to be determined. Substitute the above expressions into the preceding sys-

tem of ODEs and evaluate it at n roots of Tn (y) . Together with the two boundary conditions,

we then have 2n+ 2 equations for 2n+ 2 unknowns a = (a0, a1, ..., an) and b = (b0, b1, ..., bn) .

Let the solution be ba and bb.
Step 3. Search for y0 such that the smooth-pasting condition, ∆

³
y0;
bb´ = 1/r, is approxi-

mately satisfied.
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Figure 1: Implied option value G (x). This figure plots the functions x− I and G (x) for the
model in Section 2. The parameter values are set as follows: r = 2%, αx = 0.1, σx = 20%, and
I = 10. The solid curve is for γ = 1, and the dashed curve is for γ = 25.
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Figure 2: Investment threshold, risk aversion, and project volatility. This figure plots
the investment threshold at varying levels of γ and σx for the lump sum payoff case. Other
parameter values are set as r = 2%, αx = 0.1, and I = 10.
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Figure 3: Investment threshold, risk aversion, and project volatility. This figure plots
the investment threshold at varying levels of γ and σy for the flow payoff case. Other parameter
values are set as β = r = 2%, αy = 0.1, and I = 10
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as β = r = 2%, αy = 0.1, σy = 30%, and I = 10.
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