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Abstract

How should taxes, government expenditures, the fiscal and primary surpluses and
government liabilities be set over the business cycle? We assume that the government’s
objective is to maximize the welfare of a representative household, government expen-
ditures increase the utility of the representative household, only distortionary labor
income taxes are available, and the cycle is driven by exogenous technology shocks.
We first consider the commitment case, and characterize the Ramsey equilibrium. In
the case that the utility function is separable in leisure and constant elasticity of sub-
stitution between private and public consumption, taxes, government expenditures and
the primary surplus should all be constant positive fractions of production, and both
government liabilities and the fiscal surplus should be pro-cyclical. Then, we relax the
commitment assumption, and we show numerically that, for a realistic value of the
preferences discount factor, there is a sustainable equilibrium with the same outcome
and value as the Ramsey equilibrium.
Keywords: Fiscal policy, Commitment, Time-consistency, Ramsey equilibrium, Markov
perfect equilibria, Sustainable equilibria.
JEL Classification Number: E62

1 Introduction

How should taxes, government expenditures, the fiscal and primary surpluses and government
liabilities be set over the business cycle? We assume that the government’s objective is to
maximize the welfare of a representative household, government expenditures increase the
utility of the representative household, only distortionary labor income taxes are available,
and the cycle is driven by exogenous technology shocks. We also assume that a complete
set of one-period Arrow securities are available in each period and state, but securities with
longer maturities are not.
First, following Lucas and Stokey (1983), Zhu (1992), and Chari, Christiano and Ke-

hoe (1994), we assume that the government can commit, and characterize the optimal
competitive equilibrium or Ramsey equilibrium. We follow a suggestion by Kydland and
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Prescott (1980) and Chang (1998), we introduce a pseudo state variable (the promised value
of government liabilities), and we divide the Ramsey problem into a first-period problem
and a continuation problem. In the continuation problem, we characterize the optimal com-
petitive equilibrium among the subset of equilibria which depend recursively on the natural
state variables (the technology shock and government liabilities) as well as the pseudo state
variable. Given the solution of the continuation problem, the first-period problem is a static
problem of determining optimally the first-period allocation as well as the next-period values
of the state.
Our main result for the commitment case is that, in the benchmark case that the utility

function is separable between leisure and the composite consumption good, and constant
elasticity of substitution between private and public consumption, taxes, government expen-
ditures and the primary surplus should all be positive constant fractions of production. If the
technology shock is positively serially correlated, both government liabilities and the fiscal
surplus should be pro-cyclical. The intuition is the following. Since households and the gov-
ernment obtain utility from the expected present discounted value of public consumption,
the government should purchase goods in periods and states where the technology shock
and the goods supply are high and the intertemporal price of goods is low, so government
expenditures should be pro-cyclical. Also, since the tax distortion increases more than pro-
portionally with the tax rate, to smooth the tax distortion across periods and states the
government should smooth the tax rate across periods and states, leading to pro-cyclical
taxes. In the benchmark case, both taxes and government expenditures are constant pos-
itive fractions of production, so the primary surplus is a constant fraction of production.
Since the present value of primary surpluses is equal to the positive initial government lia-
bilities, the primary surplus is a positive constant fraction of production. If the technology
shock is positively serially correlated, so is production. Then, the present value of primary
surpluses is pro-cyclical, and so are government liabilities. We finally show that pro-cyclical
government liabilities imply pro-cyclical fiscal surpluses.
We then relax the commitment assumption, and we show numerically that, for a realistic

value of the preferences discount factor, the Ramsey equilibrium is sustainable. As a first
step, following Kydland and Prescott (1977), Klein and Rios-Rull (2003) and Klein, Krusell
and Rios-Rull (2004), we define Markov perfect equilibria, and we compare the outcome of
a Markov perfect equilibrium with that one of the Ramsey equilibrium. Then, adapting
and modifying tools developed in Stokey (1989), Chari and Kehoe (1990), Stokey (1991),
Chang (1998) and Phelan and Stacchetti (2001), we define recursive sustainable equilibria,
and we show numerically that the continuation of the Ramsey equilibrium can be sustained as
a recursive sustainable equilibrium by the threat to revert to a Markov perfect equilibrium.
Since the continuation of the Ramsey equilibrium is sustainable, it follows immediately
that there is a sustainable equilibrium with the same outcome and value as the Ramsey
equilibrium.
The focus of this study is the optimal setting of taxes, government expenditures, fiscal

and primary surpluses and government liabilities over the business cycle, assuming that the
cycle is driven by technology shocks. Two features of the model which are necessary for
the analysis are that government expenditures are endogenous, and the government period
budget constraint does not necessarily balance. Most previous studies model government
expenditures exogenously, and answer a public finance question. Among them, Lucas and
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Stokey (1983) characterize the optimal labor income tax policy with commitment in a model
subject to government expenditures shocks. In addition, they show that the optimal pol-
icy with commitment is time-consistent if a complete set of Arrow-Debreu securities for all
future periods and states is available in each period and state. Chamley (1986) introduces
capital and characterizes the optimal labor and capital income tax policy with commitment.
Zhu (1992) Chari, Christiano and Kehoe (1994), and Stockman (1998) characterize the opti-
mal tax policy with commitment in a model subject to government expenditures shocks and
technology shocks, while Klein and Rios-Rull (2003) characterize the Markov equilibrium.
Other studies let government expenditures be determined endogenously, but add the strong
assumption that the government budget constraints balance in all periods and states. Kyd-
land and Prescott (1980) focus on the optimal recursive competitive equilibrium, Phelan and
Stacchetti (2001) on sequential equilibria, while Klein, Krusell and Rios-Rull (2004) on the
Markov equilibrium.
In what follows, section 2 describes the model and defines the competitive equilibrium.

Section 3 studies the Pareto optimum, which characterizes the optimal competitive equilib-
rium in the case that lump-sum taxes are available. Section 4 assumes that only distortionary
labor income taxes are available and studies the Ramsey equilibrium. Section 5 considers
Markov perfect equilibria, and section 6 shows numerically that the Ramsey equilibrium is
sustainable. Section 7 concludes.

2 Model

Let the state of the economy be described by the first-order Markov process {st}
∞
t=0, st ∈ S,

S finite, with transition probabilities π(st+1|st). The initial state s0 is given. Let s
t ≡ {sj}

t
j=0

be the history of the state up to period t, and let πt(s
t|s0) be the probability of s

t conditional
on s0. Let ξ(st) be the technology shock in period t.
In each period t and history st, households are endowed with n > 0 hours, and they

choose to work nt(s
t) ∈ [0, n] hours. Each hour of work produces ξ(st) units of a non-

storable consumption good, so aggregate production is yt(s
t) ≡ ξ(st)nt(s

t). Production can
be used for private consumption ct(s

t) ≥ 0 or public consumption gt(s
t) ≥ 0. The feasibility

constraints are then
ct(s

t) + gt(s
t) ≤ ξ(st)nt(s

t), all t, st (1)

The households’ and government preferences are described by

∞
∑

t=0

∑

st

βtu(ct(s
t), nt(s

t), gt(s
t))πt(s

t|s0)

where β ∈ (0, 1) is the preferences discount factor, and u(c, n, g) is twice continuously differ-
entiable, strictly increasing in its first and third arguments c and g, strictly decreasing in its
second argument n, strictly concave, and satisfies the Inada conditions limc→0 uc(c, n, g) =∞
for all n, g, limn→n un(c, n, g) = −∞ for all c, g, and limg→0 ug(c, n, g) =∞ for all c, n. Alter-
native, in place of the second condition, one could assume that limn→+∞ un(c, n, g) = −∞ for
all c, g, and that n is large enough so that n < n is optimal in all the following optimization
problems.
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A complete set of one-period Arrow securities is available in each period and history, but
securities with longer maturities are not. Let qt(s

t, st+1) > 0 be the price of consumption
goods in period t + 1 and history {st, st+1} in terms of consumption goods in period t and
history st. Let bt(s

t) be the households’ real assets equal to the government real liabilities
in period t and history st, and let b0(s0) ≥ 0 be given. Let τt(s

t) < 1 be the labor income
tax rate in period t and history st. The primary surplus

δpt (s
t) ≡ τt(s

t)yt(s
t)− gt(s

t)

is the difference between taxes and government expenditures, while the fiscal surplus

δft (s
t) ≡ δpt (s

t)−



1−
∑

st+1∈S

qt(s
t+1)



 bt(s
t)

is the primary surplus minus the interests on government liabilities. The real interest rate
rt(s

t) is defined by
1

1 + rt(st)
≡
∑

st+1∈S

qt(s
t+1)

A competitive equilibrium is an allocation {ct(s
t) ≥ 0, nt(s

t) ∈ [0, n], gt(s
t) ≥ 0,

bt+1(s
t+1)}∞t=0, and a tax and price system {τt(s

t) < 1, qt(s
t+1) > 0}∞t=0 such that:

• Given {gt(s
t), τt(s

t), qt(s
t+1)}∞t=0, {ct(s

t), nt(s
t), bt+1(s

t+1)}∞t=0 solves the representative
household’s problem:

max
{ct(st)≥0,nt(st)∈[0,n],bt+1(st+1)}∞t=0

∞
∑

t=0

∑

st

βtu(ct(s
t), nt(s

t), gt(s
t))πt(s

t|s0)

subject to: ct(s
t)− [1− τt(s

t)]ξ(st)nt(s
t) +

∑

st+1∈S

qt(s
t+1)bt+1(s

t+1) = bt(st), all t, s
t

lim
t→∞

∑

st

(

t
∏

j=1

qj−1(s
j)

)

bt(s
t) = 0

• The government budget constraints are satisfied

bt(st) = τt(s
t)ξ(st)nt(s

t)− gt(s
t) +

∑

st+1∈S

qt(s
t+1)bt+1(s

t+1), all t, st

• The market for consumption goods is in equilibrium:

ct(s
t) + gt(s

t) = ξ(st)nt(s
t), all t, st

By Walras’ Law, the household’s budget constraints and the consumption goods market
equilibrium conditions imply that government budget constraints are satisfied. From the
definition of fiscal surplus and the government budget constraints,

δft (s
t) =

∑

st+1∈S

qt(s
t+1)

(

bt(s
t)− bt+1(s

t+1)
)
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From the necessary conditions of the household’s problem,

qt(s
t+1) =

βt+1uc(ct+1(s
t+1), nt+1(s

t+1), gt+1(s
t+1))πt+1(s

t+1|s0)

βtuc(ct(st), nt(st), gt(st))πt(st|s0)

=
βuc(ct+1(s

t+1), nt+1(s
t+1), gt+1(s

t+1))π(st+1|st)

uc(ct(st), nt(st), gt(st))
, all t, st

[1− τt(s
t)]ξ(st) =

−un(ct(s
t), nt(s

t), gt(s
t))

uc(ct(st), nt(st), gt(st))
, all t, st

These two conditions, evaluated in equilibrium, express the tax and price system as a function
of the allocation, and they define the tax and price system associated with a given allocation.
We will refer to them as the equilibrium conditions for the tax and price system.
Substituting the previous expressions for tax rates and prices into the household’s budget

constraints, we obtain the implementability constraints

uc(ct(s
t), nt(s

t), gt(s
t))[ct(s

t)− bt(s
t)] + un(ct(s

t), nt(s
t), gt(s

t))nt(s
t)

+
∑

st+1∈S

βuc(ct+1(s
t+1), nt+1(s

t+1), gt+1(s
t+1))bt+1(s

t+1)π(st+1|st) = 0, all t, s
t

lim
t→∞

∑

st

βtuc(ct(s
t), nt(s

t), gt(s
t))bt(s

t)πt(s
t|s0) = 0

(2)

Definition 1 (Implementable allocations.) An allocation {ct(s
t) ≥ 0, nt(s

t) ∈ [0, n],
gt(s

t) ≥ 0, bt+1(s
t+1)}∞t=0 is implementable if it satisfies the feasibility constraints 1 with

equality and the implementability constraints 2.

One can show that competitive equilibria are implementable allocations together with their
associated tax and price systems {τt(s

t) < 1, qt(s
t+1) > 0}∞t=0.

Without loss of generality, we focus on implementable allocations for which bt(s
t) is the

following function of current and future consumption and labor,

uc(ct(s
t), nt(s

t), gt(s
t))bt(s

t)

=
∞
∑

j=t

∑

sj

βj−t{uc(cj(s
j), nj(s

j), gj(s
j))cj(s

j) + un(cj(s
j), nj(s

j), gj(s
j))nj(s

j)}πt,j(s
j|st)

where πt,j(s
j|st) is the probability of sj conditional on st.

3 Pareto optimum

We begin considering the Pareto optimum, which characterizes the optimal competitive
equilibrium in the case that lump-sum taxes are available. A Pareto optimum is a contingent
sequence {ct(s

t), nt(s
t), gt(s

t)}∞t=0 which solves the following Pareto problem:

max
{ct(st)≥0,nt(st)∈[0,n],gt(st)≥0}∞t=0

∞
∑

t=0

∑

st

βtu(ct(s
t), nt(s

t), gt(s
t))πt(s

t|s0)

subject to: ct(s
t) + gt(s

t) ≤ ξt(s
t)nt(s

t), all t, st
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The Pareto optimum solves a sequence of static problems. For comparison with the
following sections, we formulate the problem recursively. A recursive Pareto optimum is a
set of policy functions c(s), n(s) and g(s) solving the following static optimization problem:

For all s: max
{c≥0,n∈[0,n],g≥0}

u(c, n, g) subject to: c+ g ≤ ξ(s)n

Since u is continuous and strictly concave, and the constrained region is compact and convex,
a solution exists and is unique. Since u satisfies the Inada conditions, c > 0, n ∈ (0, n) and
g > 0. Since u is strictly increasing in c and g and strictly decreasing in n, the feasibility
constraint holds with equality.
Notice that the solution is a time-invariant function of technology {c(ξ(s)), n(ξ(s)),

g(ξ(s)), µ(ξ(s))}. Moreover, the previous problem consists in maximizing u subject to a
budget constraint where the price of labor in terms of both private and public consumption
is ξ(s), and the income is 0. Then, the effect of an increase in the technology shock on
consumption and labor is the sum of an income effect and a substitution effect. If private
consumption is a normal good, both effects work in the same direction, and private consump-
tion increases, (dc/dξ > 0). The same holds in the case of public consumption (dg/dξ > 0).
As a consequence, if both private and public consumption are normal goods, aggregate pro-
duction, which is equal to the sum of private and public consumption, increases with the
technology shock (dy/dξ > 0). Both private and public consumption are, then, pro-cyclical.
With regard to leisure, however, if leisure is a normal good, the income effect increases
leisure, while the substitution effect decreases it.
The Lagrangian is

L = u(c, n, g) + µ[ξ(s)n− c− g]

where µ ≥ 0 is the Kuhn-Tucker multiplier associated with the feasibility constraint. The
necessary and sufficient conditions are

∂L

∂c
= uc(c, n, g)− µ = 0

∂L

∂n
= un(c, n, g) + µξ(s) = 0

∂L

∂g
= ug(c, n, g)− µ = 0

∂L

∂µ
= ξ(s)n− c− g = 0

which form a system of four equations in the four unknown {c, n, g, µ}. For comparison
with later sections, notice that uc = ug, −un = ξuc and −un = ξug in the Pareto optimum.
The result we are mostly interested is that government expenditures should be set pro-

cyclically. The intuition is that, as long as there is some substitutability between public
consumption in different periods and histories public consumption should be higher in periods
and histories where the supply of consumption goods is higher and the intertemporal price
of consumption goods is lower.
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4 Ramsey equilibrium

We now turn to the analysis of the optimal competitive equilibrium, or Ramsey equilibrium.
Following Lucas and Stokey (1983), the allocation of the Ramsey equilibrium solves the
following Ramsey problem:

max
{ct(st)≥0,nt(st)∈[0,n],gt(st)≥0,bt+1(st+1)}∞t=0

∞
∑

t=0

∑

st

βtu(ct(s
t), nt(s

t), gt(s
t))πt(s

t|s0)

subject to:

uc(ct(s
t), nt(s

t), gt(s
t))[ct(s

t)− bt(s
t)] + un(ct(s

t), nt(s
t), gt(s

t))nt(s
t)

+
∑

st+1∈S

βuc(ct+1(s
t+1), nt+1(s

t+1), gt+1(s
t+1))bt+1(s

t+1)π(st+1|st) = 0, all t, s
t

lim
t→∞

∑

st

βtuc(ct(s
t), nt(s

t), gt(s
t))bt(s

t)πt(s
t|s0) = 0

ct(s
t) + gt(s

t) ≤ ξt(s
t)nt(s

t), all t, st

Notice that we write the feasibility constraints with inequality instead of equality. This allows
to determine the sign of the multipliers without affecting the solution, since the feasibility
constraints are binding at the optimum.
We would like to express the conditions defining implementable allocations (except the

limit condition) recursively. We follow a suggestion by Kydland and Prescott (1980) and
Chang (1998), and define the pseudo state variable (the promised value of government lia-
bilities):

θt(s
t) ≡ uc(ct(s

t), nt(s
t), gt(s

t))bt(s
t), all t, st

After substituting the expression for θt(s
t) in the conditions defining implementable allo-

cations, we restrict attention to the implementable allocations which, in the first period,
depend on the natural state variables st and bt(s

t), while, in the following periods, depend
recursively on the natural state variables st and bt(s

t) as well as the pseudo state variable
θt(s

t). Incidentally, we notice that it would be equivalent (and not more restrictive) to re-
strict attention to the implementable allocations which, in all periods, depend recursively
on the natural state variables st and bt(s

t) as well as the pseudo state variable θt(s
t) for any

arbitrary initial value of the pseudo state variable θ0(s0).
However, for this model, it is possible and convenient to further restrict attention to the

following recursive implementable allocations which, in the periods after the first, do not
depend on bt(s

t):

Definition 2 (Recursive implementable allocations.) A recursive implementable allo-

cation is a set of first-period functions and continuation functions.

The first-period functions are {c0(b0, s0) ≥ 0, n0(b0, s0) ∈ [0, n], g0(b0, s0) ≥ 0, and
θ1(b0, s0, s1)} satisfying

uc(c0, n0, g0)b0(s0) = uc(c0, n0, g0)c0 + un(c0, n0, g0)n0 +
∑

s1∈S

βθ1(s1)π(s1|s0)

c0 + g0 = ξ(s0)n0
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The continuation functions are allocation functions {c(θ, s) ≥ 0, n(θ, s) ∈ [0, n], g(θ, s) ≥
0, b(θ, s)} and a law of motion for the pseudo state variable θ′(θ, s, s′) satisfying:

θ = uc(c, n, g)c+ un(c, n, g)n+
∑

s′∈S

βθ′(s′)π(s′|s)

lim
t→∞

∑

st

βtθt(s
t)πt(s

t|s0) = 0

c+ g = ξ(s)n

θ = uc(c, n, g)b

where θ1(s
1) ≡ θ1(b0, s0, s1), and θt(s

t) is obtained starting from (θ1(s
1), s1) and iterating

with the law of motion θ′(θ, s, s′).

Notice that the first-period functions depend on b and s, while the continuation functions
depend on θ and s. Our strategy is to focus on recursive implementable allocations ignoring
the limit condition in the definition, characterize the recursive solution, and check that the
limit condition is satisfied.
The Ramsey problem, then, can be divided into the following first-period problem and

continuation problem.
The continuation problem consists in finding a value function w(θ, s), and policy functions

{c(θ, s) ≥ 0, n(θ, s) ∈ [0, n], g(θ, s) ≥ 0, θ′(θ, s, s′)} solving the following Bellman equation:

For all θ, s: w(θ, s) = max
{c≥0,n∈[0,n],g≥0,θ′(s′)}

{

u(c, n, g) +
∑

s′∈S

βw(θ′(s′), s′)π(s′|s)

}

subject to: θ = uc(c, n, g)c+ un(c, n, g)n+
∑

s′∈S

βθ′(s′)π(s′|s)

c+ g ≤ ξ(s)n

Once the continuation problem has been solved, government liabilities b(θ, s) are deter-
mined by

b(θ, s) ≡ uc(c(θ, s), n(θ, s), g(θ, s))/θ

In all the numerical examples considered below, for fixed s, the function b(θ, s) is strictly
increasing for values of θ smaller than a threshold (the values corresponding to the good
part of the Laffer curve), and it is strictly decreasing for higher values. Then, we focus on
the values of θ smaller than the threshold, we invert b(θ, s), and we express θ as a function
of b and s — Let θ(b, s) denote the function. Then, we determine the continuation value of
the Ramsey equilibrium as a function of b and s by

For all b, s: vC(b, s) ≡ w(θ(b, s), s)
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Given the value function w(θ, s), the first-period Ramsey problem is

vR(b0(s0), s0) max
{c0≥0,n0∈[0,n],g0≥0,θ1(s1)}

{

u(c0, n0, g0) +
∑

s1∈S

βw(θ1(s1), s
′)π(s1|s0)

}

subject to: uc(c0, n0, g0)b0(s0) = uc(c0, n0, g0)c0 + un(c0, n0, g0)n0 +
∑

s1∈S

βθ1(s1)π(s1|s0)

c0 + g0 ≤ ξ(s0)n0

Notice that, in general, vR(b, s) > vC(b, s), so the continuation of the Ramsey equilibrium is
not a Ramsey equilibrium for the continuation economy.

4.1 Results

The Lagrangian for the continuation problem is

L = u(c, n, g) +
∑

s′∈S

βw(θ′(s′), s′)π(s′|s)

+ λ

[

uc(c, n, g)c+ un(c, n, g)n+
∑

s′∈S

βθ′(s′)π(s′|s)− θ

]

+ µ[ξ(s)n− c− g]

where λ is the Lagrange multiplier associated with the implementability constraint, and
µ ≥ 0 is the Kuhn-Tucker multiplier associated with the feasibility constraints.
Assuming that the solution satisfies c > 0, n ∈ (0, n) and g > 0, and that it satisfies the

feasibility constraints with equality, the necessary conditions are

∂L

∂c
= (1 + λ)uc(c, n, g) + λucc(c, n, g)c+ λunc(c, n, g)n− µ = 0

∂L

∂n
= (1 + λ)un(c, n, g) + λucn(c, n, g)c+ λunn(c, n, g)n+ µξ(s) = 0

∂L

∂g
= ug(c, n, g) + λucg(c, n, g)c+ λung(c, n, g)n− µ = 0

∂L

∂θ′(s′)
= βwθ(θ

′(s′), s′)π(s′|s) + βλπ(s′|s) = 0, all s′

∂L

∂λ
= uc(c, n, g)c+ un(c, n, g)n+

∑

s′∈S

βθ′(s′)π(s′|s)− θ = 0

∂L

∂µ
= ξ(s)n− c− g = 0

wθ(θ, s) =
∂L

∂θ
= −λ
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The Lagrangian for the first-period problem is

L0 = u(c0, n0, g0) +
∑

s1∈S

βw(θ1(s1), s
′)π(s1|s0)

+ λ0

[

uc(c0, n0, g0)[c0 − b0(s0)] + un(c0, n0, g0)n0 +
∑

s1∈S

βθ1(s1)π(s1|s0)

]

+ µ0[ξ(s0)n0 − c0 − g0]

where λ0 is the Lagrange multiplier associated with the implementability constraint, and
µ0 ≥ 0 is the Kuhn-Tucker multiplier associated with the feasibility constraints.
Assuming that the solution satisfies c0 > 0, n0 ∈ (0, n) and g0 > 0, and that it satisfies

the feasibility constraints with equality, the necessary conditions are

∂L0

∂c0
= (1 + λ0)uc(c0, n0, g0) + λ0ucc(c0, n0, g0)[c0 − b0(s0)] + λ0unc(c0, n0, g0)n0 − µ0 = 0

∂L0

∂n0
= (1 + λ0)un(c0, n0, g0) + λ0ucn(c0, n0, g0)[c0 − b0(s0)] + λ0unn(c0, n0, g0)n0 + µ0ξ(s0) = 0

∂L0

∂g0
= ug(c0, n0, g0) + λ0ucg(c0, n0, g0)[c0 − b0(s0)] + λ0ung(c0, n0, g0)n0 − µ0 = 0

∂L′
∂θ1(s1)

= βwθ(θ1(s1), s1)π(s1|s0) + βλ0π(s1|s0) = 0, all s1

∂L0

∂λ0
= uc(c0, n0, g0)[c0 − b0(s0)] + un(c0, n0, g0)n0 +

∑

s1∈S

βθ1(s1)π(s1|s0) = 0

∂L0

∂µ0
= ξ(s0)n0 − c0 − g0 = 0

vRb (b0(s0), s0) =
∂L

∂b0(s0)
= −λ0uc(c0, n0, g0)

From the necessary conditions of the first-period problem,

−λ0(b0(s0), s0) = wθ(θ1(s1), s1), all s1

so wθ(θ1(s1), s1) is constant and equal to λ0 for all s1. From the necessary conditions of the
continuation problem,

wθ(θ, s) = −λ(θ, s) = wθ(θ
′(θ, s, s′), s′), all s′

It follows that wθ(θ, s) is constant along the equilibrium path, i.e. for all the values of
(θ, s) which are reached starting from (θ1(s1), s1), all s1, and iterating on the law of motion
θ′(θ, s, s′) for all s′. Also, λ(θ, s) is constant and equal to λ0 along the equilibrium path as
well. Then, recalling that b0(s0) ≥ 0 and gt(s

t) > 0 all t and st, one can show that λ > 0
following the same argument as in Lucas and Stokey (1983).
Also, along the equilibrium path, θ′(θ, s, s′) is not a function of θ or s. It follows that,

along the equilibrium path and after the first period, it is possible to express the current
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value of θ as a function of the current value of s — Let θ(s) denote the function. The limit
condition then becomes

lim
t→∞

∑

st

βtuc(ct(s
t), nt(s

t), gt(s
t))bt(s

t)πt(s
t|s0) = 0

lim
t→∞

∑

st

βtθt(s
t)πt(s

t|s0) = 0

lim
t→∞

∑

st

βtθ(st)πt(s
t|s0) = 0

and is satisfied since θ(st) takes a finite set of values and is therefore bounded, while β t

converges to zero.
Comparing the necessary conditions of the first-period and continuation problems, and

recalling that λ = λ0, it follows that period 0 is special whenever b0(s0) > 0. The reason
is that the real government liabilities in period 0 are given and are financed through distor-
tionary taxes in other periods and histories. To minimize the tax distortions, the benevolent
government has an incentive to decrease the price of consumption goods in period 0 relative
to other periods and histories.
In what follows, we restrict attention to the equilibrium path and to periods following the

first one. For convenience, we rewrite the following necessary conditions of the continuation
problem:

(1 + λ)uc(c, n, g) + λucc(c, n, g)c+ λunc(c, n, g)n− µ = 0

(1 + λ)un(c, n, g) + λucn(c, n, g)c+ λunn(c, n, g)n+ µξ(s) = 0

ug(c, n, g) + λucg(c, n, g)c+ λung(c, n, g)n− µ = 0

ξ(s)n− c− g = 0

(3)

Given the constant λ, the previous conditions form a system of four equations in the four
unknown c, n, g and µ.
Assuming that the solution exists and is unique, it is a time-invariant function of tech-

nology {c(ξ(s)), n(ξ(s)), g(ξ(s)), µ(ξ(s))}, i.e. it does not depend on θ and it depends on
s only through the technology shock ξ(s). It follows that production y the tax rate τ and
the primary surplus δp are time-invariant functions of technology as well. Prices q depend
on the current as well as the next period technology. Also, recalling that bt(s

t) is a function
of current and future consumption and labor, government liabilities bt(s

t) are time-invariant
functions of the current state st, and so is the fiscal surplus δf . If ξ(s) is a one-to-one
function, both government liabilities and the fiscal surplus are time-invariant functions of
technology. We emphasize that, in the periods following the first one, all the variables of
interest in this economy are time-invariant functions of the current state s, so they are all
perfectly correlated with each other.
It is instructive to consider the case that u is separable in its three arguments, and

compare some properties of the Ramsey equilibrium and the Pareto optimum. In the Ramsey
equilibrium, −(1 + λ)un − λunnn = ξug, so −un < ξug, while −un = ξug in the Pareto
optimum. Also, −(1 + λ)un − λunnn = (1 + λ)ξuc + λξuccc, so −un < ξuc, while −un =
ξuc in the Pareto optimum. Then, recalling that (1 − τ)ξuc = −un, the tax rate τ is
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strictly positive. Intuitively, the distortionary labor income tax tends to discourage labor,
production, private consumption and public consumption relative to the Pareto optimum.
Finally, (1 + λ)uc + λuccc = ug, so the sign of ug − uc is the same as the sign of uc + uccc,
while uc = ug in the Pareto optimum.

4.2 Numerical solution

The results so far suggest the following efficient strategy to solve the Ramsey problem nu-
merically.
First, consider the continuation problem. Using the necessary conditions 3, c, n, g and

µ are expressed as functions of λ and s — Let c(λ, s), n(λ, s), g(λ, s) and µ(λ, s) denote the
four functions. Then, recalling that λ is constant along the equilibrium path, the value ω
associated with λ and s is determined by the functional equation

For all λ, s: ω(λ, s) = u(c(λ, s), n(λ, s), g(λ, s)) +
∑

s′∈S

βω(λ, s′)π(s′|s)

Notice that, for fixed λ, the previous is a simple linear system of equations in the unknowns
ω(λ, s) for all s ∈ S. Let ω(λ) be the column vector of the unknowns ω(λ, s), let u(λ) be the
column vector of the constants u(c(λ, s), n(λ, s), g(λ, s)), and let P be the transition matrix
of the state. Then,

ω(λ)− βPω(λ) = u(λ)

ω(λ) = (I − βP )−1u(λ)

where I is the identity matrix.
The next step is to determine the function λ(θ, s). However, it is convenient to first

determine θ as a function of λ and s. Recall that, along the equilibrium path and after the
first period, the current value of θ is a function of the current value of s. Then, the function
θ(λ, s) is determined by the functional equation

For all λ, s: uc(c(λ, s), n(λ, s), g(λ, s))c(λ, s) + un(c(λ, s), n(λ, s), g(λ, s))n(λ, s)

+
∑

s′∈S

βθ(λ, s′)π(s′|s)− θ(λ, s) = 0

Here again, for fixed λ, the previous is a simple linear system of equations in the unknowns
θ(λ, s) for all s ∈ S. Let θ(λ) be the column vector of the unknowns θ(λ, s), let uc(λ)c(λ) +
un(λ)n(λ) be the column vector of the constants, and let P be the transition matrix of the
state. Then,

θ(λ)− βPθ(λ) = uc(λ)c(λ) + un(λ)n(λ)

θ(λ) = (I − βP )−1[uc(λ)c(λ) + un(λ)n(λ)]

where I is the identity matrix.
Notice that, for fixed s, θ(λ, s) may have the properties of a Laffer curve, i.e. it may

be inverted-U shaped, so the correspondence λ(θ, s) may have two values for small values
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of θ, and no values for large values of θ. This is one reason why it is convenient to first
characterize θ(λ, s) rather than λ(θ, s). In the case that θ(λ, s) has the properties of a Laffer
curve, we focus on the good part of the Laffer curve, i.e. the part of the curve corresponding
to small values of λ until the maximum value of θ is reached. On that part, we invert
the function θ(λ, s), and obtain λ(θ, s). Alternatively, for fixed s, θ(λ, s) may be a strictly
increasing function for all λ > 0, as it occurs in the numerical examples considered below.
In this case, we invert the function θ(λ, s) for all λ > 0. Once λ(θ, s) has been obtained, the
value function is determined by w(θ, s) = ω(λ(θ, s), s), and similarly the associated policy
functions.
Government liabilities b as a function of λ and s are determined by

b = θ(λ, s)/uc(c(λ, s), n(λ, s), g(λ, s))

For fixed s, b(λ, s) may have the properties of a Laffer curve, as it occurs in the numerical
example considered later in this section. Then, we focus on the good part of the Laffer curve,
invert the function b(λ, s) on that part, obtain λ(b, s), and determine the value function by
vC(b, s) = ω(λ(b, s), s).
Once w(θ, s) has been obtained, determining the value function vR(b, s) and the as-

sociated policy functions is a simple static optimization problem. We substitute the two
constraints into the objective function and use a grid search method. Alternatively, one can
use the necessary conditions to determine c, g, n, µ and b as functions of (λ, s). We find
that this second method works only for positive values of b.

4.3 Benchmark utility function

We now characterize the Ramsey equilibrium path in the periods following the first one in
the case that the utility function is

u(c, n, g) ≡

{

Af(c,g)1−σ−1
1−σ

− Φn1+ϕ

1+ϕ
σ > 0, σ 6= 1

A log(f(c, g))− Φn1+ϕ

1+ϕ
σ = 1

f(c, g) ≡

{
(

αc
ε−1
ε + (1− α)g

ε−1
ε

) ε
ε−1

ε > 0, ε 6= 1

cαg1−α ε = 1

where A > 0, α ∈ (0, 1), Φ > 0 and ϕ > 0. The utility function is separable between the
composite consumption good and labor. The elasticity of substitution between private and
public consumption is constant and equal to ε. Although limn→n un(c, n, g) = −Φn

ϕ > −∞
we assume that n is large enough so that the solution is still described by the necessary
conditions 3.
Let us start considering the simpler case ε = 1. In this case, the necessary conditions 3

become

[1 + λα(1− σ)]uc − µ = 0

(1 + λ+ λϕ)un + µξ = 0

[1 + λα(1− σ)]ug − µ = 0

ξ(s)n− c− g = 0
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where we have used uccc = [α(1− σ)− 1]uc, ugcc = α(1− σ)ug, and unnn = ϕun. It is easy
to show that λ satisfies 1 + λα(1− σ) > 0.
Notice that uc = ug like in the Pareto optimum. However, −(1 + λ + λϕ)un = ξ[1 +

λα(1− σ)]uc, so −un < ξuc = ξug, while −un = ξuc = ξug in the the Pareto optimum.
Using the expression for the tax rate,

1− τ =
−un
ξuc

=
1 + λα(1− σ)

1 + λ+ λϕ
< 1

so the tax rates are strictly positive and constant along the equilibrium path. Taxes τξn
are then a strictly positive constant fraction of production. Moreover, from uc = ug, it
follows that private consumption c and public consumption g are respectively strictly positive
constant fractions α and 1 − α of production. The primary surplus δp is then a constant
fraction τ − (1− α) of production.
From c = αξn and g = (1 − α)ξn, it follows that uc is equal to B(ξn)−σ, where B ≡

A (αα(1− α)1−α)
1−σ
. Then,

(1 + λ+ λϕ)(−un) = [1 + λα(1− σ)]ucξ

(1 + λ+ λϕ)Φnϕ = [1 + λα(1− σ)]B(ξn)−σξ

(1 + λ+ λϕ)Φnϕ+σ = [1 + λα(1− σ)]Bξ1−σ

so labor n is a strictly increasing (decreasing) function of technology ξ if and only if 1−σ > 0
(1− σ < 0). Also,

(1 + λ+ λϕ)Φnϕ = [1 + λα(1− σ)]B(ξn)−σξ

(1 + λ+ λϕ)Φ(ξn)ϕ+σ = [1 + λα(1− σ)]Bξ1+ϕ

so production ξn is a strictly increasing function of technology ξ.
The following conclusions depend on the assumption that b0(s0) ≥ 0. With analogous

arguments, one can show that they are reversed in the case that b0(s0) < 0. First notice
that, in the case that b0(s

0) = 0, period 0 should be treated as all other periods and histories,
so the primary surplus should be equal to zero in all periods and histories, implying that
bt(s

t) = 0 all t and st. Suppose that b0(s0) > 0 implies b1(s
1) > 0 for at least one history

s1. For instance, this is the case in the numerical examples considered below. Then, the
following holds. Since b1(s

1) is equal to the present discounted value of current and future
primary surpluses, and since the primary surplus is a constant fraction of production, the
primary surplus is strictly positive in all periods and histories. Since government liabilities
bt(s

t) are equal to the present discounted value of current and future primary surpluses, they
are strictly positive in all periods and histories. Also, since production is strictly increasing
in technology, the primary surplus is strictly increasing in technology.
Assume that the transition probability is strictly monotone (page 220 of Stokey and

Lucas with Prescott (1989)), so the expected future value of a strictly increasing function of
the state is strictly increasing in the current state. Also, assume that technology ξ(s) is a
strictly increasing function of the state, so the expected future value of a strictly increasing
function of technology is strictly increasing in the current technology. (For simplicity, one
could directly assume that ξ(s) = s.) These assumptions imply that technology is positively
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serially correlated. Then, the expected value of the primary surplus in any future period
and history is strictly increasing in current technology. Since government liabilities bt(s

t) are
equal to the present discounted value of current and future primary surpluses, government
liabilities are strictly increasing in technology and are pro-cyclical. Then, the fiscal surplus
tends to be positive (negative) in periods of high (low) production, and tends to be pro-
cyclical. For instance, in the case that there are only two states s1 < s2, so ξ(s1) < ξ(s2),
government liabilities take a strictly smaller value when the state is s1 than when it is s2.
Then, from the previously derived expression

δft (s
t) =

∑

st+1∈S

qt(s
t+1)

(

bt(s
t)− bt+1(s

t+1)
)

it follows that δf is strictly negative (positive) when the state is s1 (s2). In this case, then,
the fiscal surplus is strictly increasing in technology and pro-cyclical.
Most of the previous conclusions hold in the general case of constant elasticity of substi-

tution ε. First, using the necessary conditions, one guesses and verifies that the private con-
sumption c and public consumption g are strictly positive constant fractions of production.
Then, one shows that uccc and uc are proportional, and that ugcg and ug are proportional.
Also, uc is proportional to a power of production ξn. The arguments to show the other
conclusions parallel the case of unitary elasticity. Production is strictly increasing in tech-
nology. Taxes and the primary surplus are strictly positive constant fractions of production.
Government liabilities are pro-cyclical, and the fiscal surplus tends to be pro-cyclical.

4.4 Numerical example

The following numerical example document the previous conclusions. It has been solved
using the numerical strategy described above. The utility function is

u(c, n, g) ≡ A[α log(c) + (1− α) log(g)]− Φ
n1+ϕ

1 + ϕ

with A = 1, α = 0.75, Φ = 1 and ϕ = 1. Total available hours are n = 4. The preferences
discount factor is β = 0.99. The state space is S = {s1, s2}, and the transition matrix is
[0.95, 0.05; 0.05, 0.95]. The technology shock is ξ(s1) = 0.9 and ξ(s2) = 1.1. The parameter
values are chosen so that, approximately, in the steady state, the ratio of public consumption
to private consumption is 1/3, the ratio of labor to total available hours is 1/4, the labor
supply elasticity is 1, the real interest rate is 4%, and the first-order serial correlation and
standard deviation of the technology shock are respectively 0.9 and 10%. We chose an
unrealistically high value for the standard deviation in order to plot clearer figures. The
utility is separable in its three arguments, and the elasticity of substitution between private
and public consumption is constant and equal to one.
Let us first focus on the solution of the continuation problem. Figures 1 and 2 plot several

functions of λ for each level of s. Recall that λ is constant along the equilibrium path. Then,
all the variables of interest are perfectly correlated with each other, and, for each fixed λ, the
sign of the correlation can be easily inferred from the figures. Notice that we also consider
small values of λ corresponding to negative values of initial government liabilities b0(s0).
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For this economy, (1 + λ + λϕ)Φnϕ+1 = 1, so labor n does not depend on s. Aggregate
production ξn is the product of technology and labor. Private and public consumption are
respectively constant fractions α and 1 − α of aggregate production. The multiplier µ is
equal to the inverse of aggregate production.
The tax rate τ is constant and equal to (λ+ λϕ)/(1 + λ+ λϕ). The ratio of the primary

surplus δp to aggregate production is then constant and equal to τ − (1 − α). Notice that
there is a threshold value λ∗ (equal to 1/6 in this numerical example) such that δp/ξn is a
strictly negative constant for λ < λ∗, and a strictly positive constant for λ > λ∗. Then, for
λ < λ∗, the primary surplus is negative in all periods and counter-cyclical, while for λ > λ∗

it is positive in all periods and pro-cyclical. The same applies to debt b. The fiscal surplus
δf is counter-cyclical for λ < λ∗, and pro-cyclical for λ > λ∗, and takes both positive and
negative values along all equilibrium paths.
One can show that, since utility is logarithmic, the value of debt θ(λ, s) does not depend

on s, and is strictly increasing for all λ > 0, so it does not have the properties of a Laffer
curve. By considering a larger domain for λ, the last two panels show that both the primary
surplus δp and the debt b have the properties of a Laffer curve. By focusing on values of
λ lower than the value that maximizes the primary surplus (equal to 1.5 in this numerical
example) we restrict attention to the good part of the Laffer curve.
Let us now turn to the first-period problem, and compare its optimal policies with the

ones of the continuation problem. Figures 3 and 4 plot the relevant variables as functions
of debt d for each level of s, for the continuation problem. Figures 5 and 6 plot the relevant
variables as functions of debt d for each level of s, for the first-period problem.
There are important qualitative differences. In the continuation problem, the higher

government liabilities, the higher taxes and the primary surplus, in accordance with the
general principle that the tax distortion should be smoothed across periods and states.
Then, the higher the tax rate, the lower labor, production and consumption.
The first-period problem, however, is a one-period problem taking current government

liabilities as given. In the case that government liabilities are strictly positive, since current
government liabilities must be financed by (current and) future surpluses, the higher real
government liabilities b, the stronger the governments incentive to decrease the intertemporal
price of current consumption goods in terms of future consumption goods. Hence, the higher
government liabilities, the stronger the government’s incentive to decrease the tax rate, to
increase labor, production and consumption, and to decrease the marginal utility of current
consumption. In the numerical example, the incentive outweighs the general principle that
the tax distortion should be smoothed across periods and states.
This, however, need not be true in general. The lower the preferences discount factor β,

the more important becomes the general principle of tax smoothing relative to the govern-
ment’s incentive to decrease the intertemporal price of current consumption goods in terms
of future consumption goods. For instance, figures 7 and 8 plot the relevant variables as
functions of debt d for each level of s, for the first-period problem, for the case that β = 0.5.
In this case, the policies of the first-period problem are qualitative similar to those of the
continuation problem. Specifically, the higher government liabilities, the higher the tax rate.
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5 Markov perfect equilibria

We now turn to the study of the optimal policy without commitment. In each period t, first
the state variable st, the technology shock ξ(st) and the government real liabilities bt(s

t) are
realized, then the government chooses the tax rate τt and public consumption gt, and finally
the households choose private consumption ct and labor nt. In this section, we characterize
Markov perfect equilibria, studied by Klein and Rios-Rull (2003) and Klein, Krusell and
Rios-Rull (2004), and show that their values are lower than the Ramsey equilibrium. In the
next section, we determine whether the value of the Ramsey equilibrium can be sustained
by the threat to revert to a Markov perfect equilibrium.
In the words of Kydland and Prescott (1977), the policy associated with a Markov perfect

equilibrium is the optimal policy given the past choices of households and the government,
and given that the future policy is chosen in the same way. In the next section, we will
focus on sustainable equilibria. Markov perfect equilibria are sustainable equilibria which
depend recursively on the natural state variables only, namely st and bt(s

t). Hence, they
are self-sustainable in the sense that they can be sustained without any threat to revert to
other sustainable equilibria. They are also the limit as the time horizon goes to infinity of
the sustainable equilibria of the finite-horizon economy.
A Markov perfect equilibrium is a set of a value function v(b, s), associated policy func-

tions c(b, s), n(b, s), g(b, s), b′(b, s, s′), and a future policy function θ(b, s) to be adopted in
all future periods, which satisfy

• Given the future policy function θ(b, s), the value function v(b, s) and its associated
policy functions solve the Bellman equation:

For all b, s: vM(b, s) = max
{c≥0,n∈[0,n],g≥0,b′(s′)}

{

u(c, n, g) +
∑

s′∈S

βvM(b′(s′), s′)π(s′|s)

}

subject to: uc(c, n, g)b = uc(c, n, g)c+ un(c, n, g)n+
∑

s′∈S

βθ(b′(s′), s′)π(s′|s)

c+ g ≤ ξ(s)n

• The future and the current policy functions are the same:

For all b, s: θ(b, s) = uc(c(b, s), n(b, s), g(b, s))b

In the Ramsey equilibrium, the government chooses optimally a unique set of policy
functions to be adopted both in the current period and in all future periods. In particular,
the government chooses the future policy functions taking into full account how the current
households’ choices depend on the future policy functions. In a Markov perfect equilibrium,
however, the government chooses optimally a set of policy functions to be adopted only in
the current period, for a given set of policy functions to be adopted in all future periods.
Only after the current period optimization problem has been solved, the requirement that
current and future policy functions be the same is added. It might help the intuition con-
sidering the government in the current period as a different agent from the government in
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all future periods, so it cannot choose the policy functions to be adopted in all future pe-
riods. The future policy functions will be chosen by the future government taking as given
the households’ choices in the current period, and ignoring their dependence on the future
policy functions. The value of a Markov perfect equilibrium is, then, lower, in general, than
the value of the Ramsey equilibrium.

5.1 Results

The Lagrangian is

L = u(c, n, g) +
∑

s′∈S

βvM(b′(s′), s′)π(s′|s)

+ λ

[

uc(c, n, g)c+ un(c, n, g)n+
∑

s′∈S

βθ(b′(s′), s′)π(s′|s)− uc(c, n, g)b

]

+ µ[ξ(s)n− c− g]

where λ is the Lagrange multiplier associated with the implementability constraint, and
µ ≥ 0 is the Kuhn-Tucker multiplier associated with the feasibility constraints.
Assuming that the solution satisfies c > 0, n ∈ (0, n) and g > 0, and that it satisfies the

feasibility constraints with equality, the necessary conditions are

∂L

∂c
= (1 + λ)uc(c, n, g) + λucc(c, n, g)(c− b) + λunc(c, n, g)n− µ = 0

∂L

∂n
= (1 + λ)un(c, n, g) + λucn(c, n, g)(c− b) + λunn(c, n, g)n+ µξ(s) = 0

∂L

∂g
= ug(c, n, g) + λucg(c, n, g)(c− b) + λung(c, n, g)n− µ = 0

∂L

∂b′(s′)
= βvMb (b

′(s′), s′)π(s′|s) + βλθb(b
′(s′), s′)π(s′|s) = 0 all s′

∂L

∂λ
= uc(c, n, g)c+ un(c, n, g)n+

∑

s′∈S

βθ(b′(s′), s′)π(s′|s)− uc(c, n, g)b = 0

∂L

∂µ
= ξ(s)n− c− g = 0

vMb (b, s) =
∂L

∂b
= −λuc(c, n, g)

Also, from the Markov perfect equilibrium definition,

For all b, s: θ(b, s) = uc(c(b, s), n(b, s), g(b, s))b

θb(b, s) = uc(c(b, s), n(b, s), g(b, s)) +
duc(c(b, s), n(b, s), g(b, s))

db
b

Relative to the Ramsey equilibrium, it is harder to characterize how variables co-vary
with the technology shock. First, λ is not constant any more but depends on b and s.
Also, government liabilities b appear in the necessary conditions. Next-period government
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liabilities b′(b, s, s′) depend on the next-period state s′ as well, i.e. government liabilities are
state-contingent and vary with the technology shock. Hence, as s and ξ(s) vary, b varies as
well, and the full effect of s and ξ(s) on any variable is the sum of its direct effect and its
indirect effect through b.
The following observations, however, may be helpful. On one hand, the higher real gov-

ernment liabilities b, the higher the tax rate, the lower labor, production and consumption,
the higher the marginal utility of consumption uc. On the other hand, since current govern-
ment liabilities b must be financed by (current and) future surpluses, the higher real govern-
ment liabilities b, the stronger the governments incentive to increase labor and consumption
and decrease the marginal utility of consumption uc, in order to decrease the intertemporal
price of current consumption goods. This incentive is stronger when government liabilities
are higher, and disappears when they are equal to zero. Hence, although the sign of the
term duc = db in the last equation is uncertain, it is positive for values of b sufficiently close
to zero.
Then, at least for small values of b, from the previous conditions,

−vMb (b, s)

uc(c, n, g)
= λ(b, s) =

−vMb (b
′(s′), s′)

θb(b′(s′), s′)
all s′

=
−vMb (b

′(s), s)

θb(b′(s), s)

=
−vMb (b

′(s), s)

uc(b′(s), s)

uc(b
′(s), s)

θb(b′(s), s)
<
−vMb (b

′(s), s)

uc(b′(s), s)
= λ(b′(s), s)

which shows that λ(b, s), a measure of tax distortion, increases over time for any fixed s.
Since λ(b, s) is strictly increasing in b on the good part of the Laffer curve, government
liabilities increase over time.
Recall that government liabilities b are stationary in the Ramsey equilibrium. Relative

to the Ramsey policy, Markov perfect policies take b as given and decrease uc in order to
decrease the intertemporal value of b. This is implemented through a lower tax rate leading
to higher labor, production and consumption and a lower marginal utility of consumption uc
relative to the Ramsey policy. As a result of the lower tax rate, future government liabilities
b are higher relative to the Ramsey policy, and therefore government liabilities increase over
time. Notice that the difference between the Ramsey policy and Markov perfect policies
is that the Ramsey policy commits to a fixed current uc, while Markov perfect policies
manipulate it. In fact, if uc were held fixed in the expression θ = ucb, then θb = uc, so
λ(b, s) = λ(b′(s), s), and the Markov perfect policy would be the same as the Ramsey policy.
A Markov perfect equilibrium can be computed with the following two methods. Given

an initial function θ(b, s), one can determine the other functions by the standard value
function iterations method. Then, one can use the just obtained functions to update the
function θ(b, s), and iterate until convergence. Alternatively, given initial functions θ(b, s)
and vM(b, s), obtain the other functions solving the simple static optimization problem in the
definition of Markov perfect equilibrium. Then, using the just obtained functions, update
both functions θ(b, s) and vM(b, s) simultaneously, and iterate until convergence. This second
method corresponds to computing the Markov perfect equilibrium of the infinite horizon
economy as the limit as the time horizon goes to infinity of the Markov perfect equilibrium
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of the finite horizon economy.
We have used the second method to compute a Markov perfect equilibrium for the same

numerical example considered at the end of section 4. However, we have restricted the
choice of consumption c to be below 0.75, which is the maximum value that it takes in the
continuation of the Ramsey equilibrium. This amounts to constraining the government not
to depart too far from the optimal competitive equilibrium. In particular, the government
never chooses a negative tax rate. We conjecture that the constraint on consumption gives
discipline to the government, and allows it to reach a strictly higher value vM(b, s). Without
the constraint, indeed, we find that vM(b, s) = −∞ for all positive values of b. However,
we do not emphasize this finding because we are not confident enough that the numerical
method without the constraint delivers correct results. Figures 9 and 10 plot the relevant
variables as functions of debt d for each level of s. Contrary to our previous argument, in
this numerical example, consumption and the marginal utility of consumption do not change
with b.

6 Ramsey as sustainable equilibrium

In this section, we show that, for a realistic value of the preferences discount factor β, the
value of the Ramsey equilibrium can be sustained by a sustainable equilibrium, as defined
by Chary and Kehoe (1990).
Histories are re-defined as including the government’s choices of tax rates and public

consumption. A sustainable equilibrium is a sequence of functions of the histories which is a
competitive equilibrium and satisfies the requirement that the government is optimizing at
each period and history. Chang (1998) and Phelan and Stacchetti (2001) show that, after
adding the continuation value of sustainable equilibria as a state variable, the set of values of
all sustainable equilibria can be characterized recursively. Also, the value of any sustainable
equilibrium can be obtained with a recursive sustainable equilibrium.
Here, we adapt their arguments to our model, modifying them. A recursive sustainable

equilibrium is a value correspondence V (b, s), policy functions c(v, b, s), n(v, b, s), g(v, b, s),
b′(v, b, s, s′), a law of motion v′(v, b, s, c, n, g, b′(s′), s′) : (b′, s′)→ V (b′, s′) for the continuation
value, and a future policy function θ(v, b, s), satisfying:

• Given v′(v, b, s, c, n, g, b′(s′), s′) and θ(v, b, s), the value correspondence V (b, s) and the
policy functions solve the Bellman equation:

For all b, s, all v ∈ V (b, s):

v = max
{c≥0,n∈[0,n],g≥0,b′(s′)}

{

u(c, n, g) +
∑

s′∈S

βv′(c, n, g, b′(s′), s′)π(s′|s)

}

subject to:

uc(c, n, g)b = uc(c, n, g)c+ un(c, n, g)n+
∑

s′∈S

βθ(v′(c, n, g, b′(s′), s′), b′(s′), s′)π(s′|s)

c+ g ≤ ξ(s)n
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• The future and the current policy functions are the same:

For all b, s, for all v ∈ V (b, s): θ(v, b, s) = uc(c(v, b, s), n(v, b, s), g(v, b, s))b

First, notice that, if the value correspondence V (b, s) is a value function, so the law of mo-
tion for the continuation value can depend only on (b′(s′), s′), then the recursive sustainable
equilibrium is a self-sustainable equilibrium.
In the general case that V (b, s) is not a function, the law of motion for the continuation

value plays a crucial role. The future continuation value v ′(c, n, g, b′(s′), s′) as a function
of the last two arguments is constrained to be in the value correspondence V (b′(s′), s′) but
can vary with the current government choices c, n, g, b′(s′). The current government takes
as given the law of motion for the continuation value, and correctly believes that the future
continuation value depends on its current choices. This may give an extra-incentive to the
current government to make a choice closer to the Ramsey choice.
To determine whether the value vR(b, s) of the Ramsey equilibrium can be sustained

by a sustainable equilibrium, we first determine whether the continuation value vC(b, s) of
the Ramsey equilibrium can be sustained by the following recursive sustainable equilibrium.
Let V (b, s) = {vM(b, s), vC(b, s)}, so the value correspondence is made of only two value
functions, the one of a Markov perfect equilibrium and the one of the continuation value of
the Ramsey equilibrium. If v = vM(b, s), the law of motion for the continuation value is
equal to vM(b′(s′), s′) no matter what is the current government’s choice. If v = vC(b, s),
however, the law of motion for the continuation value is equal to vC(b′(s′), s′) if the current
government’s choice is the Ramsey choice, and it is equal to vM(b′(s′), s′) otherwise. Let the
policy functions be the ones associated with the continuation of the Ramsey equilibrium and
the Markov perfect equilibrium. The previous is a recursive sustainable equilibrium in the
case that vC(b, s) ≥ vM(b, s) for all (b, s).
In the case that vC(b, s) ≥ vM(b, s) for all (b, s), we only need to establish that, in the

first period, vR(b, s) ≥ vM(b, s) for all (b, s), which is immediately true since the Ramsey
equilibrium is the optimal competitive equilibrium. It follows that the value of the Ramsey
equilibrium is higher than the value of the Markov perfect equilibrium at each period and
history, and the value vR(b, s) of the Ramsey equilibrium can be sustained by the threat to
revert to a Markov perfect equilibrium.
Figure 11 plots the value functions vR(b, s), vC(b, s) and vM(b, s) for the numerical ex-

ample described at the end of section 4. All the value functions are decreasing in debt b
and increasing in the state s. Notice that vR(b, s) > vC(b, s) > vM(b, s) all (b, s). Since the
condition vC(b, s) ≥ vM(b, s) holds for all (b, s), the continuation of the Ramsey equilibrium
can be sustained as a recursive sustainable equilibrium. Then, the Ramsey equilibrium can
be sustained as well.
We emphasize that the condition vC(b, s) ≥ vM(b, s) for all (b, s) needs not be true

in general, and it ceases to hold when the preferences discount factor β decreases below a
threshold value. For the numerical example considered, the threshold value is below β = 0.8.
Also, notice that the value of the Ramsey equilibrium cannot be sustained by a recursive

sustainable equilibrium as defined in this paper. To sustain it as a recursive sustainable
equilibrium as in Chang (1998) and Phelan and Stacchetti (2001), one should include in
the state variables the promised value of government liabilities, or another variable that
equivalently keeps track of the competitive equilibrium conditions.
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7 Conclusion

Our main result under commitment is that, in a benchmark case, taxes, government ex-
penditures and the primary surplus should all be constant positive fractions of production,
and both government liabilities and the fiscal surplus should be pro-cyclical. In addition, we
have shown that, for a realistic value of the preferences discount factor, there is a sustainable
equilibrium with the same outcome and value as the Ramsey equilibrium.
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Figure 1: Continuation of the Ramsey equilibrium. The functional form of the utility func-
tion implies that labor does not depend on s. Production is the product of the technology
shock with labor. All the other variables are constant fractions of production. The primary
surplus δp is negative and counter-cyclical for small values of λ, positive and pro-cyclical for
large values of λ.
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Figure 2: Continuation of the Ramsey equilibrium. The functional form of the utility func-
tion implies that the value of debt θ does not depend on s. The debt b is negative and
counter-cyclical for small values of λ, positive and pro-cyclical for large values of λ. The
fiscal surplus δf is counter-cyclical for small values of λ, and pro-cyclical for large values of
λ. Both the primary surplus δp and the debt b have the properties of a Laffer curve.
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Figure 3: Continuation of the Ramsey equilibrium.
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Figure 4: Continuation of the Ramsey equilibrium.
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Figure 5: Ramsey equilibrium.
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Figure 6: Ramsey equilibrium.
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Figure 7: Ramsey equilibrium. β = 0.5.
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Figure 8: Ramsey equilibrium. β = 0.5.
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Figure 9: Markov perfect equilibrium.
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Figure 10: Markov perfect equilibrium.
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Figure 11: Value functions of b and s. Notice that vR(b, s) > vC(b, s) > vM(b, s) all (b, s).

34


