Sticky Prices and the Optimal Return to Money

Ricardo Cavalcanti

Getulio Vargas Foundation

 and

Andres Erosa

University of Toronto

Motivation

- Traditional view on Business Cycles and Money: Money matters!
 - need devices to break Classical Dichotomy: signal extraction problem, menu costs, nominal contracts, segmented markets.
 - Lucas (1972): monetary policy is noisy.
 - Wallace (1997) and Katzman, Keenan and Wallace (2003).
- Our view: correlations between monetary and real variables are not accidental but the result of frictions in the real sector that money alleviates.

What we do:

- Introduce aggregate uncertainty into a standard search model of money.
- Study optimal allocations (mechanism design problem).
- Show that the return to money (price level) is history dependent in optimal allocations.

Literature: Spear and Srivastava (1987) and Green (1987)... **but** the recursive structure for discussing non-stationary allocations in monetary models with heterogeneous agents has not been established. We therefore start simple!

Environment: Shi-Trejos-Wright with aggregate uncertainty.

- 1. Discrete time, discount factor β .
- 2. Specialization in production and consumption: N types.
- 3. Money is indivisible $m \in \{0, 1\}$.
- 4. Divisible production y.
- 5. Taste-shocks $u_s(y)$, where $s \in \{low, high\}$ with probability π_s .

Definitions.

- A history is $s^t = (s^{t-1}, s_t)$. Set of all possible histories up to t is S^t .
- Allocation is sequence $y_t : S^t \to R$ or $y(s^t)$ exchanged for money.
- Welfare Criteria

$$\sum_{t=0}^{\infty} \sum_{s^t \in S^t} \beta^t p(s^t) z_{s_t}(y(s^t))$$

where

$$z_s(y) \equiv m(1-m)\frac{1}{N}(u_s(y)-y).$$

• First best allocation (y_l^*, y_h^*) such that $u'_{s_t}(y(s^t)) = 1$.

Expectations:

$$\begin{aligned} v_1(s^t) &= (1-m)\frac{1}{N}[u_{s_t}(y(s^t)) + \beta(\pi_l v_0(s^t, l) + \pi_h v_0(s^t, h))] + \\ &(1-(1-m)\frac{1}{N})\beta(\pi_l v_1(s^t, l) + \pi_h v_1(s^t, h)) \\ v_0(s^t) &= m\frac{1}{N}[-y(s^t) + \beta(\pi_l v_1(s^t, l) + \pi_h v_1(s^t, h))] + \\ &(1-m\frac{1}{N})\beta(\pi_l v_0(s^t, l) + \pi_h v_0(s^t, h)). \end{aligned}$$

Denote:

$$\partial v(s^t) \equiv v_1(s^t) - v_0(s^t).$$

Implementability and Optimality

The producer's participation constraint is

 $y(s^t) \leq \beta(\pi_l \partial v(s^t, l) + \pi_h \partial v(s^t, h))$

The consumer's participation constraint is

$$u_s(y(s^t)) \geq \beta(\pi_l \partial v(s^t, l) + \pi_h \partial v(s^t, h)).$$

Definitions:

- 1. An output allocation $y(s^t)$ is implementable if there exists $v(s^t)$ satisfying participation constraints for all $s^t \in S^t$ and all t = 0, 1, 2, ...
- 2. An allocation is optimal if it maximizes welfare among the set of implementable allocations.

Promise keeping (rational expectations)

Return on money links $\partial v(s^t)$ to $\partial v(s^t, s_{t+1})$ as follows

$$\partial v(s^t) = f_{s_t}(y(s^t)) + (1 - \frac{1}{N})\beta(\pi_l \partial v(s^t, l) + \pi_h \partial v(s^t, h)),$$

where

$$f_s(y) \equiv \frac{1}{N}((1-m)u_s(y) + my).$$

The sequential Planner's problem

$$\max_{\substack{y(s^t), \partial v(s^t) \\ s.t.}} \sum_{t=0}^{\infty} \sum_{s_t \in S^t} p(s^t) \beta^t z_{s_t}(y(s^t))$$

s.t.
$$y(s^t) \leq \beta(\pi_l \partial v(s^t, l) + \pi_h \partial v(s^t, h))$$

$$\partial v(s^t) \leq f_{s_t}(y(s^t)) + \alpha(\pi_l \partial v(s^t, l) + \pi_h \partial v(s^t, h))$$

$$0 \leq \partial v(s^t) \leq B \text{ for all } s^t \text{ and all } t.$$

Note: we ignore consumer's participation constraint

No Ponzi Games

The constraint $\partial v(s^t) \leq B$ implies that the return to money is bounded above by the discounted-expected utility gain of having one unit of money

$$\partial v(s^t) \leq f_{s_t}(y(s^t)) + \sum_{\tau > t} \sum_{s_\tau \in S^\tau} \alpha^{\tau - t} p(s^\tau) f_{s_\tau}(y(s^\tau)).$$

Proposition 1 (Maximum Sustainable Debt) Any sequence $\{y(s^t), \partial v(s^t)\}$, satisfying the constraints of the Planner's problem, is such that $\partial v(s^t) \leq \overline{d}_s$ for all s^t , where \overline{d}_s solves $\overline{d}_s = f_s(\beta \overline{d}) + \alpha \overline{d}$ and $\overline{d} = \pi_l \overline{d}_l + \pi_h \overline{d}_h$ for $s \in \{l, h\}$.

If we associate the multipliers $\beta^t p(s^t) \ \mu(s^t)$ and $\beta^t p(s^t) \ \lambda(s^t)$ to the producer's and debt constraints, the FOC with respect to $\partial v(s^t, s')$ yields

$$\lambda(s^t,s_{t+1}) = \mu(s^t) + (1-rac{1}{N})\lambda(s^t).$$

- Note that $\lambda(s^t, l) = \lambda(s^t, h)$
- Debt is unrestricted in the initial period: $\lambda(s_0) = 0$.
- History dependence requires $\mu(s^t) > 0$.
- When μ(s^t) = 0, we have λ(s^t, s_{t+1}) = (1 − 1/N)λ(s^t) < λ(s^t). The rate of decay depends on 1/N (matching friction).

The state is (s, d_l, d_h) but return d_s is the only relevant promise in realization s. We thus write (s, d), where d is a short for d_s .

Bellman's equation

$$Tw(s,d) = \max_{\substack{y,d_l',d_h' \\ \text{ s.t.}}} z_s(y) + \beta(\pi_l w(l,d_l') + \pi_h w(h,d_h'))$$

s.t.
$$y \leq \beta(\pi_l d_l' + \pi_h d_h')$$

$$d \leq f_s(y) + \alpha(\pi_l d_l' + \pi_h d_h')$$

Proposition 2 Let $w \in W$. Then, Tw is continuous, weakly decreasing in d, and concave. The Bellman's equation has a unique solution. Principle of Optimality applies.

Economy with no aggregate-uncertainty

Proposition 3 (No memory) In the economy without shocks, the optimal allocation is constant (no dynamics) and the consumer constraint slacks. First best allocation y^* is only attained when β is close to 1.

Lesson 1: aggregate uncertainty is necessary for history-dependence.

Proposition 4 (Artificial dynamics.) Fixed an initial d_0 . *i)* If β is low, so that $y^* > \overline{y}$, no dynamics: $y(s^t) = \overline{y}$ and $d(s^t) = \overline{d}$. *ii)* If β is high, so that $y^* < \overline{y}$, debt and output converge monotonically to d^* and y^* for all initial $d_0 \in (d^*, \overline{d})$.

Lesson 2: history-dependence requires that producer's constraint bind ... but not always (so that we can borrow from future states)

Economy with aggregate-uncertainty

Main result: for producer constraint to bind, but not always, discount factor should be not too high *and* not too low.

Proposition 5 Assume β high enough so that $y_h^* < \beta d^*$, where $d^* = \frac{1}{1-\alpha} [\pi_h f_h(y_h^*) + \pi_l f_l(y_l^*)]$. Then, the optimum is given by First-Best allocation y_s^* and is thus not history-dependent.

Proposition 6 There exists β such that the following holds. The values of d^* and \overline{d} satisfy $y_l^* < \beta d^* < y_h^* < \beta \overline{d}$ and, moreover, the optimum is history-dependent.

More on the economy with aggregate-uncertainty

Proposition 7 There exists β_0 so that, when $\beta \leq \beta_0$, for which output is constant $y(s,d) = \hat{y} \leq y_l^*$ for all (s,d). Moreover, output equals y_l^* only if $\beta = \beta_0$.

Key insight: Since participation constraints bind in all states, the Planner can not exploit inter-temporal trade-offs to induce more production when s is high.

Divisible money: Lagos and Wright.

- LW economy with aggregate-taste shocks at beginning of each period.
- Day: decentralized market with anonymous bilateral matching.
- Night: centralized market where a general good is produced and exchanged.
- Preferences: $u_s(y) h + U(Y) H$.
- Growth rate of money $\tau(s^t)$.

Mechanism design

Trading mechanisms have 2 components:

- 1. actions sets (include autarkic allocation).
- 2. outcome functions.

The mechanism we consider has 2 parts:

- 1. Day-trading mechanism: divide the pie.
- 2. Night-trading mechanism: spot exchange at competitive price.

Assume lump sum taxes are available

Result 1. For all $\beta > 0$ the first best level of output is implementable with counter-cyclical money-growth rates: $\tau_h < \tau_l$ and $\tau_h < 0$.

Lump sum taxes are not available

Result 2. The first best level of output is implementable if β is close to 1. Moreover, optimality requires positive inflation in low state.

Main Lesson: price stickiness results from the absence of markets that give fiscal and monetary policy the ability to implement the first best.

Monitoring: non-monetary mechanisms.

- Any individual deviation can be detected and defectors punished with autarky.
- Full monitoring: whole history of individuals can be recorded.
- Limited monitoring: Planner can only record whether an individual has defected or not in the past

Main Lesson: Efficient allocations with limited monitoring are not historydependent. With full monitoring history dependence can help relax incentive constraints.

Conclusions: Memory and 2nd Best Efficiency.

• We do no need "special assumptions" such as signal extraction problem, segmented markets, or nominal "rigidities".

- $\left.\begin{array}{l} anonymity\\ lack of commitment\\ aggregate uncertainty\end{array}\right\} \Rightarrow memory is a "natural" property of money.$
- Theory \Rightarrow Money and Business Cycles are intertwined (propagation of shocks).

The optimal allocation is described with the help of threshold debt levels (\hat{d}_l, \hat{d}_h) such that:

- 1. In state s = l, $y(l,d) = y_l^*$ and $(d'_l(l,d), d'_h(l,d)) = (\hat{d}_l, \hat{d}_h)$ for all $d \leq \hat{d}_l$. Output and new debt are increasing functions of d_l . Moreover, the policy function for new debt when s = l is such that, for d_0 on a right neighborhood of \hat{d}_l , the sequence $d^{n+1} = (d'_l(l,d^n), d'_h(l,d^n))$ is a decreasing sequence converging to (\hat{d}_l, \hat{d}_h) .
- 2. In state s = h, for $d_h \leq \hat{d}_h$, output is $y_l^* < y_h < y_h^*$ and new debt is $(d'_l(h, d), d'_h(h, d)) > (\hat{d}_l, \hat{d}_h)$. Moreover, output and new debt are increasing functions of d_h for d_h in a right neighborhood of \hat{d}_h .