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Abstract

We investigate an extensive form sequential matching game of perfect information.
We show that the subgame perfect equilibrium of the sequential matching game leads
to the unique stable matching when the Eeckhout Condition (2000) for existence of a
unique stable matching holds, regardless of the sequence of agents. This result does
not extend to preferences that violate the Eeckhout Condition, even if there is a unique
stable matching.
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1 Introduction

Gale and Shapley (1962) introduced a marriage problem which is described by a group of men

and women, and their preferences over their potential mates.1 They proved the existence

of the stable matching by providing an algorithm which leads to a stable matching. We

consider the issue of the implementation of stable matchings in relation to the following

extensive form sequential matching game.2 Men and women move sequentially according

to a certain order. A typical agent can choose one of three possible actions at his or her

move. The agent can either accept one among those who proposed to this agent at previous

stages, or propose to a possible mate who moves at a later stage, or choose to be single.

An agent has perfect information about the game structure, the others’ preferences, and the

actions of the agents who move in the previous stages. In addition, we concentrate on the

marriage problems in which the preferences are strict so that each corresponding sequential

matching game has a unique subgame perfect equilibrium(SPE). One may wonder whether

the SPE outcome of a sequential matching game is a stable matching of the corresponding

marriage problem. Eeckhout (2000) provided a sufficient condition which identifies a set

of preferences guaranteeing a unique stable matching. Within such a domain of preference

profiles, we show that the SPE of every sequential matching game, regardless of the order

of moves, coincides with the unique stable matching. This result, however, does not extend

to preference profiles that violate the Eeckhout Condition, even if there is a unique stable

matching. We provide a counter example where there is a unique stable matching but the

SPE outcome is not the stable matching.

2 An Extensive Form Matching Game

We first introduce some definitions and notations that are necessary to describe a marriage

problem. For a description of an extensive form game, we refer readers to textbooks, for

1For an introduction of the marriage problem, refer to Roth and Sotomayor (1990).
2The issue of the implementation of stable matchings has been investigated in Nash (undominated or

strong Nash) equilibrium. Refer to Alcalde (1996), Kara and Sönmez (1996), Ma (1995), Shin and Suh
(1996), and Sönmez (1997).
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example, Osborne and Rubinstein (1994).

There are two non-empty and finite sets of agents, M = {m1, . . . ,mn} for “men” and

W = {w1, . . . , wn} for “women,” where M ∩ W = φ and ‖ M ‖=‖ W ‖= n. Each agent

i ∈ M ∪ W has a complete, irreflexive, and transitive strict preference relation Pi defined

over W ∪ φ for i ∈ M and over M ∪ φ for i ∈ W . We read aPib as “a is strictly preferred to

b by agent i.” A matching is a function μ : M ∪ W → M ∪ W such that

μ(m) ∈ W ∪ φ for all m ∈ M , μ(w) ∈ M ∪ φ for all w ∈ W , and

μ(m) = w if and only if μ(w) = m for all m ∈ M and w ∈ W .

Given a preference profile P = (Pi)i∈M∪W , a matching μ is individually rational if for all

i ∈ M∪W , μ(i)Piφ. Given a matching μ and P , a pair (m,w) ∈ M×W blocks the matching

μ if wPmμ(m) and mPwμ(w). A matching is stable if it is individually rational and does not

allow any blocking pair.

We now introduce an extensive form sequential matching game. Let all agents be ordered

as 1, 2, . . . , ‖ M ∪W ‖ according to the order of their moves. Different orders of moves lead

to different games, hence possibly different SPE outcomes.

Stage 1. Agent 1 may either propose to a possible mate or choose to be single.

Stage 2. Agent 2 observes agent 1’s move. If agent 1 proposed to agent 2, then agent 2

may either accept agent 1’s proposal, or (reject agent 1’s proposal and) propose to a potential

mate in M ∪ W \ {1}, or choose to be single. If agent 1 did not propose to agent 2, then

agent 2 may only either propose to a potential mate in M ∪W \ {1}, or choose to be single.

•
•
•

Stage i. After observing agents’ moves in all previous stages, agent i may either accept

only one of the proposals directed to him/her (and reject the others if there are any), or

(reject all proposals to him/her and) propose to a potential mate in M ∪ W \ {1, . . . , i}, or

choose to be single. Note that if agent i has no one to accept and no one to propose to, then
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being single is the only choice left.

•
•
•

Stage ‖ M ∪ W ‖. After observing all the agents’ moves, agent ‖ M ∪ W ‖ may either

accept one of the proposals directed to him/her (and reject the others if there are any), or

(reject all the previous proposals to him/her and) choose to be single.

All the agents who either choose to be single or are rejected will have no mates, and

all the other agents will be matched to agents they proposed to or were accepted by. It is

easy to see that such a sequential matching game is a well defined finite game with perfect

information, and hence has a unique SPE under strict preferences.

3 The Main Result

The following condition on agents preferences, introduced by Eeckhout (2000), is sufficient

for the existence of a unique stable matching:3

The Eeckhout Condition: It is possible to rename (rearrange) agents so that

i) For any agent mi ∈ M , wiPmi
wj for all j > i;

ii) For any agent wi ∈ W , miPwi
mj for all j > i.

Note that agent mi may or may not prefer wi to wk for k < i. Under the Eeckhout Condition,

μ is the unique stable matching if and only if wi = μ(mi) for all i. Our main result is:

Theorem 1 Suppose that agents’ preferences satisfy the Eeckhout Condition. Then regard-

less of the order of agents’ moves, the subgame perfect equilibrium of the sequential matching

game leads to the unique stable matching.

Proof We will prove the theorem by using an inductive argument. First, since m1 prefers

w1 to any other woman under the Eeckhout Condition, it is a strictly dominant strategy for

3See Clark (2005) for another sufficient condition, called the No Crossing Condition, which is interesting
but stronger than the condition by Eeckhout (2000).
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m1 to propose to w1 if he moves before w1 or to accept w1 if w1 proposes to him. Similarly,

it is a strictly dominant strategy for w1 to propose to m1 if she moves before m1 or to accept

m1 if m1 proposes to her. Their strategies off the equilibrium path, such as w1’s strategy

after m1 did not propose to w1, are irrelevant to the equilibrium outcome. Consequently, m1

and w1 will be matched in the SPE, regardless of the order of their moves in the sequential

matching game.

For any k ≤ n, assume that, for all i < k, (1) no m ∈ {m1, · · · ,mi−1} proposes to wi and

no w ∈ {w1, · · · , wi−1} proposes to mi, (2) mi either proposes to wi if he moves before wi

or accepts wi if wi proposes to mi, and (3) wi either proposes to mi if wi moves before mi

or accepts mi if mi proposes to wi. Accordingly, mi and wi will be matched for all i < k,

regardless of the order of their moves.

It is impossible for mk to be matched with any w ∈ {w1, · · · , wk−1} and wk to be matched

with any m ∈ {m1, · · · ,mk−1}. Under the Eeckhout Condition, mk prefers wk to any w ∈
{wk+1, · · · , wn}. Therefore, mk will either propose to wk if no m ∈ {m1, · · · ,mk−1} proposes

to wk or accept wk if wk proposes to him. Similarly, wk will either propose to mk if no

w ∈ {w1, · · · , wk−1} proposes to mk or accept mk if mk proposes to her. Accordingly, mk

and wk will be matched in the equilibrium, regardless their places to move.

By induction, the resulting SPE outcome coincides with the unique stable matching with

mi and wi matched for all i ∈ {1, · · · , n}. Q.E.D.

4 A Counter Example

Can Theorem 1 be extended to preference profiles that violate the Eeckhout Condition? We

provide a counter example with three men and three women to demonstrate that the answer

to this question is negative, even if there is a unique stable match. We show that the SPE

outcome of a sequential matching game in which all the men move before all the women is

not the stable matching, but the SPE outcome of a sequential matching game in which all
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the women move before all the men is the stable matching.4

There are three men and three women, M = {m1,m2,m3} and W = {w1, w2, w3}, with

the following preferences:

Pm1 Pm2 Pm3 Pw1 Pw2 Pw3

w2 w2 w1 m2 m3 m1

w3 w1 w2 m3 m1 m2

w1 w3 w3 m1 m2 m3

which violate the Eeckhout Condition. Nevertheless, this marriage problem has a unique

stable matching:

μ∗ = [(m1, w3), (m2, w1), (m3, w2)].

Consider the following order of moves: (m1,m2,m3, w1, w2, w3), i.e., m1 moves first,

m2 moves next, etc. Let ai be the action taken by agent i. The following strategy σ =

(σm1, σm2 , σm3, σw1 , σw2 , σw3) is the unique SPE:

σm1 = w3;

σm2 =

{
w2 if am1 	= w2

w1 if am1 = w2;

σm3 =

{
w1 if am2 = w2

w2 if am2 	= w2;

σw1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m2 if am2 = w1

m3 if am2 	= w1, and am3 = w1

m1 if am2 	= w1, am3 	= w1 and am1 = w1

w1 otherwise;

σw2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m3 if am3 = w2

m1 if am3 	= w2, and am1 = w2

m2 if am3 	= w2, and am1 	= w2, and am2 = w2

w2 otherwise;

σw3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m1 if am1 = w3

m2 if am1 	= w3, and am2 = w3

m3 if am1 	= w3, and am2 	= w3, and am3 = w3

w3 otherwise.

It is easy to see that the strategies σw1, σw2 , and σw3 are sequentially rational. Since

all the men move prior to all the women, no woman has any chance to propose. Hence the

4Eeckhout (2000) claims that the Eeckhout Condition is also necessary for the uniqueness of a stable
matching when there are three men and three women. Although our example demonstrates that this is not
the case, this discrepancy does not change our results
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choices available to a woman are: accepting a proposal, if there is any, or rejecting all other

proposals to her. Therefore, for a woman, her best response is to accept a proposal from the

man whom she prefers most among those who proposed to her. The strategies σw1 , σw2 and

σw3 describe such choices.

Now consider σm3 . Given w1’s preferences, if m2 did not propose to w1, then m3’s proposal

to w1 would be accepted by w1. But if m2 proposes to w1, m3 has no chance of being matched

to w1. Hence, his best strategy is: propose to w1 if m2 did not propose to her and propose

to w2 if m2 proposed to w1.

Consider σm2. If m1 did not propose to w2, then m2’s proposal to w2 would be accepted

by w2. Suppose m1 proposed to w2. Since w2 prefers m1 to m2, m2’s proposal to w2 would

be rejected by w2. Hence, his best strategy is: propose to w2 if m1 did not propose to w2

and propose to w1 if m1 proposed to w2.

Consider σm1. Two possible best strategies are proposing to w2 and w3. Suppose he pro-

posed to w2. Then m2 will propose to w1 and m3 will propose to w2. The resulting matching

is [(m1, φ), (m2, w1), (m3, w2), (φ,w3)]. Suppose he proposed to w3. Then m2 will propose

to w2 and m3 will propose to w1. The resulting matching is [(m1, w3), (m2, w2), (m3, w1)].

Therefore, proposing to w3 is his best strategy. Using the backward induction argument, we

can show that σ is the SPE and the resulting matching is

μσ = [(m1, w3), (m2, w2), (m3, w1)].

μσ is not a stable matching since it is blocked by (m1, w2).

Now consider the following order of moves: (w1, w2, w3,m1,m2,m3). For this order of

moves where all the women move prior to all the men, one can show that the SPE outcome

of this sequential matching game is the unique stable matching μ∗.

This example demonstrates that different orders of moves lead to different SPE outcomes.

Under a list of preference profiles which does not satisfy the Eeckhout Condition, a SPE

outcome may not even be a stable matching. This raises an open question whether or not

the Eeckhout Condition is also necessary for the SPE outcome of every sequential matching
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game to be a stable matching of the corresponding matching problem. However, this does

not exclude the possibility that, without the Eeckhout Condition, a stable matching can be

a SPE outcome of a sequential game of a certain specific order of moves.
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