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1 Introduction

Economists have long recognized the necessity to vary prices to allocate congestible re-

sources e�ciently when demand changes over time. Peak load pricing, which deals with

the simplest case where demand changes are predictable, constitutes the most celebrated

application.1 In this paper, we investigate the extent to which responsive pricing, a pric-

ing scheme introduced by Vickrey in 1971 that proposes to vary prices in real time as a

function of the level of capacity utilization, can increase e�ciency when demand changes

are unpredictable.2 The class of applications that are relevant include:

� Telephone use: This was the original application used by Vickrey to motivate re-

sponsive pricing. Vickrey proposed to quote each new user a charge that would vary

as a function of the level of network congestion. Other economists have proposed to

vary price in real time in electricity markets (Borenstein, 2001) and Internet pricing

(Varian and MacKie-Mason, 1994).3

� Road pricing: The San Diego's Regional Planning Agency has used responsive pric-

ing to allocate fast track lanes in highways. Cars that want to use the fast track

lanes have to pay a fee that varies in real time as a function of congestion. Con-

sumers face a trade-o� between the amount of time they want to save and the fees

they are willing to pay (http://argo.sandag.org/fastrak/).

� Ski resorts: Prices could vary in real time to give an incentive to ski less during

high demand periods thus reducing lines, and to ski more when demand is low thus

achieving a more e�cient use of capacity. The same principle could be applied to

price access to other sport facilities and theme parks.4

1See the seminal work of Boiteux (1956 and 1960), and for a recent review, Crew, Fernando and
Kleindorfer (1995).

2Vickrey's main message was to \call attention to the possibilities that arise if one attempts seriously
to promote e�ciency through causing prices to uctuate so as to clear the market [...] even in response
to those uctuations that can not be fully predicted in advance."

3To illustrate, easyEverything, the largest chain of Internet caf�e in the world, followed Vick-
rey's proposal and gives discounts that are a function of the number of vacant terminals
(http://www.easyeverything.com/ and Courty and Pagliero, 2003).

4To deal with waiting on popular rides, some theme parks sell fast track passes that en-
ables holders to bypass queues (http://www.sixags.com/parks/wyandotlake/parkinfo/fastlane.asp)
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Other examples can easily be found. In these applications, traditional allocation

schemes, such competitive resale markets, auctions, or even advance booking, would be

di�cult to implement in practice. Responsive pricing is much simpler. It only requires

to measure congestion (i.e. utilization rate) in real time and to be able to communicate

congestion-contingent prices to consumers. Responsive pricing proposes to increase access

prices as utilization rates increase { that is, as the level of capacity utilization gets closer

to congestion.

To understand why prices have to respond to demand shocks, consider what happens

under unresponsive pricing. If prices are set according to the expected level of demand at

a given time, as predicated under peak load pricing, the very nature of the randomness of

the arrival process implies that there are times when the number of new arrivals exceeds

or falls short of available capacity. If prices do not vary as a function of realized demand,

some potential buyers are denied access when there is a sudden arrival of consumers and

capacity is wasted when there is a low demand realization.

The set of applications where responsive pricing could be used have the characteristics

that although demand variations, due to changes in the number of consumers requesting

access, are to some extent impossible to predict, it may be possible to inuence the length

of time consumers use the service. When this is the case, one can seriously think of using

prices to achieve more e�cient allocations of the congestible resource between users. The

welfare gains from using responsive pricing are potentially great since congestion and/or

unused capacity otherwise prevail. For example, lines in ski resorts and unused telephone

capacity are common.

There are two basic elements to responsive pricing. First, responsive pricing charges

consumers in real time, as consumption takes place. If ! denotes an arrival realization

and t time, responsive pricing computes and announces the price for consumption in

interval t + dt, pt(!), only at time t. This rules out, for example, advance bookings.

Second, the instantaneous price depends on a single state variable: the level of capacity

utilization. If capacity utilization is qt(!), then the instantaneous price is set according

while others o�er reservation systems which replace waits with virtual lines assigning ride times
(http://www.themeparksonline.org/).
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to pt(!) = r(qt(!)) where r() is a given non-decreasing function. Once the function r() is

set, consumers play a game of incomplete information. They try to guess future prices to

make their consumption decisions. In turn, their consumption decisions determine future

prices in equilibrium.

This work presents a welfare analysis of responsive pricing. We consider a social

planner who sets the responsive pricing function r() to maximize social welfare. Can

the social planner achieve, or at least approach, the e�cient allocation with responsive

pricing? Stated formally, does there exist a function r() such that the allocation that

result from the game that consumers subsequently play, be arbritrarly close to the e�cient

allocation?

We model the dynamic allocation problem as follows. At every point in time a random

arrival ow of consumers request access. Consumers consume one unit of service per

unit of time and have downward sloping demands. They value each additional unit less

than the previous one. For tractability reasons, we focus the core of the analysis on a

simple consumer decision problem where each consumer only chooses when to terminate

consumption. The analysis proceeds in three steps. We �rst derive the e�cient allocation.

Second, we compute the equilibrium under responsive pricing and show that there is no

function r() that implements the e�cient allocation. Finally, we investigate whether it

is possible to construct a sequence of responsive pricing functions r() that approach the

e�cient allocation.

Our analysis establishes several results. We show that responsive pricing achieves

full capacity utilization in the limit { when the price is extremely responsive to changes

in the level of capacity utilization. Sudden demand shocks trigger immediate changes

in prices and consumers adjust their length of use, resulting in an elimination of excess

demand or unused capacity. We also show that the limit outcome is e�cient under

a simple condition on consumer demands, called the no-crossing condition. When this

condition holds, equilibrium consumption strategies are very simple. Consumer terminate

consumption when their marginal willingness to pay is equal to the instantaneous price.

The e�ciency result, however, does not generalize to the case where the no-crossing

condition does not hold. In fact, we present an example where consumer demands may
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cross and where no responsive pricing function can approximate the e�cient allocation.

This work stresses the distinction between the concepts of full capacity utilization and

e�ciency. These two concepts are equivalent in the standard textbook model of supply

and demand. In our application, these two concepts are not always equivalent. Although

responsive pricing achieves outcomes that are arbitrarily close to full capacity utilization,

these outcomes are not always e�cient.

The closest work to our analysis is Vickrey (1971). Vickrey introduced the concept

of responsive pricing and speculated that it may achieve e�ciency. Vickrey's conjecture

is often taken for granted. For example, Joskow and Tirole (2004) argue that \the case

of price-sensitive consumers who react e�ciently to real time prices is the textbook rep-

resentation of consumer demand." Our analysis quali�es this conjecture and shows that

e�ciency is not always warranted under responsive pricing. Our analysis builds on a con-

cern already identi�ed by Vickrey (in the context of an application to telephone pricing)

in his original proposal: \one signi�cant imperfection would remain with such a system: a

user upon being informed of the current rate may still be unclear as to whether he should

let the call go through at the current rate or defer the call until later, since he has no

assurance of what the rate would be at the later time." Our model formalizes Vickrey's

conjecture that consumer forward looking behavior may impede e�ciency.5 In addition,

we identify a condition under which the e�cient outcome is always achieved.

The paper is organized as follows. The next section presents the model. Section

3 analyses the steady state version of the model and introduces the main themes of the

paper. Section 4 analyzes the dynamic version of the model and presents the main results.

Section 5 discusses an important extension. Section 6 concludes.

2 Model

We consider a congestible resource and we denote the resource's capacity Q. We treat Q

as exogenously given and we assume that all costs are �xed. The marginal cost of serving

5Vickrey focused on consumers' decision to strategically postpone the start of consumption while our
model focuses on the decision to strategically postpone the decision to end consumption. The logic for
ine�ciency is the same in both cases and rests on the idea that a single instantaneous prices may not be
enough to communicate the right consumption incentives.
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an additional consumer is zero up to capacity Q and in�nite once capacity is reached.

The aim of the model is to capture a class of applications where consumers have

some discretion over the amount they consume which could be measured in units of time

(Internet access, telephone) or number of rides (theme park, ski resorts). Formally, we

make two assumptions: (a) consumers have decreasing marginal valuation for the service

and (b) consumers can terminate the service at any time. These assumptions are realistic

in the applications just mentioned.

There are I types of consumers. A consumer of type i who has already consumed n

units gets utility vi(n) > 0 for the marginal unit where vi is continuous, di�erentiable,

and d
dn
vi(n) < 0. The assumption vi(n) > 0 implies that it is never e�cient that a

consumer terminates consumption if there is capacity available. We start by assuming

that consumers have identical demands (I = 1) and then discuss how the argument

extends to heterogeneous demands (I > 1). Consumers have discount factor 0 < � < 1.

To simplify, we assume that consumers are risk neutral.

The arrival process is a vector �t = (�
i
t)i=1::I . �

i
t(!)dt is an integrable continuous sto-

chastic process on some probability space with increments distributed over E = [�1l ; �
1
h]�

:: � [�Il ; �Ih] such that 0 < �il < �ih < 1.6 Sample path ! 2 
 captures an entire history

of arrival realizations �it(!) for t � 0.
R t
0
�ix(!)dx consumers of type i arrive between 0

and t in sample path !. In the steady state analysis (Section 3) we impose the additional

assumption �t(!) = �(!). In the dynamic analysis (Section 4) we do not make any further

assumption on �t(!). There could be a seasonal component (distribution of �t depends on

t) and also a random component that could be correlated over time.

To simplify the exposition, the core of the analysis presented in Section 4 focuses on the

simplest possible formulation of the problem where consumers only decide when to stop

consumption. This assumption rules out the possibility to temporarily delay consumption.

It is appropriate as long as consumers have to pay a su�ciently high cost for doing so.

We clarify this point in Section 5 where we discuss more general consumption rules.

6The assumption that the increments of �t(!)dt are positive and bounded greatly simpli�es the deriva-
tions because it guarantees that all equilibrium outcomes are bounded and continuous functions of time.
Without the assumption �il > 0 we would have to keep track of the periods when no consumers ar-
rive/leave.
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The level of capacity utilization is denoted by qt(!). We normalize q0(!) = 0 without

loss of generality. The instantaneous price when the level of capacity utilization is q is

r(q) where r(:) is an exogenously given, non-negative, continuous, function with support

[0; Q] that is di�erentiable and increasing on the set fx s.t. r(x) > 0g. This captures the

spirit of Vickrey's proposition that \it seems entirely satisfactory to base rates on levels

of activity." Finally, we assume that r(0) < v1(0) to warranty that consumption takes

place.

Throughout the paper, we use subscript to denote the time when a variable is measured

and superscript to denote the time when a consumer arrives. A consumption rule is a set

of indicator functions di;st (!) de�ned for s � t where di;st (!) = 1 if the consumer of type

i who arrived at time s is consuming at time t and di;st (!) = 0 otherwise. Consumption

rule di;st (!) is feasible if it is non-increasing in t (to rule out interruptions). The level of

capacity utilization at time t is

qt(!) =

Z t

0

X
i

di;xt (!)�
i
x(!)dx (1)

Finally, Jt(!) = f"x(!) 2 E; x 2 [0; t]g denotes the realization of the arrival process up to

time t in sample path !. Jt(!) 2 
t where 
t represents the set of possible realizations

up to t.

Perfect Bayesian Equilibrium: Consumers play a continuous game of incomplete infor-

mation. Although we present the game in its full generality, it is important to keep in

mind that matters will greatly simplify in most of the cases we consider. In particular,

the consumers' beliefs will not play a role and the optimal consumption strategies will

follow simple rules. Consumers are privately informed about their arrival time and about

their types but they may not know Jt(!). In contrast with standard games of incom-

plete information, consumers do not observe directly other consumers' actions di;st (!).

This assumption is realistic for the applications we have in mind. Consumers observe

only the realized price. We de�ne pt(!) the equilibrium price at time t in sample path

!. A consumer who arrives at s and has consumed till t � s observes price history

Hs
t (!) = fpx(!); x 2 [s; t]g 2 @st where @st is the set of non-negative functions de�ned on
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[s; t]. We denote �i;st (Jt;!;H
s
t ) the belief held at t by a type i consumer (who arrived

at s in sample path ! and has obseved information Hs
t 2 @st) that the arrival history is

Jt 2 
t. We leave the initial belief �i;ss (Js;!) unspeci�ed beyond the assumption that

�i;ss (Js(!);!) > 0 and we restrict to beliefs that are computed according to Bayes rule

where possible.

�i;st (Jt;!;H
s
t ) = Pr

�
Jt j �i;ss (Js;!); Hs

t

�
(2)

The consumption strategy of consumer s maximizes for any t � s and for any !

U i;st (!;H
s
t ) = E

�Z 1

t

�x�sdi;sx (!)
�
vi(x� s)� px(!)

�
dx j �i;st

�
subject to feasibility and to the condition that di;st (!) depends only on H

s
t (!). The

equilibrium price at time t is

pt(!) = r(qt(!)) (3)

We say that equilibrium capacity utilization is implementable if qt(!) � Q and we restrict

to equilibrium that satisfy this constraint. If qt(!) > Q then demand is greater than

capacity at time t in sample path !. In such events, one would have to supplement the

pricing rule r(:) with a rationing rule to determine how capacity is allocated. In contrast,

the implementability constraint narrows down the analysis to equilibrium allocations that

are solely de�ned by responsive pricing. We acknowledge that understanding the rationing

property of responsive pricing is interesting in itself, but this issue can be investigated

independently of question of whether responsive pricing can approximate the e�cient

allocation.

A perfect Bayesian equilibrium is a pair
�
di;st (!); �

i;s
t (Jt;!;H

s
t )
�
such that the con-

sumption strategy pro�le di;st (!) maximizes consumer utility, prices pt(!) are given by

pricing rule (3), and the level of capacity utilization is implementable qt(!) � Q.

E�cient Consumption Rule: The social planner discounts the utility of a consumer who

arrives at time s by �s. This implies that all consumption that takes place at time t is

discounted by �t. The social planner maximizes

W (di;st (!)) = E

 Z 1

0

�t
Z t

0

X
i

di;st (!)v(t� s)�is(!)dsdt
!
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subject to the constraint that di;st (!) depends only on Jt(!) and is non-increasing in t,

and subject to the implementability constraint.

What distinguishes the current capacity allocation problem is the fact that we restrict

to allocation rules de�ned by responsive pricing. To clarify this point, consider a slightly

di�erent version of the model that can be interpreted in terms of inter-temporal general

equilibrium theory. To start, assume that the arrival history is public information and

assume that one can de�ne state contingent claims for future consumption where states

are conditional on the realization of Jt(!). If state contingent markets were open for

consumption in all future dates, or if consumers could continuously trade in a su�ciently

large set of intermediate markets, then one could investigate whether the �rst welfare

theorem would apply. Alternatively, the allocation problem could be interpreted as a

mechanism design problem. Under that interpretation, the designer would request new

consumers to reveal their types and would de�ne an allocation rule that depend on con-

sumers' messages. We rule out these solutions to the allocation problem, because such

allocation rules are not realistic for the applications we have in mind. Opening future

markets in the absence of those consumers who have not yet requested access would be

meaningless, or would require the intervention of intermediaries which again is not real-

istic, at least in some of the applications considered. Similarly, requesting consumers to

send messages in real time is unrealistic.

3 Steady State Example

In the simplest version of the model, the arrival rate does not vary over time. This

benchmark case introduces the di�erent steps we will again follow later to solve the model,

and reveals some basic properties of responsive pricing that can be illustrated graphically.

To simplify, we also assume homogeneous consumer demand (I = 1). We later generalize

the argument to heterogenous demands. In terms of our notations, this means that we

ignore the time subscript as well as the type superscript. The number of consumers who

request access per unit of time is �(!)dt. We refer to �(!) as the state of the world.

To start, we derive the e�cient allocation. Let dx(!) = 1 if consumers are still con-
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suming x units of time after arriving.The social planner sets dx(!) to maximize expected

steady-state surplus.

W (dx(!)) = E

Z 1

0

dx(!)v(x)�(!)dx;

subject to the constraint that dx(!) is non-increasing and the level of capacity utilization

is implementable
R1
0
dx(!)�(!)dx � Q. Let n(!) =

R1
0
dx(!)dx represent the number of

units consumed in steady state. The e�cient consumption rule speci�es that consumers

should equally share the capacity

n(!) =
Q

�(!)
:

Under that consumption rule no capacity is wasted and it is not possible to reallocate

capacity to increase welfare.

Next, we derive the equilibrium under responsive pricing. Consumers observe the

steady state price p(!) and decide how long to consume. They maximize
R1
0
�xdx(!) (v(x)� p(!)) dx

where dx(!) 2 f0; 1g and is non-increasing in x. Consumers consume n units of time such

that v(n) = p(!): The level of capacity utilization is given by (1), q(!) = n�(!); and

the price is determined by the pricing function (3), p(!) = r(q(!)). After replacement,

equilibrium consumption in state �(!) must satisfy

v(n) = r(n�(!)):

There exists a unique solution, n(!),to the above equation. If n(!) is such that q(!) =

n(!)�(!) � Q for all ! then the equilibrium is well de�ned. This will hold if and only

if r(Q) � v
�
Q
"h

�
. Under this condition, consumers demand at most Q

"h
and capacity is

su�cient to meet demand even for the highest possible arrival rate since q("h) � "h Q"h = Q.

If this condition does not hold, then the demand in state "h is higher than capacity, and

the equilibrium is not well de�ned. Note that consumers' initial beliefs about the state do

not play a role because once consumers have observed the price they automatically know

the true state.

Higher arrival rates imply that consumers consume less (dn=d� < 0), the level of

capacity utilization is higher (dq=d� > 0), and the price is higher (dp=d� > 0). Figure 1

illustrates these properties. To simplify, the �gure assumes that the arrival rate is either
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high or low. The equilibrium level of capacity utilization is located at the point where the

inverse demand (v(q=�)) and the pricing curve intersect. The realized price is higher in

the high state when capacity is scarcer, and consumers respond by sharing the capacity

available more (lower n).

To understand what is speci�c to responsive pricing, we contrast the outcome under

responsive pricing with the outcome under �xed pricing. Under �xed price (r(q) = r)

consumers consume n units such that v(n) = r: Length of use does not depend on the

state of the world, �(!), because consumers do not have any incentive to vary consumption

as a function of congestion.

To conclude, we investigate the e�ciency properties of responsive pricing. To start,

note that there does not exist a function r(:) that implements the e�cient allocation if

there are more than 2 states with di�erent arrival rates �h > �l. The only prices that

decentralize the e�cient allocation are ph = v
�
Q
"h

�
and pl = v

�
Q
"l

�
but the e�cient

allocation is such that ql = qh = Q. It is not possible to set r such that r(Q) = v
�
Q
"h

�
=

v
�
Q
"l

�
:

Next, we show that responsive pricing can implement the e�cient outcome in a limit

sense. Consider the class of pricing functions er� such that er�(q) = 0 for q � Q � � ander�(q) = v(Q=�h)(1� Q�q
�
) otherwise. These functions are equal to zero up to Q� � and

then linear with er�(Q) = v(Q=�h). Since er�(Q) � v � Q"h� the equilibrium is always well

de�ned. The equilibrium level of capacity utilization is given by er�(q(!)) = v(q(!)=�(!)).
But er�(q(!)) > 0 since v(:) > 0. An upper bound for unused capacity is,

Q� q(!) < �:

More responsive schemes (lower �) increase capacity utilization and therefore e�ciency

(see Figure 2). Capacity utilization converges to full occupancy as � converges to zero.

This limit case corresponds to the consumption rule that maximizes social welfare.7

7Alhtough there are several ways to de�ne the limit of pricing scheme er�, independently of the concept
used, the limit does not implement the e�cient allocation. One can de�ne the limit as a correspondance

such that er(Q) 2 h0; v � Q"h�i. This pricing scheme, however, has little practical interest because it does
not identify a unique price when occupancy reaches capacity. Another way to de�ne the limit is er(q) = 0
for q < Q and er(Q) = v(Q=�h). There is no equilibrium for this pricing rule.
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The analysis generalizes to the case of heterogeneous consumers. Denote ni(p; !) the

number of units consumed by type i when price is p, vi(ni(p; !)) = p. The equilibrium

price in state �(!) is uniquely de�ned by

p(!) = r

 X
i

�i(!)ni (p(!); !)

!

and the equilibrium level of capacity utilization is given by q(!) =
P

i �
i(!)ni(p (!) ; !).

The analysis of e�ciency carries through.

The analysis of the steady state version of the model shows that responsive pricing

endogenously sets prices in response to demand realizations and implements an outcome

that both achieves full capacity utilization and is e�cient in the limit. In this version of the

model, prices do not vary over time and consumers face a simple decision problem. When

the arrival rate changes over time, however, prices continuously change and consumers

face a more complex decision problem because they have to anticipate future prices to

decide whether to retain access or quit. The rest of this paper generalizes the analysis to

non-stationary arrival processes and asks whether the results on e�ciency carry through.

As we will see, the e�ciency analysis carries through for homogeneous consumer demands

but not always for heterogeneous demands.

4 Dynamic Analysis

We start by focusing on the case where consumers have identical demands (I = 1). The

analysis mirrors the argument just presented. We �rst characterize the �rst-best con-

sumption rule and then the perfect Bayesian equilibrium. Then, we investigate whether

responsive pricing can approach the e�cient allocation. We conclude by considering the

case of heterogeneous demands (I > 1).

4.1 E�cient Consumption Rule

We reintroduce the time subscript but we ignore type superscript since we assume in this

subsection that consumers are homogeneous. De�ne bt(!) as the �rst point in time when
capacity is reached if consumers do not terminate consumption

R bt(!)
0

�x(!)dx = Q and
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bbt(!) as the solution to
bbt(!) = ( y such that

R t
y
�x(!)dx = Q if t > bt(!)

0 if t � bt(!)
bbt(!) is increasing in t. It corresponds to the `oldest' consumer (where consumer a is
`older' than consumer b if a has arrived before b) who can consume at time t if all consumers

who have arrived after that consumer are also consuming and capacity utilization is

implementable.

Proposition 1: The e�cient consumption rule is bdst(!) =
(
1 if bbt(!) � s � t
0 if s < bbt(!) .

Proof bdst(!) is feasible and implementable by construction. The proof that bdst(!) is the
only consumption rule that achieves the e�cient outcome goes by contradiction. Assume

that there exist an alternative consumption rule edst(!) di�erent from bdst(!) such that
W (edst(!)) � W (bdst(!)).
Claim: There does not exists a sample path ! and a t0 such that

(S)

( R t0
0
edst0(!)v(t0 � s)�s(!)ds > R t00 bdst0(!)v(t0 � s)�s(!)dsR t0

0
edst0(!)�s(!)ds � Q

Since
R t0bbt0 (!) �s(!)ds = Q, the capacity constraint condition (second inequality in S) im-

plies that Z t0

0

edst0(!)�s(!)ds � Z t0

bbt0 (!) �s(!)dsZ bbt0 (!)
0

edst0(!)�s(!)ds � Z t0

bbt0 (!)
�
1� edst0(!)� �s(!)ds

v(t0 �bbt0(!))Z bbt0 (!)
0

edst0(!)�s(!)ds � v(t0 �bbt0(!))Z t0

bbt0 (!)
�
1� edst0(!)� �s(!)ds

(4)Z bbt0 (!)
0

edst0(!)v(t0 � s)�s(!)ds � Z t0

bbt0 (!)
�
1� edst0(!)� v(t0 � s)�s(!)dsZ t0

0

edst0(!)v(t0 � s)�s(!)ds � Z t0

bbt0 (!) v(t0 � s)�s(!)ds
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A contradiction with S's �rst inequality.

The above claim rules out the possibility that W (edst(!)) > W (bdst(!). The only possibility
isW (edst(!)) = W (bdst(!)) but this implies that R t00 edst0(!)v(t0�s)�s(!)ds = R t00 bdst0(!)v(t0�
s)�s(!)ds for any sample path ! and t0. Therefore, edst(!) = bdst(!). A contradiction.2
E�ciency occurs if all consumers who arrive up to bt(!) consume and for t > bt(!) only
those consumers who arrive between bbt(!) and t consume. The intuition for the �rst
best consumption rule in the case of homogeneous demands is simple. Once full capacity

utilization is reached, it is e�cient to share the capacity so that for every new consumer

who arrives, the consumer who has been using the service the longest terminates con-

sumption. Under that allocation, new consumers replace older consumers, who value the

service less. De�ne bpt(!) = v(t � bbt(!)) as the valuation of the consumer who has been
using the service for the longest length of time at time t. bpt(!) is the marginal social
value of capacity for t � bt(!) (the marginal social value of capacity is 0 for t < bt(!)).
4.2 Perfect Bayesian Equilibrium

We show that in any equilibrium consumers terminate consumption as soon as their

willingness to pay for a unit of consumption falls below the price.

Lemma 1: In any equilibrium, dst(!) = 1 if and only if v(et� s) � pet(!) for et 2 [s; t].
Proof The `if ' part is obvious. The proof of the `only if ' part goes by contradiction.

Assume there exists a pair s < t and a sample path ! such that s receives negative

instantaneous net utility at time t, that is, dst(!) = 1 and v(t� s) < pt(!). Let s0 denote

the consumer that �rst experiences negative instantaneous net utility (9t s.t. v(t� s0) <

pt(!) and d
s0
t (!) = 1 and @(es;et) s.t. et < t, v(et� es) < pet(!), and deset(!) = 1).

Claim 1: There exist1 � t1 > t0 > s0 and ! such that

8<:
v(t0 � s0) = pt0(!)

v(t� s0) � pt(!) for t 2 [s0; t0)
v(t� s0) < pt(!) for t 2 (t0; t1)

We only need to show that there exists t0 > s0 such that the top two conditions hold since

the existence of t1 then follows from the de�nition of s0. Assume that there does not exist

a t0 > s0 such that the top two conditions hold. This implies two claims (a) v(0) � ps0(!)

and (b) ds0s (!) = 0 for s < s0. Claim (b) follows by contradiction. If (b) does not hold,
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then there exists a consumer who arrived before s0 and receives negative instantaneous

net utility at s0; a contradiction with the de�nition of s0. Claim (b) implies that s0 is the

only consumer consuming at time s0. The price is ps0(!) = r(0). A contradiction with

claim (a) since r(0) < v(0).

Claim 2: dst0(!) = 0 for s < s0 and d
s
t0
(!) = 1 for s0 < s < t0.

For s < s0, v(t0�s) < v(t0�s0) = pt0(!). Since s0 is by de�nition the �rst consumer who

experience negative instantaneous net utility, we must have dst0(!) = 0. For s0 < s < t0,

v(t � s) � pt(!) for t 2 [s; t0]. Consumer s should keep consuming until t0, that is,

dst0(!) = 1.

Claim 3: For any t > t0, v(t� s0)� pt(!) < 0.

We distinguish two cases. If no consumer has stopped consumption in [s0; t], that is,

dst(!) = 1 for s 2 [s0; t], then v(t�s0) < v(t0�s0) = pt0(!) < pt(!) and v(t�s0)�pt(!) <

0. If not, denote es the last consumer who has stopped consumption since t, and denoteet the time when es has stopped consumption. We have v(t � s0) < v(t � es) < v(et � es) �
pet(!) < pt(!) where the �rst inequality holds because es has arrived after s0, the second
inequality holds because t < et, and the last inequality holds because no consumer has left
between t and et. Again, we have v(t� s0)� pt(!) < 0.
Claim 3 implies that

U s0t0 (!;H
s0
t0 (!)) = E

�Z 1

t0

�x�s0ds0x (!) (v(x� s0)� px(!)) dx j �s0t0
�
< 0

Consumer s0 is better o� setting d
s0
t (!) for t > t0 in history H

s0
t0 (!). A contradiction.2

Lemma 1 implies that consumers leave in a �rst-in �rst-out fashion in any equilibrium.

Formally, dst(!) is non-decreasing in s. The reason is simply that consumer s consumes

at time t only if v(et�s)�pet(!) > 0 for et 2 [s; t]. But this implies that any consumer who
arrived after s should also consume since v(et � es) � pet(!) > 0 for et 2 [es; t] if es > s. The
`oldest' consumer consuming at time t arrived at Inf fs � 0; s.t. dst(!) = 1g.8 Lemma 1

8We assume without loss of generality that the Inf fs; s.t. dst (!) = 1g exists.
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implies that the level of capacity utilization at time t is equal to the mass of consumers

who have arrived after the oldest consumer,

qt(!) =

Z t

Inffs; s.t. dst (!)=1g
�s(!)ds

The equilibrium does not exist if qt(!) > Q. Next we identify the minimum condition

that the pricing rule must satisfy to assure that the equilibrium always exists.

Lemma 2: qt(!) � Q for any arrival process if and only if r(Q) � v
�
Q
"h

�
.

Proof To start we show that r(Q) � v
�
Q
"h

�
is a necessary condition. The proof goes

by contradiction. Assume r(Q) < v
�
Q
"h

�
and consider the arrival process �t(!) = �h.

Consumers consume at least v�1 (r(Q)) > Q
"h
. The equilibrium level of capacity utilization

is at least "hv
�1 (r(Q)) > Q. A contradiction.

Next, we show that r(Q) � v
�
Q
"h

�
is a su�cient condition. The proof again goes by

contradiction. Assume there exist ! and t0 such that qt0(!) > Q. Let s0 = Inf
�
s s.t. dst0(!) = 1

	
.

The level of capacity utilization at time t0 can be expressed as qt0(!) =
R t0
s0
�s(!)ds �

(t0� s0)�h. This implies that t0� s0 > Q
"h
. The consumer who arrived at s0 gets negative

instantaneous utility at t0 since v(t0�s0) < v
�
Q
"h

�
� r(Q). A contradiction with Lemma

1.2

In the rest of this section, we focus on pricing functions that satisfy r(Q) � v
�
Q
"h

�
.

The functions t(!) and bt(!) are introduced to characterize the equilibrium consumption

strategy pro�le. De�ne t(!) such that v(t(!)) = r
�R t(!)

0
�s(!)ds

�
and de�ne the function

bt(!) such that

bt(!) =

(
x such that v(t� x) = r

�R t
x
�s(!)ds

�
if t > t(!)

0 if t � t(!)
(5)

By the implicit function theorem, the identity v(t � bt(!)) = r
�R t

bt(!)
�s(!)ds

�
de�nes a

continuously di�erentiable function for t > t(!). In addition bt(!) is increasing since

d

dt
bt(!) =

r0
�R t

bt(!)
�s(!)ds

�
�t(!)� v0(t� bt(!))

r0
�R t

bt(!)
�s(!)ds

�
�bt(!)(!)� v0(t� bt(!))

> 0:
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The next Proposition characterizes the equilibrium.

Proposition 2: In any perfect Bayesian equilibrium, the consumption strategy pro�le is

dst(!) =

�
1 if v(t� s) � pt(!)
0 if v(t� s) < pt(!)

where pt(!) = v(t� bt(!)).

ProofWe �rst show that dst(!) is an equilibrium. The level of capacity utilization implied

by the consumption strategy pro�le is qt(!) =
R t
bt(!)

�s(!)ds. Lemma 2 implies that qt(!)

is implementable. The equilibrium price satis�es 3 since pt(!) = v(t� bt(!)) = r(qt(!)).

The consumption strategy pro�le is optimal since any consumer s 2 [bt(!); t] weakly

prefers to consume (v(t � s) � v(t � bt(!)) = pt(!)) and any consumer s 2 [0; bt(!)]

weakly prefers not to consume (v(t� s) � v(t� bt(!)) = pt(!)).

Next, we show that dst(!) is the unique equilibrium consumption strategy pro�le.

Consider an alternative equilibrium with consumption strategy pro�le edst(!) and let ept(!)
be the associated price. De�ne ebt(!) = Inf ns; s.t. edst(!) = 1o.
Case a: ebt(!) < bt(!). But Lemma 1 implies that dst(!) is non-decreasing in s. Therefore,ept(!) > pt(!), and

v(t�ebt(!))� ept(!) < v(t� bt(!))� pt(!) = 0
A contradiction with Lemma 1.

Case b: ebt(!) > bt(!) then ept(!) < pt(!), and
v(t�ebt(!))� ept(!) > v(t� bt(!))� pt(!) = 0

for t 2 [ebt(!); t]. The consumer who arrived at ebt(!) � �, where � is a small positive
number, should not have terminated consumption. A contradiction.2

For any t > t(!), the price is equal to the marginal valuation of the consumer who

arrived at bt(!). This consumer, call it consumer bt(!), is the oldest consumer consuming

at time t and is indi�erent between continuing and terminating consumption. The equi-

librium dynamic consumption strategy pro�le simpli�es to a simple rule specifying that
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consumers terminate consumption as soon as their instantaneous utility fall below the

instantaneous price. Equilibrium strategies are independent of consumers' initial belief

�i;ss (!). One could generalize the setup by assuming that some consumers receive signals

about the arrival process and show that no consumer can bene�t from this information

although this information could help to predict future prices more accurately.

One may argue that consumers should keep consuming, even if they get negative

instantaneous utility, if they expect that prices will decline fast enough so that expected

future surpluses eventually outweigh short-term losses. This, however, cannot happen in

equilibrium. A consumer may initially believe that she has arrived in a sample path

where prices are likely to decrease. But as her net instantaneous utiliy gets close to zero,

that consumer's beliefs have to adjust. In any deviation, a consumer cannot believe that

expected future utility could be non negative if net instantaneous utility is negative.

4.3 Pricing Responsiveness, Capacity Utilization, and E�ciency

As in Section 3, no responsive pricing can implement the e�cient allocation. We show,

however, that e�ciency can be achieved in a limit sense. Let fr�(q); � > 0g be a class

of pricing functions indexed by parameter �. Many classes of pricing schemes implement

the e�cient outcome in the limit. Since our goal is to show only that this is possible, we

focus on a very simple subset of such classes. We say that scheme r is ��responsive if

Max fq s:t r(q) = 0g � Q��. For example, scheme er�(q) de�ned earlier is ��responsive.
Consider a class of ��responsive schemes. We ask whether the equilibrium consump-

tion strategy pro�le under scheme r�(q) converges to the e�cient consumption rule as �

converges to 0. We use the notation qt(!;�) to de�ne the equilibrium level of capacity

utilization for scheme � and we use the same notations for other equilibrium variables.

Proposition 3: As � converges to 0, t(!;�) converges to bt(!) and qt(!;�) converges to
Q for t > bt(!).
Proof t(!;�) is de�ned by v(t(!;�)) = r�

�R t(!;�)
0

�s(!)ds
�
. Since v(:) > 0, Q �R t(!;�)

0
�s(!)ds > Q� �, and t(!;�) converges to bt(!) as � converges to 0. For t > bt(!),
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v(t�bt(!;�)) = rt(qt(!;�)) > 0 and this implies that qt(!;�) > Q��. The claim follows

from the observation that qt(!;�) � Q in any equilibrium.2

This proposition says that responsive pricing achieves full capacity utilization in the limit.

Next, we show that e�ciency is achieved in a limit sense.

Proposition 4: As � converges to 0, bt(!;�) converge to bbt(!).
Proof For t > bt(!;�), R t

bt(!;�)
�s(!)ds > Q � �. Subtracting

R tbbt(!) �x(!)dx = Q on each

side gives

� >

Z bt(!;�)

bbt(!) �s(!)ds

� >
�
bt(!;�)�bbt(!)� �l

In addition,
R tbbt(!) �x(!)dx = Q � qt(!;�) =

R t
bt(!;�)

�s(!)ds, which implies bt(!;�) �bbt(!) � 0. Therefore � > bt(!;�)�bbt(!) � 0 and bt(!;�) converges to bbt(!).2
In the limit, there is no wasted capacity and responsive pricing approaches the e�cient

outcome. The price at date t converges to bpt(!) = v(t�bbt(!)) which corresponds to the
marginal social value of capacity under the e�cient outcome.

The result on e�ciency holds for a general class of arrival processes, since we have

not made any assumption on �t besides the support of the increments. Our results ap-

ply equally for arrival processes with unexpected demand shocks and for processes with

predictable demand shocks. Stated di�erently, we have shown so far that responsive pric-

ing could approach the e�cient allocation when consumers were only privately informed

about their arrival times. We consider next the case where consumers are also privately

informed about their demand types.

4.4 Heterogeneous Demands

We turn to the full version of the model. We show that the results presented in the

previous section generalize to the case of heterogeneous demands under a `no-crossing'

condition on consumer demands. This condition is important because we show that when

it does not hold, ine�ciencies can occur.
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4.4.1 No-Crossing Residual Demands

We introduce the type superscript to capture heterogeneous demands. We say that the

set of demands fvi(:)gi=1::I satis�es the no-crossing condition if for any pair of types (i;ei)
there do not exist n; n0; � � 0 such that

v
ei(� + n) > vi(n) and vei(� + n0) < vi(n0):9

The no-crossing condition has a clear economic interpretation. De�ne the residual de-

mand of a consumer who has already used the service for some time as the consumer's

willingness-to pay for future units. The no-crossing condition says that no two consumers

who arrive at di�erent points in time can have residual demands that cross. This condi-

tion imposes a fairly strong restriction on the set of demands vi. In fact, we will see that

it is equivalent to say that demands are horizontal shift of one another.

The e�ciency analysis generalizes when the vi satisfy the no-crossing condition. To

show that, assume without loss of generality that v1(0) � v2(0) � ::: � vI(0) and de�ne

ai such that vi(ai) = vi+1(0) and Ai = a1 + ::: + ai with A0 = 0. For � � 0, de�ne the

function �(�) as the highest type who values the �rst unit at least as much as v1(�), �(�) =

Max fi such that vi(0) � v1(�)g. De�ne qt(s; !) as the mass of consumers who have ar-

rived before t and value the service more than v1(t�s), qt(s; !) =
P�(t�s)

j=1

R t
s+Aj�1 �

j
x(!)dx.

To characterize the e�cient consumption rule, we de�ne the pair of functions bt(!) andbb1t (!) such that qbt(!)(0; !) = Q and qt(bb1t (!); !) = Q for t > bt(!).
Proposition 5: The e�cient consumption rule is

bdi;st (!) =
(
1 if bb1t (!) + Ai�1 < s � t
0 if s < bb1t (!) + Ai�1 or if bb1t (!) + Ai�1 > t :

Proof Before proceeding, we need to establish a preliminary result. The no-crossing

condition implies that vi(n) = v1(Ai�1+n) for i = 1:::I. The proof goes by contradiction.

Assume that there exist (i; n) such that i 6= 1 and vi(n) 6= v1(Ai�1 + n). Assume for

9An example of a class of demands that satis�es the no-crossing condition is the class vi(n) = ai � bn
where ai and b are positive numbers.
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example that vi(n) > v1(Ai�1 + n). (The proof is similar if the inequality if reversed.)

Then, by continuity vi(n) > v1(Ai�1 + n � �) for � small. But v1(Ai�1) = vi(0) implies

that v1(Ai�1 � �) > vi(0). These two inequalities contradict the assumption that v1 and

vi satisfy the no-crossing condition.

The rest of the proof follows the steps of the proof of proposition 1. The proof of the

claim that there does not exists a sample path ! and a t0 such that

(S)

8<:
R t0
0

X
i

edi;st0 (!)v(t0 � s)�is(!)ds > R t00 X
i

bdi;st0 (!)v(t0 � s)�is(!)dsR t0
0
edst0(!)�s(!)ds � Q

is established by multiplying the equivalent of (4) by v1(t �bb1t (!)). No consumer values
consumption at time t less than v1(t � bb1t (!)) since a consumer of type i who is still
consuming in t had to arrive at bb1t (!) + Ai�1 or after and the lowest valuation among
those type i consumers is vi(t� (bb1t (!) + Ai�1)) = v1(t�bb1t (!)). 2
Under the no-crossing condition, the e�cient consumption rule changes slightly. For any

t � bt(!), the consumers with the lowest demands are replaced by new consumers, starting
with those consumers with highest demands up to the point where no new consumer values

consumption more than the marginal consumer. As a result, no consumer terminating

consumption ever values consumption more than any consumer retaining consumption.

Similarly, the derivation of the perfect Bayesian equilibrium still holds after straightfor-

ward generalizations. Proposition 2 characterizing the equilibrium must take into account

the fact that the rule de�ning the oldest consumer of type 1 consuming at time t, call it

b1t (!), will determine the oldest consumer of type i 6= 1 consuming at time t according to,

bit(!) =Min(t; b
1
t (!) + A

i�1):

Although consumers of a same type terminate consumption in a �rst-in, �rst-out fashion,

consumers of di�erent types may not do so. For example, a consumer of type i 6= 1

who arrived at t will terminate consumption before a consumer of type i� 1 who arrived

between t� ai�1 and t. In the perfect Bayesian equilibrium, the oldest consumer of type

one is de�ned by

v1(t� b1t (!)) = r
�
qt(b

1
t (!); !)

�
:
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The equilibrium price is pt(!) = r (qt(b
1
t (!); !)) and the equilibrium level of capacity

utilization is qt(!) = qt(b
1
t (!); !). Lemma 2 extends to heterogeneous demands under the

condition that r(Q) � r where r is the lowest level of price that rules out excess demand.10

Propositions 3-4 extend, and the equilibrium responsive price at time t converges to

v1(t�bb1t (!)) as � converges to 0, so that e�ciency can be achieved in a limit sense.
The extension to no-crossing demand is important for the following reason. Assume a

social planner can record the realizations of aggregate arrival rate
X
i=1::I

�it(!) which is in

principle possible. In the homogeneous demand case, this information recorded from 0 up

to t, is identical to Jt(!). A social planner can directly compute the marginal social value

of capacity since bbt(!) depends only on Jt(!) and bpt(!) = v(t�bbt(!)). There is no need for
responsive pricing. In the heterogeneous demand case, however, the history of aggregate

arrival rate is not su�cient to compute the marginal social value of capacity. Consumers

have private information about their types and the social planner cannot compute bpt(!)
without this information.

The no-crossing condition is restrictive. This condition is necessary because we have

made no restriction on the arrival process �t. The results would still hold under more

general demands if one is willing to impose some restrictions on the arrival process. Stated

loosely, the main message of this section is that the results generalize as long as no two

consumers who can overlap have residual demands that cross over the length of time

over which they overlap. For example, the demand of two consumers who never overlap

could cross. Similarly, the demand of two consumers could cross after one terminates

consumption. This more general interpretation of the no-crossing condition is important

because the analysis does not always hold when this condition is not met, as we show in

the next section.

4.4.2 An Example of Ine�ciency

The analysis does not follow when the no-crossing condition does not hold. To start,

one cannot show anymore that the consumer with the lowest marginal valuation should

10Formally, r is uniquely de�ned by
P

i �
i
hn

i(r) = Q where ni(x) is de�ned as vi(ni(x)) = x if vi(0) > x
and 0 otherwise.
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leave �rst in the e�cient allocation (Proposition 5 does not hold). Similarly, we cannot

characterize the equilibrium by focusing on the behavior of the consumer with the lowest

marginal valuation. Speci�cally, the proof of claim 2 in Lemma 1 does not hold.

We show that when the no-crossing condition does not hold, it is possible that respon-

sive pricing cannot approximate the e�cient allocation in the sense de�ned by Proposition

4. An example is su�cient to establish this claim. For tractability concerns, we present

an example with discrete arrival process and step-function demands. It is important to

recognize that these features violate some of the continuity assumptions of the model. As

we argue later, however, this is not with complete loss of generality.

Time is �nite, t 2 [0; 2], and we use the terminology period 1 to mean t 2 [0; 1], and

period 2 for t 2 (1; 2]. The capacity is 3. A demand is a pair of numbers (See also Table

1). A consumer with demand (a; b) who arrives at t, is willing to pay a from t to t+1 and

b from t + 1 to t + 2 and 0 after t + 2. There are four types of consumers v1 = (20; 20),

v2 = (25; 0), v3 = (30; 30) and v3 = (10; 0). To simplify, we assume that consumers do

not discount the future.

The arrival process is the following. Consumers arrive only at t = 0 or t = 1. At

t = 0, there are two possible states of the world, state � and state 1��, which occur with

respective probabilities � and 1 � � with � 2 [0; 1] and � 6= 1=2. In state � the arrival

realization at date 0 is ��0 = (2; 4; 0; 0) while in state 1�� the arrival realization is �1��0 =

(2; 3; 1; 0). At date one, the arrival realizations are ��1 = (0; 0; 0; 4) and �
1��
1 = (0; 3; 0; 0) .

Arrival realization ��0 , for example, means that 2 consumers of type v
1 and 4 consumers

of type v2 arrive at date 0 in state �. We denote by vit the consumer of type i who arrive

at date t.

Table 1: Consumer Preferences

State � State 1� �
Type t = 0 t = 1 t = 0 t = 1
v1 = (20; 20) 2 0 2 0
v2 = (25; 0) 4 0 3 3
v3 = (30; 30) 0 0 1 0
v4 = (10; 0) 0 4 0 0

The e�cient consumption rule maximizes total surplus subject to feasibility and imple-
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mentability constraints. (See also Table 2). In state �, all consumers v10 should consume in

both periods, 1 unit of consumers v20 should consume in period 1, and 1 unit of consumers

v41 should consume in period 2. In state 1� �, 2 unit of consumer v20 should consume in

period 1, all consumers v30 should consume in both periods, and 2 unit of consumer v
2
1

should consume in period 2. The expected consumer surplus in the �rst-best consumption

rule is 160� 45�.

Table 2: Consumption Rules and Surplus

Consumption Expected Surplus
State � State 1� �
t 2 [0; 1] t 2 [1; 2] t 2 [0; 1] t 2 [1; 2]

E�ciency 2� v10+1� v20 2� v10+1� v41 2� v20+1� v30 2� v21+1� v30 160� 45�
Equilibrium

� > 1=2 2� v10+1� v20 2� v10+1� v41 2� v10+1� v30 1� v30+2� v21 150� 35�
� < 1=2 3� v20 3� v41 2� v20+1� v30 2� v21+1� v30 160� 55�

Consider next responsive pricing. Assume that the information structure is common

knowledge but consumers privately know their types. This implies that at date zero

the consumers of type 1 and 2 do not know the state of the world. The next Lemma

establishes that responsive pricing cannot approximate the e�cient outcome.

Lemma 3: There does not exist a sequence of state prices (p�0 ; p
1��
0 ; p�1 ; p

1��
1 ) such that

if consumers are announced the realized state prices in each period they make e�cient

consumption decisions.

Proof Consumer v20 has to be indi�erent between consuming and not consuming in both

states.

25� p�0 = 25� p1��0 = 0

Since p�0 = p
1��
0 = 25, the date 0 price cannot reveal the state of the world. Consumer

v10 uses his prior to compute the expected surplus from starting consumption in period 1.

Consumer v10 has to weakly prefer to consume in state �.

20� p�0 + �Max(20� p�1 ; 0) + (1� �)Max(20� p1��1 ; 0) � 0
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and not to consume in state 1� �.

20� p1��0 + �Max(20� p�1 ; 0) + (1� �)Max(20� p1��1 ; 0) � 0

Since consumer v41 and v
2
1 have to be indi�erent between consuming and not consuming

in state � and 1� � respectively, the date 1 prices are p�1 = 10 and p1��1 = 25. Plugging

these values in the above inequalities, we have 10� � 5 � 0 � 10� � 5. A contradiction

since � 6= 1=2.2

Lemma 3 shows that is not possible that consumer v10 consumes in state � and not

in state 1� �. Therefore, the e�cient allocation cannot be arbitrarly approximated. To

further illustrate, consider the equilibrium under scheme er� de�ned in section 3 whereer�(Q) = 35 and � close to 0. To understand the construction of the equilibrium, note

�rst that prices will change only at t = 0; 1; and 2 since these are the only dates when

new consumers arrive or terminate consumption. Next, consider consumers' consumption

decisions. Consumers v30 will consume in state 1 � � because their demand (weakly)

dominates any other consumer. Consumers v20's consumption decision is also simple.

They are willing to pay 25 and no more than 25 at date 0. Solving the decision problem

of consumers v10 is more complicated. How much is a consumer v
1
0 willing to pay at date

0? This decision depends on her expectations about the second period price. In state �

(respectively 1� �), she expects that the price will be 10 (respectivelyn 25) in period 2.

She expects a period 2 surplus of 20 � 10 with probability � and of 0 with probability

1��. A consumer v10 is willing to pay 20+�10+(1��)0 = 20+�10 at t = 0. Since � > 0

consumers v10 are willing to pay more than their period 1 valuation. When 20+�10 > 25,

the equilibrium price is 25 in period 1 and all consumers v10 consume. When 20+�10 < 25,

the price is 20 + �10 in period 1 and no consumers v10 consume. An ine�ciency occurs

because consumer v10's decision to consume does not depend on the state of the world as

it should under the �rst best outcome.

The problem identi�ed in the example is general and can be summarized as follows.

The no-crossing condition does not hold for consumer v10 and v
2
0. It is not optimal for

consumer v10 to terminate consumption when the price is equal to her instantaneous valu-

ation 20. To achieve e�ciency, consumer v10 would need to know whether only consumers
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v20 or also consumers v
3
0 have arrived at t = 0. This information, however, is not revealed

by the price. More generally, under crossing demands a consumer with high long-term

demand may prefer to retain consumption and bear negative instantaneous utility if she

believes that (a) there are some consumers with weak long-term demands who are about

to terminate consumption, and (b) few consumers are likely to arrive.

Consumers' decision problems di�er dramatically when the no-crossing condition holds

and when it does not. Under no-crossing, consumers need to know only the current

price to decide whether to continue or terminate consumption. The fact that consumers

do not know who is consuming at the time they arrive (incomplete information about

arrival times and types) does not prevent e�ciency from being achieved. When the no-

crossing condition does not hold, however, consumers do not decide when to terminate

consumption only on the basis of the current price. They have to predict future prices.

They do so using their prior belief and the price histories, Hs
t (!). As a consequence,

consumers' beliefs matter. The example o�ers an illustration of this point. The period

1 price and the level of ine�ciency depend on the consumer v10's initial belief about the

likelihood that state � will occur. In the example, we assumed that v10's initial belief was

equal to the true probability (common knowledge assumption) but this does not have to

be the case.

To conclude, we point out that although the example does not satisfy all the as-

sumptions of the model, it stresses the importance of the no-crossing condition. To

illustrate, assume that the no-crossing condition holds as would be the case for example

if v2 = (25; 25). Lemma 3 does not hold since it is possible to de�ne a sequence of state

prices (p�0 ; p
1��
0 ; p�1 ; p

1��
1 ) that implements the e�cient allocation. Similarly, responsive

pricing approaches the e�cient allocation.

5 Consumption Interruption

The analysis has assumed so far that consumers never postpone consumption. This was

imposed by the restriction that the consumption rules di;st (!) had to be non-increasing

in t. This section generalizes the analysis in two ways. First, we assume that consumers
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can interrupt the service (or delay initial start) but have to pay a cost each unit of time

they do so. We identify a lower bound on the cost of delaying consumption that rules out

interruptions. This formalizes the claim made earlier that the analysis is valid as long as

the cost of delaying consumption is su�ciently high. Second, we briey discuss the case

where the opportunity cost of delaying consumption is low.

To simplify the presentation, we return to the case where there is a single consumer

type. Consumers have to pay k per unit of time when they delay consumption. This could

be because consumers have to physically wait or because there is a cost of monitoring

prices. Let dst(!) = 0 when the consumer who arrives at s delays consumption at t

and let ls(!) denote the time when that consumer terminates consumption de�nitely. A

consumer who arrives at s gets expected utility

U ss (!;H
s
s (!)) = E

 Z ls(!)

s

�x�s (dsx(!) (v(x� s)� px(!)) + (1� dsx(!))k) dx j �ss

!

under consumption strategy dst(!). Let
bdst(!) represent the e�cient consumption rule.

Proposition 6: The e�cient consumption rule, bdst(!), is non-increasing in t for t > s if
k > v(Q=�h)� v(Q=�l).

Proof Consider the e�cient consumption rule under the constraint that interruptions

are ruled out. Consumers consume Q=�l when the arrival rate is �xed at �l and never

consume more than that amount. They consume Q=�h when the arrival rate is �xed

at �h and never consume less than that amount. The social opportunity cost of capacity

varies between v(Q=�h) and v(Q=�l). The maximum possible social gain from interrupting

consumption is (v(Q=�h)� v(Q=�l)) dt. Interrupting consumption is never e�cient when

v(Q=�h)� v(Q=�l) < k.2

It is never e�cient for consumers to wait when v(Q=�h) � v(Q=�l) < k. Consider the

equilibrium analysis. The pricing function inuences the decision to delay consumption.

Does there exist a responsive pricing function that rules out waiting and still allocates

capacity e�ciently? Consider �rst the conditions that one needs to impose on the pricing

function to rule out waiting. The bene�t from waiting corresponds to the expected savings
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from lower prices. This amount is bounded from above by r(Q)�r(0). Consider a pricing

rule that sets r(Q) = v(Q=�h) and r(0) = v(Q=�l). This pricing rule eliminates both

excess demand and interruptions since r(Q)� r(0) < k. The condition r(0) = v(Q=�l) is

not restrictive because prices never go below that level in the equilibrium analysis without

interruptions. The analysis follows and responsive pricing still implements the e�cient

consumption rule in a limit sense. This simple extension demonstrates that the analysis

presented earlier holds when v(Q=�h)� v(Q=�l) < k.

When k < v(Q=�h) � v(Q=�l), on the other hand, consumer waiting may occur both

under responsive pricing and in the �rst best consumption rule. To make this point

clear, consider the extreme case where the opportunity cost of waiting is zero. Under

responsive pricing, consumers will prefer to delay consumption if they anticipate that

prices are likely to decrease in the future. But it is not e�cient anymore that a consumer

terminates consumption for every new consumer who arrives, since there is no welfare

cost associated with consumers waiting. More generally, even when consumers have a low

but positive cost of waiting, it is not e�cient anymore to rule out waiting, since there is a

trade-o� between the welfare cost of waiting and the opportunity cost of cutting o� some

consumers.11 We leave a full treatment of this problem for future research.

6 Summary and Conclusions

This paper investigates the e�ciency properties of responsive pricing, a simple and easily

implementable scheme initially proposed by Vickrey to eliminate ine�ciencies that re-

sult from last minute demand shocks. Responsive pricing changes prices in real time in

response to demand realizations, increasing prices when the resource gets close to conges-

tion and decreasing prices when unused capacity increases, thus promoting full capacity

utilization. Responsive pricing is simple. Consumers only have to decide whether they

want to consume. The seller, in turn, only needs to be able to measure congestion and to

11Positive but low cost of waiting may explain why country clubs and ski resorts do not use prices to
allocate capacity although waiting is often observed in equilibrium. In these situations, consumers may
have a low cost of waiting and it would be suboptimal to cut some consumers short to free up capacity
when there is a sudden arrival ow of consumers. This conclusion is reminiscent of the analysis of ski
lifts presented in Barro and Romer (1987).
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update prices in real time.

An important contribution of this paper is to establish a condition under which the

strategic complexity of the game that takes place under responsive pricing dramatically

simpli�es. Under the no-crossing condition, consumers stop consuming as soon as their

willingness to pay for a marginal unit falls below the instantaneous price. Consumers can-

not bene�t from predicting future prices. When demands can cross, however, consumers

may optimally keep consuming even if they receive negative net instantaneous utility. As

a result, the equilibrium allocation may depend on consumers' initial beliefs.

We show that responsive pricing can implement the e�cient outcome but only in

a limit sense and when consumer demands satisfy a no-crossing condition. When this

condition is violated the analysis does not follow, and responsive pricing sometimes fails

to achieve e�ciency. The problem with responsive pricing is that consumers can bid

only for the current unit of consumption, and the equilibrium price does not always

aggregate consumers' private information e�ciently. An implication for policymaking is

that responsive pricing will work well when consumer demands satisfy the no-crossing

condition, such as among homogenous populations of consumers.

One could easily conceive more sophisticated information revelation schemes than

responsive pricing. We believe, however, that one should focus on simple schemes, such

as the one proposed by Vickrey and considered in this work, because such schemes are

more likely to be used in applications where highly unpredictable last-minute demand

shocks play an important role. If one accepts this view, a relevant question for future

research is to generalize the class of pricing mechanisms, possibly incorporating more

state variables than just current utilization rates or o�ering partial advance booking, that

implements the e�cient outcome.

Another limitation of this work is that we have focused on a welfare analysis. Our

results are relevant to regulated industries considering introducing responsive pricing.

Some of the applications discussed in the introduction, however, have to do with non-

regulated �rms concerned about �rm surplus rather than total surplus. An important

extension would be to derive the pro�t maximizing pricing scheme and to contrast it with

responsive pricing. Would a private �rm �nd it optimal to vary prices as a function of
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occupancy realizations? Under what conditions?
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Figure 1: The 2-States Steady State Case
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