Trade Costs, Limited Enforcement and Risk Sharing: A Joint Test*

Doireann Fitzgerald ${ }^{\dagger}$
UC-Santa Cruz
February 2006
Preliminary and Incomplete

Abstract

This paper addresses the question of whether goods or asset market frictions are necessary to explain the failure of consumption risk sharing across countries. I present a multi-country DSGE model with Armington specialization. There are iceberg costs of shipping goods across countries. In asset markets, contracts are imperfectly enforceable. Both frictions separately limit the extent to which countries can pool risk. The model suggests a test for the presence of each of the two types of friction that can be implemented using data on bilateral imports. I implement this test using a sample of developed and developing countries. I find that both trade costs and asset market imperfections are necessary in order to explain the failure of perfect consumption risk sharing. However the null hypothesis of financial autarky is rejected.

Keywords: Risk sharing, trade costs, asset market frictions

1 Introduction

In a world where there are no frictions in goods markets, and a full set of contingent claims can be traded, consumption growth will be perfectly correlated across countries [Lucas (1982)]. However this prediction is strongly rejected by the data [see Backus, Kehoe and Kydland

[^0](1992)]. Considerable progress has been made in understanding how different types of goods market frictions and different types of asset market frictions can help resolve this puzzle. This paper contributes to this literature by providing a new type of test for the role of goods and asset market frictions in explaining failures of risk sharing. I present a multicountry DSGE model with Armington specialization and iceberg costs of shipping goods across countries. This is a dynamic stochastic "gravity" model of trade both within and across states and periods. In asset markets, contracts are imperfectly enforceable. Both frictions separately limit the extent to which countries can pool risk. But to the extent that there is risk sharing, this paper shows it must show up in bilateral imports. With sufficiently rich data on bilateral imports, it is possible to distinguish between the role of trade costs and asset market frictions in limiting risk sharing. I implement this test for a sample of developed and developing countries from 1970-2000. Both trade costs and asset market imperfections are necessary in order to explain the failure of perfect consumption risk sharing. However the null hypothesis of financial autarky is also rejected. Asset market frictions appear to be relatively less important for developed than developing countries, and both types of friction are less important at the end of the period than at the beginning.

The intuition for the results presented here can be understood by thinking of each country as being endowed with a tree that produces a stochastic amount of a particular type of fruit (this abstracts from investment, which is included in the formal model). Consumers in these countries wish to smooth consumption along several dimensions. They prefer to consume a variety rather than one single type of fruit. They also wish to smooth their consumption across states of the world and over time. However some of the fruit spoils during shipping, so the quantity received by the importer is less than the quantity sent by the exporter. The fraction that spoils varies with the bilateral distance between the countries. This resource cost of smoothing implies first, that the composition of each country's consumption basket is tilted towards the fruits produced in countries that are "close." Second, even if the full set of Arrow-Debreu securities is traded, and all contracts are perfectly enforced, consumption growth rates will differ across countries.

Now suppose that in addition, contracts (other than spot trades) cannot be perfectly enforced. Even though the full set of Arrow-Debreu securities can be traded, countries cannot commit ex-ante to make transfers that are not ex-post optimal. Unless they are very patient, the extent of possible risk sharing across countries will be further reduced. In the
extreme case of financial autarky, countries will engage only in spot trades, and the value of a country's exports must equal the value of its imports. Even in this case, however, there will be some risk sharing, through movements in the terms of trade.

Clearly, in order for any degree of consumption smoothing to take place, there must be bilateral flows of fruits. This is the insight that motivates the empirical part of the paper. In particular, the value of bilateral imports is given by a "gravity equation." Once trade costs (if present) have been controlled for, the value of bilateral imports always moves one-forone with the value of output of the exporting country. However the response of imports to the value of output of the importing country varies depending on whether or not there are frictions in asset markets. This allows the hypotheses of trade costs and frictions in asset markets to be tested against the alternative of a frictionless world using a panel of data on bilateral imports.

As already noted, this paper contributes to a very large literature that tries to explain the failure of international consumption risk sharing. There are two strands of the literature that focus primarily on goods market frictions: those that examine the role of non-traded goods, and those that examine the role of transactions costs on goods trade. This paper falls into the second category, which includes Backus, Kehoe and Kydland (1992, 1995), Heathcote and Perri (2004a, b), Kose and Yi (2005), Mazzenga and Ravn (2004), and Obstfeld and Rogoff (2000). This paper advances this literature by integrating costs of trading goods into a multicountry DSGE model in a way that is consistent with a gravity model of bilateral trade. The gravity equation is one of the outstanding successes of the empirical trade literature, and it has recently received rigorous theoretical foundations in both Eaton and Kortum (2002) and Anderson and van Wincoop $(2003,2004)$. The assumption of specialization gives the model a chance to match facts about intra-state trade as well as inter-state and intertemporal trade, while simultaneously nesting risk sharing through the terms of trade as described in Cole and Obstfeld (1991). This treatment of trade costs paves the way for the new test for the presence of frictions presented in the paper.

The enormous literature on international asset market frictions initially focused on exogenously restricting the set of assets traded, but has recently explored the role of transactions costs, asymmetric information and sovereign risk. This paper follows the latter approach, in particular that of Kehoe and Perri (2002) who assume that contracts can only be enforced by the threat of future exclusion from asset markets. This is convenient in the context of
theoretical framework used here, but the empirical results should not be thought of as distinguishing between different types of asset market imperfection. In this, the paper is similar to Choi (2005) who looks at the effect of non-traded goods and asset market frictions on the relationship between real exchange rates and relative consumption. I also follow Heathcote and Perri (2002) in considering the case of perfect financial autarky.

The first section describes the theoretical framework. The second section outlines the empirical strategy. The third section describes the data and results. The final section concludes.

2 Theoretical framework

I first lay out the frictionless model, and develop its implications for international risk sharing. I then introduce in turn costs of trading goods and an enforcement friction in asset markets. Again, I focus on the implications of these frictions for risk sharing. I also consider the case of perfect financial autarky as an extreme alternative to complete financial markets. Throughout, the emphasis is on consumption allocations and the form of trade flows required to support those allocations, rather than on asset holdings. The section concludes with an illustrative special case which develops the intuition for the empirical tests outlined in the next section.

2.1 Frictionless model

Summary

There are N countries in the world, indexed $i=1, \ldots, N$. Each country produces a distinct intermediate good, (also indexed i) using capital and labor. Capital is accumulable, while labor is fixed in supply. Productivity in the production of intermediates differs across countries, and is stochastic. The intermediate goods are tradeable. They are combined using a CES production function, identical in all countries, to produce an aggregate non-traded good used for consumption and investment.

Uncertainty

The structure of uncertainty is as follows. In each period t, the economy experiences one event, $s_{t} \in S$. Denote by s^{t} the history of events from date 0 to date t. The probability of history s^{t} at date t is given by $\pi\left(s^{t}\right)$.

Utility and production

Across periods, utility is isoelatic. Expected utility in country i is given by

$$
\begin{equation*}
U_{i}=\sum_{t=0}^{\infty} \sum_{s^{t}} \beta^{t} \pi\left(s^{t}\right) u\left(s^{t}\right)_{i}=\sum_{t=0}^{\infty} \sum_{s^{t}} \beta^{t} \pi\left(s^{t}\right) \frac{\left[C\left(s^{t}\right)_{i}\right]^{1-\rho}}{1-\rho} \tag{1}
\end{equation*}
$$

The production function for the agregate non-traded good, X, used for consumption and investment is:

$$
\begin{equation*}
X\left(s^{t}\right)_{i}=\left(\sum_{k=1}^{N} Z\left(k, s^{t}\right)_{i}^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}} \tag{2}
\end{equation*}
$$

where $Z\left(k, s^{t}\right)_{i}$ is absorption in country i of intermediate good k at time t after history s^{t}. The aggregate good resource constraints are given by

$$
\begin{equation*}
X\left(s^{t}\right)_{i}=C\left(s^{t}\right)_{i}+I\left(s^{t}\right)_{i}=C\left(s^{t}\right)_{i}+K\left(s^{t}\right)_{i}-K\left(s^{t-1}\right)_{i} \tag{3}
\end{equation*}
$$

where $K\left(s^{t-1}\right)_{i}$ is the capital available for use in production in country i at time t (predetermined) and $I\left(s^{t}\right)_{i}$ is investment in country i at time t after history s^{t}. Investment need not be positive (capital can be eaten). The world intermediate goods resource constraints are given by:

$$
\begin{equation*}
Y\left(s^{t}\right)_{i}=A\left(s^{t}\right)_{i} K\left(s^{t-1}\right)_{i}^{\alpha} L_{i}^{1-\alpha}=\sum_{k=1}^{N} Z\left(i, s^{t}\right)_{k} \tag{4}
\end{equation*}
$$

where $A\left(s^{t}\right)_{i}$ is the realization of productivity in country i at time t after history s^{t}.

Planner's problem

I study the social planning problem where the planner chooses sequences $\left\{C\left(s^{t}\right)_{i}\right\}$, $\left\{K\left(s^{t}\right)_{i}\right\}$ and $\left\{Z\left(k, s^{t}\right)_{i}\right\}$ to maximize a weighted sum of country utilities:

$$
\begin{equation*}
\sum_{i=1}^{N} \lambda_{i} U_{i}=\sum_{i=1}^{N} \sum_{t=0}^{\infty} \sum_{s^{t}} \lambda_{i} \beta^{t} \pi\left(s^{t}\right) u\left(s^{t}\right)_{i} \tag{5}
\end{equation*}
$$

subject to $2 N$ resource constraints for every period t and history s^{t}. Let the Lagrange multipliers on the aggregate good resource constraints be denoted

$$
\begin{equation*}
\sigma\left(s^{t}\right)_{i}=\beta^{t} \pi\left(s^{t}\right) P\left(s^{t}\right)_{i} \tag{6}
\end{equation*}
$$

and let the Lagrange multipliers on the intermediate good resource constraints be denoted:

$$
\begin{equation*}
\mu\left(i, s^{t}\right)=\beta^{t} \pi\left(s^{t}\right) Q\left(i, s^{t}\right) \tag{7}
\end{equation*}
$$

The multiplier $\sigma\left(s^{t}\right)_{i}$ is the date- 0 price of a unit of the final good in country i at time t following history $s^{t} . P\left(s^{t}\right)_{i}$ is its date- t price. The multiplier $\mu\left(i, s^{t}\right)$ is the date- 0 price of a unit of good i in country i at time t following history $s^{t} . Q\left(i, s^{t}\right)$ is then its date- t price.

I focus on the first order conditions of the planner's problem with respect to consumption, C and absorption of intermediates, Z (the first order condition with respect to capital is not necessary for what follows). They are $\left(C\left(s^{t}\right)_{i}\right)$:

$$
\begin{equation*}
\lambda_{i} C\left(s^{t}\right)_{i}^{-\rho}=P\left(s^{t}\right)_{i} \tag{8}
\end{equation*}
$$

and $\left(Z\left(k, s^{t}\right)_{i}\right)$:

$$
\begin{equation*}
Q\left(k, s^{t}\right)=P\left(s^{t}\right)_{i} X\left(s^{t}\right)_{i}^{\frac{1}{\eta}} Z\left(k, s^{t}\right)_{i}^{-\frac{1}{\eta}} \tag{9}
\end{equation*}
$$

Equilibrium

Together with the two sets of resource constraints, the first order conditions (including the first order condition with respect to capital) determine consumption of each good by each country in every period and state. The appropriate values of λ_{i} in the decentralized equilibrium without transfers can in principle be recovered by combining the first order conditions with the resource constraints and the individual country budget constraints.

Consumption correlations

Using the production function for the aggregate good X combined with the first order conditions with respect to absorption of individual intermediate goods, the date- t state- s^{t} aggregate price level in country i can be written:

$$
\begin{equation*}
P\left(s^{t}\right)_{i}=\left[\sum_{k=1}^{N} Q\left(k, s^{t}\right)^{1-\eta}\right]^{\frac{1}{1-\eta}} \tag{10}
\end{equation*}
$$

The real exchange rate between i and j is given by the ratio of the price levels. In the absence of frictions, the real exchange rate between any pair of countries is always equal to 1.

The first order condition for consumption implies a monotonic relationship between the
real exchange rate and relative consumption, given by

$$
\begin{equation*}
R E R\left(s^{t}\right)_{i j}=\frac{P\left(s^{t}\right)_{j}}{P\left(s^{t}\right)_{i}}=\frac{\lambda_{j}}{\lambda_{i}}\left[\frac{C\left(s^{t}\right)_{i}}{C\left(s^{t}\right)_{j}}\right]^{\rho} \tag{11}
\end{equation*}
$$

Since the real exchange rate between any pair of countries is always equal to 1 , this implies that relative consumption is constant, given by:

$$
\frac{C\left(s^{t}\right)_{i}}{C\left(s^{t}\right)_{j}}=\left[\frac{\lambda_{i}}{\lambda_{j}}\right]^{1 / \rho}
$$

In order for this to be the case, the growth rate of consumption must be the same in all countries. This is the expression from which standard tests of consumption risk sharing are derived.

Bilateral imports

Risk sharing across countries takes place through bilateral trade flows The first order conditions with respect to consumption and absorption of intermediates can be combined with the resource constraints to yield the following expression for the value of country i 's absorption of k 's output in period t following history s^{t} :

$$
\begin{align*}
& Q\left(k, s^{t}\right) Z\left(k, s^{t}\right)_{i} \tag{12}\\
= & {\left[P\left(s^{t}\right)_{i} X\left(s^{t}\right)_{i}\right]\left[Q\left(k, s^{t}\right) Y\left(s^{t}\right)_{k}\right] \frac{\lambda_{i}^{\eta-1} C\left(s^{t}\right)_{i}^{\rho(1-\eta)}}{\sum_{j=1}^{N} \lambda_{j}^{\eta} C\left(s^{t}\right)_{j}^{-\rho \eta} X\left(s^{t}\right)_{j}} }
\end{align*}
$$

This expression bears a strong resemblance to the standard gravity relationship between the value of bilateral imports and the size of the exporting and importing countries in the absence of trade costs. This form of the "gravity" relationship is unorthodox, but it turns out to be useful for testing for the presence of frictions in goods and asset markets.

Appropriate substitution yields the more standard expression (noting the absence of trade costs):

$$
Q\left(k, s^{t}\right) Z\left(k, s^{t}\right)_{i}=\frac{\left[P\left(s^{t}\right)_{i} X\left(s^{t}\right)_{i}\right]\left[Q\left(k, s^{t}\right) Y\left(s^{t}\right)_{k}\right]}{\sum_{j=1}^{N} Q\left(j, s^{t}\right) Y\left(s^{t}\right)_{j}}
$$

2.2 Trade costs

Resource cost of trade

The setup is exactly as before, except that intermediate goods trade is costly: in order for one unit of j 's good to arrive in $i, t\left(s^{t}\right)_{i j}$ units must be shipped, with $t\left(s^{t}\right)_{i i}=1, t\left(s^{t}\right)_{i j} \geq 1$ and $t\left(s^{t}\right)_{i j} t\left(s^{t}\right)_{j k} \geq t\left(s^{t}\right)_{i k}$. The intermediate goods resource constraints must be modified to take account of this fact:

$$
\begin{equation*}
Y\left(s^{t}\right)_{i}=A\left(s^{t}\right)_{i} K\left(s^{t-1}\right)_{i}^{\alpha} L_{i}^{1-\alpha}=\sum_{k=1}^{N} t\left(s^{t}\right)_{k i} Z\left(i, s^{t}\right)_{k} \tag{13}
\end{equation*}
$$

where $t\left(s^{t}\right)_{k i}$ is the quantity of good i that must be shipped from i to k in order for one unit to arrive in k.

Planner's problem and equilibrium

The planner's problem is modified from the zero trade cost case in that the weighted sum of country utilities is maximized subject to the modified resource constraints. The first order conditions with respect to consumption is unchanged. The first order condition with respect to absorption of intermediates is modified:

$$
\begin{equation*}
Q\left(k, s^{t}\right) t\left(s^{t}\right)_{i k}=P\left(s^{t}\right)_{i} X\left(s^{t}\right)_{i}^{\frac{1}{\eta}} Z\left(k, s^{t}\right)_{i}^{-\frac{1}{\eta}} \tag{14}
\end{equation*}
$$

As in the zero trade cost case, the two sets of resource constraints and the first order conditions (including the first order condition with respect to capital) determine consumption of each good by each country in every period and state. The appropriate values of λ_{i} in the decentralized equilibrium without transfers can in principle be recovered by combining the first order conditions with the resource constraints and the individual country budget constraints. Allowing for specialized endowments and costly trade modifies several of the predictions of the standard frictionless model. These modifications are now summarized:

Consumption correlations

Marginal utilities are not equalized across countries because relative prices differ due to trade costs. Using the production function for the aggregate good X combined with the first order conditions with respect to absorption of individual intermediate goods, the date- t state- s^{t} aggregate price level in country i can be written:

$$
\begin{equation*}
P\left(s^{t}\right)_{i}=\left[\sum_{k=1}^{N}\left(t\left(s^{t}\right)_{i k} Q\left(k, s^{t}\right)\right)^{1-\eta}\right]^{\frac{1}{1-\eta}} \tag{15}
\end{equation*}
$$

Purchasing power parity fails. The real exchange rate between i and j can differ from 1. However the first order condition for consumption still implies a monotonic relationship between the real exchange rate and relative consumption, given by:

$$
\begin{equation*}
R E R\left(s^{t}\right)_{i j}=\frac{P\left(s^{t}\right)_{j}}{P\left(s^{t}\right)_{i}}=\frac{\lambda_{j}}{\lambda_{i}}\left[\frac{C\left(s^{t}\right)_{i}}{C\left(s^{t}\right)_{j}}\right]^{\rho} \tag{16}
\end{equation*}
$$

But since price levels differ across countries in a way that varies over time, this implies that relative consumption is not constant.

Relative consumption can be rewritten:

$$
\begin{equation*}
\frac{C\left(s^{t}\right)_{i}}{C\left(s^{t}\right)_{j}}=\left[\frac{\lambda_{i}}{\lambda_{j}}\right]^{1 / \rho}\left[\frac{\sum_{k=1}^{N} \frac{t\left(s^{t}\right)_{i k}^{1-\eta}}{\phi\left(s^{t}\right)_{k}} Y\left(s^{t}\right)_{k}^{\frac{\eta-1}{\eta}}}{\sum_{k=1}^{N} \frac{t\left(s^{t}\right)_{j k}^{1-\eta}}{\phi\left(s^{t}\right)_{k}} Y\left(s^{t}\right)_{k}^{\frac{\eta-1}{\eta}}}\right]^{\frac{1}{(\eta-1) \rho}} \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
\phi\left(s^{t}\right)_{k}=\left[\sum_{h=1}^{N} \lambda_{h}^{\eta} t\left(s^{t}\right)_{h k}^{1-\eta} C\left(s^{t}\right)_{h}^{-\rho \eta} X\left(s^{t}\right)_{h}\right]^{\frac{\eta-1}{\eta}} \tag{18}
\end{equation*}
$$

The response of relative consumption between i and j to a shock to productivity in country k clearly depends on the trade cost between i and k relative to the trade cost between j and k. In order for consumption risk sharing to take place, goods must be shipped internationally, and since it is costly to do so, agents will optimally choose not to smooth consumption perfectly. In contrast to models with separable preferences over traded and non-traded goods, this trade cost model predicts less than perfect correlation of the growth of traded goods consumption across countries. In a world with trade costs, there is no "world consumption growth rate," or "world output growth rate," as world consumption and output are different depending on where they are measured.

Bilateral imports

The risk sharing that takes place across countries must still be reflected in trade flows. The value of country i 's absorption of k 's output in period t following history s^{t} is given by
the expression:

$$
\begin{align*}
& t\left(s^{t}\right)_{i k} Q\left(k, s^{t}\right) Z\left(k, s^{t}\right)_{i} \tag{19}\\
= & \frac{\left[P\left(s^{t}\right)_{i} X\left(s^{t}\right)_{i}\right]\left[Q\left(k, s^{t}\right) Y\left(s^{t}\right)_{k}\right]}{t\left(s^{t}\right)_{i k}^{\eta-1}} \frac{\lambda_{i}^{\eta-1} C\left(s^{t}\right)_{i}^{\rho(1-\eta)}}{\sum_{j=1}^{N} \lambda_{j}^{\eta} C\left(s^{t}\right)_{j}^{-\rho \eta} X\left(s^{t}\right)_{j} t\left(s^{t}\right)_{k j}^{1-\eta}}
\end{align*}
$$

Again, this is a slightly unorthodox formulation of the standard gravity relationship in the presence of trade costs, where bilateral imports depend on the size of the two countries, bilateral trade costs, and "multilateral resistance" terms [see Anderson and van Wincoop (2003), 2004)]. Appropriate substitution yields the more standard form of the relationship:

$$
\begin{equation*}
t\left(s^{t}\right)_{i k} Q\left(k, s^{t}\right) Z\left(k, s^{t}\right)_{i}=\left[P\left(s^{t}\right)_{i} X\left(s^{t}\right)_{i}\right]\left[Q\left(k, s^{t}\right) Y\left(s^{t}\right)_{k}\right]\left(\frac{P\left(s^{t}\right)_{i} \Pi\left(s^{t}\right)_{k}}{t\left(s^{t}\right)_{i k}}\right)^{\eta-1} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\Pi\left(s^{t}\right)_{k}^{1-\eta}=\sum_{j=1}^{N} P\left(s^{t}\right)_{j} X\left(s^{t}\right)_{j}\left(t\left(s^{t}\right)_{k j} / P\left(s^{t}\right)_{j}\right)^{1-\eta} \tag{21}
\end{equation*}
$$

As will become clear presently, the former expression has the advantage over the latter that it allows us to distinguish whether or not there are frictions in asset markets.

2.3 Enforcement constraint

Suppose now that output is perfectly observable, but countries cannot commit ex ante to make payments that are not ex post optimal. Intertemporal and interstate trade across countries is then feasible only to the extent to which payment can be enforced by the threat of exclusion from future intertemporal, interstate and possibly intratemporal trade. This will limit the degree of risk-sharing that can be supported. There are various possible equilibria of this game. The degree of risk sharing that can be sustained is increasing in the severity of the punishment. I assume that there exists a subgame perfect equilibrium of this game where a country that defaults on its obligations to another country is excluded from participating in some markets by all countries, forever.

Planner's problem

The planner maximizes a weighted sum of country utilities subject to the standard re-
source constraints and the incentive compatibility constraints:

$$
\begin{equation*}
\sum_{r=t}^{\infty} \sum_{s^{r}} \beta^{r-t} \pi\left(s^{r} \mid s^{t}\right) u\left(s^{r}\right)_{i} \geq V\left(s^{t}\right)_{i} \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
V\left(s^{t}\right)_{i}=\sum_{r=t}^{\infty} \sum_{s^{r}} \beta^{r-t} \pi\left(s^{r} \mid s^{t}\right) u^{\text {Autarky }}\left(s^{r}\right)_{i} \tag{23}
\end{equation*}
$$

The Lagrange multipliers on the resource constraints are as before. Let the Lagrange multipliers on the IC constraints be denoted

$$
\begin{equation*}
\gamma\left(s^{t}\right)_{i}=\beta^{t} \pi\left(s^{t}\right) \delta\left(s^{t}\right)_{i} \tag{24}
\end{equation*}
$$

The Lagrangian for the planner's problem can be written:
$\mathcal{L}=\sum_{i=1}^{N} \sum_{t=0}^{\infty} \sum_{s^{t}} \beta^{t} \pi\left(s^{t}\right)\left[\begin{array}{l}M\left(s^{t-1}\right)_{i} u\left(s^{t}\right)_{i}+\delta\left(s^{t}\right)_{i}\left[u\left(s^{t}\right)_{i}-V\left(s^{t}\right)_{i}\right]+ \\ Q\left(i, s^{t}\right)\left[A\left(s^{t}\right)_{i} K\left(s^{t-1}\right)_{i}^{\alpha} L_{i}^{1-\alpha}-\sum_{k=1}^{N} t\left(s^{t}\right)_{k i} Z\left(i, s^{t}\right)_{k}\right]+ \\ P\left(s^{t}\right)_{i}\left[\left(\sum_{j=1}^{N} Z\left(j, s^{t}\right)_{i}^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}}-C\left(s^{t}\right) i-K\left(s^{t}\right)_{i}+K\left(s^{t-1}\right)_{i}\right]\end{array}\right]$
with

$$
\begin{equation*}
M\left(s^{t}\right)_{i}=M\left(s^{t-1}\right)_{i}+\delta\left(s^{t}\right)_{i} \tag{25}
\end{equation*}
$$

and $M\left(s^{-1}\right)_{i}=\lambda_{i}$.
The first order conditions for this problem with respect to $C\left(s^{t}\right)_{i}$ is:

$$
\begin{equation*}
M\left(s^{t}\right)_{i} C\left(s^{t}\right)_{i}^{-\rho}=P\left(s^{t}\right)_{i} \tag{26}
\end{equation*}
$$

and with respect to $Z\left(k, s^{t}\right)_{i}$ is:

$$
\begin{equation*}
Q\left(k, s^{t}\right) t\left(s^{t}\right)_{i k}=P\left(s^{t}\right)_{i} X\left(s^{t}\right)_{i}^{\frac{1}{\eta}} Z\left(k, s^{t}\right)_{i}^{-\frac{1}{\eta}} \tag{27}
\end{equation*}
$$

Equilibrium

The two sets of resource constraints, the IC constraints, the dynamic game which determines $u^{\text {Autarky }}\left(s^{t}\right)_{i}$ and $V\left(s^{t}\right)_{i}$ and the first order conditions (including the first order condition with respect to capital) together determine consumption of each good by each
country in every period and state. However it is not necessary to characterize the equilibrium allocation in order to derive a number of results on consumption correlations and the reflection of consumption risk sharing in bilateral imports.

Consumption correlations

The relationship between the domestic price levels, trade costs and the price of intermediates in the country of production is exactly as in the case with no asset market friction. If trade costs are non-zero, purchasing power parity fails. The relationship between the real exchange rate and relative consumption implied by the first order condition with respect to consumption is:

$$
\begin{equation*}
R E R\left(s^{t}\right)_{i j}=\frac{P\left(s^{t}\right)_{i}}{P\left(s^{t}\right)_{j}}=\frac{M\left(s^{t}\right)_{i}}{M\left(s^{t}\right)_{j}}\left[\frac{C\left(s^{t}\right)_{j}}{C\left(s^{t}\right)_{i}}\right]^{\rho} \tag{28}
\end{equation*}
$$

The relative sum of multipliers $M\left(s^{t}\right)_{i} / M\left(s^{t}\right)_{j}$ will in general depend on the consumption allocation, so the relationship between the real exchange rate and relative consumption need not be monotonic. ${ }^{1}$

Relative consumption can be written:

$$
\begin{equation*}
\frac{C\left(s^{t}\right)_{i}}{C\left(s^{t}\right)_{j}}=\left[\frac{M\left(s^{t}\right)_{i}}{M\left(s^{t}\right)_{j}}\right]^{1 / \rho}\left[\frac{\sum_{k=1}^{N} \frac{t\left(s^{t}\right)_{i k}^{1-\eta}}{\phi\left(s^{t}\right)_{k}} Y\left(s^{t}\right)_{k}^{\frac{\eta-1}{\eta}}}{\sum_{k=1}^{N} \frac{t\left(s^{t}\right)_{j k}^{1-\eta}}{\phi\left(s^{t}\right)_{k}} Y\left(s^{t}\right)_{k}^{\frac{\eta-1}{\eta}}}\right]^{\frac{1}{(\eta-1) \rho}} \tag{29}
\end{equation*}
$$

with

$$
\begin{equation*}
\phi\left(s^{t}\right)_{k}=\left[\sum_{h=1}^{N} M\left(s^{t}\right)_{h}^{\eta} t\left(s^{t}\right)_{h k}^{1-\eta} C\left(s^{t}\right)_{h}^{-\rho \eta} X\left(s^{t}\right)_{h}\right]^{\frac{\eta-1}{\eta}} \tag{30}
\end{equation*}
$$

Clearly, even if there are no trade costs, relative consumption is not constant, and consumption growth rates are not perfectly correlated, due to the friction in asset markets.

Bilateral imports

In the presence of both types of friction, the risk sharing that takes place across countries must still be reflected in trade flows. The first order conditions together with the resource constraints yield the following expression for the value of country i 's consumption of k 's

[^1]endowment in period t following history s^{t} :
\[

$$
\begin{align*}
& t\left(s^{t}\right)_{i k} Q\left(k, s^{t}\right) Z\left(k, s^{t}\right)_{i} \tag{31}\\
= & \frac{\left[P\left(s^{t}\right)_{i} X\left(s^{t}\right)_{i}\right]\left[Q\left(k, s^{t}\right) Y\left(s^{t}\right)_{k}\right]}{t\left(s^{t}\right)_{i k}^{\eta-1}} \frac{M\left(s^{t}\right)_{i}^{\eta-1} C\left(s^{t}\right)_{i}^{\rho(1-\eta)}}{\sum_{j=1}^{N} M\left(s^{t}\right)_{j}^{\eta} C\left(s^{t}\right)_{j}^{-\rho \eta} X\left(s^{t}\right)_{j} t\left(s^{t}\right)_{j k}^{1-\eta}}
\end{align*}
$$
\]

Again, this is a slightly unorthodox formulation of the standard gravity relationship. Appropriate substitution yields the more standard form of the relationship:

$$
\begin{equation*}
t\left(s^{t}\right)_{i k} Q\left(k, s^{t}\right) Z\left(k, s^{t}\right)_{i}=\left[P\left(s^{t}\right)_{i} X\left(s^{t}\right)_{i}\right]\left[Q\left(k, s^{t}\right) Y\left(s^{t}\right)_{k}\right]\left(\frac{P\left(s^{t}\right)_{i} \Pi\left(s^{t}\right)_{k}}{t\left(s^{t}\right)_{i k}}\right)^{\eta-1} \tag{32}
\end{equation*}
$$

with

$$
\begin{equation*}
\Pi\left(s^{t}\right)_{k}^{1-\eta}=\sum_{j=1}^{N} P\left(s^{t}\right)_{j} X\left(s^{t}\right)_{j}\left(t\left(s^{t}\right)_{k j} / P\left(s^{t}\right)_{j}\right)^{1-\eta} \tag{33}
\end{equation*}
$$

Notice that the former expression has the advantage over the latter that it differs depending on whether or not there are asset market frictions. ${ }^{2}$

2.4 Financial autarky

Under financial autarky, trade must be balanced in all periods and states of the world, but spot trades are not restricted. At each point in time and for every realized history, the representative agent in each country maximizes utility $u\left(s^{t}\right)_{i}$ subject to the i-country aggregate good resource constraint and the balanced trade condition:

$$
\begin{equation*}
\sum_{k=1}^{N} t\left(s^{t}\right)_{i k} Q\left(k, s^{t}\right) Z\left(k, s^{t}\right)_{i}=Q\left(i, s^{t}\right) A\left(s^{t}\right)_{i} K\left(s^{t-1}\right)_{i}^{\alpha} L_{i}^{1-\alpha} \tag{34}
\end{equation*}
$$

where $Q\left(k, s^{t}\right)$ is the spot price in country k of good k. Denote the multipliers on the aggregate good resource constraint

$$
\begin{equation*}
\sigma\left(s^{t}\right)_{i}=\beta^{t} \pi\left(s^{t}\right) \tilde{P}\left(s^{t}\right)_{i} \tag{35}
\end{equation*}
$$

[^2]and the multipliers on the balanced trade condition
\[

$$
\begin{equation*}
\varphi\left(s^{t}\right)_{i}=\beta^{t} \pi\left(s^{t}\right) R\left(s^{t}\right)_{i} \tag{36}
\end{equation*}
$$

\]

The first order conditions with respect to $C\left(s^{t}\right)_{i}$ are given by:

$$
\begin{equation*}
C\left(s^{t}\right)_{i}^{-\rho}=\tilde{P}\left(s^{t}\right)_{i} \tag{37}
\end{equation*}
$$

and with respect to $Z\left(k, s^{t}\right)_{i}$ are given by:

$$
\begin{equation*}
\tilde{P}\left(s^{t}\right)_{i} X\left(s^{t}\right)_{i}^{1 / \eta} Z\left(k, s^{t}\right)_{i}^{-1 / \eta}=R\left(s^{t}\right)_{i} t\left(s^{t}\right)_{i k} Q\left(k, s^{t}\right) \tag{38}
\end{equation*}
$$

For the purpose of comparing the financial autarky case with the cases previously considered, define

$$
\begin{equation*}
P\left(s^{t}\right)_{i}=\tilde{P}\left(s^{t}\right)_{i} R\left(s^{t}\right)_{i} \tag{39}
\end{equation*}
$$

Equilibrium

The two sets of resource constraints, the budget constraints and the first order conditions (including the first order condition with respect to capital) together determine consumption of each good by each country in every period and state. However it is not necessary to characterize the equilibrium allocation in order to derive results on consumption correlations and the reflection of consumption risk sharing in bilateral imports.

Consumption correlations

The relationship between the domestic price levels, trade costs and the spot price of intermediates in the country of production is exactly as in the case of no asset market frictions. If trade costs are non-zero, purchasing power parity fails. The relationship between the real exchange rate and relative consumption is:

$$
\begin{equation*}
R E R\left(s^{t}\right)_{i j}=\frac{P\left(s^{t}\right)_{i}}{P\left(s^{t}\right)_{j}}=\frac{R\left(s^{t}\right)_{i}}{R\left(s^{t}\right)_{j}}\left[\frac{C\left(s^{t}\right)_{j}}{C\left(s^{t}\right)_{i}}\right]^{\rho} \tag{40}
\end{equation*}
$$

The relative multipliers $R\left(s^{t}\right)_{i} / R\left(s^{t}\right)_{j}$ will in general depend on the consumption allocation, so as in the enforcement friction case, the relationship between the real exchange rate and relative consumption need not be monotonic.

Relative consumption can be written

$$
\begin{equation*}
\frac{C\left(s^{t}\right)_{i}}{C\left(s^{t}\right)_{j}}=\left[\frac{R\left(s^{t}\right)_{i}}{R\left(s^{t}\right)_{j}}\right]^{1 / \rho}\left[\frac{\sum_{k=1}^{N} \frac{t\left(s^{t}\right)_{i k}^{1-\eta}}{\phi\left(s^{t} k\right.}}{\left.\sum_{k=1}^{N} \frac{t\left(s^{t}\right)_{j k}^{1-\eta}}{\phi\left(s^{t}\right)_{k}} Y\left(s^{t}\right)_{k}^{\frac{\eta-1}{\eta}}\right)_{k}^{\frac{\eta-1}{\eta}}}\right]^{\frac{1}{(\eta-1) \rho}} \tag{41}
\end{equation*}
$$

with

$$
\begin{equation*}
\phi\left(s^{t}\right)_{k}=\left[\sum_{h=1}^{N} R\left(s^{t}\right)_{h}^{\eta} t\left(s^{t}\right)_{h k}^{1-\eta} C\left(s^{t}\right)_{h}^{-\rho \eta} X\left(s^{t}\right)_{h}\right]^{\frac{\eta-1}{\eta}} \tag{42}
\end{equation*}
$$

Even if there are no trade costs, relative consumption is not constant, and consumption growth rates are not perfectly correlated. However, as in Cole and Obstfeld (1991), there is some risk sharing through movements in the terms of trade, as long as trade costs and the elasticity of substitution between different goods are less than infinite.

Bilateral imports

The first order conditions together with the resource constraints yield the following expression for the value of country i 's consumption of k 's endowment in period t following history s^{t} :

$$
\begin{align*}
& t\left(s^{t}\right)_{i k} Q\left(k, s^{t}\right) Z\left(k, s^{t}\right)_{i} \tag{43}\\
= & \frac{\left[P\left(s^{t}\right)_{i} X\left(s^{t}\right)_{i}\right]\left[Q\left(k, s^{t}\right) Y\left(s^{t}\right)_{k}\right]}{t\left(s^{t}\right)_{i k}^{\eta-1}} \frac{R\left(s^{t}\right)_{i}^{\eta-1} C\left(s^{t}\right)_{i}^{\rho(1-\eta)}}{\sum_{j=1}^{N} R\left(s^{t}\right)_{j}^{\eta} C\left(s^{t}\right)_{j}^{-\rho \eta} X\left(s^{t}\right)_{j} t\left(s^{t}\right)_{j k}^{1-\eta}}
\end{align*}
$$

Making use of the fact that under financial autarky, the value of a country's output is equal to the value of its expenditure, this can be rewritten:

$$
\begin{align*}
& t\left(s^{t}\right)_{i k} Q\left(k, s^{t}\right) X\left(k, s^{t}\right)_{i} \\
= & \frac{\left[P\left(s^{t}\right)_{i} X\left(s^{t}\right)_{i}\right]\left[Q\left(k, s^{t}\right) Y\left(s^{t}\right)_{k}\right]}{t\left(s^{t}\right)_{i k}^{\eta-1}}\left(R\left(s^{t}\right)_{i} C\left(s^{t}\right)_{i}^{-\rho} R\left(s^{t}\right)_{k} C\left(s^{t}\right)_{k}^{-\rho}\right)^{\eta-1} \tag{44}
\end{align*}
$$

or

$$
\begin{equation*}
t\left(s^{t}\right)_{i k} Q\left(k, s^{t}\right) X\left(k, s^{t}\right)_{i}=\frac{\left[P\left(s^{t}\right)_{i} X\left(s^{t}\right)_{i}\right]\left[Q\left(k, s^{t}\right) Y\left(s^{t}\right)_{k}\right]}{t\left(s^{t}\right)_{i k}^{\eta-1}}\left(P\left(s^{t}\right)_{i} P\left(s^{t}\right)_{k}\right)^{\eta-1} \tag{45}
\end{equation*}
$$

which closely resembles the form of the gravity equation derived by Anderson and van Wincoop (2003).

2.5 A special case

For the purpose of building intuition, it is worth considering a special case of the above model. Suppose that each of the N countries in the world is endowed with a distinct tradeable intermediate. These intermediates are combined to produce a non-tradeable final consumption good using the same Dixit-Stiglitz aggregator as before. There is no production or investment. Suppose that preferences are such that $\rho=1 / \eta \cdot{ }^{3}$ In this case, when there are no frictions in asset markets, bilateral imports are given by:

$$
\begin{equation*}
t\left(s^{t}\right)_{i k} P\left(k, s^{t}\right) C\left(k, s^{t}\right)_{i}=\frac{\left[\lambda_{i}^{\eta}\right]\left[Q\left(k, s^{t}\right) Y\left(s^{t}\right)_{k}\right]}{t\left(s^{t}\right)_{i k}^{\eta-1}} \frac{1}{\sum_{j=1}^{N} \lambda_{j}^{\eta} t\left(s^{t}\right)_{k j}^{1-\eta}} \tag{46}
\end{equation*}
$$

With the enforcement friction in asset markets, bilateral imports are given by:

$$
\begin{equation*}
t\left(s^{t}\right)_{i k} P\left(k, s^{t}\right) C\left(k, s^{t}\right)_{i}=\frac{\left[M\left(s^{t}\right)_{i}^{\eta}\right]\left[Q\left(k, s^{t}\right) Y\left(s^{t}\right)_{k}\right]}{t\left(s^{t}\right)_{i k}^{\eta-1}} \frac{1}{\sum_{j=1}^{N} M\left(s^{t}\right)_{j}^{\eta} t\left(s^{t}\right)_{k j}^{1-\eta}} \tag{47}
\end{equation*}
$$

Under financial autarky, bilateral imports are given by:

$$
\begin{equation*}
t\left(s^{t}\right)_{i k} P\left(k, s^{t}\right) C\left(k, s^{t}\right)_{i}=\frac{\left[Q\left(i, s^{t}\right) Y\left(s^{t}\right)_{i}\right]\left[Q\left(k, s^{t}\right)_{t} Y\left(s^{t}\right)_{k}\right]}{t\left(s^{t}\right)_{i k}^{\eta-1}}\left(P\left(s^{t}\right)_{i} P\left(s^{t}\right)_{k}\right)^{\eta-1} \tag{48}
\end{equation*}
$$

When there are no frictions in asset markets, bilateral imports do not respond to shocks to the value of importer GDP. Country i 's consumption of good k does not depend on i 's current income. Under financial autarky, bilateral imports move one-for-one with the value of importer GDP. Country i 's consumption of good k moves one-for-one with i 's current income. When there is a friction in asset markets, but some cross-state and cross-period trade is possible, bilateral imports move with the value of importer GDP to the extent that $M\left(s^{t}\right)_{i}^{\eta}$, the multiplier on i 's IC constraint, depends on i 's current GDP. It is tempting to hypothesize that i 's consumption of good k moves with i 's current income, but less than one-for-one.

[^3]
3 Empirical strategy

The predictions of the models outlined above with respect to the relationship between bilateral imports, output, consumption and trade costs can be conveniently summarized. Let $I M_{i k t}$ denote the value of country i 's imports from country k in period t. Let $E X P_{i t}$ denote the value of i 's absorption $(C+I)$ in period t. Let $G D P_{k t}$ denote the value of k 's output in period t. Then:

$$
\begin{equation*}
\frac{I M_{i k t}}{E X P_{i t} G D P_{k t}}=\Theta_{i t} \Phi_{k t} t_{i k t}^{1-\eta} \tag{49}
\end{equation*}
$$

where the implications of the different assumptions are given by:

Assumption	$\Theta_{i t}$	$\Phi_{k t}$	$t_{i k t}^{1-\eta}$
(1) Enforcement friction, trade costs	$M_{i t}^{\eta-1} C_{i t}^{-\rho(\eta-1)}$	$1 / \sum_{j=1}^{N} \Theta_{j t} E X P_{j t} t_{k j t}^{1-\eta}$	$t_{i k t}^{1-\eta}$
(2) Financial autarky, trade costs	$R_{i t}^{\eta-1} C_{i t}^{-\rho(\eta-1)}$	$R_{k t}^{\eta-1} C_{k t}^{-\rho(\eta-1)}$	$t_{i k t}^{1-\eta}$
(3) Complete financial markets, trade costs	$\lambda_{i}^{\eta-1} C_{i t}^{-\rho(\eta-1)}$	$1 / \sum_{j=1}^{N} \Theta_{j t} E X P_{j t} t_{k j t}^{1-\eta}$	$t_{i k t}^{1-\eta}$
(4) Enforcement friction, no trade costs	$M_{i t}^{\eta-1} C_{i t}^{-\rho(\eta-1)}$	$1 / \sum_{j=1}^{N} \Theta_{j t} E X P_{j t}$	1
(5) Financial autarky, no trade costs	$R_{i t}^{\eta-1} C_{i t}^{-\rho(\eta-1)}$	$R_{k t}^{\eta-1} C_{k t}^{-\rho(\eta-1)}$	1
(6) Complete financial markets, no trade costs	$\lambda_{i}^{\eta-1} C_{i t}^{-\rho(\eta-1)}$	$1 / \sum_{j=1}^{N} \Theta_{j t} E X P_{j t}$	1

Given data on bilateral imports and the other relevant variables, it is possible to test which of these alternatives fits the data best. Taking logs of (49) and substituting in the standard assumption about the form of trade costs, ${ }^{4}$

$$
\begin{equation*}
t_{i k t}=\prod_{m=1}^{M}\left(Z_{i k t}^{m}\right)^{\gamma_{t}^{m}}, Z_{i k t}^{m}=1 \text { if } i=k, z_{i k t}^{m} \geq 1 \text { otherwise } \tag{50}
\end{equation*}
$$

the six different assumptions about the configuration of frictions can be implemented by estimating six different linear models. Let $w_{i k t}=\ln \left(I M_{i k t} / E X P_{i t} G D P_{k t}\right), c_{i t}=\ln C_{i t}$ and $z_{i k t}^{m}=\ln Z_{i k t}^{m}$. Let $\theta_{i t}$ be an importer-year fixed effect, $\phi_{k t}$ an exporter-year fixed effect and ψ_{i} an importer fixed effect. Then the six models are given by:

[^4]| Assumption | Estimating equation |
| :--- | :--- |
| (1) Enforcement friction, trade costs | $w_{i k t}=\theta_{i t}+\phi_{k t}+\sum_{m=1}^{M} \gamma_{t}^{m} z_{i k t}^{m}+\varepsilon_{i k t}$ |
| (2) Financial autarky, trade costs | $w_{i k t}=\phi_{i t}+\phi_{k t}+\sum_{m=1}^{M} \gamma_{t}^{m} z_{i k t}^{m}+\varepsilon_{i k t}$ |
| (3) Complete financial markets, trade costs | $w_{i k t}=\psi_{i}+\phi_{k t}+\beta_{c} c_{i t}+\sum_{m=1}^{M} \gamma_{t}^{m} z_{i k t}^{m}+\varepsilon_{i k t}$ |
| (4) Enforcement friction, no trade costs | $w_{i k t}=\theta_{i t}+\phi_{k t}+\varepsilon_{i k t}$ |
| (5) Financial autarky, no trade costs | $w_{i k t}=\phi_{i t}+\phi_{k t}+\varepsilon_{i k t}$ |
| (6) Complete financial markets, no trade costs | $w_{i k t}=\psi_{i}+\phi_{k t}+\beta_{c} c_{i t}+\varepsilon_{i k t}$ |

Notice that it is appropriate to impose the restrictions on the relationship between $\phi_{k t}$ and the other variables in models $(1),(2),(4)$ and (5) only if they are estimated using data on the universe bilateral pairs (including imports from self). However, because of data availability constraints, these restrictions will not be imposed.

The enforcement friction, trade cost model nests all the other possible configurations of frictions. Hence, a likelihood ratio test can be used to test null hypotheses against the alternative of frictions in both markets. The data used to implement this strategy is described below. For many bilateral pairs in the sample used, bilateral imports are recorded as zero. In order to avoid dropping these observations, one is added to all bilateral imports, so $w_{i k t}$ is constructed as $\ln \left[\left(1+I M_{i k t}\right) / E X P_{i t} G D P_{k t}\right]$. All cases are estimated as two-way fixed effect models, as the number of dummy variables would otherwise be very large. The full set of time-varying coefficients on the gravity variables are not included, but these coefficients are allowed to vary across five-year periods.

4 Data and results

Annual bilateral merchandise imports in current dollars from 1970 to 2000 are taken from the NBER-United Nations Trade Data prepared by Feenstra and Lipsey. Household plus government consumption measured in constant dollars, the current dollar value of GDP, the current dollar value of total expenditure and the current dollar value of total imports are taken from the World Bank's World Development Indicators (WDI). The largest possible sample given the requirement that all of these variables be available for all sample years consists of 70 developed and developing countries. The list of countries is in the Appendix.

For the purposes of estimating the gravity equation, data on variables that are correlated
with trade costs are required. In choosing which variables to include, attention is restricted to the subset of standard gravity variables that is least likely to be endogenously determined. Bilateral distance in miles is calculated using the great circle distance algorithm provided by Gray (2001). Dummy variables indicating common language, contiguity and a colonial relationship post-1945 are constructed based on the CIA World Factbook.

One issue in mapping the model into the data is that we have data on the value of bilateral merchandise imports, not bilateral imports. Data on bilateral service trade are not available. It is implicitly assumed that bilateral service flows follow the same pattern as bilateral merchandise flows.

4.1 Results

Baseline results

Table 1 reports the results from estimating the six models described above using all bilateral pairs in the 70-country sample. The estimated coefficients on the gravity variables in the models with trade costs are fairly standard and do not change much across specifications. They strongly suggest that trade costs are falling over time, most rapidly in the first half of the sample period.

Table 2 reports the likelihood ratio test statistics and p-values for the five hypothesis tests, taking the trade cost and enforcement friction model as the alternative hypothesis in each case. The null of no frictions in asset markets is rejected at all significance levels. The null of financial autarky is rejected at all significance levels. The null of no trade costs is also rejected at all significance levels. Data on bilateral imports strongly suggests that both types of friction are necessary to explain the failure of international risk sharing, while at the same time financial autarky is rejected.

The estimated coefficients on the gravity variables in Table 1 can be used to construct fitted values of bilateral trade costs between all country pairs for the 6 five-year intervals covered by the sample. This requires an estimate of the elasticity of substitution, η. Following Anderson and van Wincoop, a baseline elasticity of 6 is used. Table 3 reports summary statistics of the implied trade costs. Using this elasticity, the predicted trade costs are very high, much higher than the measured costs of trade for goods that are actually traded. One way to understand this is to think of the costs constructed here as a weighted average applying to all of output, including the large fraction that is non-traded. Another possible explanation
is that there are both fixed and per unit costs of trade. The failure of the empirical model used here to take account of fixed costs may lead to upwardly-biased estimates of per unit trade costs [see Helpman, Melitz and Rubinstein (2004)]. At any rate, the evidence presented here strongly suggests a much greater macroeconomic role for trade costs than usually presumed in the international real business cycle literature.

Results by level of development

To test the plausibility of these results, the same models are estimated on two subsamples of the data, one containing only observations on bilateral imports between 21 OECD countries, and the other containing only observations on bilateral imports between the remaining 49 countries. These results are reported in Table 4 and Table 7. The coefficients on the gravity variables in the models with trade costs are quite different in the two samples. The implied trade costs are substantially larger in the non-OECD sample than in the OECD sample (see Tables 6 and 9).

Tables 5 and 8 report the likelihood ratio test statistics and p-values for the two samples. In both samples, the null of no asset market frictions but costly trade is rejected against the alternative of frictions in both goods and asset markets. For the non-OECD sample, the rejection is at all significance levels. For the OECD sample, the null is rejected at all conventional levels of significance, but the p-value is just under one half. In both samples, the null of asset market frictions but no trade costs is rejected against the alternative of frictions in both goods and asset markets at all levels of significance. The null of financial autarky is also rejected in favor of some degree of risk sharing through intertemporal trade.

Results by period

As a further test of plausibility, the same models are estimated separately on the first half of the time-period (1970-1984) and the second half of the time period (1985-2000). The estimation results are reported in Table 10 and Table 12. The implied trade costs are on average lower in the second period compared with the first period. Tables 11 and 13 report the likelihood ratio test statistics and p-values for the two samples. In both samples, the null of no asset market frictions but costly trade is rejected against the alternative of frictions in both goods and asset markets. Similarly, the null of financial autarky is rejected in favor of the alternative of some risk sharing through financial markets. It is interesting to note that the rejection of the null of trade cost frictions but no asset market frictions is weaker in the second period than in the first period.

5 Conclusion

This paper presents a multi-country model with frictions in goods and asset markets. The goods market friction takes the form of costs of trading goods, while the friction in asset markets takes the form of limited enforcement. Both of these frictions separately reduce the extent to which countries can pool risk. The model suggests a test for the presence of each of the two types of friction that can be implemented using data on bilateral imports. I implement this test using a sample of developed and developing countries. The results suggest that both trade costs and asset market imperfections are necessary in order to explain the failure of perfect consumption risk sharing. However there is some risk sharing through intertemporal trade, and asset market frictions are less important for developed than for developing countries.

References

[1] Anderson, J. and E. van Wincoop (2003) "Gravity with Gravitas: A Solution to the Border Puzzle," American Economic Review 93, 170-192
[2] Anderson, J. and E. van Wincoop (2004) "Trade Costs," Journal of Economic Literature 42, 691-751
[3] Backus, D., P. Kehoe and F. Kydland (1992) "International Real Business Cycles," Journal of Political Economy 100 (4), 745-775
[4] Backus, D., P. Kehoe and F. Kydland (1995) "International Business Cycles: Theory and Evidence," in T. Cooley, ed., Frontiers of Business Cycle Research, Princeton University Press, Princeton, 331-356
[5] Backus, D. and G. Smith (1993) "Consumption and Real Exchange Rates in Dynamic Economies with Non-Traded Goods," Journal of International Economics 35, 297-316
[6] Choi, W. (2005) "Real Exchange Rates, International Trade and Macroeconomic Fundamentals," mimeo, Stanford University
[7] Cole, H. and M. Obstfeld (1991) "Commodity Trade and International Risk Sharing," Journal of Monetary Economics 28, 3-24
[8] Eaton, J. and S. Kortum (2002) "Technology, Geography and Trade," Econometrica 70 (5), 1741-1779
[9] Gray, A. (2001), http://www.andrew-gray.com/dist/index.en.html
[10] Heathcote, J. and F. Perri (2002) "Financial Autarky and International Business Cycles," Journal of Monetary Economics 49 (3), 601-627
[11] Heathcote, J. and F. Perri (2004a) "Financial Globalization and Real Regionalization," Journal of Economic Theory 119, 207-243
[12] Heathcote, J. and F. Perri (2004b) "The International Diversification Puzzle is Not As Bad As You Think," mimeo
[13] Helpman, E., M. Melitz and Y. Rubinstein (2004) "Trading Partners and Trading Volumes," mimeo
[14] Kehoe, P. and F. Perri (2002) "International Business Cycles with Endogenous Incomplete Markets," Econometrica 70 (3), 907-928
[15] Kose, M. and K.-M. Yi (2005), "Can the Standard International Business Cycle Model Explain the Relation Between Trade and Comovement?" Journal of International Economics forthcoming
[16] Lucas, R. (1982) "Interest Rates and Currency Prices in a Two-Country World," Journal of Monetary Economics 10, 335-359
[17] Mazzenga, E. and M. Ravn (2004) "International Business Cycles: The Quantitative Role of Trade Costs," Journal of International Money and Finance 23(4), 645-71
[18] Obstfeld, M. and K. Rogoff (1996) Foundations of International Macroeconomics
[19] Obstfeld, M. and K. Rogoff (2000) "The Six Major Puzzles in International Macroeconomics: Is There a Common Cause," in B. Bernanke and K. Rogoff (eds.), NBER Macroeconomics Annual 2000 (Cambridge: MIT Press), 339-390

Table 1: Regression results for full sample of 70 countries, 1970-2000

		(1)	(2)	(3)	(4)	(5)	(6)
Asset market		General friction	Autarky	No friction	General friction	Autarky	No friction
Goods market		Trade costs	Trade costs	Trade costs	No trade costs	No trade costs	No trade costs
variable	interaction	coeff. s.e.					
\ln (consumption)	none	. .	.	0.000 .00	. .	.	$0.00 \quad 0.00$
$\ln (1+$ dist $)$	1970-1974	-1.49 $0.05^{* *}$	-1.49 $0.05^{* *}$	-1.47 0.04 **
$\ln (1+$ dist $)$	1975-1979	-1.23 $0.05^{* *}$	-1.23 $0.05^{* *}$	-1.30 0.05 **
$\ln (1+$ dist $)$	1980-1984	-0.84 $0.05^{* *}$	-0.84 $0.05{ }^{* *}$	-1.06 $0.05{ }^{* *}$
$\ln (1+$ dist $)$	1985-1989	-0.62 $0.05^{* *}$	-0.62 $0.05{ }^{* *}$	-0.78 $0.05^{* *}$
$\ln (1+$ dist $)$	1990-1994	-0.69 $0.05^{* *}$	-0.69 $0.05{ }^{* *}$	-0.59 $0.04^{* *}$
$\ln (1+$ dist $)$	1995-2000	$\begin{array}{cc}-0.71 & 0.04 * *\end{array}$	-0.71 $0.044^{* *}$	-0.44 0.04 **
not contiguous	1970-1974	-0.74 0.21 **	-0.74 0.21 **	-0.53 0.23 **
not contiguous	1975-1979	-0.13 0.24	-0.13 0.24	0.200 .25
not contiguous	1980-1984	$0.19 \quad 0.24$	0.190 .24	$0.680 .24^{* *}$
not contiguous	1985-1989	-0.32 0.22	-0.32 0.22	-0.24 0.22
not contiguous	1990-1994	$0.30 \quad 0.21$	0.300 .21	-0.05 0.21
not contiguous	1995-2000	$0.470^{0.18}$ **	$0.47{ }^{0.18}$ **	-0.16 0.19
no common lang.	1970-1974	-2.67 0.08 **	-2.67 0.08 **	-3.18 0.08 **
no common lang.	1975-1979	-1.96 $0.08{ }^{* *}$	-1.96 $0.09{ }^{* *}$	-2.20 $0.088^{* *}$
no common lang.	1980-1984	-1.60 $0.09^{* *}$	-1.60 0.09 **	-1.53 0.09 **
no common lang.	1985-1989	-1.44 $0.09^{* *}$	-1.44 0.09 **	-1.06 0.09 **
no common lang.	1990-1994	-1.78 $0.09^{* *}$	-1.78 0.09 **	-1.57 $0.09^{* *}$
no common lang.	1995-2000	-1.60 0.08 **	-1.60 $0.08{ }^{* *}$	$\begin{array}{llll}-1.51 & 0.08\end{array}$
no colonial rel.	1970-1974	-1.93 $0.15{ }^{\text {** }}$	-1.93 $0.14{ }^{* *}$	-1.28 $0.14^{* *}$
no colonial rel.	1975-1979	-2.39 $0.16^{* *}$	-2.39 $0.16^{* *}$	-2.13 0.15 **
no colonial rel.	1980-1984	-2.88 $0.17^{* *}$	-2.88 $0.17^{* *}$	-3.06 $0.17^{* *}$
no colonial rel.	1985-1989	-3.17 0.18 **	-3.17 $0.17^{* *}$	-3.69 $0.16^{* *}$
no colonial rel.	1990-1994	-2.63 0.18 **	-2.63 0.18 **	-2.87 $0.16^{* *}$
no colonial rel.	1995-2000	-2.54 $0.17^{* *}$	-2.54 $0.17^{* *}$	$\begin{array}{llll}-2.51 & 0.15\end{array}$.	.	.
importer fixed effects importer-year fixed effects exporter-year fixed effects symmetric-year fixed effects		no	no	yes	no	no	yes
		yes	no	no	yes	no	no
		yes	no	yes	yes	no	yes
		no	yes	no	no	yes	no
R^{2}		0.53	$\begin{gathered} 0.50 \\ 149730 \end{gathered}$	$\begin{gathered} 0.50 \\ 149730 \end{gathered}$	0.50	0.47	0.47
N		149730			149730	149730	149730

Dependent variable is $\log \left(1+\mathrm{IM}_{\mathrm{ij}} /\right.$ EXP $\left._{\mathrm{i}} \mathrm{GDP}_{\mathrm{j}}\right)$. * significant at $10 \% ;{ }^{* *}$ significant at 5%

Table 2: Likelihood ratio test results for full sample of 70 countries, 1970-2000

Null	Alternative	LR	d.f.	N	p-value
Trade costs, no asset market friction	trade, asset friction	9403	2099	149730	1
Trade costs, financial autarky	trade, asset friction	9204	2170	149730	1
No trade costs, asset market friction	trade, asset friction	9849	24	149730	1
No trade costs, financial autarky	trade, asset friction	18484	2194	149730	1
No frictions	trade, asset friction	19197	2123	149730	1

LR test statistic is asymptotically distributed as chi-squared with d.f. as given
A p-value greater than 0.05 indicates rejection of the null at the 5% significance level

Table 3: Fitted trade costs for full sample of 70 countries

	elasticity of substitution $=6$			elasticity of substitution $=9$		
Period	Mean	Min	Max	Mean	Min	Max
1970-1974	3175	490	4742	775	203	1030
1975-1979	1687	405	2368	502	175	642
1980-1984	811	246	1053	296	117	361
1985-1989	618	174	766	242	88	285
1990-1994	578	168	734	230	85	277
1995-2000	550	169	699	221	85	266

Trade costs are expressed as a percentage of the home country price

Table 4: Regression results for non-OECD countries only, 1970-2000

Dependent variable is $\log \left(1+\mathrm{IM}_{\mathrm{ij}} /\right.$ EXP $\left._{\mathrm{i}} \mathrm{GDP}_{\mathrm{j}}\right)$. ${ }^{*}$ significant at $10 \% ;{ }^{* *}$ significant at 5%

Table 5: Likelihood ratio test results for 49 non-OECD countries, 1970-2000

Null	Alternative	LR	d.f.	N	p-value
Trade costs, no asset market friction	trade, asset friction	7381	1469	72912	1
Trade costs, financial autarky	trade, asset friction	6808	1519	72912	1
No trade costs, asset market friction	trade, asset friction	12916	18	72912	1
No trade costs, financial autarky	trade, asset friction	18660	1537	72912	1
No frictions	trade, asset friction	19986	1487	72912	1

LR test statistic is asymptotically distributed as chi-squared with d.f. as given
A p-value greater than 0.05 indicates rejection of the null at the 5% significance level

Table 6: Fitted trade costs for sample of 49 non-OECD countries

	elasticity of substitution $=6$			elasticity of substitution $=9$		
	Mean	Min	Max	Mean	Min	Max
1970-1974	37825	1745	74572	3864	518	6148
1975-1979	19314	1488	36384	2526	463	3893
1980-1984	5364	734	8952	1099	277	1571
1985-1989	2305	390	3477	622	170	835
1990-1994	1744	332	2611	511	150	687
1995-2000	1617	343	2424	485	154	652

Trade costs are expressed as a percentage of the home country price

Table 7: Regression results for OECD countries only, 1970-2000

			1)	(2)	(3)	(4)	(5)	(6)
Asset market		General	friction	Autarky	No friction	General friction	Autarky	No friction
Goods market		Trade costs		Trade costs	Trade costs	No trade costs	No trade costs	No trade costs
variable	interaction	coeff.	s.e.	coeff. s.e.				
In(consumption)	none				0.000 .00	. .		$0.00 \quad 0.00$
ln(1+dist)	1970-1974	-0.95	0.04 **	-0.95 0.03 **	-1.03 0.02 **
$\ln (1+$ dist $)$	1975-1979	-1.02	0.03 **	-1.02 0.03 **	-1.04 0.02 **	.	.	
$\ln (1+$ dist $)$	1980-1984	-1.10	0.03 **	-1.10 0.03 **	-1.08 0.02 **	.	.	.
$\ln (1+$ dist $)$	1985-1989	-1.07	0.03 **	-1.07 0.03 **	-1.07 0.02 **
$\ln (1+$ dist)	1990-1994	-1.12	0.03 **	-1.12 0.03 **	-1.07 0.02 **	.	.	.
$\ln (1+$ dist)	1995-2000	-1.10	0.03 **	-1.10 0.03 **	-1.07 0.02 **		.	
not contiguous	1970-1974	-0.08	0.06	-0.08 0.06	0.020 .06	.	.	-
not contiguous	1975-1979	-0.04	0.06	-0.04 0.06	0.020 .06	.	.	.
not contiguous	1980-1984	0.08	0.05	$\begin{array}{lll}0.08 & 0.05\end{array}$	0.050 .05	.	.	.
not contiguous	1985-1989	0.07	0.05	0.070 .05	0.060 .04	.	.	.
not contiguous	1990-1994	0.13	0.05 **	$0.130 .05{ }^{* *}$	0.060 .05
not contiguous	1995-2000	0.13	0.05 **	0.130 .05 **	0.080 .05			
no common lang.	1970-1974	-0.56	0.06 **	-0.56 $0.06{ }^{* *}$	-0.510 .05 **			
no common lang.	1975-1979	-0.46	0.06 **	-0.46 0.06 **	$-0.480 .05{ }^{* *}$.	.	.
no common lang.	1980-1984	-0.42	0.05 **	-0.42 0.05 **	-0.410 .04 **	.	.	.
no common lang.	1985-1989	-0.41	0.04 **	-0.41 $0.05{ }^{* *}$	-0.400 .04 **
no common lang.	1990-1994	-0.39	0.04 **	-0.39 0.05 **	-0.400 .04 **
no common lang.	1995-2000	-0.39	0.04 **	-0.39 0.04 **	-0.42 0.04 **			
importer fixed effects importer-year fixed effects exporter-year fixed effects symmetric-year fixed effects		no		no	yes	no	no	yes
		yes		no	no	yes	no	no
		yes		no	yes	yes	no	yes
		no		yes	no	no	yes	no
R^{2}		$\begin{gathered} 0.88 \\ 13020 \end{gathered}$		$\begin{gathered} 0.85 \\ 13020 \end{gathered}$	$\begin{gathered} 0.87 \\ 13020 \end{gathered}$	0.66	0.63	0.66
N				13020		13020	13020	

Dependent variable is $\log \left(1+\mathrm{IM}_{\mathrm{ij}} /\right.$ EXP $\left._{\mathrm{i}} \mathrm{GDP}_{\mathrm{j}}\right)$. ${ }^{*}$ significant at $10 \% ;{ }^{* *}$ significant at 5%

Table 8: Likelihood ratio test results for 21 OECD countries, 1970-2000

Null	Alternative	LR	d.f.	N	p-value
Trade costs, no asset market friction	trade, asset friction	626	629	13020	0.47
Trade costs, financial autarky	trade, asset friction	3163	651	13020	1
No trade costs, asset market friction	trade, asset friction	13488	18	13020	1
No trade costs, financial autarky	trade, asset friction	14700	669	13020	1
No frictions	trade, asset friction	13705	647	13020	1

LR test statistic is asymptotically distributed as chi-squared with d.f. as given
A p-value greater than 0.05 indicates rejection of the null at the 5% significance level

Table 9: Fitted trade costs for sample of 21 OECD countries

Trade costs are expressed as a percentage of the home country price

Table 10: Regression results for full sample of 70 countries, 1970-1984 only

Dependent variable is $\log \left(1+\mathrm{IM}_{\mathrm{ij}} / \operatorname{EXP}_{\mathrm{i}} \mathrm{GDP}_{\mathrm{j}}\right)$. ${ }^{*}$ significant at 10%; ** significant at 5%

Table 11: Likelihood ratio test results for full sample of countries, 1970-1984

Null	Alternative	LR	d.f.	N	p-value
Trade costs, no asset market friction	trade, asset friction	4294	979	72450	1
Trade costs, financial autarky	trade, asset friction	4870	1050	72450	1
No trade costs, asset market friction	trade, asset friction	7267	12	72450	1
No trade costs, financial autarky	trade, asset friction	11686	1062	72450	1
No frictions	trade, asset friction	11261	991	72450	1

LR test statistic is asymptotically distributed as chi-squared with d.f. as given
A p-value greater than 0.05 indicates rejection of the null at the 5% significance level

Table 12: Regression results for full sample of 70 countries, 1985-2000 only

		(1)	(2)	(3)	(4)	(5)	(6)
Asset market		General friction	Autarky	No friction	General friction	Autarky	No friction
Goods market		Trade costs	Trade costs	Trade costs	No trade costs	No trade costs	No trade costs
variable	interaction	coeff. s.e.					
In(consumption)	none	. .	.	0.000 .00	$0.00 \quad 0.00$
$\ln (1+$ dist $)$	1985-1989	-0.62 $0.05^{* *}$	-0.62 $0.05^{* *}$	-0.87 $0.05{ }^{* *}$
$\ln (1+$ dist $)$	1990-1994	-0.69 $\quad 0.05^{* *}$	-0.69 $0.05{ }^{* *}$	-0.67 $0.04^{* *}$
$\ln (1+$ dist $)$	1995-2000	$\begin{array}{cc}-0.71 & 0.04\end{array}{ }^{* *}$	-0.71 $0.04{ }^{* *}$	-0.53 0.04 **	.	.	.
not contiguous	1985-1989	-0.32 0.22	-0.32 0.22	0.080 .21	. .	- -	. .
not contiguous	1990-1994	$0.30 \quad 0.21$	0.300 .21	0.270 .20
not contiguous	1995-2000	$0.470^{0.18}$ **	$0.47{ }^{0.18}$ **	0.160 .18
no common lang.	1985-1989	$\begin{array}{cc}-1.44 & 0.09^{* *}\end{array}$	-1.44 $0.09{ }^{* *}$	$\begin{array}{llll}-1.27 & 0.09\end{array}$
no common lang.	1990-1994	-1.78 $0.09^{* *}$	-1.78 $0.09{ }^{* *}$	-1.79 0.08 **
no common lang.	1995-2000	-1.60 $0.08^{* *}$	-1.60 $0.0 .08^{* *}$	$\begin{array}{llll}-1.72 & 0.08\end{array}$ **
no colonial rel.	1985-1989	-3.17 $0.18^{* *}$	-3.17 $0.17^{* *}$	-3.46 $0.17^{* *}$
no colonial rel.	1990-1994	-2.63 $0.18{ }^{* *}$	$\begin{array}{ll}-2.63 & 0.18\end{array}{ }^{* *}$	$-2.640^{0.17}$ **
no colonial rel.	1995-2000	$\begin{array}{cc}-2.54 & 0.17^{* *}\end{array}$	-2.54 $0.17^{* *}$	$\begin{array}{llll}-2.28 & 0.16\end{array}{ }^{* *}$
importer fixed effects importer-year fixed effects exporter-year fixed effects symmetric-year fixed effects		no	no	yes	no	no	yes
		yes	no	no	yes	no	no
		yes	no	yes	yes	no	yes
		no	yes	no	no	yes	no
R^{2}		0.52	$\begin{gathered} 0.49 \\ 77280 \end{gathered}$	$\begin{gathered} 0.51 \\ 77280 \end{gathered}$	0.5077280	0.47	0.49
N		77280				77280	77280

Table 13: Likelihood ratio test results for full sample of countries, 1985-2000

Null	Alternative	LR	d.f.	N	p-value
Trade costs, no asset market friction	trade, asset friction	1143	1049	77280	0.98
Trade costs, financial autarky	trade, asset friction	4407	1120	77280	1
No trade costs, asset market friction	trade, asset friction	2968	12	77280	1
No trade costs, financial autarky	trade, asset friction	7213	1132	77280	1
No frictions	trade, asset friction	4110	1061	77280	1

LR test statistic is asymptotically distributed as chi-squared with d.f. as given
A p-value greater than 0.05 indicates rejection of the null at the 5% significance level

OECD countries

Australia	Germany	Norway
Austria	Greece	Portugal
Belgium	Ireland	Spain
Canada	Italy	Sweden
Denmark	Japan	Switzerland
Finland	Netherlands	UK
France	New Zealand	USA
Non-OECD countries	Gambia	Mexico
Algeria	Ghana	Morocco
Argentina	Guatemala	Pakistan
Benin	Guyana	Paraguay
Bolivia	Haiti	Peru
Brazil	Honduras	Philippines
Burkina Faso	Hong Kong	Rwanda
Burundi	Hungary	Senegal
Cameroon	Iceland	South Africa
Chile	Indonesia	Thailand
Colombia	Kenya	Togo
Congo	Korea	Trinidad and Tobago
Costa Rica	Madagascar	Tunisia
Cote d'lvoire	Malawi	Uruguay
Dominican Republic	Malaysia	Zambia
Ecuador	Mali	
Egypt	Mauritania	
Gabon		

[^0]: *Expert research assistance was provided by Daniel Beltran. I would like to thank participants in the junior faculty lunch at Harvard University for comments and suggestions. The usual disclaimer applies.
 ${ }^{\dagger}$ Department of Economics, UC-Santa Cruz, Santa Cruz, CA 95064, dfitzger@ucsc.edu

[^1]: ${ }^{1}$ This implication of financial frictions for the Backus-Smith puzzle is pointed out by Choi (2005).

[^2]: ${ }^{2}$ However from (31) it is not possible to distinguish enforcement frictions of the type presented here from other types of asset market friction.

[^3]: ${ }^{3}$ This is the special case of preferences consdered in Obstfeld and Rogoff (1996), Chapter 5.

[^4]: ${ }^{4}$ See Anderson and van Wincoop (2004).

