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Abstract

The model presented in this paper reconciles two of the most important features of

the long-run growth process: the massive changes in the structure of production and em-

ployment; and the Kaldor facts of economic growth. Structural change occurs because

Engel-curves are non-linear. Each new good goes through Engel’s consumption cycle, i.e.

starts out as a luxury with a high income elasticity and ends up as a necessity with a low

income elasticity. The coexistence of stagnating and expanding industries imply a chang-

ing sectoral composition and a continuous reallocation of labor across sectors. Nonetheless

macroeconomic aggregates grow at a constant rate, and the real interest rate and the labor

share are constant. Our model also addresses the two-way causality between economic

growth and structural change. Complementarities between aggregate and sectoral growth

may give rise to multiple equilibria providing a possible explanation for development fail-

ures.
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1 Introduction

The process of economic development is characterized by fundamental changes in the structure

of production and employment. In a historical perspective, the emergence of new and the

decline of old industries has led to a dramatic reallocation of resources between sectors of

production.1 Despite of these large structural changes, the long-term growth process has been

remarkably stable in the aggregate. As mentioned by Kaldor (1961) in his famous stylized

facts, a situation where the growth rate, interest rate, capital output ratio, and labor share

are constant over time is a reasonable approximation of the long-run growth experience of a

modern economy.

Changes in the structure of production and employment result either from sectoral dif-

ferences in productivity growth or from sectoral differences in income elasticities of demand.

This paper focuses on the demand side. Our starting point is the basic idea that consumption

expands along a hierarchy of needs and wants. This idea goes at least back to Plato and

has played an important role in the thinking of classical economists. The German statistician

Ernst Engel (1857) pioneered the empirical analysis of consumption patterns. Engel’s law -

the falling budget share for food with rising incomes - has become one the most robust empir-

ical findings in economics (Houthakker, 1987). But Engel (1857) himself believed in a more

general law of consumption and formulated a theory of a equilibrium structure of production

and employment based on a hierarchy of wants.2 This view has been supported by many later

writers. For instance, Kindleberger (1989, p. 9) argues

”Engel’s law applies to more than food, it is a general law of consumption. (...)

A given item may go through the Engel’s consumption cycle of a luxury, with high

income elasticity, to a necessity with low income elasticity.”

Modern growth theory has been surprisingly silent on the issue of how to reconcile the

1Maddison (1987) documents the huge reallocation of labor in six major industrialized countries (France,

Germany, Japan, Netherlands, U.K. and U.S.). His data show that the average employment share in agriculture

was as high as 46.0 % in 1870 and has decreased to 5.5 % by 1984. During the same period the average

employment share in the service sector has increased from 26.4 % to 62.2 %.
2Engel (1857) concluded explicitely from his empirical analysis that needs have a hierarchic structure: ”Nun-

mehr (ist) gleichsam eine Scala der Bedürfnisse des Lebens zu Tage gefördert (p. 27).”The idea that, in the age

of mass consumption, the very concept of necessities and luxuries has changed, has been stressed by Katona

(1964). See also the discussion on Engel-curves in Pasinetti (1981, Chapter IV).
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huge structural changes with the Kaldor facts of economic growth. The first paper that has

explicitly addressed the issue is Kongsamut, Rebelo, and Xie (2001). They study a three-sector

model where consumers have Stone-Geary preferences over an agricultural good (a necessity),

a manufactured good (with an income-elasticity near unity), and services (a luxury). They

find that a ”generalized balanced growth path”, along which the Kaldor facts are satisfied,

is only possible if preference and technology parameters jointly satisfy a knife-edge condition.

Just like in Kongsamut et al. (2001), in our model structural change is driven by sectoral

differences in income elasticities. Unlike Kongsamut et al. (2001), however, our model studies

a continuum of products and reconciles structural change and the Kaldor facts without putting

joint restrictions on technology and preference parameters.

To the best of our knowledge, other papers rationalizing structural change and steady

growth in a unified framework have focused exclusively on technological differences across

sectors. In Ngai and Pissarides (2005) sectors experience different total factor productivity

growth rates (but have identical capital-intensities). They show that the aggregate growth

process satisfies the Kaldor facts if the intertemporal utility function is logarithmic in the

consumption composite; and the consumption composite is non-logarithmic (yet homothetic)

across goods. Another recent paper by Acemoglu and Guerrieri (2005) does not only allow

for different rates of technical progress but also for differences in capital intensities across

sectors. In a two-sector growth model with constant elasticity of substitution preferences and

Cobb-Douglas production technologies they show that, provided the elasticity of substitution

is less than one, convergence to the limiting equilibrium may be slow and along the transition

path (when the sectoral structure changes) the capital share and the interest rate vary only by

relatively small amounts hence reconciling structural change with the Kaldor facts.3

3Starting with Baumol (1967) an important strand of the literature views structural change as a supply

phenomenon. Sectors with low technical progress suffer from the ”cost disease”, i.e. rising relative costs and

prices. When relative output levels of stagnant and dynamic sectors remain roughly constant (due to limited

substitutability between products), the Kaldor facts are necessarily violated. Recently other authors have

studied models where relative productivity between the agricultural and the manufacturing sectors determine

patterns of the structural transformation without accounting for the Kaldor facts. See Hansen and Presott

(2002), Parente and Prescott (2004). See also the endogenous growth models by Young (1993a, 1993b) where

changes in the structure of production arising from sector-specific learning-by-doing and/or complementarities

among old and new technologies; by Chari and Hopenhayn (1991) where asymmetries arise from lags in the

diffusion of new technologies; and by Thompson (2001) where quality uncertainty in connection with rising
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In contrast to these technology-based approaches, our model relies on Engel’s consumption

cycles to account for structural change. In this framework the fundamental cause of structural

change is the hierarchic nature of wants.4 During the process of economic growth, consumers

get saturated with existing products. In order to sustain growth new goods (covering new

wants) have to be continuously introduced. To highlight the demand-channel and to keep

things simple we abstract from technological differences across sectors. However, we discuss in

a separate section how various dimensions of technological heterogeneity can be incorporated

in our model without substantially changing our main message.

Our analysis leads to the following results. First, the hierarchic nature of demand implies

that structural change takes the form of a reallocation of resources from old to new industries.

At any given date old industries supply necessities and new industries supply luxuries. These

sectors experience different growth rates of demand and a reallocation of resources is necessary

to satisfy these demands. The Engel-curve of a typical good is non-linear: demand is zero at

very low income levels, becomes positive when a critical income level has been surpassed and

approaches a saturation point when incomes grow large. As an implication, a product’s income

elasticity is initially high and gradually decreases with growing income. In other words, each

good starts off as a luxury with a high income elasticity and ends up as a necessity with a

low income elasticity. Hence our model formalizes the Engel-Kindleberger idea of consumption

cycles.

Second, along the long-run growth path the Kaldor facts are satisfied. Prima facie recon-

ciling non-linear Engel-curves and the Kaldor facts seems to be non-trivial. However, just as

a constant elasticity of intertemporal substitution is required for steady growth in a one-good

economy, a constant intertemporal substitution elasticity of total consumption expenditures is

required in our framework where there are many goods. along the balanced growth path total

consumption expenditures grow at the same rate as total output. However, along this path

the level of demand for a particular product does not grow at the economy-wide growth rate.

product variety leads to a non-degenerate firm size distribution. In these models, the demand-side plays a

passive role as preferences between the various goods are assumed to be symmetric.
4A related literature has studied the implications of non-homothetic preferences and non-linear Engel curves

for structural change in models that do not account for the Kaldor facts (e.g. Matsuyama, 1992, 2002, Echevarria,

1997, Laitner, 2000, Caselli and Coleman, 2001, Gollin, Parente, and Rogerson, 2002, 2004, Greenwood and

Uysal, 2005). For an overview on recent theories of structural change see Matsuyama (2005).
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New goods experience a higher increase in demand than old goods involving a transfer of labor

resources from old to new industries. By featuring a steady growth path our analysis provides a

natural extension of the one-sector growth model to a multi-sector set-up in which preferences

over the various goods have a hierarchical structure.

Third, the evolution of consumption along a hierarchy of wants highlights the importance

of product innovations for sustaining growth. When consumers get satiated with existing

products, demand for the satisfaction of new wants arises. New goods have to be continuously

introduced to ensure that demand keeps pace with technical progress. When growth is driven

by such innovations, an important two-way causality between growth and structural change

arises. On the one hand, the aggregate growth rate depends on structural change because

innovation incentives are crucially determined by the growth rates in the new industries. On

the other hand, the speed of structural change is itself determined by aggregate growth. To

highlight this interdependence between growth and structural change, we present our model

in the context of a standard endogenous growth framework a la Romer (1990) and Grossman

and Helpman (1992). In this context, we show that the above complementarities between

sectoral and aggregate growth may give rise to multiple equilibria: When innovators expect

a disproportionate increase in demand for new products, incentives to innovate are strong

and vice versa. Expectations are self-fulfilling as high sectoral growth requires high aggregate

growth which can only be sustained in an innovative environment.

Fourth, though the main purpose of the paper is theoretical, we provide a simple quanti-

tative exercise to confront our model with historical data for the U.S. and other industrialized

countries. We interpret our model in the context of the sectoral trichotomy (agriculture, manu-

facturing, services) by assuming that the most urgent wants are satisfied by agricultural goods,

the less urgent ones by manufactures and the most luxurious ones by services. We show that

our model fits the data quite well. In particular, the model predicts a movement of labor out of

agriculture of an order of magnitude that is observed in OECD data. The model also predicts

an the evolution of the manufacturing labor share follows an inverse U: the manufacturing

labor share increases in earlier stages of development and declines in later stages which is also

in line with the experience in most OECD countries.

The paper is organized as follows. In Section 2 we present the general set-up of the model,

solve the static problem of consumers and firms, and discuss the resulting structures of demand
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and prices. Section 3 outlines our assumptions on technical progress, the innovation incentives

of firms, and the optimal allocation of expenditures by consumers. Section 4 characterizes

the conditions under which a unique equilibrium growth path exists. In Section 5 we discuss

the co-existence of structural change and the Kaldor facts. Section 6 provides a discussion of

the possibility of multiple equilibria. In Section 7 we look in some detail at the robustness of

our results with respect to the basic assumptions, in particular, heterogeneity in technologies

across sectors. Section 8 calibrates our model to data of six industrialized countries. Section

9 concludes and discusses directions for future research.

2 The Static Equilibrium

2.1 Preferences and consumer demand

Consider a representative agent economy with infinitely many potentially producible goods

ranked by an index i. We study the structure of consumption that is generated by preferences

of the form

u ({c(i)}) =
Z ∞

0
ξ(i) v(c(i)) di

where v(c(i)) is an indicator for the utility derived from consuming good i in quantity c. The

’baseline’ utility v(c(i)) satisfies the usual assumptions v0 > 0 and v00 < 0; and the ’hierarchy’

function ξ(i) is monotonically decreasing in i, ξ0(i) < 0, hence low-i goods get a higher weight

than high-i goods.

A meaningful specification of hierarchic preferences has to take account of two facts. First,

some goods may not be consumed because the consumer cannot afford them. This implies

that preferences must be such that the non-negativity constraints may become binding and

Engel-curves for the various goods are non-linear. Formally, binding non-negativity constraints

require that the marginal utility of consuming good i in quantity zero, ξ(i)v0(0) is finite for all

i > 0. If marginal utility at quantity zero were infinitely large, it would always be optimal to

consume a (small) positive amount even when prices are very high and/or the budget is very

low.5

5Non-negativity constraints never become binding in the standard monopolistic competition model (Dixit

and Stiglitz (1978)) that dominates the macroeconomic literature. In that model v(c(i)) = 1
α
c(i)α, α < 1, and

v0(0) =∞. Thus in the standard monopolistic competition model all available goods are consumed in positive
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Second, the generalized version of Engel’s law implies that additional income is spent pri-

marily on low-priority goods (high income elasticity). This feature is caught by the formulation

that the utility of consumption of different goods differs only in the factor ξ(i). As the hier-

archy function ξ(i) is decreasing in i the marginal utility of a high priority good (low i) falls

quickly. Optimal consumer behavior implies that additional income is spent primarily on the

low-priority goods with slowly falling marginal utilities.

To keep the analysis tractable we make two assumptions concerning the functional forms of

the weighting function ξ(i) and the baseline utility v(c(i)). First we assume that the weighting

function is a power function ξ(i) = i−γ with γ ∈ (0, 1). Second, we assume that the baseline
utility is quadratic, v(c(i)) = 1

2 [s
2 − (s − c(i))2]. This specification allows for binding non-

negativity constraints as marginal utility at quantity zero is finite, ξ(i)v0(0) = i−γ 12s
2 < ∞,

for all goods i > 0. The first assumption is essential for a dynamic equilibrium featuring the

Kaldor facts and to a CRRA utility in the one-good growth model. We will see that, just as

the CRRA-form is required to generate balanced growth in the one-good growth model, the

weighting function ξ(i) = i−γ is required for steady growth with many, hierarchically ordered

goods. The second assumption, however, is not essential. While the quadratic subutility

function allows for explicit solutions (and binding non-negativity constraints), it can be shown

that our analysis holds for any other subutility function (see Foellmi, 2003). In Section 8 we

discuss these conditions in more detail.6

With these assumptions, we can now specify the objective function of the consumer’s static

maximization problem. Assume that only goods with high priority i ∈ [0, N ] are available
on the market, whereas all i > N have not yet been invented. In that case the consumers’

amounts.
6In this sense, our formulation of preferences provides a natural extension of the one-sector framework to a

framework with hierachic preferences. In particular, our formulation does not require any link between preference

and technology parameters, as in previous attempts to reconcile structural changes with the Kaldor facts.
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objective function is7

u({c(i)}) =
Z ∞

0
i−γ

1

2
[s2 − (s− c(i))2] di. (1)

which will be maximized subject to the budget constraint
R∞
0 p(i)c(i)di = E and the non-

negativity constraints c(i) ≥ 0 for all i. The optimality conditions require that the above

constraints and the first order conditions

c (i)
£
i−γ(s− c(i))− λp(i)

¤
= 0 ∀i (2)

i−γ(s− c(i))− λp(i) ≤ 0 ∀i.

be satisfied, where λ denotes the Lagrangian multiplier.

2.2 Prices

We assume there are constant marginal cost in production, equal for all goods, and we normalize

these marginal costs to unity. Goods i ∈ [0, aN ] are supplied on competitive markets and
goods i ∈ (aN,N ] are supplied by monopolistic firms. This means that high priority (low-i)
goods are supplied by competitive producers and low priority (high-i) goods are supplied by

monopolists.8

The prices for goods in the interval i ∈ [0, aN ] are equal to marginal costs which are
unity. Determining the prices for the goods i ∈ (aN,N ] is less trivial but straightforward.
The market demand function is given by the representative household’s optimality condi-

tions (2). The price that the monopolist charges maximizes the objective function π(p(i)) =

7v(c(i)) = 1
2
[s2 − (s − c(i))2] has been normalized such that v(0) = 0. This normalization is necessary to

prevent divergence of the utility integral because the consumer’s preferences are defined over an infinite number

of goods. Since only goods in the interval i ∈ [0, N ] can be consumed in positive amounts the consumer’s

objective can be written as u({c}) = R N
0
i−γ 1

2
[s2 − (s − c(i))2]di + R∞

N
i−γ 1

2
[s2 − s2]di. To prevent divergence

of the first integral we must have γ < 1. By the normalization of v(.) the second integral is zero and does not

diverge. We can then restrict our attention to the utility function u({c}) = R N
0
i−γ 1

2
[s2 − (s− c(i))2]di.

8While this particular structure is an assumption at this stage, we will see below that it will be the equilibrium

outcome of the model. Over time new goods are continuously introduced and the chronological sequence of

innovations follows the hierarchy of wants. When innovators are protected by patent with finite duration, the

’new ’goods are protected and charged the monopoly price, whereas the patents for ’old’ goods have expired

and supplied on competitive markets.
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[p(i)− 1] [max (0, s− iγp(i)λ)] . The solution is given by

p(i) = max

·
1,
s+ iγλ

2iγλ

¸
for i ∈ (aN,N ] . (3)

2.3 Equilibrium composition of demand and the structure of prices

We can now characterize the composition of demand and the structure of prices in the static

equilibrium, given the representative agent’s budget E and the measure of available goods N .

This will be done separately for the two scenarios that can occur in equilibrium. In the first

case, the consumer cannot afford all supplied goods because the non-negativity constraints

for low-priority goods become binding. In the second case, the consumer is rich enough to

purchase all goods that are supplied on the market. We discuss these two cases in turn. (The

conditions under which the two respective regimes occur are studied in Section 5 below.)

When the consumer does not purchase all available goods, the measure of consumed prod-

ucts falls short of the measure of available goods N . If good i is consumed in positive amounts

and supplied at the monopoly price, we know from (2) and (3) that the consumed quantity

equals c(i) = 1
2 (s− iγλ) . The equilibrium demand is decreasing in i which means that the

optimal quantity of low-priority goods is smaller. It also means that there is a good, call it

n, such that for goods i > n the optimal level of demand is zero whereas all goods i < n are

consumed in positive amounts. It turns out convenient to express the endogenous variables

c(i) and p(i) in terms of the endogenous variable n rather than λ. From c(n) = 1
2 (s− nγλ) = 0

it is straightforward to calculate λ = s
nγ . Substituting this into equations (2) and (3) we get

the equilibrium composition of demand, and the equilibrium structure of prices

c(i) =


s
£
1− ¡ in¢γ¤ , i ∈ [0, aN ]

s
2

£
1− ¡ in¢γ¤ , i ∈ (aN, n]

0, i ∈ (n,N ]
(4)

and

p(i) =


1, i ∈ [0, aN ]
1
2

£
1 +

¡
n
i

¢γ¤
, i ∈ (aN, n]

1, i ∈ (n,N ] .
(5)

According to equations (4) and (5), what matters for prices and quantities is the relative

position in the hierarchy of needs, i/n.We also see that the ’steeper’ the hierarchy (the higher
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is γ) the more important is the relative position. The above expressions for p(i) and c(i)

are determined for a given measure of consumed goods n. However, n itself is an endogenous

variable. To get the optimal value of n we substitute equations (4) and (5) into the budget

constraint to get

E =

Z n

0
p(i)c(i)di = sn

"
aN

n
− 1
4

Ã
3(aNn )

1+γ + 1

1 + γ
− 1− (

aN
n )

1−γ

1− γ

!#
. (6)

This equation implicitly defines the number of consumed goods n as a function of expenditures

E, available goods N , and other parameters of the model.9 In particular, we note that E and

N are exogenous from the point of view of the consumer. Moreover, we see from the above

equation that n is homogenous of degree one in E and N : when E and N increase by some

factor, the equilibrium value of n increases by the same factor.

Now consider the alternative scenario that the consumer chooses to consume all available

goods in positive amounts. Obviously, this is the case if c(N) = 1
2 (s−Nγλ) > 0. Also here

it is convenient to replace λ. However, we cannot express λ in terms of the optimal bundle of

consumed goods n which is trivially determined by the number of available goods N. Instead

we express λ in terms of the price of the good that has least priority in consumption, that is

by the endogenous variable p(N) ≡ p. From (3) it is straightforward to express the marginal

utility of income as λ = s
Nγ(2p−1) . The same expression (3) can be used to express the monopoly

prices for the goods i ∈ (aN,N ] in terms of p as p(i) = 1
2 [1 +

¡
N
i

¢γ
(2p− 1)]. The structure of

prices and the equilibrium composition of demand can now be expressed as

c(i) =

 s[1− ¡ iN ¢γ 1
2p−1 ] i ∈ [0, aN ]

s
2 [1−

¡
i
N

¢γ 1
2p−1 ], i ∈ (aN,N ]

(4’)

and

p(i) =

 1, i ∈ [0, aN ]
1
2 [1 +

¡
N
i

¢γ
(2p− 1)], i ∈ (aN,N ].

(5’)

9It is straightforward to verify that the right-hand-side of (6) is monotonically increasing in n. When no

intersection occurs for n ≤ N, the equilibrium is characterized by n = N . In that case equation (6’) below is

relevant. Note that when, respectively, n = N and p = 1, the right-hand-sides of the equations (6) and (6’)

become identical.
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Note that, in equilibrium, a higher p means higher prices for all goods and this goes hand

in hand with higher equilibrium consumption for all goods. The reason for this apparently

strange result is that the equilibrium depends crucially on the consumer’s budget E relative

to the measure of supplied goods N. If E is large relative to N , there is high demand for each

good which means that monopolists can charge high prices.

The variables c(i) and p(i) are determined by the endogenous variable p, the profit-

maximizing price chosen by the monopolist who supplies the good N . Just like before, the

equilibrium depends on the consumer’s budget E, the measure of available goods N, and other

parameters of the model. To see the relationship between p, E, and N, we insert equations

(4’) and (5’) into the consumer’s budget constraint

E =

Z N

0
p(i)c(i)di = sN

·
a− 1

4

µ
3a1+γ + 1

(1 + γ) (2p− 1) − (2p− 1)
1− a1−γ
1− γ

¶¸
(6’)

This expression implicitly defines p as a function of E, N, and other parameters of the model.

We observe that p is homogenous of degree zero in E and N : when E and N grow pari passu,

p remains unchanged.

3 The Dynamics of the Economy

3.1 Technical Progress and the Resource Base

To keep things simple we develop our arguments assuming that labor is the only production

factor. (In Section 6 below we discuss the more general case when not only labor but also

physical capital is used in production.) Production requires a fixed (’innovation’ or ’research’)

input of F̃ (t) units of labor, and a variable labor input of b̃(t) per unit of output (t denotes

a continuous time index). Denoting by w(t) the wage rate, we have innovation costs w(t)F̃ (t)

and marginal costs of production w(t)b̃(t). We assume b̃(t) = b
A(t) and F̃ (t) =

F
A(t) , where

A(t) is the aggregate knowledge stock, and F, b > 0 are exogenous parameters. These as-

sumptions imply that productivity growth, an increase in A(t), is uniform across sectors and

also across activities. Assuming uniform productivity growth across products makes sure that

all heterogeneity comes from the demand side which is the focus of our analysis. Assuming

uniform productivity growth across (production and research) activities is important for the

existence of a constant growth path. Along this path wages grow with productivity so that
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marginal production costs w(t)b(t) and innovation costs w(t)F̃ (t) are constant over time. In

what follows we take marginal cost as the numeraire, hence w(t)b̃(t) = 1 for all t.

In accordance with much of the endogenous growth literature we assume that the aggregate

knowledge stock is proxied by the amount of previous innovations activities. These consist of

the measure of goods that are actually available on the market, so we have A(t) = N(t) and

b̃(t) = b
N(t) and F̃ (t) =

F
N(t) .

10

The labor force is normalized to 1 and, in equilibrium, there is full employment. At date t,

Ṅ(t) new goods are introduced and the necessary employment level to perform the innovation

input is Ṅ(t) F
N(t) . The necessary employment level to produce the demanded consumers goods

is b
N(t)

R n(t)
0 c(i, t)di. Thus with full employment of the labor resources we have

1 =
Ṅ(t)

N(t)
F +

b

N(t)

Z n(t)

0
c(i, t)di. (7)

3.2 The Innovation Process

Innovations occur because firms are granted patents and earn profits as long as their market

is protected from competitors. The value of an innovation that occurs at date t, Π(t), equals

the present value of the profit flow that accrues to the innovating firm. This flow starts at the

date when consumers begin to purchase this product and ends when patents have expired. We

denote the flow profit at date τ of the date-t innovator (the firm which produces good N(t))

by π(N(t), τ) = [p(N(t), τ)− 1] c(N(t), τ).
When consumers purchase all available varieties n = N the date-t innovator earns positive

profits right from the start, that is throughout the interval [t, t + ∆] where the exogenous

policy parameter ∆ denotes the duration of the patent. When consumers cannot afford all

available varieties n < N, the innovator has initially no demand. Consumers purchase only

10Note that our assumption on knowledge spillovers differs from the standard ’love-for-variety’ model (Gross-

man and Helpman, 1992). In that model productivity grows only in research but not in production. In the

hierarchical model instead there has to be technical progress otherwise innovations comes to a halt because con-

sumers are not willing to reduce consumption on high-priority goods if new goods come along. Hence without

technical progress in production, sooner or later the whole labor force will be employed to satisfy the demand of

consumers on the already existing goods. Our assumption could be justified, e.g., using the argument of Young

(1993a): If the invention of a new good i leads as a by-product to the discovery of a new intermediate input

and if the final goods are produced by combining these inputs using a constant returns to scale CES technology,

the productivity of the output sector rises linearly in the number of these inputs.
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the goods with high priority, that is all goods in the interval [0, n(t)) and no goods in the

interval [n(t), N(t)]. In that case, innovators have a waiting time until consumers are willing

to purchase their product. Denoting this waiting time by δ, the profit flow π(N(t), τ) is zero

at dates τ ∈ [t, t+ δ] , positive at all dates τ ∈ (t+δ, t+∆], and zero for τ > t+∆. To see how

δ is determined note that, when consumers start to buy good N(t) at date t + δ, N(t) is the

good with least priority in the consumption bundle. Hence δ is given by n(t+δ) = N(t). In the

dynamic equilibrium n(t) grows at the constant rate g and we have n(t+ δ) = n(t)eδg = N(t).

Innovation costs are constant over time and given by wF . Assuming free access to the

research sector, there is entry as long as innovation costs fall short of the value of an innovation.

Hence in equilibrium, when all profit opportunities are exploited, we must have wF ≥ Π(t),
with strict equality whenever innovations take place. Defining R(τ , t) =

R τ
t r(s)ds as the

cumulative interest rate, the zero-profit condition can be stated as

wF =

Z t+∆

t+δ
[p(N(t), τ)− 1] c(N(t), τ) e−R(τ ,t)dτ . (8)

3.3 Optimal Savings

We now consider the optimal intertemporal allocation of consumption expenditures of the

representative consumer. Assuming that an agent maximizes utility over an infinite horizon,

the objective function is given by

U(t) =

Z ∞

t

u(τ)1−σ

1− σ
e−ρ(τ−t)dτ ,

where u(τ) ≡ R∞0 i−γ 12 [s
2 − (s − c(i, τ))2]di is the aggregator for within-period consumption

levels. The parameter σ measures the willingness to shift the composite u(τ) across time and

ρ is the subjective rate of time preference. The above objective function is maximized subject

to the intertemporal budget constraintZ ∞

t
E (τ) e−R(τ ,t)dτ ≤

Z ∞

t
w(τ)e−R(τ ,t)dτ + V (t),

where E(τ) ≡ R N(τ)0 p(i, τ)c(i, τ)di denotes the level of consumption expenditures at date τ and

V (t) denotes the assets that the consumer owns at the initial date t. Setting up the Lagrangian

and taking derivatives with respect to c(i, τ) yields the first order condition

u(τ)−σi−γ(s− c(i, τ))e−ρ(τ−t) = µe−R(τ ,t)p(i, τ)
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where µ is the Lagrangian multiplier. This first order condition (and the intertemporal budget

constraint) determine the optimal consumption levels for each good at each date - given the

consumer’s lifetime income and the prices of the various goods at all dates. The above first

order condition must hold for all i and τ , so it must also hold for i = n(τ). Hence we can set

i = n(τ) in the above first order condition, then take logs and the derivative with respect to

time τ . This yields

−σ u̇(τ)
u(τ)

− γ
ṅ(τ)

n(τ)
− ∂c(n(τ), τ)

∂τ

1

s− c(n(τ), τ) − ρ = −r(τ) + ∂p(n(τ), τ)

∂τ

1

p(n(τ), τ)
.

Our analysis focuses on steady state growth paths. For describing the evolution of con-

sumption expenditures along this path, the following Lemma is helpful.

Lemma 1 In the static equilibrium the maximized instantaneous utility at date τ , û(τ), can

be written as û(τ) = E(τ)1−γ
1−γ K

³
n(τ)
N(τ) , p(n(τ), τ), a(τ); s, γ

´
.

Proof see Appendix.

A balanced growth path has the following features. (i) n(τ), N(τ) and E(τ) grow at the

same rate (so that output and consumption grow at the same rate and a constant fraction, if

any, of patented goods is not produced and consumed). (ii) a(τ) is constant over time (so that

a constant fraction of sectors supplies their products on competitive markets).11 (iii) The price

of good xN(τ), p(xN(τ), τ), does not change over time (x ≤ 1 is a positive constant). This
means that, at all dates, the same price is attached to a given relative hierarchical position

x = i/N.12 Similarly, c(xN(τ), τ) the consumption level of the good at relative position x is

also the same at all dates τ .

Using these balanced growth properties and Lemma 1 the above first order condition sim-

plifies considerably. Lemma 1 and properties (i) - (iii) imply that, along the balanced growth

11To see the relationship between a, g, and ∆, note that, at date t +∆ all patents granted at t and before

are expired, and all patents granted after t are not yet expired. With N(t) markets at date t, there are

N(t+∆) = eg∆N(t) markets at date t+∆. Hence, at date t+∆, the measure of competitive markets equals

N(t). Obviously, a fraction a = e−g∆ is competitive and a fraction 1− a = 1− e−g∆ is monopolistic.
12Note that each good i starts out with hierarchical position x = 1 (as i = N(τ) at the innovation date τ) and

gradually approaches relative position x = 0 (when N becomes very large relative to i). As a result, the price

of a particular good is initally rising (when the product is monopolistically supplied) and then falls to marginal

costs (when patents have expired the market becomes competitive). From analogous arguments, the profil of

consumption levels can be inferred.
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path, we must have u̇/u = −γĖ/E. Property (iii) holds for any positive constant x ≤ 1, hence
they are also true for x = n(τ)/N(τ) so we have ∂p(n(τ), τ)/∂τ = ∂c(n(τ), τ)/∂τ = 0 at all

dates. This allows us to rewrite the above first order condition as

Ė(t)

E(t)
= g =

r(t)− ρ

σ(1− γ) + γ
. (9)

Clearly, when E(t) grows at a constant rate, the interest rate r(t) is also constant. In the

symmetric case (γ = 0) we get the familiar equation g = (r − ρ) /σ.13

4 Long-Run Growth Equilibrium

We now describe the general equilibrium of the model. We start by defining the equilibrium

growth path. Then we establish the conditions under which a unique path exists. A discussion

of the consistency of this equilibrium with the Kaldor facts of economic growth and of the

patterns of structural change along this path is devoted to the next Section.

4.1 Definition of Equilibrium Growth Path

The equilibrium growth path is characterized by the following conditions: (i) consumers allo-

cate lifetime expenditures optimally across time and goods, (ii) firms set prices that maximize

profits, (iii) research firms leave no profit opportunities unexploited, (iv) the labor force is

fully employed and (v) aggregate consumption and investment expenditures and the value of

aggregate production grow at the same rate.

When consumers do not purchase all available goods, n < N, conditions (i) and (ii) are

satisfied when, for each date t, equations (9), (4) and (5) hold.14 Equation (9) implies that

13It is interesting to note that the effect of γ on the growth rate of consumption is ambiguous (recall that

γ < 1). A higher γ raises g when σ > 1 and it decreases g if σ < 1. The intuition is subtle: With γ > 0,

the expenditures E(t) enter themselves as a concave function in the utility function. The growth rate of

consumption depends on how fast marginal utility falls. In the symmetric case marginal utility declines at rate

σ. The asymmetry has two effects. On the one hand, the intertemporal substitution effect causes marginal

utility to fall only at the rate σ(1− γ); on the other side the intratemporal substitution implies that marginal

utility falls at rate γ. In total, marginal utility falls at rate σ(1− γ)+ γ which is less than σ if σ > 1 and bigger

than σ if σ < 1.
14The time index t enters equations (4) and (5) because n depends on t.
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consumer allocate expenditure optimally across time. If equations (4) and (5) are satisfied

consumers allocate expenditures optimally across goods, given profit maximizing prices of firms;

and firms set profit-maximizing prices given the optimal quantities of consumers. Condition

(iii) is satisfied when the zero-profit equation (8) holds, and condition (iv) is satisfied when the

resource constraint (7) holds. Condition (v) is satisfied because our specification of preferences

boils down to a (maximized) felicity function that is CRRA in total consumption expenditures.

The model has a convenient recursive structure and we can reduce the above system of

equations to two equations in two unknowns: the economy-wide growth rate g and the inno-

vator’s waiting time δ. To obtain the first equation substitute equation (4) into the resource

constraint (7) and use the definition g = Ṅ(t)
N(t) . Moreover we make use of the fact that in the

dynamic equilibrium we have n(t) = e−δgN(t) and aN(t) = N(t)e−∆g. The former relation

says that the relation between consumed and available goods is constant and given by e−δg.

The latter relation says that the fraction of competitive markets among all markets is constant

and given by e−∆g. Thus the resource constraint (7) can be rewritten as

1 = gF +
bs

2
e−gδ

"
e−g(∆−δ) − e

−g(1+γ)(∆−δ) + 1
1 + γ

+ 1

#
. (10)

The second equation in g and δ is obtained by substituting equations (9), (4) and (5) into

the zero profit condition (8). Here we note that from (4) c(N(t), τ) = s
2

h
1−

³
N(t)
N(τ)

´γi
=

s
2

£
1− e−gγ(τ−t)¤ and from (5) p(N(t), τ) = 1

2

h
1 +

³
N(τ)
N(t)

´γi
= 1

2

£
1 + egγ(τ−t)

¤
. This yields

wF =
s

4

Ã
1− e−φ(∆−δ)

φ
− 21− e

−(φ+gγ)(∆−δ)

φ+ gγ
+
1− e−(φ+2gγ)(∆−δ)

φ+ 2gγ

!
· e−δ(φ+gγ) (11)

where we used the definition φ = r − gγ and that, from (9), r = ρ+ g(σ(1− γ) + γ).

Similarly, when consumers purchase all available goods, n = N, conditions (i) and (ii)

are satisfied when equations (9), (4’) and (5’) hold; and conditions (iii) and (iv) are also

given by equations (7) and (8). This system of equations can be conveniently reduced to two

equation with two unknowns: the growth rate g and the innovator’s entry price p. The solution

procedure is analogous to before except that now (4’) and (5’) are relevant. This yields

1 = gF +
bs

2

"
e−g∆ − e−g∆(1+γ) + 1

(1 + γ) (2p− 1) + 1
#

(10’)

for the resource constraint, and

wF =
s

4

Ã
1− e−φ∆

φ
(2p− 1)− 21− e

−(φ+gγ)∆

φ+ gγ
+
1− e−(φ+2gγ)∆

φ+ 2gγ

1

2p− 1

!
(11’)
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for the zero-profit condition.

4.2 A Unique Equilibrium

To examine existence and uniqueness of the dynamic equilibrium we analyze the respective

equilibrium conditions graphically. We denote the resource constraint by R and the zero profit

condition by Π and draw R and Π in a (δ, g, p)-diagram. This allows us to discuss the above

two scenarios simultaneously (Figure 1). In both parts of Figure 1 the vertical axis measures

the growth rate g. In the left part of Figure 1 the horizontal axis measures the innovator’s

waiting time δ (from right to left, starting at δ = 0), and in the right part of Figure 1 the

horizontal axis measures the innovators’ entry price p (starting at p = 1). Observe that δ = 0

and p = 1 is the limiting case where the innovator has neither a waiting time nor enough

demand to charge a price above marginal cost.

We now discuss the shape of the two curves in turn. To avoid confusion we denote the

resource constraint in (g, δ)-space by R̃ and the one in (g, p)-space by R. Similarly, we have

Π and Π̃ for the zero-profit condition. The R-curve in (g, δ) space is defined by the equation

1 = R̃(g, δ) and R̃(g, δ) is given by the right-hand-side of equation (10). The Π-curve is defined

by the equation wF = Π̃(g, δ) where Π̃(g, δ) is given by the right-hand-side of equation (11).

Similarly, the R- and the Π-curve in (g, p) space are defined by 1 = R(g, p) and wF = Π(g, p)

where R(g, p) and Π(g, p) by given by the right-hand-side of equations (10’) and (11’).

Figure 1

The shape of the Π-curve Consider first the (g, δ) space. When the consumer does not

buy all available goods, n < N, innovators have a waiting time δ > 0 until they can sell their

product. The slope of the Π̃-curve is given by dg/dδ = −Π̃δ/Π̃g. A higher δ decreases profits

so Π̃δ < 0 (where Π̃x denotes the partial derivative of Π̃ with respect to x). This simply results

from discounting: the longer one has to wait for a given profit flow, the lower is the present

value of this flow. This effect is enhanced by the fact that, due to a fixed patent duration ∆,

the period during which the innovator earns positive profits does not only start later but also

becomes shorter (recall that we measure δ from left to right).

The impact of the growth rate g on the value of an innovation Π, i.e. the sign of Π̃g is

ambiguous. In a world with homothetic preferences where all goods enter the utility function
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in a symmetric way, a higher growth rate always lowers the value of an innovation. This

is because in equilibrium, a higher growth rate is always associated with a higher interest

rate that discounts future revenues more strongly (see the discussion in Romer, 1990). With

hierarchic preferences instead, we have a second effect: a higher growth rate raises demand for

the most recent innovator’s product and leads to faster growth of the innovator’s market. This

leads to higher future prices and higher future profits which raises the value of an innovation.

The size of the latter effect depends crucially on the value of γ, the steepness of the hierarchy:

Lemma 2 below shows that the first effect always dominates if γ is low. Instead, if the hierarchy

parameter γ is large, the demand effect of higher growth dominates the interest rate effect at

low level of g (see Figure 1). It is important to note that a steep hierarchy is a necessary

condition for the regime n < N to be possible at all. When innovators have no initial demand,

there are innovation incentives only if, after the waiting period δ, demand grows very quickly.

When consumers purchase all available products, n = N, innovators have no waiting time

δ = 0 and charge an entry price larger than marginal cost p ≥ 1. The slope of the Π-curve is
given by dg/dp = −Πp/Πg. How does the value of an innovation depend on p? We know from
(5’) that a higher entry price p for the most recent innovator’s product means higher prices for

all other goods in equilibrium. Moreover, from equation (4’) a higher p is also associated with

larger equilibrium consumption of each variety. Hence each monopolist has larger profits, so

we have Πp > 0.

The impact of the growth rate g on the value of an innovation is just like before. The

demand effect increases, whereas the interest effect decreases the value of an innovation. The

demand effect can dominate at low growth rates when the hierarchy is steep enough, whereas

the interest effect dominates at high growth rates.

Lemma 2 a. The zero profit condition crosses the p-axis at pZ = 1+
³
(1 + bs

F
1−e−∆ρ

ρ )
1
2 − 1

´−1
b. The value of an innovation falls monotonically in the growth rate if γ ≤ σ(pZ−1)

1+σ(pZ−1) (flat

hierarchy). In this case, the zero profit constraint is a monotonically increasing curve in the

(g, p)-space.

c. For g sufficiently high, Πg < 0 and Π̃g < 0.

Proof see Appendix.
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The shape of the R-curve The slope of the resource constraint R can be derived in an

analogous way as before by calculating, respectively, dg/dδ = −R̃δ/R̃g and dg/dp = −Rp/Rg
for the two regimes. A higher waiting time δ reduces labor demand. The reason is that a higher

δ decreases the demand for each product. (To see this use n = e−δgN in equation (4)). This

means that R̃δ < 0. Similarly, a higher entry price p is associated with higher consumption

levels for all goods (see equation (4’)), and thus with a larger demand for labor in the whole

economy. For this reason Rp > 0.

A higher growth rate g has an ambiguous effect on the demand for labor resources. On the

one hand, there is the direct effect from a larger demand for workers in the research sector.

On the other hand, there is an indirect effect which is due to the increase in the size of the

monopolistic sector. (Recall from Section 4 above that, with a given patent duration ∆, a

fraction e−g∆ of all goods is supplied by competitive producers and a fraction 1 − e−g∆ by

monopolistic firms). The larger the monopolistic sector, the higher the overall price level, and

the lower consumption demand. Hence an increase in g leads to a lower demand for production

workers. The following Lemma shows that the latter effect may dominate at low g, whereas

the former effect always dominates at high g. We therefore have Rg > 0 if g is high and vice

versa. We summarize this discussion in the following

Lemma 3 a. The resource constraint crosses the p-axis at pR =
1
2

h
1 + 1

1+γ
bs
bs−1

i
if 1 < bs ≤

1+γ
γ .

b. If bs ≤ 1, the resource constraint is monotonically falling in the (g, p)- and (δ, g)-space
and reaches asymptotically the growth rate ĝ implicitly defined by 1 = ĝF + bs

2

¡
1 + e−ĝ∆

¢
.

c. If bs > 1+γ
γ , even at g = 0 not all products can be produced, the share of products

consumed x = n
N is then given by the equation 1 = bs

2

h
1− x−γ 1

1+γ + x
γ
1+γ

i
.

d. For g sufficiently high, Rg > 0 and R̃g > 0.

Proof see Appendix.

Remark If bs ≤ 1, the R−curve never hits the p−axis. All consumers could consume all
varieties at the saturation level and there are still resources available for research.

Having discussed the shape of the two curves we can consider the general equilibrium of the

model. In this equilibrium both the resource constraint and the zero profit condition have to

be satisfied which is the case at the point of intersection E in Figure 1.15 A sufficient condition

15Figure 1 suggests that the equilibrium exists if the Π-curve hits the p-axis to the left of R-curve. For most
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for uniqueness is γ ≤ σ(pZ−1)
1+σ(pZ−1) (flat hierarchy) and bs ≤ 1, since then the two equilibrium

curves are monotonically increasing or falling, respectively.

Proposition 1 a. If the exogenous parameters satisfy pZ < pR or if bs ≤ 1, there exists a
general equilibrium with a positive growth rate.

b. A sufficient condition for a unique general equilibrium is bs ≤ 1 and γ ≤ σ(pZ−1)
1+σ(pZ−1) .

Proof Part b. see Appendix.

5 Structural Change and the Kaldor Facts

In this Section we discuss of how the famous stylized facts mentioned by Kaldor (1961) can

be reconciled with a continuous change in the structure of production and employment. We

proceed in four steps. First, as the Kaldor facts of economic growth are partly concerned with

physical capital, we have to show that the equilibrium established in the last Section - when

enriched with physical capital - meets Kaldor’s criteria. Second, we describe the patterns of

structural change that occur along the long-run growth path, in particular the rise and fall

of the employment shares in the various sectors that occurs during the process of economic

development. Then, we study the critical role of the two taste parameters that characterize

the hierarchy of needs, the saturation level s and the steepness of the hierarchy γ. Finally, we

perform a simple quantitative exercise where we confront our model with data on structural

change in several industrialized countries.

5.1 The Kaldor Facts

In a celebrated paper, Kaldor (1961) mentions that a reasonable growth model should capture

the following criteria: (i) a constant growth rate of output and labor productivity; (ii) a

constant increase in capital per worker; (iii) a constant long-term interest rate; (iv) a constant

capital-output ratio; (v) a constant share of profits in output; and (vi) differences in growth

rate of labor productivity across countries.

The long-run growth equilibrium established above assumes that labor is the only pro-

duction factor. In order to discuss Kaldor’s stylized facts in a meaningful way, we have to

parameter values, simulations show that the equilibrium is unique.
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bring physical capital into the picture. Assume that each consumer good is produced with the

same constant-returns-to-scale technology F [k(i, t), A(t)l(i, t)] and that also capital goods are

produced with that technology. k(i, t) and l(i, t) denote, respectively, the amounts of physi-

cal capital and labor employed in sector i at date t.16 A(t) is the stock of (labor-augmenting)

technical knowledge and it is again assumed that A(t) = N(t). Given the linear homogeneity of

the production function we can write f(κ(i, t)) = F [ k(i,t)
A(t)l(i,t) , 1] with κ(i, t) as the capital-labor

ratio in efficiency units of labor and f(κ(i, t)) as the production function in intensive form.

When financial markets are perfect, savings yield the same returns, irrespective of whether

they are invested in physical capital or in research. With a competitive market for capital

goods, the rental price of capital equals r(t)+ δ, where δ is the rate of depreciation of physical

capital. The rental price is the same in each sector. Each firm has to pay a wage rate w

and a rental price of physical capital r + δ. Cost minimization implies that each firm chooses

the same capital-labor ratio. This implies that marginal production costs are the same in all

sectors. In a steady state, where the interest rate is constant, the capital labor ratio is constant

over time. For firms that operate under competitive conditions we must have f 0(κ(i, t)) = r.

Because all firms choose the same capital labor ration we have, for all i and t, κ(i, t) = κ.

When κ is constant, the wage rate per efficiency unit of labor is also constant. Obviously, the

wage rate per worker grows at the same rate as productivity.

The final step is to show that the capital output ratio is constant. To see this, suppose that

employment in investment sector is constant. First, since κ is constant, output of investment

goods I grows at the same rate as productivity. Physical capital evolves according to K̇ =

I − δK, thus the capital stock grows also at the same rate as productivity. Second, output in

the research sector is given by w(t)gF which also grows at the same rate as productivity. Third,

the value of output in the consumption sector also grows at the same rate. This is because, with

marginal costs constant over time, the price setting behavior is the same as before. Hence the

profit share in the consumption goods sector is constant and the Euler equation (9) still holds.

In the steady state, the optimal growth rate of consumption expenditures equals the growth

rate of productivity. Hence when wages grow at this rate, employment in the consumption

goods sector is constant. This confirms our initial guess that employment in the investment

16Since technology is linear homogenous, the distribution of capital on the several firms in sector i plays no

role.
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sector is constant. Output equals Y (t) = E(t)+I(t)+w(t)gF and therefore grows at the same

rate as productivity. Hence the capital-output ratio is constant. We summarize this discussion

in the following Proposition.

Proposition 2 Along the steady growth path the Kaldor facts of economic growth are satisfied.

5.2 Structural Change

The equilibrium growth path exhibits continuous structural change: At a given date, many

different goods exist and each good has a different income elasticity. Declining sectors with

a low income elasticity and a falling share of production and employment co-exist with ex-

panding sectors that have a high income elasticity and expanding share of production and

employment. Hence there is uneven development and continuous reallocation of labor across

sectors of production. In this Section we describe the pattern of structural change in more

detail. We will concentrate on the regime n < N and briefly discuss the regime n = N at the

end of the section.

To make the changes in the structure of consumption and employment explicit consider

the life cycle of product i. How does demand and employment of an innovator increase over

time? To answer this question take equation (4) and note that along the long-run growth path

we have n(t) = e−δgN(t). Given the initial value of N, the growth rate g, and the innovator’s

waiting time δ, we know the equilibrium value of n(t). From equation (4) the consumption

level c(i, t) and the corresponding level of employment l(i, t) = b c(i,t)N(t) can be calculated.

Figure 2 shows the Engel-curves for good i = N(t). We draw c(i, t) against total output

in the production sector E(t). As E(t), N(t), and n(t) grow at the same rate the shape of

the Engel-curve can be derived from (4). Demand is initially zero and the non-negativity

constraints are still binding. This means at low income levels consumers cannot afford the

product. Once a critical income level has been reached consumers start to buy. Increases in

income initially lead to a strong expansion of the market, followed by decreasing growth rates

and finally stagnating demand in the long term once consumption approaches the saturation

level s. We note further that Engel-curves show a discontinuity at the point of time when

patents expire. At this date the market opens up for competition, the price falls to marginal
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cost, and the demand level jumps up.

Figure 2

The following proposition summarizes the patterns of structural change by referring to the

income elasticities of demand and employment. The ’gross’ income elasticities take account of

both the direct income effect on demand and of the indirect effects due to changes in the own

price and the prices of all other (monopolistically supplied) products as incomes grow.

Proposition 3 a) Along the steady growth path, each new good starts out as a luxury with

high income elasticity and ends up as a necessity with low income elasticity. The ’gross’ income

elasticity of demand for good i is γ s−c(i,t)c(i,t) . b) Industries producing luxuries (with gross income

elasticity larger than unity) expand their employment whereas industries producing necessities

(with gross income elasticity lower than unity) loose employment. The ’gross’ income elasticity

for employment is γ s−c(i,t)c(i,t) − 1.
This proposition holds for both regimes. As E(t), N(t) and n(t) grow at the same rate, we

can calculate the income elasticity as dc(i,t)dn(t)
n(t)
c(i,t) or

dc(i,t)
dN(t)

N(t)
c(i,t) . For both regimes, the expressions

in the proposition can be derived, respectively, from equations (4) and (4’). Part b) of the

proposition obtains because the employment required to produce c(i, t) is l(i, t) = b c(i,t)N(t) , hence

dl(i,t)
dN(t)

N(t)
l(i,t) =

dc(i,t)
dN(t)

N(t)
c(i,t) − 1.

Part a) of the proposition shows that, for a given product, the demand elasticity is initially

high and decreases towards zero as consumption approaches the saturation level s.17 In other

words, despite constant growth rates of macroeconomic aggregates, goods with high and low

income elasticities coexist and continuous structural change takes place. This means our model

captures the Engel-Kindleberger idea of consumption cycles. Whether or not a good is a luxury

or a necessity, depends on the level of development. Income elasticities change as the economy

gets richer, and a good that has been a luxury good in the initial period of the product cycle

becomes a necessity after incomes have sufficiently grown.

Part b) of the proposition discusses the evolution of the employment share in a particular

product line. Whether or not employment increases or decreases, depends on whether demand

17Also with respect to demand elasticities note the discontinuity at the date when patents expire. At this

date the demand level jumps up and thus there is a sudden decrease in the income elasticity.
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grows faster or slower than productivity. In other words, the industry-specific employment

level reflects the outcome of a race between the growth of demand and productivity as the

economy gets richer. Initially the growth of demand is larger than the aggregate growth rate

and employment increases over time. However, after incomes have sufficiently grown, the

growth of market demand lags behind the aggregate growth rate and the industry labor share

decreases.

6 Other Equilibria

If the parameter values satisfy pZ ≥ pR a stagnation equilibrium or multiple equilibria may

arise (see Lemmas 2 and 3 for the definitions of pZ and pR). In that case, the Π-curve cuts

the p-axis to the right of the R-curve.

Stagnation In a stagnation equilibrium the value of an innovation is (equal or) smaller

than the costs of an innovation, which implies that no research will be undertaken. Not

surprisingly, this outcome is likely if research costs F are high. Also in the stagnatory state,

the full employment condition has to be satisfied, hence the equilibrium point lies on the R-

curve and is located where the R-curve intersects the horizontal axis (at g = 0). If n = N , the

R-curve hits the horizontal axis in the right part of Figure 1. This occurs at pR > 1. When

this inequality is violated the regime n = N is not feasible and we are in the regime n < N .

As the economy does not grow, the waiting time δ is not a meaningful endogenous variable

because δ will necessarily be infinite. As stated in Lemma 3c, the resource constraint has to

be solved for x = n/N , the share of available products that is actually consumed. In such an

equilibrium there are firms that know how to produce the goods i ∈ (n,N ], but no production
ever takes place since demand given the (constant) income level is too small.

Multiple equilibria If pZ ≥ pR and if the two curves cross the model exhibits multiple equi-
libria. We then have three equilibria: the stagnation point and the two points of intersection

of the Π- and the R-curve.

Figure 3

Multiple equilibria can arise because the Π-curve is not necessarily monotonic. When the

hierarchy is steep enough (high γ) the Π-curve is backward bending at low levels of g, see
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Lemma 2b. The intercept of the resource constraint with the horizontal axis, pR, shifts to

the left with an increase in γ. According to Proposition 1, this implies that multiple equilibria

become more likely.

The reason for multiplicity is a demand externality: when preferences have a hierarchic

structure the demand of a previous innovator depends on the economy-wide growth rate. If

innovators expect high growth they expect that the demand for their products expands more

quickly implying that future prices, quantities, and profits are larger. So higher economy-

wide growth stimulates the incentive to innovate. If innovators expect low growth, profit

expectations and the resulting incentives to innovate are correspondingly low. Hence low

growth rates are sustained by pessimistic expectations and vice versa. Obviously, this demand

externality is at work independently of the particular length of a patent; in particular it holds

even when protection is forever.18 We summarize this discussion in the following

Proposition 4 A sufficiently steep hierarchy ( γ sufficiently large) may lead to multiple equi-

libria. In such equilibria expectations are self-fulfilling: optimistic expectations are sustained

with high innovative activities, pessimistic expectations are sustained by low (or no) innovative

activities.

We prove proposition 4 by an example. Assume the following parameter values: F = 8,

L = 1, ∆ = ∞, bs = 10/3, σ = 2, ρ = 0.02, γ = 0.95 (note that the hierarchy parameter γ is
very close to unity). In that case, there are three equilibria: (p1, g1) = (1.135, 0), (p2, g2) =

(1.080, 0.79%), and (δ3, g3) = (8.79, 7.03%). Hence, two equilibria exhibit a positive growth

rate and one is stagnatory. Further, for these parameter values, the high growth equilibrium

features a waiting time δ3 = 8.79 years for the innovators.

7 A Simple Quantitative Illustration

While the main purpose of our model is theoretical, it may nevertheless be interesting to look

at its quantitative implications. In this section we provide such a simple quantitative exercise.

Maddison (1987) documents the huge reallocation of labor in six major industrialized countries

18As shown by Laussel and Nyssen (1999) who multiple equilibria may also arise due to a finite patent length.

However in the present model the possibility of multiplicity does not hinge on the length of patents. Provided

that γ is sufficiently large, mulitple equilibria may occur even if patent length is infiinte.
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(France, Germany, Japan, Netherlands, U.K. and U.S.). Table 1 shows that the average U.S.

employment share in agriculture was as high as 46 % in 1870 and has decreased to 5.5 % by

1984. During the same period the average employment share in the service sector has increased

from 26.4 % to 62.2 %.

Table 1

Although, the common three sector division is questionable as the structural composition has

changed dramatically also within these sectors we may think of a loose association with the

sectoral trichotomy in our model: Products satisfying the most urgent needs (mostly, but not

entirely, agricultural products) are ranked first and products satisfying least urgent wants (to

a large extent, but not entirely, service products) are ranked highest. To make the quantitative

exercise as simple as possible, we assume that goods i between 0 and 1 are agricultural products,

goods between 1 and x are manufacturing products, and goods with higher index are exclusively

services. The labor used to set-up a new firms (R&D labor) is counted as services.19

Can our model explain the observed patterns of structural change documented in Table 1?

As starting point we choose N(0) such that the labor share in agriculture amounts to 50%,

manufacturing to 30%, and services to 20%. The exogenous parameters are set to F = 8,

L = 1, ∆ = ∞, bs = 10/3, σ = 2, ρ = 0.02, γ = 0.77 and x = 4. This yields an equilibrium

growth rate of g = 2.2% and a price level for the most luxurious good of p = 1.06.

F igure 4

The simulations are presented in Figure 4. We see that the model is able to reproduce the

observed patterns of structural change remarkably well. Agriculture exhibits a steady decline

from 50 percent to about 5 percent after 120 years. Services stay constant at early stages (as

long as N(t) < x = 4) but exhibit a steady increase thereafter and reach a level of roughly 80

percent after 120 years. Our model also generates a hump shape in the manufacturing labor

19By this assumption we capture the empirical fact that, even in a less developed society, a large fraction of

the population works in the service sector, such as retail trade, housing services, etc. A precise way to capture

a positive service labor share in the model would be treating services as an input in production of final output.

In the present context we assume that services enter as an input only via set-up costs: This should be viewed

as a shortcut necessary to capture the empirical facts.
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share. Starting with 30 percent, the manufacturing labor share reaches 47 percent around 35

years and decreases thereafter reaching roughly 15 percent after 120 years.

Contrasting this simulation with the country average in Table 1 (last column) reveals that

the model predicts the huge movement of labor out of agriculture remarkably well. The model

also predicts a hump shape in the evolution of the manufacturing share that is observed in all

countries displayed in Figure 4 (with the exception of Japan). We also see that (i) the increase

in the manufacturing labor share is initially too strong; (ii) the peak is reached too early; and

(iii) the decrease in manufacturing employment is too strong. It should be clear, however,

that this result is due to the extreme assumption on the mapping of the consumption hier-

archy into the sectoral trichotomy. Assume, more realistically, that ”intermediate” needs are

covered mostly by manufacturing products but to some extent also by services; and that the

most luxurious wants are covered mostly by services but to some extent also by manufacturing

products.20 Then the transition to a service economy would be smoother. In early stages of

economic development, workers leaving the agricultural sector would not only enter the manu-

facturing sector but also the service sector. In later stages, workers leaving old manufacturing

industries would not only enter the service sector but also new manufacturing industries. In

sum, relaxing the above extreme mapping assumption, would lead to (i) a smaller increase in

the manufacturing labor share, (ii) a delay in the date when the manufacturing labor share

peaks, and (iii) a smaller decrease in the manufacturing labor share thereafter. Hence we

conclude our model is capable of fitting the empirical patterns of structural change quite well.

Needless to say, while our model can capture important features of the process of structural

change it does not fit these patterns perfectly. A full story has to account for technological

heterogeneity across sectors.

8 Discussion

Our analysis has made a number of strong assumptions. We have based our analysis on

the concept of hierarchic preferences and have specified these preferences in a particular way.

Moreover we have abstracted from technological asymmetries across sectors and have assumed

20More precisely, assume that with probability θ(i) a new product is a manufacturing good and with prob-

ability 1− θ(i) a new product is a service, with θ0(i) ≤ 0. Our simulation makes the extreme assumption that
θ(i) = 1 for i ∈ (1, 4] and θ(i) = 0 for i > 4.
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that all sectors participate equally from technical progress. In this section we discuss the

robustness of our results with respect to deviations from these assumptions.

Assumptions on preferences To generate a balanced growth path we have assumed (i)

a felicity function that is additively separable across the various products, (ii) a quadratic

subutility function, and (iii) a consumption hierarchy that weights the products with a power

function. The assumption of additive separability is primarily made for tractability.21

The functional form of the subutility function v(c) is not essential. As shown by Foellmi

(2003) any form of v(·) that satisfies the usual assumptions v0(c) > 0 and v00(c) < 0 would

do. We only need a small set of regularity conditions: To guarantee that the utility integral

is well defined we have to normalize v(0) = 0; and to allow for an equilibrium with binding

non-negativity constraints we must have v0(0) < ∞ (which also implies that utility is non-

homothetic). The quadratic form of v(·) has been chosen to obtain closed-form solutions.

Moreover, its saturation point captures a basic idea of any model of hierarchic consumption

in a very stylized way: Consumers move to goods with less priority, once they have saturated

their basic needs.22

The restriction of the weighting function to take the power form i−γ is essential. It implies

that demand functions (and monopoly prices) only depend on the relative (rather than the

absolute) position of the product in the hierarchy. As a result, the maximized static utility

function can be expressed as a function of total (current) expenditure levels, the function taking

the constant elasticity form with parameter γ. In other words, in intertemporal problems with

a continuum of goods, assuming additive separability and weighting by a power function is the

equivalent of assuming a CRRA-felicity function in the one-good growth model.23 In either

case, these functional forms guarantee a constant rate of consumption growth when rates of

21The assumption of separability implies that ”Pigou’s law”, proportionality of income and price elasticities,

holds in our model. Clements and Selvanathan (1994), in an empirical study based on aggregate cross-country

consumption data, find empirical evidence in favor of Pigou’s law.
22For instance, it is not necessary to have a utility function with a saturation level. In an earlier version of

this paper (Foellmi and Zweimüller, 2003) we have used the felicity function v(c) = ln(c+q) with q as a positive

constant. This yields qualitatively similar results (and explicit solutions) except that the demand elastity for a

given product remains strictly positive.
23More precisely, Foellmi (2003) has shown that a felicity function of the form u({c(i)}) = R∞

0
i−γv(c(i))di -

is CRRA in expenditure levels if the price of good i can be expressed as a function of its relative position i/N

only. This clearly holds true in the present model.

28



interest and time preference are constant over time.

Sectoral differences in productivity levels and productivity growth The second

important assumption relied on identical supply conditions across sectors. We have motivated

this assumption by various arguments - including lack of a strong empirical case for sectoral

differences in productivity growth rates. Nevertheless, it can be shown that sectoral differences

in productivity levels and/or scopes for productivity growth can be integrated in our model.

The case is straightforward when only productivity levels (but not rates of technical progress)

differ across sectors. Consider the simplest case, when labor is the only production factor, and

the labor coefficient in product line i is given by a(i) = a+ ε(i) with ε(i) being the deviation

of sector i from average productivity. Assume that the distribution of ε has the properties

Eε(i) = 0, Eε(i)2 = σ2, and Eε(i)ε(i + ∆) = 0 for ∆ 6= i. The latter assumption implies

that there are no systematic differences in productivity level between high- and low-priority

goods. Absent such differences, there is no mechanism that would lead to violation of the

Kaldor facts. Note however, that patterns of structural change may be affected. Allowing

for random differences in technology across sectors may reverse the order in which new goods

and services are introduced. When a(i)À a(j) so that productivity in sector i is much lower

than in j, then good j may be introduced earlier even if i has higher priority, so that i < j.

To compensate for the higher costs, the innovator has to charge higher prices. To generate

the same profit flow, high-cost products have to be introduced later (when monopoly prices

are higher or the waiting time is shorter), whereas low-cost earlier than in the basic case of

equal costs. Obviously, very similar arguments can be made when there are two factors of

production, and when production functions differ ”randomly” across product lines.

The situation becomes slightly more tricky when there are sectoral differences in technical

progress. Assume, there is uncertainty with respect to technical progress at the date when a

new product is introduced. Each good starts out with the ”state-of-the-art” technology. With

probability β a new sector is ”dynamic” (costs fall with the number of previous innovations

N(t), just like before) and ”stagnant” with probability 1−β (no change in costs of production).
This implies that, at each date, there co-exist dynamic sectors with ”state-of-the-art” produc-

tivity levels b/N(t) and stagnant sectors with b/N(s) where s denotes the period when the

product is introduced. (The latter assumption says that all new sectors start out with state-
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of-the-art productivity but only dynamic sectors experience productivity growth). Assume

that β is uncorrelated with the priority of a product, so sectoral differences are ”random” in

the sense that low- and high-priority goods have the same scope for technical progress. Prod-

ucts that experience technical progress will experience unchanged marginal costs and rising

prices. Products that experience no technical progress will suffer from the ”cost disease”. Un-

like in the Baumol model, stagnant products will disappear from the market because sooner

or later costs will become larger than the prohibitive price. The steady-state growth path is

characterized by a constant fraction of output and employment in stagnant sectors, though the

composition of these sectors changes over time as new goods enter and old goods disappear.

Hence, our framework can capture, by way of a natural extension, also the fact that goods and

services disappear over time.

A further dimension of technological heterogeneity across sectors involves the scope for

technological spillovers. Suppose there are differences across sectors in the contribution of

innovation i to the aggregate stock of knowledge. With a probability α, the by-product of a

new innovation is additional knowledge that makes factors more productive in all other sectors,

and with probability 1− α, there are no such knowledge spillovers. As a result, the aggregate

stock of knowledge is given by A(t) = αN(t). In other words, productivity levels are only α

times as high as in the basic model, the equilibrium outcome of our model remains otherwise

unchanged.

A final point concerns differences in technologies between investment and consumption

goods. The analysis above has shown that the consumption sector can be aggregated nicely,

the model could be extended to a two sector framework à la Rebelo (1991). It is well known

that a balanced growth path exists within that model even though consumption and investment

goods are produced with different technologies and experience different rates of productivity

growth. Such a framework would account for the empirical evidence in Greenwood et al.

(1997).

The above discussion has highlighted conditions on technological asymmetries that are

compatible with the Kaldor facts. We have seen that the absence of a correlation between

the relevant technology parameters and the hierarchy index i is essential. It is straightforward

to see how the long-run growth path is affected when these conditions are violated. If there

are systematic correlations over extended intervals along the consumption hierarchy growth
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rates will no longer be constant. Hence our framework can generate growth cycles, periods of

productivity slowdowns and productivity revivals.

9 Conclusions and Extensions

We have presented a model that reconciles two dominant features of the long-run growth

process: the dramatic changes in the structure of production and employment; and the Kaldor

facts of economic growth. Our model has focused on the demand-explanation of structural

change which is based on the idea that households expand their consumption along a hierarchy

of needs. In such a context structural change results from differences in income elasticities

across sectors. We have proposed a specification of hierarchic preferences featuring realistic

patterns of structural change while at the same time generating an equilibrium growth path

consistent with the Kaldor facts.

Our analysis has focused on an endogenous growth framework. Studying hierarchic prefer-

ences in an R&D driven endogenous growth model highlight interesting interactions between

structural change and long-run growth. On the one hand, the aggregate growth rate depends

on structural change because innovation incentives are crucially determined by the growth rates

in the new industries. On the other hand, the speed of structural change is itself determined

by aggregate growth. The resulting complementarities between sectoral and aggregate growth

open up the possibility for multiple equilibria. Hence our model is not only capable of yielding

insights into the process of growth and structural change, but sheds also light on the question

why some countries experience high long-term growth and many industries take off, while in

other countries we see neither a change in the production structure nor increases in aggregate

productivity.

Finally, we have also shown by means of a simple quantitative illustration, that our model

is able to capture realistic patterns of structural change. In particular, our simulation show

that the model is capable of reproducing the great structural transformation from agriculture

towards industry and services. We also show that the model predicts, consistent with observed

patterns of change, that the manufacturing employment first increases and then decreases in

the course of economic development.

Our model can be extended in several directions. We think that two extensions are most

promising. First, while our analysis has focused on a representative consumer, the introduction
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of consumer heterogeneity is potentially interesting. As preferences are non-homothetic, rich

and poor households will consume different consumption bundles which opens up a new channel

by which income inequality could affect growth and structural change (Foellmi and Zweimüller,

2005). Second, hierarchic preferences in a world economy with rich and poor countries would

imply interesting patterns of growth and the international division of labor. Our model provides

a natural way of modelling the Linder-hypothesis (Linder, 1961) and/or the product-cycle

hypothesis (Vernon, 1966). A rich country faces high home-demand and hence will innovate

early. The poor country will first import new goods, but later on start to imitate. Hence

rich countries will produce new goods with a high income elasticity and poor countries will

produce old goods with a low elasticity. Our set-up may also be useful to understand the

mixed empirical evidence concerning the Prebisch/Singer-hypothesis (Prebisch, 1950, Singer,

1950) according to which the terms of trade for the poor countries deteriorate as their exports

are concentrated on goods with low income elasticities. (For a static model along these lines,

see Matsuyama, 2000).
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Appendix

Proof of Lemma 1 Consider first the regime n < N. To get the maximized utility û for a given level

of expenditures E and a given menu of goods N, we insert equilibrium quantities (4) into the utility

function (1) After some manipulations this yields (we omit time indices in what follows)

û =
n1−γ

1− γ

s2

8

Ã
3 +

µ
a
N

n

¶1−γ
+ 2 (1− γ)

aN − n
n

− (1− γ)
1 + 3

¡
aNn
¢1+γ

(1 + γ)

!

which we can write as û = n1−γ
1−γ ψ(

n
N , a; γ, s). We know from (6), that we can write E = snφ( nN , a; γ, s)

which implies n = E
sφ( nN ,a;γ,s)

. Inserting this latter expression into the above utility function yields

û =
E1−γ

1− γ
K
³ n
N
, p = 1, a; s, γ

´
where K

¡
n
N , p = 1, a; s, γ

¢
=

ψ( nN ,a;γ,s)

[sφ( nN ,a;γ,s)]
1−γ .

We proceed in a similar way for regime n = N. This yields for maximized utility

û =
N1−γ

1− γ

s2

8

Ã
3 + a1−γ +

2 (1− γ) (a− 1)
2p− 1 − (1− γ) (1 + 3a1+γ)

(1 + γ) (2p− 1)2
!
,

which can be written as û = N1−γ
1−γ Ψ(p, a; γ, s). We know from equation (6’) that we can write E =

sNΦ(p, a; γ, s). Solving for N and substituting into the above utility expression yields

û =
E1−γ

1− γ
K
³ n
N
= 1, p, a; s, γ

´
,

where K
¡
n
N = 1, p, a; s, γ

¢
= Ψ(p,a;γ,s)

[sΦ(p,a;γ,s)]1−γ .
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Proof of Lemma 2 We know from the zero-profit condition (11’) that

Πg ≡ ∂Π(t)

∂g
=

Z t+∆

t

s

4


−σ(1− γ) (τ − t) e−[ρ+gσ(1−γ)](τ−t) (2p− 1)

− (σ(1− γ) + 2γ) (τ − t) e−[ρ+gσ(1−γ)+2gγ](τ−t) 1
2p−1

+2 (σ(1− γ) + γ) (τ − t) e−[ρ+gσ(1−γ)+gγ](τ−t)

 dτ

=

Z t+∆

t

s

4


−σ(1− γ) (2p− 1)

− (σ(1− γ) + 2γ) e−2gγ(τ−t) 1
2p−1

+2 (σ(1− γ) + γ) e−gγ(τ−t)

 (τ − t) e−[ρ+gσ(1−γ)](τ−t)dτ
= :

Z t+∆

t

s

4
Θ(p, g) (τ − t) e−[ρ+gσ(1−γ)](τ−t)dτ

We will show the following: If ∂Π(t)
∂g

¯̄̄
g=0
≤ 0 then ∂Π(t)

∂g < 0 for all g > 0. Hence, ∂Π(t)
∂g

¯̄̄
g=0
≤ 0 is

sufficient for Π to have always a positive slope. ∂Π(t)∂g

¯̄̄
g=0

can be calculated as

s

4

·
−σ(1− γ) (2p− 1)− (σ(1− γ) + 2γ)

1

2p− 1 + 2 (σ(1− γ) + γ)

¸ Z t+∆

t

(τ − t) e−ρ(τ−t)dτ ≤ 0

⇐⇒ Θ(p, 0) = −σ(1− γ) (2p− 1)− (σ(1− γ) + 2γ)
1

2p− 1 + 2 (σ(1− γ) + γ) ≤ 0

⇐⇒ γ ≤ σ(p− 1)
1 + σ(p− 1) ⇐⇒ p ≥ σ(1− γ) + γ

σ(1− γ)
⇐⇒ 2p− 1 ≥ σ(1− γ) + 2γ

σ(1− γ)
.

Note that p depends on g. If ∂Π(t)
∂g

¯̄̄
g=0
≤ 0, the zero profit constraint has a positive slope, i.e. we must

have p0(g) ≥ 0. Together with the lower bounds of p above we can determine the sign of the partial
derivatives of Θ(p, g)

Θp = −2σ(1− γ) +
2

(2p− 1)2 (σ(1− γ) + 2γ) e−2gγ(τ−t)

≤ −2σ(1− γ) +
2σ2(1− γ)2

(σ(1− γ) + 2γ)2
e−2gγ(τ−t) < 0

Θg = −2 (σ(1− γ) + γ) γ (τ − t) e−gγ(τ−t) + 2 (σ(1− γ) + 2γ) γ (τ − t) e−2gγ(τ−t) 1

2p− 1
≤ −2 (σ(1− γ) + γ) γ (τ − t) e−gγ(τ−t) + 2σ(1− γ)γ (τ − t) e−2gγ(τ−t) < 0

Hence Θ(p(g), g) < Θ(p(0), g) < Θ(p(0), 0) ≤ 0 which completes the proof.
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b. Insert g = 0 into the zero profit condition (11’) (since demand does not grow when g = 0, an

equilibrium with positive waiting time δ is impossible)

F

b
=

s

4

1− e−ρ∆
ρ

µ
2pz − 1 + 1

2pz − 1 − 2
¶

4
F

bs

ρ

1− e−ρ∆ =

µp
2pz − 1− 1√

2pz − 1
¶2

2

r
F

bs

ρ

1− e−ρ∆ =
p
2pz − 1− 1√

2pz − 1
Note that only the positive root is relevant since 2pz − 1 > 1. We denote

√
2pz − 1 = x, the equation

above can then be written as x2 − 2
q

F
bs

ρ
1−e−ρ∆x − 1 = 0. This quadratic equation has the solution

x =
√
2pz − 1 =

q
F
bs

ρ
1−e−ρ∆ +

q
F
bs

ρ
1−e−ρ∆ + 1. Solving for pz yields the claim of the Lemma.

c.

lim
g−>∞Πg =

Z t+∆

t

s

4
Θ(p, g) (τ − t) e−[ρ+gσ(1−γ)](τ−t)dτ < 0

and

lim
g−>∞ Π̃g = e

−δr
Z t+∆−δ

t

s

4
Θ(1, g) (τ − t) e−r(τ−t)dτ − δσ(1− γ)Π(t) < 0

since

lim
g−>∞Θ(p, g) = −σ(1− γ) (2p− 1) < 0.
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Proof of Lemma 3 a. Inserting g = 0 into the resource constraint (10’) yields

1 = bs

·
1− 1

(1 + γ) (2p− 1)
¸
=: f(p)

1 ≤ p < ∞ implies bs γ
1+γ ≤ f(p) < bs. Hence, the equation can only be fulfilled if 1 < bs ≤ 1+γ

γ .

Solving the equation yields pR =
1
2

h
1 + 1

1+γ
bs
bs−1

i
.

b. If p goes to infinity in equation (10’), the condition follows directly.

c. Replace δ by the new variable x = n
N = e−δg. Equation (10) now reads:

1 = gF +
bs

2

·
1− e

−g(1+γ)∆

1 + γ
x−γ +

γ

1 + γ
x

¸
.

Inserting g = 0 yields the condition in the Lemma.

d. The derivatives with respect to g are, respectively, Rg = F − bs
2 ∆

h
e−g∆ − 1

2p−1e
−g∆(1+γ)

i
and

R̃g = F − bs
2 (∆−δ)e−gδ

£
e−g(∆−δ) − e−g(∆−δ)(1+γ)¤−δ bs2 e−gδ he−g(∆−δ) − e−g(1+γ)(∆−δ)+1

1+γ + 1
i
. Hence,

limg−>∞Rg = limg−>∞ R̃g = F > 0.
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Proof of Proposition 1 With flat hierarchy, we showed that the Π-curve is monotonically increasing,

and so an equilibrium is only possible with p > 1. It remains to show that the R-curve monotonically

decreasing if bs ≤ 1, which would guarantee uniqueness. Lemma 2b. says that R approaches ĝ,

defined by 1 = ĝF + bs
2

¡
1 + e−ĝ∆

¢
. The right hand side of the latter expression is a convex function

in g and must therefore have a positive slope at g = ĝ. Thus, F − bs
2 ∆e

−ĝ∆ > 0. But this implies

Rg = F − bs
2 ∆e

−g∆ + bs
2 ∆

1
2p−1e

−g∆(1+γ) > bs
2 ∆

1
2p−1e

−g∆(1+γ) > 0.
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Table 1 

STRUCTURAL CHANGE 1870-1984 

(sectoral employment as a fraction of total employment) 

  France Germany Japan Netherlands U.K. U.S. Average 

Agriculture 1870  49.2  49.5  67.5  37.0  22.7  50.0  46.0 
 1913  37.4  34.6  64.3  26.5  11.0  32.3  34.4 
 1950  28.5  22.2  48.3  13.9  5.1  13.0  21.8 
 1984  7.6  5.5  8.9  4.9  2.6  3.3  5.5 
         
Industry 1870  27.8  28.7  13.8  29.0  42.3  24.4  27.7 
 1913  33.8  37.8  13.9  33.8  44.8  29.3  32.2 
 1950  34.8  43.0  22.6  40.2  46.5  33.3  36.7 
 1984  32.0  40.5  34.8  26.4  32.4  28.0  32.4 
         
Services 1870  23.0  21.8  18.7  34.0  35.0  25.6  26.4 
 1913  28.8  27.6  21.8  39.7  44.2  38.4  33.4 
 1950  36.7  34.8  29.1  45.9  48.4  53.7  41.4 
 1984  60.4  54.0  56.3  68.7  65.0  68.7  62.2 

 
Source: Maddison (1984) 

 
 



 
Figure 1: The equilibrium values of the growth rate g and waiting time δ 
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Figure 2: The Engel-curve for good i = N(t) 
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Figure 3: Multiple Equilibria 
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Figure 4: Reallocation of Labor Across Sectors 
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