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Investor Information, Long-Run Risk, and the Duration of Risky Cash Flows

Abstract

Value stocks have higher average returns than growth stocks. At the same time, the

duration of value stocks�cash �ows is considerably shorter than that of growth stocks. We

show that when investors can fully distinguish short- and long-run consumption risk compo-

nents of dividend growth innovations, only exposure to long-run consumption risk generates

signi�cant risk premia, implying that high-return value stocks should be long-duration as-

sets, contrary to the historical data. By contrast, when investors observe the change in

consumption and dividends each period but not the individual components of that change

(limited information), exposure to short-run risk can generate large risk premia, implying

that value stocks become short-duration assets while growth stocks are long-duration assets,

as in the data. The limited information speci�cations we explore are not only consistent with

the cash �ow duration properties of value and growth stocks, they also explain the observed

value premium, the higher Sharpe ratios of value stocks, the failure of the CAPM to account

for the value premium, and the success of the HML factor of Fama and French (1993) in

explaining the value premium.

JEL: G10, G12



1 Introduction

Empirical evidence shows that assets with low ratios of price to measures of fundamental

value (value stocks) have higher average returns than assets with high ratios of price to

fundamental value (growth stocks) (Graham and Dodd (1934); Fama and French (1992)).

One explanation is that assets with high average returns command a high risk premium

because they are more exposed to long-run cash �ow risk. A leading example of this line

of thought is presented by Bansal and Yaron (2004), who show that a small but extremely

persistent common component in the time-series processes of consumption and dividend

growth is capable of generating large risk premia and high Sharpe ratios simultaneously

with a low and stable risk-free rate. A growing body of theoretical and empirical work

is devoted to studying the role of long-run risk in consumption and dividend growth for

explaining asset pricing behavior.1 This line of thought suggests that value stocks must be

more exposed to long-run cash �ow risk than are growth stocks.

At the same time, a second strand of empirical evidence suggests that cash �ow duration

of value stocks is considerably shorter than that of growth stocks (Cornell (1999, 2000);

Dechow, Sloan and Soliman (2004); Da (2005)). Shorter duration means that the timing of

value stocks�cash �ow �uctuations is weighted more toward the near future than toward the

far future, whereas the opposite is true for growth stocks. Thus the duration perspective of

equity seems to suggest that value stocks are less exposed to long-run cash �ow risk than

are growth stocks.

Can these seemingly contradictory �ndings be reconciled? In this paper we consider one

possible reconciliation based on investor information about long-run risk. A maintained

assumption in the theoretical models that study the role of small persistent long-run risk

components of cash-�ows is that investors can fully observe this component and distinguish

its innovations from transitory shocks to consumption and dividend growth. We refer to this

assumption as the full information speci�cation. While this is a natural starting place and

an important case to understand, in this paper we consider an alternative limited information

speci�cation in which market participants are faced with a signal extraction problem: they

can observe the change in consumption and dividends each period, but they cannot observe

1See Parker (2001); Parker and Julliard (2004); Bansal, Dittmar and Kiku (2005); Bansal, Dittmar and

Lundblad (2006) Hansen, Heaton and Li (2005); Kiku (2005); Malloy, Moskowitz and Vissing-Jorgensen

(2005).
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the individual components of that change.

A motivation for the limited information speci�cation is that it is di¢ cult or impossible to

distinguish statistically between a purely i.i.d. process and one that incorporates a very small

persistent component. Hansen et al. (2005), for example, �nd that the long-run riskiness

of cash �ows is hard to measure econometrically, and argue that such statistical challenges

are likely to plague market participants as well as econometricians. Moreover, for some

plausible speci�cations of the dividend process, the distinct roles of persistent and transitory

shocks cannot be separately identi�ed econometrically from the history of consumption and

dividend data, even with an in�nite amount of data. Thus, the full information assumption

takes the amount of information investors have very seriously: market participants must not

only understand that a small predictable component in cash-�ow growth exists, they must

also be able to decompose each period�s innovation into its component sources, and have

complete knowledge of how the shocks to these sources covary with one another, as well as

knowledge of their relative importance in overall cash �ow volatility.

We consider a model in which the dividend growth rates of individual assets are di¤eren-

tially exposed to two systematic risk components driven by aggregate consumption growth,

in addition to a purely idiosyncratic component uncorrelated with aggregate consumption:

one is a small but highly persistent (long-run) component as in Bansal and Yaron (2004),

while the second is a transitory (short-run) i.i.d. component with much larger variance. In

addition, by relying on the recursive utility speci�cation developed by Epstein and Zin (1989,

1991) and Weil (1989), we presume that investors have preferences for which the intertem-

poral composition of risk matters, so that the relative exposure to short- versus long-run

risks has a non-trivial in�uence on risk premia.

In this setting, there is more than one way to model the duration of individual assets�

cash �ows. A long duration asset may be modeled as one with cash �ows that are highly

exposed to the long-run risk component but are little exposed the short-run risk component,

and vice versa for a short duration asset. Alternatively, the duration properties of individual

assets may be modeled by recognizing that an equity claim is a portfolio of zero-coupon div-

idend claims with di¤erent maturities. It follows that growth �rms, which are long duration

assets, can be modeled as equity with relatively more weight on long-horizon zero-coupon

dividend claims than value �rms, which are short duration assets. We take both approaches

to modeling duration in this paper.
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We �nd that, when investors can fully distinguish the short- and long-run components of

dividend growth innovations, assets that have high risk premia (value stocks) will be long-

duration assets while those with low risk premia (growth stocks) are short-duration assets,

contrary to the historical data. By contrast, under limited information, short-duration value

assets can earn high risk premia while long-duration growth assets earn low risk premia,

in line with the data. We show that plausible speci�cations under limited information can

reproduce the magnitude of the spread in risk premia between value and growth stocks

observed in the data, while at the same time preserving the key empirical implication that

long-horizon equity is less risky than short-horizon equity. These results imply that limited

information can be an important source of additional risk, and it can completely reverse the

type of asset that commands high risk premia.

The intuition for this result is straightforward. When investors can observe the long-run

component in cash �ows�in which a small shock today can have a large impact on long-

run growth rates�the long-run is correctly inferred to be more risky than the short-run,

implying that long-duration assets must in equilibrium command high risk premia. Under

limited information, when investors must perform a signal extraction problem, the opposite

can occur: assets with high exposure to short-run consumption shocks command high risk

premia because investors�optimal forecasts of the long-run component assign some weight

to the possibility that such shocks will be persistent. At the same time, assets with low

exposure to short-run consumption shocks command small risk premia because those assets

appear to be largely dominated by the large idiosyncratic cash �ow �uctuations that carry

no risk premium.

An implication of these results is that, under full information, substantial cross-sectional

variation in risk premia can only be generated by heterogeneity in the exposure to long-run

consumption risk. By comparison, under limited information, substantial cross-sectional

variation in risk premia can be generated by heterogeneity in the exposure to short-run,

even i.i.d., consumption risk. In either case, however, the presence of long-run risk is central

to delivering high risk premia, consistent with the insights of Bansal and Yaron (2004)

and Hansen et al. (2005). The di¤erence is that limited information generates a richer set

of results, in which the relative exposure of cash �ows to shocks with di¤erent degrees of

persistence, and investors�perceptions of these shocks as seen through an optimal �ltering

lens, matters as much for risk premia as an asset�s exposure to long-run consumption risk.
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These results show that long-run consumption risk can be an important determinant of

average returns even for short duration assets.

The limited information speci�cations we explore are not only consistent with the cash

�ow duration properties of value and growth stocks and the observed value premium, they

also explain the higher empirical Sharpe ratios of value stocks and the failure of the capital

asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965) to account for the value

premium. In particular, the limited information speci�cations explain the high CAPM alphas

of value stocks relative to growth stocks and the �nding that there is little variation in the

CAPM betas of growth stocks relative to value stocks (Fama and French (1992)). In addition,

the limited information model is consistent with the ability of high-minus-low factor (HML)

of Fama and French (1993) to explain the value premium.

Reconciling the cross-sectional properties of equity returns simultaneously with the cash

�ow duration properties of value and growth assets has proved a challenge for theoretical asset

pricing. Lettau andWachter (2006) use techniques from the a¢ ne term structure literature to

develop a dynamic risk-based model that captures the value premium, the cash �ow duration

properties of value and growth portfolios, and the poor performance of the CAPM. However,

Lettau and Wachter forgo modeling preferences and instead directly specify the stochastic

discount factor. An essential element of their results is that the pricing kernel must contain

additional state variables that can be at most weakly correlated with aggregate fundamentals.

(Lettau and Wachter set this correlation to zero in their benchmark model.) By contrast,

models that specify preferences directly as a function of aggregate fundamentals often have

di¢ culty matching the cross-sectional properties of stock returns. For example, the habit

model of Campbell and Cochrane (1999) has received signi�cant attention for its ability to

explain the time-series properties of aggregate stock market returns. But Lettau andWachter

(2006) and Wachter (2006) show that the Campbell and Cochrane model implies that assets

with greater risk premia are long-horizon assets, rather than short-horizon assets, as in the

data for value and growth portfolios. The full information speci�cations we explore here

share this property with the Campbell and Cochrane model by counterfactually implying

that assets with high risk premia are long duration assets. Santos and Veronesi (2005) modify

the the Campbell and Cochrane model by adding cash �ow risk for multiple risky assets and

successfully generate a value premium for short-horizon assets. However, they also �nd that

the cross-sectional dispersion in cash �ow risk required to explain the magnitude of the
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premium is implausibly high. Other researchers have studied the cross-sectional properties

of stock returns in production-based asset pricing models. Zhang (2005) shows that, when

adjustment costs are asymmetric and the price of risk varies over time, growth assets can

be less risky than assets in place (value stocks), consistent with the cash �ow and return

properties of value and growth assets. But the Zhang model does not account for the �nding

of Fama and French (1992) that value stocks do not have higher CAPM betas than growth

stocks. In this paper we show that the combination of long-run risk and limited information

is capable of reconciling the cross-sectional properties of value and growth assets with their

quite di¤erent cash �ow duration properties, all within a model of standard preferences

driven by aggregate fundamentals.

The rest of this paper is organized as follows. The next section presents the asset pricing

model and the model for cash �ows. Section 3 presents theoretical results under the assump-

tion that innovation variances in the cash �ow model are constant, and shows how the signal

extraction problem without learning in�uences equilibrium asset returns. Section 4 (to be

completed) presents results from augmenting this model to include changing variances and

learning. Section 5 concludes.

2 The Asset Pricing Model

Consider a representative agent who maximizes utility de�ned over aggregate consumption.

To model utility, we use the more �exible version of the power utility model developed by

Epstein and Zin (1989, 1991) and Weil (1989), also employed by other researchers who study

the importance of long-run risks in cash �ows (Bansal and Yaron (2004), Hansen et al. (2005)

and Malloy et al. (2005)).

Let Ct denote consumption and RC;t denote the simple gross return on the portfolio of

all invested wealth, which pays Ct as its dividend. The Epstein-Zin-Weil objective function

is de�ned recursively as:

Ut =
h
(1� �)C

1�
�

t + �
�
Et
�
U1�t+1

�� 1
�

i �
1�

where  is the coe¢ cient of risk aversion and the composite parameter � = 1�
1�1=	 implicitly

de�nes the intertemporal elasticity of substitution 	.

Let PDj;t denote the ex-dividend price of a claim to an asset that pays a dividend stream

Dj;t measured at the end of time t, and let PCt denote the ex-dividend price of a share of
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a claim to the aggregate consumption stream. From the �rst-order condition for optimal

consumption choice and the de�nition of returns

Et [Mt+1RC;t+1] = 1; RC;t+1 =
PCt+1 + Ct+1

PDt
(1)

Et [Mt+1Rj;t+1] = 1; Rj;t+1 =
PDj;t+1 +Dj;t+1

PDj;t
(2)

where Mt+1 is the stochastic discount factor, given under Epstein-Zin-Weil utility as

Mt+1 =

 
�

�
Ct+1
Ct

�� 1
 

!�
R��1C;t+1: (3)

The return on a one-period risk-free asset whose value is known with certainty at time t is

given by

Rft+1 � (Et [Mt+1])
�1 :

2.1 A Cash Flow Model With Constant Variances

To study the role of informational assumptions in determining asset pricing behavior, we

must �rst specify the stochastic processes for consumption and dividend growth rates. In

what follows, we �rst describe the general form of the stochastic process for dividend growth

and then say later how this form can be adapted to model individual asset�s cash �ows. We

use lower case letters to denote log variables, e.g., log (Ct) � ct.
The riskiness of any tradable asset in this economy is determined by the covariance

its cash �ows with the systematic risk factor Mt+1, where the latter depends directly on

one-period-ahead consumption growth as well as indirectly on expected future consumption

growth through the return to aggregate wealth, RC;t+1: Thus we seek a model for cash �ows

that allows dividend growth rates to be potentially exposed to both transitory and persistent

�uctuations in consumption. To model the persistent �uctuations, we follow Bansal and

Yaron (2004) and assume that consumption and dividend growth rates contain a small

predictable component xt; which determines the conditional expectation of consumption

growth:

�ct+1 = �c + xt + �"c;t+1 (4)

�dt+1 = �d + �x xt|{z}
LR risk

+ �c �"c;t+1| {z }
SR risk

+ �"d�"d;t+1 (5)

xt = �xt�1 + �"x�"x;t (6)
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"c;t+1; "d;t+1; "x;t � N:i:i:d (0; 1)

The dividend speci�cation (5) is closely related to a number of existing speci�cations

studied in the literature. In particular, when �c = 0 this speci�cation is the same as that

in Bansal and Yaron (2004). The term labeled �LR risk�captures the small long-run risk

component emphasized in the literature because even very small innovations to xt, if ob-

servable, can have large a¤ects on valuation ratios and risk premia, as long as they are

su¢ ciently persistent. In this paper we also allow dividend growth to be exposed to tran-

sitory consumption shocks, by introducing the additional component �"c;t+1 with loading

�c: We refer to this component as a short-run risk component, denoted above �SR risk,�

since its correlation with consumption growth and therefore the stochastic discount factor

contributes to the riskiness of cash �ows, but its purely transitory (i.i.d.) nature makes that

risk short-lived. The loadings �x and �c govern the exposure of dividend growth to long-run

and short-run consumption risk, respectively. Because the innovation "d;t+1 is uncorrelated

with consumption growth, it does not contribute to the systematic risk of cash �ows.

Under the limited information speci�cation, investors recognize that there are separate

long-run and short-run components to consumption and dividend growth in (4)-(6) but do

not distinguish them, instead observing only the change in consumption and dividends each

period. We assume that they form an estimate of the unobservable conditional means, xt,

and xd;t � �xxt, and that they do so optimally by sequentially updating a linear projection
on the basis of data observed through date t.

Let bxt and bxd;t denote these optimal forecasts:
bxt � bE �xtjzt�bxd;t � bE �xd;tjztd�

where zt and ztd are vectors containing the history of consumption and dividend data, respec-

tively, through time t. It is straightforward to express the dynamic system (4)-(6) in state

space representations for consumption and dividend growth and use the Kalman �lter to

calculate the estimates bxt and bxd;t recursively. In doing so, we use the steady-state Kalman
�lter, e¤ectively assuming that agents have an in�nite amount of data from which to base

their forecasts. Thus, under limited information, investors observe not the system (4)-(6)

that generates the data, but instead an innovations representation based on the optimal

7



estimates bxt and bxd;t:
�ct+1 = bxt + vc;t+1 (7)bxt+1 = �bxt +Kvc;t+1 (8)

�dt+1 = bxd;t + vd;t+1 (9)bxd;t+1 = �bxd;t +Kdvd;t+1; (10)

whereK andKd are the steady state Kalman gain parameters associated with the state space

representations for consumption and dividend growth, respectively. The innovations vc;t+1
and vd;t+1 will in general be correlated, and are composites of the underlying innovations in

(4)-(6).2

The state space representation provides a convenient way to calculate the likelihood func-

tion for the consumption and dividend processes given in (4)-(6). In the absence of apriori

restrictions on the state space parameters, however, those parameters are not identi�ed from

the history of consumption and dividend data, even with an in�nite amount of data. In

fact, the likelihood functions for the innovations representations of �ct+1 and �dt+1 in (7)-

(10) are the same as those implied by the system (4)-(6). Consequently, an econometrician

armed with observations on consumption and dividends would be unable to observe xt or to

separately identify the parameters in (4)-(6). A modeling implication of this observation is

that calibration exercises which assume that agents can observe the persistent component

xt also implicitly assume that market participants have more information than do econo-

metricians with historical data on consumption and dividends. In practice, theorists use

information on risk premia to calibrate the parameters in (4)-(6), implying that the model�s

predictions for asset prices are no longer determined from purely exogenous driving processes

for consumption and dividends.

For the full information speci�cation, xt summarizes the information upon which condi-

tional expectations are based. Solutions to the model�s equilibrium price-consumption and

2The system (7)-(10) can also be expressed as a pair of ARMA(1,1) processes for �ct+1 and �dt+1:

�ct+1 = �c (1� �) + ��ct + vc;t+1 � bcvc;t (11)

�dt+1 = �d (1� �) + ��dt + vd;t+1 � bdvd;t; (12)

where the parameters bc � (��K), bd �
�
��Kd

�
and the variance-covariance matrix of vc;t+1 and vd;t+1

are functions of �x, �c, and variance-covariance matrix for the fundamental shocks "c;t+1; "x;t+1 and "d;t+1.
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price-dividend ratios are found by iterating on the Euler equations (1) and (2), assuming that

individuals observe the consumption and dividend processes in (4) and (5). This delivers a

policy function for the price-consumption and price-dividend ratios as a function of a single

state variable xt.

In the limited information speci�cation, equilibrium price-consumption and price-dividend

ratios are calculated assuming individuals only observe the composite shock processes given

in (7)-(10), even though shocks to the consumption and dividend processes are actually

generated by the individual shocks in (4)-(6). In this case, the policy function for the price-

consumption ratio is a function of bxt, while the price-dividend ratio is a function of both bxt
and bxd;t. For each case, we simulate histories for consumption and dividend growth based
on the processes in (4)-(6) and use solutions to the policy functions to generate equilibrium

paths for asset prices. The process is iterated forward to obtain simulated histories for asset

returns.3 The Appendix explains how we solve for these functional equations numerically on

a grid of values for the state variables.

3 Theoretical Results

To investigate the role of investor information in in�uencing risk premia, we begin by inves-

tigating the model�s implications for summary statistics on the price-dividend ratio, excess

returns, and risk-free rate under limited as compared to full information. Tables 1 and 2

present results of this form. The output is generated by simulating 1000 samples of size 840

months, computing annual returns from monthly data, and reporting the average statistics

for annual returns across the 1000 simulations. To make our results comparable to the exist-

ing literature on long-run risk, the results in Table 1 are based on parameters set at monthly

frequency as in Bansal and Yaron (2004) as follows: � = 0:998985; �d = �d = 0:0015,

� = 0:979, � = 0:0078, �"x = 0:044, 	 = 1:5,  = 10. Notice that the innovation variance in

xt is small relative to the overall volatility of consumption: the standard deviation of "x is

only 4.4% of the standard deviation of the consumption growth innovation ". Notice also

3The one minor complication in the simulations is that the policy functions for the limited informa-

tion speci�cations are a function of the current innovation in the composite processes that appear in ((7)-

(10), whereas the actual innovations are generated from (4)-(6). However, the moving average represen-

tations of (7) and (9) are invertible, and the innovations vc;t and vd;t can be recovered from the sumsP
i b
i
c (�ct�i � ��ct�i�1 � �c) and

P
i b
i
d (�dt�i � ��dt�i�1 � �d), respectively.
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that the persistence of xt is set to be high; as Bansal and Yaron point out, this is important

for generating signi�cant risk premia from small innovations to cash �ows. We set �"d equal

to 6 rather than 4:5; slightly higher than in Bansal and Yaron, in order to better match

the correlation in our model between consumption and dividends observed in the data. The

table considers a range of values for the parameters �c and �x, which govern the exposure

to short-run and long-run consumption risk, respectively . In what follows, we denote the

log return on the dividend claim rj;t+1 = ln (Rj;t+1) and the log return on the risk-free rate

rf;t+1 � ln
�
Rft+1

�
.

Table 1 shows that the impact on risk premia of exposure to long-run risk versus short-run

consumption risk is sensitive to assumptions made about investor information. The existing

literature based on full information generates a high risk premium by placing signi�cant

weight �x on the long-run risk component with small variance, while at the same time

assigning little or no role for short-run risk. For example, Bansal and Yaron (2004) set

�x = 3 and �c = 0. With this in mind, several related aspects of Table 1 are worthy of

emphasis.

First, when exposure to short-run risk is su¢ ciently large, the limited information speci-

�cation generates a substantially higher risk premium than the full information speci�cation

(e.g., row 2 of Table 1). Second, the limited information speci�cation generates a small risk

premium whenever exposure to short-run risk is small. For example, even when exposure to

long-run risk, �x, is as high as 3, the log risk premium E (ri � rf ) is only 1.25% per annum

if �c is as small as 2:2 (row 1). In fact, under the parameterization speci�ed above, values

for �c that are much smaller than 2.2 are ruled out in the limited information case by the

requirement that the price-dividend ratio be �nite.4 This is analogous to the requirement

in the Gordon growth model that the expected stock return be greater than the expected

dividend growth rate to keep the price-dividend ratio �nite.

Third, under full information, substantial cross-sectional variation in risk premia can only

be generated by heterogeneity in the exposure to long-run consumption risk. For example,

when �x = 3 and �c is increased from 2.2 to 6, the log risk premium E (ri � rf ) increases
by just one and a quarter percent, from 5.15% to 6.40% per annum (compare rows 5 and 6

of Table 1). By comparison, under limited information, substantial cross-sectional variation

4Fixing �x, as �c ! 0; the risk premium in the limited information case converges to a very small number,

di¤ering from zero only by a Jensen�s inequality term.
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in risk premia can be generated by heterogeneity in the exposure to short-run consumption

risk: when �x = 3 and �c is increased from 2.2 to 6, the log risk premium increases by

almost 8 percentage points from 1.26% to 8.42% per annum. On the other hand, �xing �c
and varying �x generates little variation in risk premia under limited information.

To understand these results, recall that the risk premium on any asset is determined by

the covariance between Mt and the innovation in the equity return. The innovation in the

equity return can be decomposed into a component based on revisions in expectations (news)

of future dividend growth and a component based on revisions in expectations about future

returns. Revisions in expectations about future returns are relatively unimportant in the

present version of the model because we have not introduced mechanisms such as changing

consumption and dividend volatility for generating time-varying risk premia on the asset.

Thus risk premia here are largely determined by covariance between Mt and news about

future cash-�ow growth.

With risk premia determined by the covariance betweenMt and news about future cash-

�ow growth, there are two o¤setting e¤ects on the equity premium for the full information

case as compared to the limited information case. First, when an innovation "x to the

persistent component of consumption and dividend growth occurs, the solution to the optimal

�ltering problem implies that investors with limited information assign some weight to the

possibility that the shock is transitory (coming from "c or "d) and will therefore fail to revise

their expectation of future dividend growth as much as they would under full information.

This contributes to a greater risk premium in the full information case as compared to the

limited information case. Second, when an innovation "c to the short-run risk component

occurs, the solution to the optimal �ltering problem implies that investors with limited

information will assign some weight to the possibility that the shock is persistent (coming

from the long-run risk component), and will therefore revise their expectation of future

dividend growth more than they would under full information. This contributes to a greater

risk premium in the limited information case as compared to the full information case.

Notice that when �x is large (e.g., equal to 3 Table 1) and �c relatively small (e.g., 2.2),

the risk premium in the full information case can be substantial while the premium in the

limited information case is quite small. For such parameter values, the �rst e¤ect dominates

the second. Intuitively, this occurs because when exposure �c to short-run risk is small and

the long-run risk component has small variance, the innovations "c;t+1 and "x;t+1 receive little
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weight in the composite consumption and dividend shocks vc;t+1 and vd;t+1 generated from

the Kalman �lter. Instead, these innovations are largely dominated by the more volatile

idiosyncratic cash �ow shocks "d;t+1 that carry no risk premium. This explains why these

cases generate a low risk premium under limited information.

By contrast, when when �x is small (e.g., equal to 1 Table 1) and �c relatively large (e.g.,

6), the risk premium in the limited information case can be substantial while the premium

in the full information case is quite small. For these parameter values, the second e¤ect

dominates the �rst. Here, the i:i:d: innovation "c;t+1, which under limited information cannot

be distinguished from the persistent "x;t+1 shock, receives signi�cant weight in the composite

shocks vc;t+1 and vd;t+1 and therefore generates signi�cant revisions in expectations of future

dividend growth long into the future. Moreover, since "c;t+1 a¤ects consumption growth, it

generates non-negligible correlation between vc;t+1 and vd;t+1, and therefore between Mt and

innovations to rj;t. The result is a higher risk premium under limited information than under

full information.

The spread in log risk premia that may be obtained by varying �x and �c can be made

larger by altering parameter values. Table 2 shows the same statistics as those in Table 1

when  is 15 instead of 10, 	 is 1.3 instead of 1.5, �"x is 0.10 instead of 0.044, and � is

0.993 instead of 0.98985. The other parameters are the same as those used to produce the

results in Table 1. In this case the variance of the persistent component xt has been made

slightly larger, though still substantially smaller than the innovation variance for consump-

tion growth. As a result, smaller values of the loadings �x and �c are required to generate

large risk premia. Other than this, the main features of Table 1 are preserved in Table 2,

but larger risk premia and a greater spread in risk premia are obtained.

Note that the reported price-dividend ratios in the table, which are generally lower than

those in the data, are not readily comparable to their empirical counterparts for actual �rms.

This is because the hypothetical �rms in the model, with cash �ow process of the form (4)-

(6), have no debt and do not retain earnings. Thus, the dividends in the model are more

analogous to free cash �ow than to actual dividends, implying that price-dividend ratios in

the model should be lower than measured price-dividend ratios in historical data.
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3.1 Heterogeneity In Consumption Risk Exposure

How can these results be used to model the cash �ow and return properties of value and

growth stocks? Our goal is to reconcile the cross-sectional properties of returns with the

cash �ow duration properties of value and growth assets. The results above suggest that one

way we may accomplish this is by modeling �rms as having varying degrees of exposure to

short- and long-run consumption risk. In this setting, a long duration (growth) asset may

be modeled as one with cash �ows that are highly exposed to the long-run consumption

risk component, with high �x, but are little exposed the short-run risk component, having

low �c, and vice versa for a short duration (value) asset. When �x is small and �c is large,

the timing of cash �ow �uctuations is weighted more toward the near future than the far,

implying the asset�s cash �ows are of shorter duration than assets for which the loading �x
is large and �c is small.

Under limited information, it is short duration assets, those with relatively low exposure

to long-run consumption risk and high exposure to short-run consumption risk (e.g., row 2

of Table 2), that have high risk premia and low price-dividend ratios, consistent with the

properties of value stocks in the data. At the same time, it is long duration assets, those

with high �x and low �c (e.g., row 6 of Table 2), that have lower risk premia and higher

price-dividend ratios, consistent with the properties of growth stocks in the data.

The results are quite the opposite under full information. Short duration assets, those

with relatively low exposure to long-run consumption risk and high exposure to short-run

consumption risk (e.g., row 2 of Table 2), have low risk premia and high price-dividend

ratios, whereas long duration assets, those with high �x and low �c (e.g., row 6 of Table 2),

have high risk premia and low price-dividend ratios.

These �ndings are illustrated graphically in Figure 1, which plots annualized price-

dividend ratios as a function of the ratio of long-run to short-run consumption risk exposure,

�x=�c: For this �gure, the ratio �x=�c is varied in such as way as to hold �xed the 15-month

variance of dividend growth that is attributable to the consumption innovations. The two

left panels plot the steady-state price dividend ratio under limited information. The the

left-most panel plots this ratio at the steady state value of bxt, along with plus and minus two
standard deviations around steady state in bxt (holding �xed bxd;t at its steady-state level).
The middle panel plots plots the price-dividend ratio at the steady state value of bxd;t, along
with plus and minus two standard deviations around steady state in bxd;t (holding �xed bxt at
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its steady-state level). The right-most panel plots the price-dividend ratio under full infor-

mation as a function of �x=�c; plus and minus two standard deviations around steady state

in xt:

The plots are upward sloping under limited information but downward sloping under full

information. Recall that price-dividend ratios are high when risk premia are low, and vice

versa. This shows that assets with cash �ows that load heavily on the long-run component,

xt; are more risky under full information but less risky under limited information. Thus,

under full information, assets more exposed to long-run cash �ow �uctuations carry higher

risk premia, while under limited information, assets more exposed to short-run cash �ow

�uctuations carry high risk premia.

We close this section by brie�y making one observation about the cash �ow betas studied

in Bansal et al. (2006). Bansal et. al. point out that regressions of dividend growth on 4

and 8 quarter trailing moving averages of consumption growth, where the slope coe¢ cient

in this regression is called the �cash �ow beta,� show that value stocks have higher cash

�ow betas than growth stocks.5 It is clear that heterogeneity in �x, governing exposure

to long-run consumption risk, can generate heterogeneity in cash �ow betas with respect

to moving averages of consumption growth over longer horizons. A brief section in the

Appendix shows that� when consumption and dividend data are time-aggregated, as in the

historical data� heterogeneity in �c, governing exposure to i.i.d. consumption risk, can also

generate heterogeneity in cash �ow betas with respect to moving averages of consumption

growth over 4 or 8 quarter horizons.

In the next section we consider an alternative way of modeling individual assets with

di¤erent cash �ow properties, by specifying �rms as having di¤erent time-varying weights in

economy-wide dividend payouts at di¤erent maturities.

3.2 Modeling �rms: Zero-Coupon Dividend Claims

An equity claim is a portfolio of zero-coupon dividend claims with di¤erent maturities. It

follows that one way to model �rms with di¤erent cash �ow duration properties is to specify

assets as having time-varying shares in a sequence of �market�dividend claims, fDtg1t=0 ;
with di¤erent maturities. Here �rms di¤er only in the timing of their cash �ows, allowing us

5One caveat with this observation is that the cash �ow betas are measured with considerable error, and

therefore are not statistically distinguishable from one another.
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to isolate the role of cash �ow duration in generating cross-sectional di¤erences in expected

returns. Long-duration growth �rms are modeled as equity with relatively more weight

placed on long-horizon dividend claims, while short-duration value �rms are modeled as

equity with relatively more weight placed on short-horizon dividend claims. The approach

has been used in previous work by Lynch (2003), Menzly, Santos and Veronesi (2004), Santos

and Veronesi (2005), and Lettau and Wachter (2006). Long-lived assets are modeled as

having price-dividend ratios that together sum to the aggregate market price-dividend ratio.

The �rst step in this modeling strategy is to specify how zero-coupon equity is valued

under limited and full information. Denote Pn;t as the price of an asset that pays the

aggregate dividend n periods from now, and Rn;t the one-period return on zero-coupon

equity maturing in n periods:

Rn;t+1 =
Pn�1;t+1
Pn;t

:

The zero-coupon equity claims are price under no-arbitrage according to the following Euler

equation:

Et [Mt+1Rn;t+1] = 1 =)

Pn;t = Et [Mt+1Pn�1;t+1]

P0;t = Dt;

where the process for cash �ows that generates the data Dt is given by (4)-(6).

The appendix provides detailed information on how the recursion above is solved numer-

ically. Denote rn;t+1 = ln (Rn;t+1) : Note that, since the aggregate market is the claim to

all future dividends, its price-dividend ratio is the sum of the ratios
P1

n=1 Pn;t=Dt. Plotting

Rn;t+1 against n produces a yield curve, or term structure, of zero-coupon dividend claims.

The time-varying share processes for each �rm are modeled following Lettau and Wachter

(2006). We outline only the main aspects of this approach here and refer the reader to that

article for further detail. Consider a sequence of i = 1; :::; N portfolios of �rms at the same

life-cycle stage, (hereafter referred to simply as ��rms�for brevity). The �rms pay a share,

si;t+1; of the aggregate dividend Dt+1 at time t + 1. Shares are greater than zero and sum

to unity across all i = 1; ::::; N . The share process is deterministic, with s being the lowest

share of a �rm in the economy. Firms experience a life-cycle in which this share grows

deterministically at a rate gs until reaching a peak si;N=2+1 = (1 + gs)
N=2 s and then shrinks

deterministically at rate gs until reaching si;N+1 = s. The cycle then repeats itself. Firms
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are identical except that their life-cycles are out-of-phase, i.e.., �rm 1 starts at s, �rm 2 at

(1 + gs) s, and so on. The parameter gs is set to 1:67% per month, or 20% per year, as in

Lettau and Wachter (2006).

Before discussing the properties of portfolios of �rms sorted on the basis of price-dividend

ratios, it is instructive to compare the term structure of equity under limited and full infor-

mation. Figures 2 and 4 plot summary statistics for returns as a function of maturity, n,

under two parameter con�gurations described in the notes to the �gures. Similar �gures are

presented in Lettau and Wachter (2006) and Hansen et al. (2005) (discussed below), but for

a di¤erent asset pricing model, Mt+1:

Under limited information, the annualized log risk premium declines with maturity. The

largest spread from short- to long-maturities occurs under the parameterization of Figure 4:

the log risk premium is 15% per annum for equity that pays a dividend one month from now

and 5% per annum for equity that pays a dividend 15 years from now. Figure 2 displays

similar results using the parameterization that generated the results in Table 2, but the

spread between short- and long-horizon equity is a bit less. This spread is greater in Figure

4 by increasing risk aversion from 15 to 16 and reducing the intertemporal elasticity of

substitution from 1.3 to 1.2. This suggests that the limited information speci�cation has the

potential to explain the higher mean excess returns of short-duration assets as compared to

long-duration assets found in the data.

Under full information, the annualized log risk premium increases with maturity. The log

risk premium is 1:8% per annum for equity that pays a dividend one month from now and

5:5% per annum for equity that pays a dividend 15 years from now. The long-run is more

risky and, as such, long-duration assets carry high risk premia.

The middle panels of Figures 2 and 4 show that in both limited and full information,

volatility increases with the horizon. But the bottom panels show that the Sharpe ratios

decrease with the horizon under limited information while they rise with the horizon under

full information. This suggests that the limited information speci�cation, in contrast to

the full information speci�cation, has the potential to explain the higher Sharpe ratios of

short-duration assets as compared to long-horizon assets.

Hansen et al. (2005) present zero-coupon equity plots for price-dividend ratios Pn;t=Dt

rather than mean excess returns as in Figures 2 and 4. Since high price-dividend ratios

correspond to low excess returns, the two plots are essentially mirror-images of one another.

16



Their plots are based on the same Epstein-Zin-Weil model of preferences used here, but the

results are formed from historical data and somewhat di¤erent parameter values. Below we

interpret value and growth �rms as having di¤erent, time-varying shares in the aggregate

dividend, but it is also possible to interpret value and growth �rms distinguished by hetero-

geneity in the loadings �c and �x, as in the previous subsection. Regardless of the values of

�c and �x, results (not reported) indicate that, in the cash �ow models we study, the term

structure of equity is always downward sloping under limited information, while it is always

upward sloping under full information.6 Changing the loadings �c and �x merely changes

the slope of the term structure, it does not change the sign of the slope. These �ndings di¤er

somewhat from those of Hansen et al. (2005), who report that� when risk-aversion is su¢ -

ciently high� the price-dividend term-structures of value and growth portfolios have slopes

of opposite signs. There are, however, a number of discrepancies between our analyses that

could account for these di¤erences. Hansen et al. (2005) use di¤erent preference parameter

values, for example restricting 	 to be within a neighborhood of unity, whereas most of our

parameterizations use larger values for 	. They also use a di¤erent model of cash �ows, in

which consumption and corporate earnings are cointegrated and consumption growth follows

a multivariate �rst-order Markov process.

Fama and French (1992) pointed out that the CAPM fails to explain the return premium

on short-duration value stocks over long-duration growth stocks. To relate our �ndings to

these results, Figures 3 and 5 plot the results of CAPM regressions of zero-coupon equity

returns on the excess market return, as a function of maturity. The top panel shows the

CAPM betas and the bottom panel shows the CAPM alphas. The results for limited in-

formation and full information are plotted simultaneously in the �gures on separate scales

(limited information on the left, full information on the right). As above, returns are are

converted to percent per annum. The �gures show that, under limited information, the

shortest-duration equity have high alphas (as high as 8% in Figure 3 and 9% in Figure 5

for equity that pays a dividend in one month), whereas the longest-maturity equity have

small alphas (in both �gures close to �2% for equity that pays a dividend 15 years from

now). This is reminiscent of the �ndings of Fama and French (1992), in which short-duration

value assets display relatively large positive CAPM alphas, while long-duration growth as-

6This is true as long as parameter values are set so that greater exposure to xt makes an asset riskier

rather than providing insurance. In a long-run �insurance�model, the full information term structure slopes

down, but overall risk premia are very low or even negative.
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sets have smaller (in absolute value) negative alphas. Under full information, there is much

less variation in the alphas with maturity and the variation goes the wrong way: alphas

of short-duration assets are always lower than those of long-duration assets. The shortest-

duration equity displays alphas of about �3% in both �gures, while the longest-duration

equity has alphas of about 0:3%. The bottom panels show that, under limited information,

long-duration equity� despite its having lower expected excess returns than short-duration

equity� has slightly higher CAPM betas, as in the data (Fama and French (1992)).

The full information speci�cations described above, with their upward sloping term struc-

tures of equity, make it di¢ cult to explain why short-horizon assets are more risky than

long-horizon assets. The reason is simple: when agents can perfectly observe xt, the long-run

appears quite risky, implying that assets which pay a dividend far into the future command

a high risk premium. By contrast, the results above suggest that the limited information

speci�cation, with its downward sloping term structure of equity, has the potential to ex-

plain the value spread in a manner consistent with the quite di¤erent cash �ow duration

properties of value and growth assets. Under limited information, assets with more weight

in low-maturity equity will be short-duration assets and simultaneously have higher ex-

pected returns and lower price-dividend ratios than long-duration assets with more weight

in distant-maturity equity. Next we develop the quantitative implications of these features

of limited information by focusing on the behavior of portfolios of �rms.

Since each �rm pays a dividend si;t+1Dt+1; si;t+2Dt+2; :::; no arbitrage implies that the

ex-dividend price of �rm i at time t+ 1 is given by

Pi;t =
1X
n=1

si;t+nPn;t:

When si;t+1 is low, dividend payments are low today but will be high in the future when n is

large; these are long-duration assets with greater weight placed on distant-maturity dividend

claims. We have already seen that, under limited information, those assets have low risk

premia and high price-dividend ratios. When si;t+1 is high, dividend payments are high today

but will be low in the future; these are short-duration assets with greater weight placed on

short-maturity dividend claims. We have already seen that, under limited information, these

assets have high risk premia and low price-dividend ratios. Thus, �rms move through their

life-cycle over time by starting as long-duration growth assets, placing most of their weight

in long-maturity zero-coupon dividend claims, slowly shifting to short-duration value assets
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with most of their weight in short-maturity zero-coupon dividend claims.

To create portfolio returns, we simulate a time-series for dividends and prices and, using

the share process described above, form portfolios of N �rms, (where N is chosen to be some

large number),7 by sorting �rms into deciles based on their price-dividend ratios and then

forming equally-weighted portfolios of the �rms in each decile. The portfolios are rebalanced

every simulation year. The purpose of this procedure is to create portfolios of �rms that

display heterogeneity in the timing of their dividend payments, and thus heterogeneity in

the duration of their cash �ows.

Tables 3 and 4 present summary statistics for the decile portfolios under the same two

parameter con�gurations used to generate the zero-coupon equity results in Figures 2 and 3,

and 4 and 5, respectively. The statistics are presented for expected excess returns, Sharpe

ratios, and CAPM regressions, based on a single long simulation of the data generating

process in (4)-(6). We refer to the portfolio in the highest price-dividend decile as the

growth portfolio, denoted G in the tables, and the portfolio in the lowest price-dividend

decile as the value portfolio, denoted V in the tables. We present these results only for the

limited information speci�cations, since, for the reasons described above, speci�cations with

full information generate a value premium by counterfactually making long-duration assets

more risky than short-duration assets.

Under the parameter con�guration of Table 3, the mean excess return on the growth

portfolio is 7:13%, while that of the value portfolio is 11:40%, leaving a spread between the

two of 4:27% . These numbers are close to those found in the data. For example, Hansen et al.

(2005) report that the mean excess return in the lowest book equity-to-market capitalization

quintile (B/M quintile) has a annual return of 7:91%, while that in the highest B/M quintile

has a return of 12:69%, implying a spread of 4:8%. Table 4 shows that it is straightforward

to alter parameter values to come even closer to matching these statistics from the historical

data: as above, by increasing risk aversion from 15 to 16 and reducing the intertemporal

elasticity of substitution from 1.3 to 1.2. In this case, the mean excess return on the growth

portfolio is 7:38%, while that of the value portfolio is 12:1%, leaving a spread between the

two of 4:7%. The limited information speci�cations also predict that Sharpe ratios rise when

moving from growth to value portfolios, as in the data. For example, in Table 4, the Sharpe

ratio of the growth portfolio is 0.31, while that of the value portfolio is 0.52. In the post-war

7We set the number of �rms to be 1020, implying a 1020 month, or 85 year life-cycle for a �rm.
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data, the lowest B/M quintile has a Sharpe ratio of 0.32 and the highest has a Sharpe ratio

of 0.57 (Lettau and Wachter (2006)).

The second panel of Tables 4 and 5 display CAPM alphas and betas implied by sim-

ulations of the limited information models. Recall that the market portfolio in the model

is given by the sum across all �rms of the individual �rm price-dividend ratios. Fama and

French (1992) showed that value portfolios have positive CAPM alphas, while growth portfo-

lios had negative alphas. In addition, value portfolios have slightly lower CAPM betas than

growth portfolios. The same is true in the limited information speci�cations we investigate:

Table 4, for example, shows that alphas rise from about �1:7% for the growth portfolio to

3:19% for the value portfolio. By comparison, in the post-war data, the lowest B/M quintile

has an alpha of �1:7% and the highest 4:0% (Lettau and Wachter (2006)). Finally, the third
panel of Tables 3 and 4 show the results of adding theHML (high-minus-low) factor of Fama

and French (1993) as an additional regressor in CAPM time-series regressions of the excess

portfolio returns onto the excess market return. HML is constructed as the return on a

portfolio short in the extreme growth decile and long in the extreme value decile. Consistent

with the classic empirical �ndings of Fama and French (1993), the model implies that adding

HML as an additional factor drastically reduces the magnitude of the CAPM alphas in all

decile portfolios.

4 Adding Time-Varying Uncertainty

To be completed.

5 Conclusion

An important recent strand of asset pricing literature has emphasized the potential role of

long-run consumption risk for explaining salient asset pricing phenomena. Because any long-

run component of consumption must necessarily represent a small fraction of short-run cash

�ow volatility, econometricians face concrete statistical hurdles in attempting to identify such

components from data. The goal of this paper is to take one step toward understanding how

equilibrium asset prices might be a¤ected if market participants have the same di¢ culties

as econometricians observing small long-run components in �rm cash �ows.

We �nd that if investors can only observe the history of consumption and dividend
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changes, but not the individual components of those changes, the asset pricing implications

can be quite di¤erent from a full information world in which market participants fully discern

the distinct roles of persistent and transitory shocks. Under some parameter con�gurations,

such limited information causes market participants to demand a higher premium for engag-

ing in risky assets than would be the case under full information. Alternatively, the same

risk premium may be achieved with lower relative risk aversion under a model of limited

information than for the same model under full information. This is of interest in its own

right, as it is often argued that modern-day asset pricing models are unlikely to explain high

risk premia without appealing to high risk aversion.8

More importantly, we �nd that the assumptions we make about investor information

can have important implications for the cash �ow duration perspective of value and growth

assets. In particular, the models we study imply that, under limited information, the term

structure of equity is downward sloping. Thus, value stocks can be made consistent with

empirical evidence that the cash �ow duration of these assets is considerably shorter than

that of growth stocks. By contrast, when investors can fully distinguish the short- and

long-run components of dividend growth innovations, the term structure of equity is upward

sloping. Thus, value stocks must be long-duration assets, while growth stocks are short-

duration assets, at odds with empirical evidence to the contrary. The reason is simply that

when investors can perfectly observe the long-run component in cash �ows, the long run

appears very risky; thus assets exposed to dividend �uctuations far into the future carry

high risk premia.

Under limited information, substantial dispersion in risk premia across assets may be

generated by heterogeneity in the exposure to short-run consumption risk. As such, assets

that have small exposure to long-run consumption risk but are highly exposed to short-run,

even i.i.d., consumption risk can command high risk premia. This is not the case under the

full information models we study. These �ndings do not, however, diminish the importance

of long-run risk in generating high risk premia. Indeed, without both long- and short-run

consumption risk, there is no signal extraction problem and no way for heterogeneity in

short-run risk to produce cross-sectional variation in risk premia.

The speci�cation of cash �ows and informational assumptions pursued here is but one

8For example, Cochrane (2005), p. 18 writes �No model has yet been able to account for the equity

premium with low risk aversion.�
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of many that could be fruitfully studied in future work. Di¤erent cash �ow con�gurations

naturally lead to di¤erent assumptions about the information investors may have about those

con�gurations. Going further, informational barriers may be compounded with uncertainty

over the cash �ow model itself, possibly leading investors to pursue robustness of the type

studied by Anderson, Hansen and Sargent (1998), and Anderson, Hansen and Sargent (2003).

Exploring these implications to their fullest suggests a fascinating but vast scope of inquiry

for future analysis.
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6 Appendix

6.1 Numerical Solution

6.1.1 Full Information, Constant Variances

Under Full Information, there is a single state variable, xt. We discretize and bound its

support by forming a grid of K points fx1; x2; ... xKg on the interval [-5V(x) +5V(x)]. We
choose K to be odd so that the unconditional mean of the state x is the middle point of our

grid.

We discretize also the distribution of a standardized normal random variable by forming a

grid of equidistant points f�1; �2; ... �Ig over the interval [-5 +5], imposing:

pi =
e��

2
i =2PI

1 e
��2i =2

; i = 1; 2; :::I

Again, we choose I to be odd so that �(I�1)=2+1 = 0.

Rewrite the Euler equations for the price-consumption ratio as:

Wc(xk) =

 
IX
i=1

IX
j=1

��e(1�)(�+xk+��i)[1 +Wc(x
0
jjk)]

�pipj

! 1
�

(13)

x0jjk = �xk + �'x�j

k = 1; 2; :::; K;

where Wc(xk) is the price-consumption ratio as a function of x in state k. The functional in

(13) can be solved by noting that its right hand side is a contraction and treating Wc(x) as

the �xed point of Wc;n+1(x) = T (Wc;n(x)).

Approximate Wc;n by a third order polynomial in x, and impose:

Wc;n(x
0
jjk) = [1 x

0
jjk (x

0
jjk)

2 (x0jjk)
3][�1;n �2;n �3;n �4;n]

0

where the operator is initialized with an initial guess on the parameters �0. ComputeWc;1(xk)

for every xk 2 fx1; x2; ... xKg, and stack the resulting values in the vector
�!
W c;1 2 RK . Using
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least squares the guesses are updated: �1 = (�
0�)�1�0

�!
W c;1, where:

� =

266666664

1 x1 (x1)
2 (x1)

3

1 x2 (x2)
2 (x2)

3

...
...

...
...

1 xk (xk)
2 (xk)

3

377777775
We repeat these steps until convergence (tolerance level = .1e-5).

Once Wc(x) = [1 x x
2 x3]� has been found, the stochastic discount factor has the following

expression:

Mk;i;j = �
�e�(�+xk+��i)

�
1 +Wc(�xk + �'x�j)

Wc(xk)

���1
price-dividend ratios are found in a similar way by iterating until convergence the following

recursion:

Wd;n+1(xk) =
IX
i=1

IX
j=1

IX
l=1

��e�(�+xk+��c;i)

 
1 +Wc(x

0
jjk)

Wc(xk)

!��1
�

�[1 +Wd;n(x
0
jjk)]e

(�+�xxk+�c��c;i+�'d�d;l)pipjpl (14)

Wd;n(x
0
jjk) = [1 x0jjk (x

0
jjk)

2 (x0jjk)
3]�d;n

The coe¢ cients of the polynomial expansion for the price-dividends are updated by the fol-

lowing OLS formula: �d;n+1 = (�
0�)�1�0

�!
W d;n+1.

For n!1, �d;n+1 ! �d = (�
0�)�1�0

�!
W d.

To solve for zero coupon equity price-dividend Ratios note the following equivalence

holds:

Wd;t =
1X
n=1

W n
d;t (15)

where

W 0
d;t � 1

W n
d;t = Et

�
emt+1+�dt+1W n�1

d;t+1

�
; n = 1; 2; :::
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Implement the following recursion across maturities:

W n
d (xk) =

IX
i=1

IX
j=1

IX
l=1

��e�(�+xk+��i)

 
1 +Wc(x

0
jjk)

Wc(xk)

!��1
�

�[W n�1
d (x0jjk)]e

(�+�xxk+�c��i+�'d�l)pipjpl (16)

where

k = 1; 2; :::; K

W n�1
d (x0jjk) = [1 x0jjk (x

0
jjk)

2 (x0jjk)
3][�n�11 �n�12 �n�13 �n�14 ]0

�n�1 = (�0�)�1�0
�!
W n�1

d n = 2; 3; ::::

�0 � [0 0 0 0]0

lim
n!1

nX
j=1

�n�1 = �d

This amounts to a sequence of quadrature problems that have to be solved recursively since

the price of the asset with maturity n depends on the price of the asset with maturity n� 1.

6.1.2 Limited Information, Constant Variances

In Limited Information, the Price-Consumption Ratio and the stochastic discount factor

depend just on one relevant state: bx, here denoted c�c. We discretize and bound its support
by forming a grid of K points fc�c1; c�c2; ... c�cKg on the interval [-5V (c�c) +5V (c�c)]. We
choose K to be odd so that the unconditional mean of the state c�c is the middle point of
our grid, c�ct?vc;t+1.
The Euler equation for the Price-Consumption ratio is:

Wc(c�ck) =

 
IX
j=1

��e(1�)(�+
c�ck+�vc�j)[1 +Wc(c�c0jjk)]�pj

! 1
�

(17)

wherec�c0jjk = �d�ck + (�� bc)�vc�j
solved by iterating until convergence the following recursion:

Wc;n(c�ck) =

 
IX
j=1

��e(1�)(�+
c�ck+�vc�j)[1 +Wc;n�1(c�c0jjk)]�pj

! 1
�

n = 1; 2; :::
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where the function is interpolated by a third order polynomial in c�c such that:
Wc;n�1(x

0
jjk) = [1 c�c0jjk (c�c0jjk)2 (c�c0jjk)3][�1;n�1 �2;n�1 �3;n�1 �4;n�1]0
�n = (�0�)�1�0

�!
W c;n n = 1, 2, 3,...

where

� =

266666664

1 c�c1 (c�c1)2 (c�c1)3
1 c�c2 (c�c2)2 (c�c2)3
...

...
...

...

1 c�ck (c�ck)2 (c�ck)3

377777775
�0 : initial guess

The price-dividend ratio is a function of the state variable bxd � c�d and the shock vd:
"
vc;t+1

vd;t+1

#
� i:i:d:N

 "
0

0

#
;

"
�2vc �vc;cd

�vc;vd �v2d

#!
and" c�cc�d

#
� N

 "
0

0

#
;

"
�2c�c �c�c;c�d
�c�c;c�d �2c�d

#!

� A grid of combinations (c�dgjk;c�ck) is stacked in a matrix S with dimension (K�G)�2:

S =

266666666666664

c�c1 c�d1j1c�c1 c�d2j1
...

...c�c1 c�dgj1c�c2 c�d1j2
...

...c�cK c�dgjK

377777777777775
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The recursion used to �nd the price-dividend ratio is given by:

Wd;n(c�cs; c�ds) =
IX
j=1

IX
i=1

��e�(�+
c�cs+�vc�j)

 
1 + Vc(c�c0jjs)
Vc(c�cs)

!��1
�

�[1 +Wd;n�1(c�c0jjs; c�d0ijs)]e�+c�ds+�vd�ipij
(c�cs; c�ds) = [Ss;1Ss;2]

s = 1; 2; :::; K �G

The price-dividend ratio is interpolated as above by a quadratic polynomial in the two

states:

Wd;n�1(c�cs; c�ds) = [1 c�c0jjk c�d0ijk (c�c0jjk)2 (c�d0ijk)2 c�c0jjkc�d0ijk]�
�[�d1;n�1 �d2;n�1 �d3;n�1 �d4;n�1 �d5;n�1 �d6;n�1]0

�dn = (�d
0
�d)�1�d

0�!
W d;n

n = 1; 2; 3; :::

where

�d =

2664
1 S1;1 S1;2 S21;1 S21;2 S1;1S1;2
...

...
...

...
...

...

1 SG�K;1 SG�K;2 S2G�K;1 S2G�K;2 SG�K;1SG�K;2

3775
�0 : initial guess

Foe zero coupon equity price-dividends, we implement the following recursion:

W n
d (c�cs; c�ds) =

IX
j=1

IX
i=1

��e�(�+
c�cs+�vc�j)

 
1 + Vc(c�c0jjs)
Vc(c�cs)

!��1
� (18)

�W n�1
d (c�c0jjs; c�d0ijs)e�+c�ds+�vd�ipij

W n�1
d (c�c0jjs; c�d0ijs) = [1 c�c0jjk c�d0ijk (c�c0jjk)2 (c�d0ijk)2 c�c0jjkc�d0ijk]�

�[�n�11 �n�12 �n�13 �n�14 �n�15 �n�16 ]0

�nd = (�d
0
�d)�1�d

0�!
W n

d

n = 1; 2; 3; :::

�0d = [0 0 0 0 0 0]:
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6.2 Cash Flow Betas

Table A.1 shows the output from regressions of dividend growth on 4 and 8 quarter trailing

averages of consumption growth, using simulated data for cash �ow models of the form

(4)-(6). The slope coe¢ cients in these regressions are denoted ', and are reported for four

models that vary only by the short-run risk exposure parameter �c. The model is

�dt+1 = �+ '

 
1

K

KX
i=1

�ct+1�i

!
+ "t+1:

The model is simulated at a monthly frequency, consumption and dividend data are time-

aggregated to quarterly frequency, and regressions run on quarterly data, as in Bansal et al.

(2006). The results for one parameter con�guration are displayed in Table A.1, but �ndings

for other parameter con�gurations studied in the main text are similar. The Table shows

that heterogeneity in exposure to short-run consumption risk can generate heterogeneity

in cash �ow betas ', when the cash �ow betas are constructed from K = 4 and K =

8 quarter trailing moving averages of consumption growth. This occurs only when the

data are time-averaged; regressions on monthly data produce no such discernable spread

in cash �ow betas across assets that di¤er solely by �c. The reason is that time-averaging

introduces additional serial correlation into the growth rates of consumption and dividends.

The overlapping nature of the time-aggregate data therefore generates a correlation between

dividend growth and lagged consumption growth that rises with the sensitivity of dividend

growth to consumption risk that is i.i.d. at the monthly frequency (but not at the time-

aggregate quarterly frequency). The longer the horizon K, the smaller is this a¤ect.
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Table 1: Asset Pricing Implications of Limited Information

E (P=D) E (ri � rf ) E (rf ) � (ri) � (rf )

Row Model FI LI FI LI FI LI FI LI FI LI
1 �x = 1 �c = 2:2 111 300 1.06 1.20 1.65 0.95 17.28 17.43 1.18 0.74

2 �x = 1 �c = 6 40 14 2.66 7.73 1.66 0.95 22.97 22.44 1.18 0.74

3 �x = 2 �c = 2:2 32 300 3.37 1.26 1.65 0.95 18.62 19.95 1.18 0.74

4 �x = 2 �c = 6 22 14 4.80 8.12 1.65 0.95 23.80 23.92 1.18 0.74

5 �x = 3 �c = 2:2 20 238 5.15 1.26 1.65 0.95 20.53 23.29 1.18 0.74

6 �x = 3 �c = 6 16 13 6.40 8.42 1.65 0.95 25.21 26.09 1.18 0.74

Notes: This table �nancial statistics of the model with full information (FI) and limited information (LI) for

varying degrees of exposure to the long-run and short-run risk components, governed by �x and �c, respectively.

The other parameters are set to  = 10;  = 1:5, � = 0:998985; � = 0:0015; � = 0:979, � = 0:0078,

�"z = 0:044; �"d = 6: E (ri � rf ) denotes the annual log risk-premium, in percent; E (rf ) denotes the annual

log risk-free rate, in percent, and � (ri) and � (rf ) denote the standard deviations of the annual equity return

and risk-free rate, respectively. E (P=D) is the annual price-dividend ratio. Statistics are averages from 1000

simulated samples of 840 monthly observations.



Table 2: Asset Pricing Implications of Limited Information

E (P=D) E (ri � rf ) E (rf ) � (ri) � (rf )

Row Model FI LI FI LI FI LI FI LI FI LI
1 �x = 1 �c = 2:5 17 35 4.19 3.12 3.41 1.61 18.13 20.34 3.05 2.48

2 �x = 1 �c = 4 14 8 5.30 12.33 3.41 1.61 19.41 20.83 3.05 2.48

3 �x = 1:5 �c = 2:5 9 21 9.48 4.96 3.41 1.61 19.20 23.37 3.05 2.48

4 �x = 1:5 �c = 3 9 12 9.99 8.28 3.41 1.61 19.61 23.05 3.05 2.48

5 �x = 1:5 �c = 4 8 7 10.43 14.41 3.41 1.61 20.87 23.16 3.05 2.48

6 �x = 2 �c = 2:5 7 15 12.87 6.67 3.41 1.61 20.63 26.86 3.05 2.48

7 �x = 2 �c = 4 6 6 14.35 16.60 3.41 1.61 22.09 25.76 3.05 2.48

Notes: This table �nancial statistics of the model with full information (FI) and limited information (LI) for

varying degrees of exposure to the long-run and short-run risk components, governed by �x and �c, respectively.

The other parameters are set to  = 15;  = 1:3, � = 0:993; � = 0:0015; � = 0:979, � = 0:0078,

�"x = 0:1; �"d = 6: E (ri � rf ) denotes the annual log risk-premium, in percent; E (rf ) denotes the annual

log risk-free rate, in percent, and � (ri) and � (rf ) denote the standard deviations of the annual equity return

and risk-free rate, respectively. E (P=D) is the annual price-dividend ratio. Statistics are averages from 1000

simulated samples of 840 monthly observations.
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Table 3: Limited Imformation Models of Value and Growth Portfolios Based on Shares

G Growth to Value V V-G

Portfolio 1 2 3 4 5 6 7 8 9 10 10-1

E
�
Ri �Rf

�
7.13 7.15 7.21 7.34 7.59 8.99 10.26 10.80 11.18 11.40 4.27

Sharpe Ratio 0.32 0.32 0.32 0.33 0.34 0.36 0.40 0.46 0.50 0.51 0.20

CAPM: Rit �Rft = �i + �i

�
Rmt �Rft

�
+ "it

�i -1.52 -1.50 -1.43 -1.31 -1.04 -0.52 0.41 1.72 2.66 2.93 4.45

�i 1.01 1.01 1.01 1.01 1.01 1.00 1.00 0.99 0.99 0.98 -0.03

CAPM & HML: Rit �Rft = �i + �i

�
Rmt �Rft

�
+ iHMLt + "it

�i 0.06 0.06 0.06 0.06 0.07 0.08 0.11 0.18 0.27 0.06 0.00

�i 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

i -0.35 -0.35 -0.34 -0.31 -0.25 -0.13 0.07 0.35 0.54 0.65 1.00

Notes: In each simulation month, �rms are sorted into deciles based on the price-dividend
ratio. Returns are calculated over the subsequent year and reported annualized in percent. The
parameter values are the same as those in Table 2 where the market portfolio has �x = 1 and
�c = 3:
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Table 4: Limited Imformation Models of Value and Growth Portfolios Based on Shares

G Growth to Value V V-G

Portfolio 1 2 3 4 5 6 7 8 9 10 10-1

E
�
Ri �Rf

�
7.38 7.41 7.47 7.61 7.89 8.44 9.43 10.80 11.82 12.07 4.70

Sharpe Ratio 0.31 0.31 0.32 0.32 0.34 0.36 0.40 0.47 0.51 0.52 0.21

CAPM: Rit �Rft = �i + �i

�
Rmt �Rft

�
+ "it

�i -1.69 -1.66 -1.59 -1.45 -1.16 -0.59 0.44 1.88 2.81 3.19 4.88

�i 1.01 1.01 1.01 1.01 1.01 1.00 1.00 0.99 0.99 0.98 -0.02

CAPM & HML: Rit �Rft = �i + �i

�
Rmt �Rft

�
+ iHMLt + "it

�i 0.05 0.06 0.06 0.059 0.06 0.08 0.11 0.19 0.28 0.05 0.00

�i 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

i -0.36 -0.35 -0.34 -0.31 -0.25 -0.14 0.07 0.35 0.54 0.64 1.00

Notes: In each simulation month, �rms are sorted into deciles based on the price-dividend
ratio. Returns are calculated over the subsequent year and reported annualized in percent. The
parameter values are the same as those in Table 2 where the market portfolio has �x = 1 and
�c = 3, with the following exceptions:  = 16;  = 1:25, � = 0:992.
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Table A1: Cash Flow Betas

Regression: �dt+1 = �+ '
�
1
K

PK
i=1�ct+1�i

�
+ "t+1

K = 4 K = 8

' t-stat ' t-stat
�x = 3 �c = 0:5 0.96 1.69 1.23 1.71

�x = 3 �c = 3 1.19 1.94 1.37 1.76

�x = 3 �c = 6 1.45 1.95 1.52 1.61

�x = 3 �c = 10 1.80 1.81 1.73 1.36

Notes: This table displays regression coe¢ cients and t-statistics from regressions of quarterly dividend growth

on to smoothed consumption growth. The quarterly data are time-aggregated from monthly data. The reported

statistics are averages from 1000 simulations of length 1000 months (250 quarters). The other parameters are set

to � = 0:0015; � = 0:979, � = 0:0078, �"z = 0:044; �"d = 6:
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Figure 1: Price-Dividend Ratios 
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Notes: This figure displays price-dividend ratios at steady state, and plus/minus two 
standard deviations of the state variables(s) around steady state, as a function of the 
relative exposure to long-run risk, governed by xφ , and to short-run risk, governed by cφ . 
Held fixed is the five-quarter variance of dividend growth attributable to the consumption 
innovations. Other parameters are calibrated as in Table 2.  
.   
 



Figure 2: Zero-Coupon Equity 
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Notes: The top panel shows the risk-premia on zero-coupon equity over the risk-free rate 
as a function of maturity in months; the middle panel shows the standard deviation of 
returns on zero-coupon equity; the bottom panel shows the Sharpe ratio. Returns are 
simulated at a monthly frequency and aggregated to annual frequency. Parameters are 
calibrated as in Table 2 with 1=xφ  and 3=cφ .  



Table 3: CAPM Regressions for Zero-Coupon Equity 
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Notes: The top panel shows the intercept from regressions of zero-coupon equity excess 
returns on the excess return of the market, as a function of maturity in months; the bottom 
panel shows the slope coefficient from the same regression. Returns are simulated at a 
monthly frequency and aggregated to annual frequency. Parameters are calibrated as in 
Table 2 with 1=xφ  and 3=cφ .  



Table 4: Zero-Coupon Equity 
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Notes: The top panel shows the risk-premia on zero-coupon equity over the risk-free rate 
as a function of maturity in months; the middle panel shows the standard deviation of 
returns on zero-coupon equity; the bottom panel shows the Sharpe ratio. Returns are 
simulated at a monthly frequency and aggregated to annual frequency. Parameters are 
calibrated as in Table 2, with 1=xφ  and 3=cφ  and with the following 
exceptions: ,25.1=Ψ 16=γ , 992.0=δ . 



Figure 5: CAPM Regressions for Zero-Coupon Equity 
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Notes:  The top panel shows the intercept from regressions of zero-coupon equity excess 
returns on the excess return of the market, as a function of maturity in months; the bottom 
panel shows the slope coefficient from the same regression. Returns are simulated at a 
monthly frequency and aggregated to annual frequency. Parameters are calibrated as in 
Table 2, with 1=xφ  and 3=cφ  and with the following exceptions: 25.1=Ψ , 16=γ , 

992.0=δ . 
 


