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1 Introduction

The question of whether stock returns are predictable has received an enormous amount of
attention. This is not surprising because the existence of return predictability is not only of
interest to practitioners but also has important implications for financial models of risk and
return. One branch of the literature asserts that expected returns contain a time-varying
component that implies predictability of future returns. Due to its persistence, the predictive
component is stronger over longer horizons than over short horizons. Classic predictive variables
are financial ratios, such as the dividend-price ratio, the earnings-price ratio, and the book-to-
market ratio (Rozeff (1984), Fama and French (1988), Campbell and Shiller (1988), Cochrane
(1991), Goetzman and Jorion (1993), Hodrick (1992), Lewellen (2004), and many others), but
other variables have also been found to be powerful predictors of long-horizon returns (e.g.,
Lettau and Ludvigson (2001), Lustig and Van Nieuwerburgh (2005a), Menzly, Santos, and
Veronesi (2004), Piazzesi, Schneider, and Tuzel (2004)). Moreover, these studies conclude that
growth rates of fundamentals, such as dividends or earnings, are much less forecastable than
returns, suggesting that most of the variation of financial ratios is due to variations in expected

returns.

These conclusions are controversial because the forecasting relationship of financial ratios
and future stock returns exhibits a number of disconcerting features. First, correct inference is
problematic because financial ratios are extremely persistent; in fact, standard tests leave the
possibility of unit roots open. Nelson and Kim (1993), Stambaugh (1999), Ang and Bekaert
(2001), Ferson, Sarkissian, and Simin (2003), and Valkanov (2003) conclude that the statistical
evidence of forecastability is weaker once tests are adjusted for high persistence. Second, finan-
cial ratios have poor out-of-sample forecasting power, as shown in Bossaerts and Hillion (1999)
and Goyal and Welch (2003, 2004). Third, and related to the poor out-of-sample evidence,
the forecasting relationship of returns and financial ratios exhibits significant instability over
time. For example, in rolling 30-year regressions of annual Center for Research in Security
Prices (CRSP) value-weighted returns on lagged log dividend-price ratios, the ordinary least
squares (OLS) regression coefficient varies between zero and 0.5 and the associated R* ranges
from close to zero to 30% depending on the subsample. Not surprisingly, the hypothesis of
a constant regression coefficient is routinely rejected (Viceira (1996), Paye and Timmermann
(2003)).

In addition to concerns that return forecastability might be spurious, the benchmark model
of time-varying expected returns faces additional challenges. The extreme persistence of price
ratios implies that expected returns have to be extremely persistent as well. But if shocks
to expected returns have a half-life of many years or even decades, as implied by the high

persistence of financial ratios, they are unlikely to be linked to many plausible economic risk



factors, such as those linked to business cycles. Instead, researchers have to identify slow-
moving factors that are primary determinants of equity risk. In addition, the extraordinary
valuation ratios in the late 1990s represent a significant challenge for the benchmark model.
Given the historical record of returns, fundamentals, and prices, it is exceedingly unlikely that
persistent stationary shocks to expected returns are capable of explaining price multiples like
those seen in 1999 or 2000.

How can models with time-varying expected returns be reconciled with these serious chal-
lenges? In this paper, we propose an explanation for the puzzling empirical patterns; namely,
the possibility that changes in the steady-state mean of financial ratios are caused, for example,
by changes of the steady-state growth rate of economic fundamentals and/or expected return of
equity. Why might we expect the steady-state to change over time? Some possibilities include
permanent technological innovations that change the long-term growth rate of the economy or
improved risk sharing, changes in stock market participation, changes in the tax code, or lower
macroeconomic volatility that decrease the long-term expected return of equity.

Changes in the steady-state have dramatic effects on the relationship of returns and price
ratios because they cause the mean of the price ratios to change permanently. In particular,
predictability regressions are effected because price ratio regressors would be non-stationary.
However, as we show below, deviations of the price ratios from their steady-state values are
stationary. Thus, the appropriate return forecasting specifications do not include non-stationary
price ratios themselves but only stationary deviations from steady states. Our empirical results
conclude that such “adjusted” price ratios have favorable properties compared to unadjusted
price ratios. For example, forecasting relationships of returns with lagged adjusted price ratios
are much more stable over time and have superior out-of-sample forecasting power relative to
unadjusted price ratios and to “naive” models. Adjusted price ratios are also less persistent and
less volatile than unadjusted price ratios, suggesting that changes in the steady-state account
for a fair portion of their overall volatility.

These results show that seemingly incompatible views of the forecasting relationship of
stock returns and price ratios can be reconciled if the assumption of a fixed steady-state of
price ratios is relaxed. In this sense, the branch of the literature that finds supportive evidence
for return predictability and the branch that emphasizes the instability and poor out-of-sample
forecastability are both correct. We find that returns are indeed forecastable, but low-frequency
shifts in the mean of the price ratios cause the forecasting relationship to be unstable and
reduce the out-of-sample forecasting power if financial ratios are not adjusted for the presence
of permanent shifts in its mean.

Several papers have explored the impact of structural breaks on return predictability. For
example, Viceira (1996) and Paye and Timmermann (2003) reported evidence in favor of breaks

in the OLS coefficient in the forecasting regression of returns on the lagged dividend-price ratio.



Our focus is instead on shifts in the mean of financial ratios, which in turn render the forecasting
relationship unstable if such shifts are not taken into account. In other words, in contrast to
Viceira (1996) and Paye and Timmermann (2003), we focus on the behavior of the mean of
price ratios instead of the behavior of the slope coefficient. Pastor and Stambaugh (2001) use a
Bayesian framework to estimate breaks in the equity premium. They found several shifts in the
equity premium since 1834 and identified the sharpest drop in the 1990s, which is consistent
with the timing of the shift in price ratios identified in this paper.

Our paper is also related to the recent literature on inference in forecasting regressions
with persistent regressors (see e.g., Amihud and Hurwich (2004), Ang and Bekaert (2001),
Campbell and Yogo (2002), Lewellen (2004), and Torous, Volkanov, and Yan (2004)). In these
papers, asymptotic distributions for OLS regressions were derived under the assumption that
the forecasting variable is a close-to unit, yet stationary, root process. In contrast, we allow for
the presence of a small but econometrically important non-stationary component in forecasting

variables.

The rest of the paper is organized as follows. In Section 2 we establish that the standard
dividend-price ratio does not significantly forecast stock returns or dividend growth. In contrast,
we find much stronger evidence for return predictability in various subsamples. The slope
coefficient in the return equation is much smaller in the full sample than in any of the constituent
subsamples, which confirms the instability of the forecasting relationship over time. In Section
3.1, we show how changes in the steady-state affect the dividend-price ratio. Filtering out
this non-stationary component yields adjusted price ratios that have strong in-sample and out-
of-sample return predictability (Section 3). The relationship between returns and adjusted
price ratios is stable over time. We consider various methods to estimate the adjusted price
ratios. Our first adjustment allows for structural breaks in the mean of financial ratios. For
the dividend-price ratio, we show evidence for either one break in the early 1990s or two breaks
around 1954 and 1994. In Section 4, we find similar break dates for other valuation ratios
such as the earnings-price ratio and the book-to-market value ratio. Our predictability findings
continue to hold for these valuation ratios. In Section 5 we use two alternative adjustments.
We first estimate a Hamilton (1989) regime-switching model and use real-time estimates of the
probabilities of regime switches. This leads to slightly later break dates, but the predictability
results are the same. We then use a recursive procedure that estimates both the break dates and
the means of the regimes in real-time. Again we find strong predictability in-sample, but the out-
of-sample predictability is somewhat weaker because there is substantial estimation uncertainty
about the mean of the new regime. In Section 6 we consider a vector error correction model that
includes the return and dividend growth predictability equations and imposes a joint present
value restriction on the slope parameters from both equations. We find that this restriction

is satisfied when we use the adjusted dividend-price ratio as an independent variable, but
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not when we use the unadjusted series. Finally, in Section 7, we find that our simple model
serves as a plausible data generating process. It is able to replicate both the findings of no
predictability when the unadjusted dividend-price ratio is used and the findings of in-sample

and out-of-sample predictability when the adjusted series is used.

2 Instability of Forecasting Relationships

In this section we document the instability of the forecasting relationship between returns, div-
idend growth, and the lagged dividend-price ratio. The forecasting relationship of returns and
other financial ratios (such as the earnings-price ratio and the book-to-market ratio) and alter-
native measures of dividends (such as accounting for repurchases or considering only dividend-
paying firms) are similar and will be presented later. The data are based on annual CRSP
value-weighted returns from 1927 to 2004 and are described in detail in Appendix A. The
top panel of Figure 1 shows the estimation results for the forecasting regression of demeaned

returns on the demeaned lagged dividend-price ratio using 30-year rolling windows:
e — T = ki (dpy — dp) + 7,4, (1)

where 7, denotes the log return, dp, denotes the log dividend-price ratio d; — p;, and 7 and dp
denote the sample means of returns and the log dividend-price ratio in each of the subsamples,
respectively. The top panel plots the slope coefficient k, along with two standard error bands.
The instability of the forecasting relationship is strikingly illustrated by the variation of the
return predictability coefficient over time. The estimates of k, are around 0.5 in the subsamples
ending in the late 1950s and in the samples ending in the early 1980s to the mid 1990s. In
contrast, x, is much smaller for the samples ending in the mid 1960s and is close to zero and
statistically insignificant in samples ending in the late 1990s and early 2000s. Similarly, the
R? of the forecasting regression displays instability with values ranging from 34% in 1982 to
0% at the end of the 1990s (not shown). This evidence has led some researchers to conclude
that the dividend-price ratio does not forecast stock returns, or at least not robustly so. Not

surprisingly, the hypothesis of a constant regression coefficient is routinely rejected.

We also estimate a predictability regression for demeaned dividend growth rates:
Adyy — d = kg(dp, — dp) + Tﬁua (2)

where d;, denotes log dividends and d denotes the sample mean of dividend growth. Dividend
growth rates are even less forecastable than returns. For most of the sample, the point estimate

is not statistically significantly different from zero, and the regression R? never exceeds 16%



(not shown). Interestingly, the dividend-price ratio at the end of the 1990s seems to forecast
neither stock returns nor dividend growth. This is a conundrum from the perspective of any

present value model (see Section 3.1).
[Figure 1 about here.]

The left two columns of Table 1, denoted “No Break,” report the coefficients x, and k4 from
equations (1) and (2) and their asymptotic standard errors for the entire 1927-2004 sample,
as well as various subsamples. The first row shows that the dividend-price ratio marginally
predicts stock returns (first column); the coefficient is significant at the 5% level if asymptotic
standard errors are used for inference. However, small sample standard errors computed from a
bootstrap simulation suggest that the coefficient , is not statistically different from zero for the
entire sample.! The dividend-price ratio does not forecast dividend growth (third column) at
conventional significance levels. Thus, we cannot reject the hypothesis that the dividend-price
ratio forecasts neither dividend growth nor returns.

Rows 2 and 3 report the results for two non-overlapping samples that span the entire period:
1927-1991 and 1992-2004. We will justify the particular choice of subsamples in Section 3. The
estimates of x, display a remarkable pattern across subsamples: In both subsamples x, is much
larger than its estimate in the whole sample. In fact, the estimates are almost identical in the
two subsamples: .2353 in the 1927-1991 subsample compared to .2351 in the later 1992-2004
subsample. Yet, when we join the two subsamples, the point estimate drops to .094. In addition,
k. is strongly statistically significant in both subsamples but only marginally significant in the
whole sample. Confirming the instability of k, estimates, row 4 reports the results of a Chow
test, which rejects the null hypothesis of no structural break in 1991 at the 4% level. Finally,
the dividend growth forecasting relationship displays less instability, and the coefficient remains
insignificant in both subsamples.

The pattern of x, is not unique to the specific subsamples chosen. We obtain very similar
results when we use three non-overlapping subsamples: 1927-1954, 1955-1994, and 1995-2004
(bottom half of Table 1). Again, we find that the return predictability coefficient &, is estimated
to be much higher in each of the three subsamples than in the entire subsample. In row 5, the

predictability coefficient is .09, whereas it is .51, .38, and .53 in rows 6, 7, and 8 respectively.

! Asymptotic standard errors may be a poor indicator of the estimation uncertainty in small samples, and
the p-values for the null of no predictability may be inaccurate. The asymptotic corrections advocated by
Hansen and Hodrick (1980) have poor small sample properties. Ang and Bekaert (2001) find that use of those
standard errors leads to over-rejection of the no-predictability null. The bootstrap exercise imposes the null of
no predictability and asks how likely it is to observe the k., coeflicients estimated reported in the first column
of Table 1. We find that the small sample p-value for k" is 6.8% compared to an asymptotic p-value of 4.1%.
We also conduct a second bootstrap exercise to find the small-sample bias in the return coefficient. Consistent
with Stambaugh (1999), we find an upward bias. If the true value is .094, the bootstrap exercise estimates a
coefficient of .115. Detailed results are available upon request.



Moreover, it is statistically significant in each subsample. Row 9 shows that we strongly reject
the joint null hypothesis of parameter stability in 1954 and 1994. For dividend growth, the
evidence is more mixed. We fail to reject the same null hypothesis of no breaks in 1954 and

1994, but the r, coefficient is marginally statistically different from zero in rows 7 and 8.
[Table 1 about here.]

We conclude that the forecasting relationship between returns and the dividend-price ratio
is unstable over time. Coefficient estimates of x, are almost identical in non-overlapping sub-
samples, but the point estimate for the whole sample is much lower than it is in each of the
subsamples.

Next, we investigate what might explain this intriguing pattern of the regression coefficient

that links returns to past dividend-price ratios.

3 Steady-State Shifts and Forecasting

3.1 Changes in the Mean of Price Ratios

The standard specification of stock returns and forecasting variables assumes that all processes
are stationary around a constant mean. For example, Stambaugh (1986, 1999), Mankiw and
Shapiro (1986), Nelson and Kim (1993), and Lewellen (1999) considered the following model:

Tep1l = T+ KplYe + iy (3)

Yt =Y + v (4)

The mean of the forecasting variable y;, ¥, is constant and the stochastic component v; is
assumed to be stationary, often specified as an AR(1) process. Means of financial ratios are
determined by properties of the steady-state of the economy. For example, the mean of the
log dividend-price ratio dp is a function of the growth rate d of log dividends and expected log

return 7 in steady-state:

dp = log(exp(7) — exp(d)) — d, (5)

whereas the stochastic component depends on expected future deviations of returns and divi-
dend growth from their steady-state values (Campbell and Shiller (1988)):

dp; = dp + E, Z P ey = 7) — (Adiyy — d)], (6)

where p = (1 + exp(dp))~! is a constant. Similar equations can be derived for other financial
ratios (e.g., Vuolteenaho (2000)). Berk, Green, and Naik (1999) show how stock returns and
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book-to-market ratios are related in a general equilibrium model.

A crucial assumption is that the steady-state of the economy is constant over time: The
average long-run growth rate of the economy as well as the average long-run return of equity are
fixed and not allowed to change. However, if either the steady-state growth rate or expected
return were to change, the effects on financial ratios and their stochastic relationships with
returns would be profound. Even relatively small changes in long-run growth and/or expected
return have large effects on the mean of the dividend-price ratio, as can be seen from (5). The
effects of steady-state shifts on other valuation ratios, such as the earnings-price ratio and the
book-to-market ratio, are similar. In this paper, we entertain the possibility that the steady
change of the U.S. economy has indeed changed since 1926, and we study the effect of these
changes on the forecasting relationship of returns and price ratios. Why might the steady-
state change over time? Possible explanations include technological innovations that raise the
long-term growth rate of the economy (d), and improved risk sharing, changes in stock market
participation, changes in the tax code, or lower macroeconomic volatility that might lower the
long-run required return of equity (7). Either effect would lower dp.

A steady-state is characterized by long-run growth and expected return. Any short-term
deviation from steady-state is expected to be only temporary and the economy is expected to
return to its steady-state eventually. Thus, steady-state growth and expected return must be
constant in expectations, but the steady-state might shift unexpectedly. Correspondingly, we
assume that B ; = Ty, Bydyyj = dy, Eydp, = dp, .2

The framework introduced above can be easily adapted to allow for shifts in the steady-state.
The details of the derivation are given in the appendix. Just as in the case with constant steady-
state (6), the log dividend-price ratio is the sum of the steady-state dividend-price ratio and the
discounted sum of expected returns minus expected dividend growth in excess of steady-state

growth and returns:

dp, = dp, + E, Z p{fl |:(/rt+j —71) — (Adyyj — C_Zt)]7 (7)

J=1

where p, = (1 + exp(dp,))~!. The important difference of (7) compared to (6) is that the
mean of the log dividend-price ratio is no longer constant. In fact, it not only varies over time
but it is non-stationary. If, for example, the steady-state growth rate increases permanently,
the steady-state dividend-price ratio decreases and the current log dividend-price ratio declines
permanently. While the log dividend-price ratio contains a non-stationary component it is

important to note that deviations of dp, from steady states are stationary as long as deviations

2 Although the log dividend-price ratio is a nonlinear function of steady-state returns and growth, we assume
that the steady-state log dividend-price ratio is also (approximately) a martingale: E;dp,, ; = dp,. This
assumption is justified for the specific processes for steady-state returns and growth that we will consider below.



of dividend growth and returns from their respective steady states are stationary, an assumption
we maintain throughout the paper.® In other words, the dividend-price ratio dp, itself contains
a non-stationary component dp, but the appropriately demeaned dividend-price ratio dp, — dp,
is stationary. The implications for forecasting regressions with the dividend-price ratio are
immediate. First, in the presence of steady-state shifts, a non-stationary dividend-price ratio
is not a well-defined predictor and this non-stationarity could be the cause for the empirical
patterns described in the previous section. Second, the dividend-price ratio must be adjusted
to remove the non-stationary component d_pt to render a stationary process.

While we emphasized the effect of steady-state shifts on the dividend-price ratio, the intu-
ition carries through to other financial ratios. Changes in the steady-state have similar effects
on the earnings-price ratio and the book-to-market ratio. However, other permanent changes
in the economy, such as changes in payout policies, could affect different ratios differently. In
the following section, we provide evidence that steady-state shifts have occurred in our sample

and propose simple methods to adjust financial ratios for such shifts.

3.2 Steady State Shifts in the Dividend-Price Ratio

Has the steady-state relationship of growth rates and expected returns shifted since the begin-
ning of our sample in 19267 If so, have these shifts affected the stochastic relationship between
returns and price ratios? In this section we use econometric techniques that exploit the entire
sample to detect changes in the steady-state. In the next section, we study how investors in
real-time might have assessed the possibility of shifts in the steady states without the benefit
of the whole sample. In both cases, there is strong empirical evidence in favor of changes in
the steady-state and we find that such changes have dramatic effects on the forecasting re-
lationship of returns and price ratios. We suggest a simple, yet effective, adjustment to the
dividend-price ratio and revisit the forecasting equations from Section 2. We first study shifts
in the dividend-price ratios in detail and consider alternative ratios later.

Our econometric specification is directly motivated by the framework that allows for changes
in the steady-state laid out in the previous section. Equation (7) implies that the log dividend-

price ratio is the sum of a non-stationary component and a stationary component. In this

30f course, in a finite sample it is impossible to conclusively distinguish a truly permanent change from
an extremely persistent one. Thus, our insistence of non-stationarity might seem misguided. However, the
important insight is that the dividend-price ratio is not only a function of (less) persistent changes in expected
growth rates and expected returns that could potentially have cyclical sources but is also affected by either
extremely persistent or permanent structural changes in the economy. This distinction turns out be very useful,
as we will show in the remainder of the paper. In this sense our assumption of true non-stationarity can be
regarded to include “extremely persistent but stationary.” In a finite sample, the conclusions will be the same
in either setting. The distinction of “permanent” versus “extremely persistent” is important, however, for
structural asset pricing models because permanent shocks might have much larger impact on prices than very
persistent ones.



section, we model the non-stationary component as a constant that is subject to rare structural
breaks as in Perron (1989).

The full line in each of the panels of Figure 3 shows the log dividend-price ratio from 1927
to 2004. Visually, the series displays evidence non-stationarity. Especially the bull market of
the 1990s seems hard to reconcile with a stationary model. The dividend-price ratio has gone
up since, but at the end of our sample in 2004, prices would have to fall an additional 46% for
the dividend-price ratio to return to its historical mean. A first explanation we entertain is that
the bull market of the 1990s represents a sequence of extreme realizations from a stationary
distribution.

The solid line in Figure 2 shows the smoothed empirical distribution of the log dividend-
price ratio dp;. This distribution has a fat left tail, mainly due to the observations in the last 15
years. To investigate whether this is a typical plot from a stationary distribution, we conduct
two exercises. Following Campbell, Lo, and MacKinlay (1997), Stambaugh (1999), Campbell
and Yogo (2002), Ang and Bekaert (2001), and many others we estimate an AR(1) process
for the log dividend-price ratio. First, in a bootstrap exercise, we draw from the empirical
distribution with replacement. The smoothed bootstrap distribution is the dash-dotted line
in the figure. Second, we compute the density of dp; using Monte Carlo simulations from an
estimated AR(1) model with normal innovation. This density is plotted as the dashed line.
The graph shows that neither the bootstrap nor the Monte Carlo can replicate the fat left tail
that we observe in the data. Interestingly, the stationary model also cannot generate the right
tail of the empirical distribution. In summary, it is unlikely that the dp, data sample from 1927

to 2004 was generated by a stationary distribution.
[Figure 2 about here.|

An alternative explanation is that the long-run mean of the log dividend-price ratio is
subject to structural breaks. To investigate this possibility, we test the null hypothesis of no
break against the alternative hypotheses of one or two breaks with unknown break dates. We
use the Perron sup-F' test statistic, which is reported in the first row of Table 2. The null
hypothesis of no break is strongly rejected (the p-value is less than 1%) in favor of a break in
1991 or two breaks in 1954 and 1994. The test statistic is slightly higher for the two-break
case. The null of one break is rejected in favor of the alternative of two breaks at the 5% level
but not at the 2.5% level. The null of two breaks against the alternative of three breaks is not
rejected (not shown). The data seem to strongly favor one or two breaks, rather than zero or
three, but the relative evidence for one or two breaks is not as strong and only slightly in favor

of two breaks.

[Table 2 about here.]
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In the last column we report the estimated change in the log dividend-price ratio before and
after the break. In the one-break case, the change in dp is -.86, whereas in the two-break case,
the first change in 1954 is -.37 and the second change is -.78. The two plots in the left column
of Figure 3 overlay the long-run mean dp on the raw dp series. For now, we are agnostic as
to whether the break(s) is (are) due to a change in the long-run mean of dividend growth or
expected returns, or a combination of the two. We return to this question later. It is worth
emphasizing, however, that the date of the shift in the dividend-price ratio is consistent with

the breaks in the equity premium identified by Pastor and Stambaugh (2001).
[Figure 3 about here.|

This result motivates us to construct two adjusted dividend-price series, one for the one-
break case and one for the two-break case. For each, we simply subtract the mean in the relative

subsample(s). In the one-break case with break date 7, the adjusted dp = d — p ratio, ZZ\Z; is:

—~ dp, —dp, fort=1,..,7
dp, :{ : ' (8)

dp, —dp, fort=r,..,T,

where dp, is the sample mean for 1927-1991 and dp, is the sample mean for 1992-2004. The
adjusted dp ratio in the two-break case is defined analogously. The right column of Figure 3
illustrates this procedure graphically.

The bottom half of Table 2 compares the autocorrelation properties of the unadjusted and
adjusted dp series. As is well known, the raw dp series is very persistent. The first and second
order autocorrelations are .91 and .81. The null hypothesis of a unit root cannot be rejected,
according to an Augmented Dickey Fuller (ADF) test (third column). In contrast, the two
adjusted Zl\]; series are much less persistent; the first order autocorrelation drops to .77 and .61,
respectively. The null of a unit root in the adjusted series is rejected at the 4% and 1% levels.
Interestingly, the volatility of the adjusted series is only half as large as for the adjusted series
(last column). This substantially alleviates the burden on standard asset pricing models to
match the volatility of the price-dividend ratio, once the non-stationary nature of the mean dp

ratio has been taken into account.

3.3 Forecasting with the Adjusted Dividend-Price Ratio

We now revisit the return and dividend growth predictability equations (1) and (2), but use
the adjusted dividend-price ratios instead of the raw series as predictor variable.

The second and fourth columns of Table 1 show the estimation results of the return and
dividend growth predictability regressions using EZE, respectively. Rows 1-4 are for the one-

break case; rows 5-9 are for the two-break case. Because the adjusted dividend-price ratio is
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the same as the raw series with each subsample, the results in rows 2 and 3 are unchanged.
But now in row 1, we find that the adjusted dividend-price ratio significantly predicts stock
returns. The coefficient for the entire sample is .235, just as in the two subsamples! It is now
clear that the low point estimate for x, in the left column was due to averaging across regimes.
Not taking the non-stationarity of the dp ratio into account severely biases the point estimate
for k, downwards. Furthermore, row 4 shows that the evidence for a break in the forecasting
relationship between returns and the dividend-price ratio has disappeared. The null hypothesis
of no structural break can no longer be rejected when using ZZ\]J) The full sample regression
R? is 10%, more than twice the value of the first column. The results for dividend growth
predictability remain largely unchanged. This is not surprising given that we did not detect
much instability in the relationship between Ad; 1 and dp; to begin with.

The rolling window estimates confirm this result.* The middle panel of Figure 1 shows
that the coefficient k, is much more stable in the one-break case than in the no-break case
(top panel). In particular, its value in the 1990s hovers around .3, compared to 0 without the
adjustment. Likewise, the regression R? is also more stable and does not drop off in the 1990s.
The same exercise shows that the dividend growth relationship is stable and that x; never
moves far from zero (not shown). The evidence for dividend growth predictability is weak at
best.?

The bottom panel of Table 1 uses Elvp, adjusted for breaks in 1954 and 1994. The full
sample estimate for x, is now .455 (row 5).The coefficient is highly significant.® The full sample
regression R? is 22%. Dividend growth is not predictable. The Chow test in row 9 finds no
evidence for instability in either forecasting equation. The bottom panel of Figure 1 shows that
the rolling estimates for k, are very stable when we use givp adjusted for two breaks. The point
estimate hovers around .4. The return regression R? goes up as high as 40%.

We conclude that taking changes in the long-run mean of the dividend-price ratio into ac-
count is crucial for forecasts of stock returns. In Section 3.1 we extended the model to allow
for non-stationarity in dp. In this section we examined a simple form of non-stationarity, a
structural break. Appropriately adjusting the dividend-price ratio for the structural break
strengthens the evidence for return predictability, but not dividend growth predictability. Fi-

“In the rolling window estimation we assume that the break in dp is caused by a break in mean expected
returns 7. The alternative assumption that the break is in the long-run growth rate of the economy g gives
identical results.

5The lack of predictive power of the dividend-price ratio for dividend growth does not imply that dividend
growth is not forecastable because any correlated movement in expected returns and expected dividend growth
cancels in d — p, as shown in Lettau and Ludvigson (2005).

6A bootstrap analysis confirms that the small sample p-value (asymptotic p-value) is 1.11% (0.00%) in the
one-break case 0.00% (0.00%) in the two-break case. A second bootstrap exercise shows that the small sample
bias in the coefficients is small relative to their magnitude. In the one-break case, the bias is .019 (we estimate
.254 when the true coefficient is .235). In the two-break case, the bias is .013 (we estimate .468 when the true
value is .455). Detailed results are available upon request.
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nally, the in-sample return predictability evidence stands up to the usual problem of persistent
regressor bias (Nelson and Kim (1993), Stambaugh (1999), Ang and Bekaert (2001) and Valka-

nov (2003)) because the adjusted dividend-price ratio is much less persistent.

3.4 Out-Of-Sample Predictability

The previous statements pertained to in-sample predictability. In this section we compare
the out-of-sample forecasting properties of the adjusted dividend-price ratio to the unadjusted
series and the random walk model.

We follow the approach taken by Goyal and Welch (2003) and predict one-year ahead returns
with this year’s price-dividend ratio. The first forecasting regression uses 20 years of data, so
that the first forecasted return is the one in 1946. For all future years we use expanding windows.
We compare four different forecasters. The first is the current sample mean return implied by
the ‘naive’ random walk model. The second is the standard unadjusted dividend-price ratio dp.
The third and fourth predictors are the dividend-price ratios Jp, adjusted for one break in 1991
or two breaks in 1954 and 1994. Panel 1 of Table 3 reports the mean absolute forecast error and
the root mean-squared forecasting error. Comparing the second to the first row, we find the
result of Goyal and Welch (2003): the random walk model has superior out-of-sample properties
compared to the standard dividend-price ratio specification. The latter’s prediction errors are
almost 1% per year higher. However, using the adjusted dividend-price ratios substantially
reduces the out-of-sample forecasting error. The mean absolute error (MAE) and root mean
squared error (RMSE) of the dividend-price ratio adjusted for a single break are lower than
those for the random walk model. Even more impressively, the out-of-sample forecasting power
of the dividend-price ratio adjusted for two breaks is dramatically improved compared to the
unadjusted ratio and to the random walk model. The RMSE and MAE are reduced by 12-15%

compared to the random walk model.
[Table 3 about here.]

The results reported in this section show that forecasting with the unadjusted dividend-price
ratio series results in coefficient instability in the forecasting regression, unreliable inference
(insignificance in small samples, and results depending on the subsample), and poor out-of-
sample predictability. These disconcerting properties are due to a non-stationary component
that shifts the mean of the dividend-price ratio. Adjusting for such changes in the mean of the
dividend-price ratio improves the forecasting relationship between returns and the dividend-
price ratio in all three dimensions. The predictability coefficient is stable over time, least squares
coefficient estimates are highly significant, and the adjusted dividend-price ratio has forecasting

power out-of-sample.
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4 Other Financial Ratios

While the dividend-price ratio has been the classic prediction variable at least in the academic
literature, it is useful to investigate to what extent our results are robust to a different measure
of payouts. Lamont (1998) finds that the log earnings-price ratio ep forecasts returns. We find
very much the same patterns for the earnings-price ratio as for the dividend-price ratio. The
earnings data start in 1946 and are described in Appendix A. The book-to-market ratio is

computed from the same earnings and dividend data using the clean-surplus method.
[Table 4 about here.]

Table 4 shows that the null hypothesis of no structural break in the ep ratio is strongly
rejected in favor of one or two breaks (first row). The Perron test estimates a 1990 break date
in the one-break case and 1953 and 1994 break dates in the two-break case. These line up
almost perfectly with the dp break dates in Table 2. One other often used valuation ratio,
the log book-to-market ratio (bm) also displays strong evidence of two breaks with similar
break dates in 1953 and 1990. Clearly, there is evidence for a permanent or strongly persistent
component in all valuation ratios.

Some researchers have argued that there were persistent changes in firms’ payout poli-
cies in the 1990s and have argued to adjust dividend-price ratios for repurchases (Fama and
French (2001), Grullon and Michaely (2002), and Boudoukh, Michaely, Richardson, and Roberts
(2004)). First, we find no evidence for a break in the payout ratio de = d — e at the 10% level
(row 3 of Table 2). This is consistent with the view that both dp and &p contain structural
breaks. Second, even if there was a break in the de ratio and we took the point estimate for de in
the subsamples, we would find that more than three-fourths of the change in the dividend-price
ratio comes from a change in the earnings-price ratio and less than one-fourth from a change
in dp: dp = €p + de. In particular, for our S&P 500 sample from 1946-2004 with a 1991 break
date, we find a change in dp of -.81, a change in €p of -.63, and a change in de of -.18.

To further investigate the role of repurchases and the role of a changing composition in
CRSP, we consider two additional valuation ratios. First, we consider the CRSP universe with-
out NASDAQ stocks. Arguably, removing NASDAQ stocks goes a long way towards eliminating
new economy and non-dividend paying companies that became more prevalent in the 1990s.”

nas

We compute the dividend-price ratio, dp™*®, and the dividend growth for this group. This time

"Fama and French (2001) document that the fraction of non-financial, non-utility firms that paid dividends
declined by almost 45% between 1978 and 1999. However, most of that decline is attributable to new firms
and to small firms. They write: “The characteristics of dividend payers (large profitable firms) do not change
much after 1978.” We take this group to be the value-weighted CRSP index without NASDAQ stocks. This
series starts to deviate from the full sample series in 1973. We verified that the dividend growth rate of this set
of firms did not change in the 1990s. Average dividend growth from 1927-1991 was 5.45%. Average dividend
growth from 1992-2004 was 5.46%.
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series has properties very similar to those of the series with the NASDAQ. The Perron tests in
row 5 of Table 2 show a break of 75% in 1992, close to the 86% change in the full sample series
in 1991. For the two-break case, the break dates and magnitudes are also very similar: 1954
and 1995 and -35% and -70%.

Second, we use the Boudoukh, Michaely, Richardson, and Roberts (2004) repurchase yield
data, available from 1971 onwards, and construct a corrected dividend-price ratio and dividend
growth rate series. We label this repurchase-adjusted dividend price series dp™”.® The case
favored by the data is a three-break case with break dates in 1957, 1973, and 1990 (see row 6 of
Table 2). We show below that these two adjustments do not materially affect our predictability
results with the standard dividend-price ratio presented earlier. This leads us to conclude that
structural changes in payout policies and/or the composition of firms in the 1990s can only
explain a small part of the change in the dividend-price ratio.

We first turn to the in-sample forecasting regressions with the earnings-price ratio. When
we use the earnings-price ratio as a return predictor, we obtain similar results to what we
reported for the dividend-price ratio in Table 1. The first row of Table 5 shows that when
the unadjusted earnings-price ratio is the independent variable, the slope coefficient is .119.
Just like with the dividend-price ratio regressions, this coefficient displays parameter instability
among subsamples: The full sample point estimate is lower than the estimates in all subsamples,
and the Chow test of no break has a p-value of only .15 (not shown). The next two columns
show that this bias is due to averaging over subsamples. Once we use the adjusted ep ratio,
the instability disappears and the full sample point estimate increases to .215 in both the one-
break and two-break case. These coefficients are twice the size of the ones obtained with the
unadjusted ep ratio and are measured precisely. The regression R? almost doubles. The slope
coefficient is very similar to the one we found in the first panel of Table 1: x, = .235. One
difference from the results in Table 1 is that the adjusted earnings-price ratio also significantly

forecasts earnings growth, with a negative sign (not shown).
[Table 5 about here.]

For the unadjusted lagged log book-to-market ratio bm = b—m, we find that the predictabil-
ity coefficient k,. is only marginally significant. The point estimate is .07, lower than the point
estimates in the subsamples 1927-1952 (.26), 1953-1990 (.44), and 1991-2004 (.72), all of which
are strongly significant. Again, this downward bias is due to averaging over the break(s). The
full sample point estimate increases to .255 with the one-break adjusted bm series as regressor
and to .308 with the two-break adjusted bm series. The regression R? increases from 3% in the

first column to 19% in the last column.

8We note that this is just one possible adjustment. The correct adjustment depends on the investor under
consideration (e.g., an investor’s cash flows are adjusted for aggregate repurchases, but not for seasoned equity
offerings nor initial public offerings).
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The return predictability findings for dp™? and dp™*® are similar to the benchmark dp results.
First, using dp™*® without break adjustment, we find a point estimate for x, of .11. This point
estimate is lower than in either subsample (.24 for 1927-1992 and .30 in 1993-2004). Once we
use the break-adjusted series, the point estimate more than doubles to .250. Just as for the
standard dp ratio, the downward bias comes from averaging over the break. The break-adjusted
point estimate is close to the .235 we found for the sample that includes the NASDAQ. We
obtain further increases in the point estimate and the R? in the two-break case. Second, using
dp"P, the full sample return predictability coefficient is .19, higher than the .09 for the standard
dp series, but again lower than in either subsample (.25 in 1927-1990 and .53 in 1991-2004).
Clearly, adjusting for repurchases improves the forecasting power of the dp ratio. However,
adjusting for the breaks is important and further strengthens the case for predictability. In the
preferred case of three breaks, the predictability coefficient is .58, three times its unadjusted
value. The regression R? is also three times higher.

Finally, we note that the out-of-sample predictability results for the earnings-price ratio are
in line with the results with the dividend-price ratio reported in Table 3. When we use the
unadjusted earnings-price ratio to forecast one-year ahead returns, the mean absolute forecast-
ing error is 13.44% on average, higher than for the random walk model (13.31%). However,
when we use the break-adjusted earnings-price ratio, the forecast error is only 11.8% per year
(in both the one-break and two-break cases).

We conclude that the other financial ratios indicate a predictability pattern similar to that
of the dividend-price ratio. Without the adjustment for a change in its long-run mean, the
relationship between one-year ahead returns and the financial ratios is unstable over time, the
evidence for forecastability is weaker, and the out-of-sample forecasts do not beat the simple
random walk model. However, once we filter out the non-stationary component, we find a
stable forecasting relationship, a large predictability coefficient, and out-of-sample forecasting
power that improves significantly on the random walk model. The fact that the results are so
similar for earnings and dividend data suggests that an explanation that exclusively rests on
changing payout policies misses the most important structural changes in the economy: changes

in long-run growth rate or long-run expected returns.

5 Real-Time Dividend-Price Adjustments

Implicit in the previous exercise is the assumption that the investor is endowed with the knowl-
edge of the break dates. Both in-sample and out-of-sample predictability results used an ex-post
break adjustment with the knowledge of the entire data sample. In this section we relax this as-
sumption and consider real-time (ex-ante) estimates of the adjusted dividend-price ratio only.

We restrict the time-t information set of investors to include only past values of dividends,
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prices and returns. This is a rather restrictive assumption because other variables might help
investors estimate changes in the steady-state with higher accuracy. In this sense, the results in
this section represent a conservative case to gauge the real-time forecasting power of adjusted

dividend-price ratios.

5.1 Estimation

We start by arguing that an investor who only had access to real-time data would infer similar
break dates as the ones from Section 3. The only difference is that the break dates are estimated
slightly later than in the ex-post break tests. This would be the natural outcome in a model
in which the investor has to learn the break date(s). We entertain two approaches: a recursive
mean estimation and a regime-switching model.

Before showing the estimation results, we first confirm our earlier conclusion (based on ex-
post data, see Figure 2) that it is extremely unlikely that the dividend-price ratio sample is
drawn from a stationary distribution, based on real-time data only. Figure 4 shows a recursive
(i.e., real-time) estimation of the empirical distribution of the log dividend-price ratio. In each
year, the investor estimates an AR(1) model for dp, using data up to the current year. she then
bootstraps from the available sample to compute the empirical distribution of the log dividend-
price ratio. Each year she recomputes the 2.5, 5, 95, and 97.5 percentiles of the bootstrapped
distribution (dashed and dotted lines in the figure). The figure also plots the realized dividend-
price ratio, in deviation from its recursive sample mean (full line). In 1958, the investor is quite
confident that the realized dividend-price ratio is far below the mean; it hits the 2.5 percentile
of the empirical distribution. Likewise, in 1994, the observed dividend-price ratio falls in the
2.5% tail of the distribution. Between 1995 and 1999, the investor is almost certain that the
observed dividend-price ratio has not been drawn from a stationary distribution. Interestingly,
these ‘crossing’ dates are almost identical to the break dates estimated in the previous section.
This shows that the permanent changes in the dividend-price ratio that were identified by the
ex-post break tests do not rely on having the benefit of the entire sample through 2004. Even an
investor in real-time would have concluded that extreme observations of dividend-price ratios

are unlikely to be generated by a stationary process.
[Figure 4 about here.]

We repeat the forecasting procedures with two alternative real-time adjustments of the
dividend-price ratio. First, we consider a real-time adjusted dividend-price ratio series @P
estimated from the Perron model. In each year ¢, the investor estimates the Perron structural
break test using all data available up to year t. she uses the estimated mean dp ratio associated

with the last regime, d_pf , as the estimate for the time-t¢ long-run mean of the dividend-price
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ratio. The adjusted dividend-price series is built up recursively, where the year ¢ observation is
given by

—P —Pp

dp, = dp, — dp; . (9)

The initial sample is 1927-1951, so the first adjustment pertains to 1951. The left panel of
—~P

Figure 5 plots the adjusted series dp, alongside the raw d — p series. Comparing Figure 5 with

Figure 3 shows that the recursively adjusted dividend-price ratio closely resembles the behavior

of the dividend-price series adjusted using the two ex-post break dates.
[Figure 5 about here.]

Alternatively, the investor estimates a Hamilton regime-switching model in real-time (Hamil-
ton (1989)). The top panel of Figure 6 shows the real-time estimate of the probability that the
dividend-price ratio is drawn from the low regime, when two regimes are considered. Starting
in 1991, the investor puts non-zero probability on a shift to the low d — p regime. By 1995,
she is more than 50% certain that the shift occurred. The mean estimates for the two regimes
coincide with our ex-post estimates. When she considers three regimes instead, the investor
increases the probability of a switch from the high to the middle dp regime in 1954. By 1960
she is more than 50% certain that the first shift occurred (see middle panel of Figure 6). In
1990, she starts to attribute probability mass to the low-p regime, and by 1996, she is more
than 50% confident that the economy left the middle-dp regime for the low-dp regime.

[Figure 6 about here.|

—~H
We define a second, real-time adjusted log dividend-price ratio series dp for the Hamilton

model:
dp, = dp; —dp’, (10)

where d_pj is the mean associated with the regime that has the highest posterior likelihood given
data up to period t. So, the adjusted dividend-price series from the regime-shift model, ZZEH, are
constructed similarly to the ex-post series 21\]3 The only difference is the timing of the breaks:
1995 instead of 1991 in the two-regime case and 1960 and 1996 instead of 1954 and 1994 in the
three-regime case. The right panel of Figure 5 shows the adjusted dividend-price ratio series,
@H for the two-regime and three-regime case and compares them to the raw dp series.

As was the case with the two ex-post adjusted series (EZ\];), the real-time adjusted series (31\7)

are much less persistent than the raw dp series. The null of a unit root is strongly rejected.’

9Results available upon request.

18



5.2 Forecasting

We repeat the in-sample estimation of the forecasting equations (1) and (2) with the real-time
adjusted dividend-price ratio series @P and @H Table 6 compares the results of using these
adjusted series to those using the unadjusted series. Columns 2 and 3 report the results for
E]\QP. The point estimate for x, is .30 and is measured precisely, indicating that returns are
forecastable by this real-time adjusted dividend-price ratio. This value for k, is between the
values based on the ex-post adjustment with one break (x, = .23) and two breaks (x, = .45)
from Section 3.3. This makes sense, because the Perron break model is re-estimated every
period. On the other hand, the dividend growth predictability coefficient k4 is not statistically
different from zero. Using the Chow test, we also verified that the relationship between returns
and dividend growth on the one hand and the Perron-adjusted dividend-price ratio on the other
hand is stable across these break dates. We now turn to the forecasting regressions with the
Hamilton adjustment.

Columns 4-7 show the forecasting regressions when we use EZEH as the predictor. The results
are similar to those using the ex-post adjustment in Table 1. In particular, in the two-regime
(one-break) model, the point estimate for x, is .218 with a small standard error. Having
the (real-time) break in 1995 instead of in 1991 (ex-post break date) leaves the predictability
coefficient largely unchanged; it os .235 in the first panel of Table 1. In the three-regime (two-
break) case, the point estimate is .353 (row 6), somewhat lower than the .455 estimate with
ex-post break adjustment, but still strongly significant. The R? is 14%, 8% lower than in the
ex-post adjustment, but still 10% higher than in the no-adjustment case. Thus, even though
the estimation of the break date entails some uncertainty in small samples, Table 6 confirms

that our results are robust to a plausible change in the break date.
[Table 6 about here.|

Figure 7 plots estimates of the slope coefficient x, in 30-year rolling regressions using the
three different real-time adjustments. The return forecasting regressions using the real-time
dividend-price ratio is significantly more stable than those for the unadjusted dividend-price

ratio plotted in Figure 1.
[Figure 7 about here.]

Comparing the coefficient estimates for x, highlights one important distinction between the
Perron and Hamilton adjustments. In the Hamilton adjustment, the investor estimates the
probability of each regime in real time but has access to the entire time series to estimate
the mean dp ratio in the different regimes. In the Perron procedure, the investor not only

estimates the break dates in real-time, but also the long-run mean in the current regime. Clearly,
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estimating that new long-run mean based on a few data points incurs a lot of measurement
error. For example, if the Perron investor in 2000 detects a break in 1997, she only has three
data points to estimate the new d_pP. The Hamilton investor knows what the new mean dp
is. A satisfactory resolution that avoids any look-ahead bias in the Hamilton model would
be to conduct a full Bayesian analysis in which the investor estimates the number of regimes,
the regime switching dates, and their associated long-run means based on real-time available
data and prior information. Pettenuzzo and Timmermann (2004) have worked out such an

estimation in the context of an asset allocation problem.

5.3 Out-Of-Sample Predictability

Finally, we return to the out-of-sample forecastability question. The results with the Hamilton
procedure are similar to the out-of-sample predictions with ex-post break adjustment. Rows 5
and 6 in Panel 1 of Table 3 show that the RMSE using @H in the three-regime (two-regime) case
is .1498 (.1548), lower than the random walk model (.1605) and the model with the unadjusted
dp ratio (.1685). The same is true for the MAE.

The last row of the same panel reports the MAE and RMSE using the recursive Perron
dividend-price ratio g]\op. Both out-of-sample forecasting errors are smaller than those obtained
with the unadjusted dividend-price ratio. The MAE is marginally smaller than it is for the
random walk model, but the RMSE is slightly larger. As expected, the performance of the real-
time adjusted out-of-sample prediction is somewhat worse than the one reported in Section
3.4.

As we pointed out, this goes back to the difficulty in estimating the mean of a new regime,
after a structural break occurs. In real life the investor has access to data other than the
dividend-price ratio to make inference about the new long-run mean of dividend growth or
expected returns. Indeed, Ludvigson and Ng (2005) found that two new factors, a volatility
and a risk-premium factor, summarize the information in a large number of financial series and
have strong forecasting power for future returns that is largely orthogonal to commonly used
valuation ratios such as the dp ratio. This is the sense in which the Perron method provides a

worst-case scenario for the investor.

6 Long-Horizon Predictability

An important component of the empirical work on return predictability uses long-horizon re-
gressions. In this section we provide a framework for analyzing long-horizon predictability. We
use the ex-post dividend-price ratio as the predictor and derive theoretical restrictions that link

return and dividend growth to lagged dividend-price ratios at different horizons. Rather than
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estimating regressions for various horizons separately, the advantage of this approach is that
fewer parameters have to be estimated. Moreover, the restrictions impose that the estimates

across horizons are consistent with each other.

Recall the return and dividend growth predictability equations (1) and (2)

Tir1 = Kpdp, + Ttr+1 (11)
AGEH = Kqdp, + Ttd+1> (12)

where variables with a tilde are appropriately demeaned and stationary. Subtracting (12) from
(11) and using the log-linear approximation for log returns 7,4 = dp, — pdp,,, + Ady.; yields
the implied AR(1) process for the dividend-price ratio in (13):

ZZ\Z;tH = ¢El\1;t + Tt(%fl , Where (13)

1 —pd =K, — Kq (14)
d r

PTitr = 7'td+1 — Tit1o (15)

where the innovations are linked by pTﬁfl = 71 —771. The model imposes a non-linear present
value restriction (14) on the predictability coefficients k, and k4. Because p < 1 and stationarity
implies |¢| < 1, kK, — kg must be positive. This is another way of saying that either returns
(k. # 0) or dividend growth (ks # 0) have to be forecastable (or both). Most researchers
work with equations (11) and (13); we work with (11) and (12) instead because long-horizon
restrictions are more easily derived in this case. Iterating forward on equations (11) and (12),

we obtain the H-period dividend growth and return forecasting equations

H
Zfﬂ =k (H) dp, + 7] 1o pr (16)
7=1
H
Z dt+; = rkq(H) dpt + Tgt—i-Hv (17)
where
1 [(1—¢H
/{d(H) = Kdﬁ ( 1 _¢¢ ) (18)
1 /1—¢"
H) = k. — . 1
ottt =gy (125 ) (19)

Let N be the number of horizons H > 1. Then the joint system of one-year ahead and H-year

ahead predictability regressions for returns and dividend growth contains 2+ 2N equations but
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only two free parameters (kq, £,). The parameter ¢ is implied by the present value constraint
(14). The typical approach in the literature is to estimate univariate long-horizon predictability
equations without imposing these restrictions. Instead, we estimate the entire system of long-
horizon regressions jointly. This estimation procedure takes the high correlation of regression
coefficients at different horizons, pointed out by Boudoukh, Richardson, and Whitelaw (2005),
explicitly into account.

The estimation routine we describe below finds parameters to match the entire ‘term struc-
ture’ of univariate predictability coefficients. Figure 8 illustrates this procedure for H =
{1,3,5,7,10}. The top panel plots the univariate predictability coefficients obtained from
standard OLS regressions of H-year ahead returns and dividend growth on the unadjusted
dividend-price ratio dp, as well the predictability coefficients (kq(H), k,.(H)) implied by the
model. To match the pattern of the ten OLS predictability coefficients, the optimization rou-

tine chooses a value for k, above the value from the one-year ahead univariate regression.
[Figure 8 about here.]

We start by estimating the one-period ahead equations for returns and dividend growth
(11-12). These are the same equations we estimated in Section 3.3, but the model provides two
new insights. First, the estimation delivers a value for the autocorrelation coefficient of the
dividend-price ratio ¢ because we impose the present value constraint (14). Second, we use the
break adjusted series EZ\]; from Section 3 in the estimation.

Because return and dividend growth series were demeaned by their sample averages, the
previous sections implicitly assumed a break in dp without associated break in 7 or d. The
model tells us that a break in dp must be associated with a break in either 7 or d, or both.
First, we assume that d is constant and focus on changes in the expected returns, consistent
with the evidence on breaks in the equity premium in Pastor and Stambaugh (2001). The
implied change in 7 with the change in dp can be inferred from 7, = (1 + d) exp(dp,) + d. The
top panel of Table 7 shows how large the change in 7 is (row 2) corresponding to the change
in the mean dividend-price ratio in the data (row 1). The left panel is for the one-break case,
the right panel for the two-break case. The observed change in dp, implies a decline in mean
expected returns of 2.6% in 1991 or a dual decline of 1.7% in 1954 and 2% in 1994, assuming
long-run dividend growth did not change. Alternatively, it can stem from an increase in long-
run dividend growth of 2.5% in 1991 or a dual increase of 1.6% in 1954 and 2% in 1994, when
mean expected returns are held constant. In the results reported below, we choose to correct

7;, but this choice turns out to be unimportant for the point estimates.'® The second panel

10The reason is that returns and dividend growth are very volatile, compared to the change in their mean
implied by the change in dp. For the same reason, the results reported below are virtually identical if we assume
that the break takes place in d instead. This validates the results in Section 3.3.
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reports the change in the mean earnings-price ratio in the various subsamples, as well as the
implied change in the long-run mean return or long-run mean dividend growth rate. Appendix
A describes how the latter two are computed. We find that the change in the mean return of
-2.47% that accounts for the change in the earnings-price ratio ep (bottom panel) is very similar
to the -2.60% change that accounted for the change in the dividend-price ratio dp (top panel).

The same is true when the long-run growth rate does all the adjustment.
[Table 7 about here.]

Panel A of Table 8 reports the estimation of the one-year ahead system. Row 1 uses the
unadjusted dp series, whereas rows 2 and 3 use the adjusted series E]J) for the one-break and
two-break case respectively. The GMM estimation uses the OLS normal conditions to estimate
kq and k,. Therefore, the point estimates are identical to the ones reported in Table 1. Three
differences are worth pointing out. First, the adjustment in 7 delivers slightly lower standard
errors for k, in rows 2 and 3. Second, as foreshadowed by Table 2, the point estimates for ¢ are
substantially lower when we use the adjusted dividend-price ratio: .81 and .69 in rows 2 and 3
compared to .95 in row 1. Third, the first number in the last column reports the violation of
the present value constraint (14) by the univariate (OLS) coefficient estimates kg s and Ky s,
expressed in the same units as k4 and k,.. Row 1 shows that using the unadjusted dp ratio leads
to violations of the present value constraint. They are half the size of the estimated k,. Yet,

when we use the adjusted dp ratio, constraint (14) is satisfied.
[Table 8 about here.]

Next, we estimate the one-period ahead equations for returns and dividend growth (11-12)
jointly with the long-horizon regressions (16-17). We select a small number (N = 2) of long-
horizon moments, corresponding to H = {1, 3,5}. The joint system of one-year, three-year, and
five-year ahead predictability regressions for returns and dividend growth contains 2 + 2N = 6
equations and 2N = 4 restrictions. Panel B of Table 8 reports the results.

The point estimates for (K4, kq) are similar to those obtained from the one-year ahead
system in panel A. Row 4, which uses the unadjusted dp ratio, fails to find evidence for return
predictability or dividend growth predictability at the 5% level. The point estimate falls from
.094 in panel A to .068 in panel B. Using long-horizon information makes the case for return
predictability weaker when the unadjusted dp series is used. Furthermore, the estimate for
¢ = .99 and its standard error, implied by the estimates for x4 and x, through (14) and
computed using the delta method, indicate that we cannot reject the null hypothesis of a unit
root in the dividend-price ratio.

The results in rows 5 and 6 look very different. Once we use the adjusted ratio ZZE, we

find strong evidence for return predictability. The point estimates remain large: .210 in the
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one-break case and .409 in the two-break case. Moreover, the asymptotic standard errors on
k., are reduced. The reason is that we use restrictions of the term structure of predictability
coefficients that cannot be uncovered by estimating the long-horizon moments in isolation;
imposing these constraints improves the inference on k, and k4. Put differently, the univariate
OLS long-horizon coefficients violate the present value constraint. The first number in the last
column reports the average violation across the three constraints (the RMSE); it is 19% in row
1. This violation is lower in rows 5 and 6. The second number in the last column reports the
average moment violation (RMSE) and measures the degree to which the imposed restrictions
are satisfied. In row 5, the average moment violation is only 8.5%, less than half as big as in
row 4.

The middle and bottom panels of Figure 8 graphically illustrate the long-horizon estimation
results with the adjusted dividend-price ratio for the larger {1,3,5,7,10}-year system. First,
the one-period coefficients are very similar to the ones we reported for the {1, 3, 5}-year system.
Second, the two panels show that when the adjusted dividend-price ratio is used, the pattern
of GMM long-horizon regression slopes generated by our model lines up almost perfectly with
the univariate OLS regression slopes. Put differently, the normal conditions for the long-
horizon moments are satisfied at the model-implied long-horizon predictability coefficients. This
contrasts with the first panel, which is for the unadjusted dp ratio. There, the OLS coefficients
are quite different from the GMM estimates. The correction supports both our specification
and our main argument.

The results for the {1,3,5}-year and {1, 3,5, 10}-year systems are representative of the re-
sults we found for different numbers of long-horizon moments and choices of horizons. Imposing
long-horizon information confirms the results of the earlier sections: Returns are predictable

by the dividend-price ratio, once its non-stationary component is removed.

7 Monte Carlo Simulations

In this section, we provide further evidence that the model in (11-13) captures the moments of
the data well. We use a Monte Carlo exercise to show () that this model replicates the failures
that are found in the in-sample and out-of-sample predictability literature using the unadjusted
dp ratio, (i7) that it matches the moments once the dividend-price ratio is properly adjusted
for and after taking into account small sample inference issues.

For the Monte Carlo exercise, we specify a structural model for the joint behavior of expected
returns, expected dividend growth, and dividend growth innovations. In Appendix C, we derive
the regression residuals 7 = (79,77, 7%) as functions of the structural innovations and show
how to identify the structural parameters from the parameters of the vector error correction

model (VECM) in equations (11-13). We back out the structural parameters from estimates
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of the VECM parameters and simulate the structural model generating 10,000 time series for
returns, dividend growth and the dividend-price ratio of length 7" = 78. We then run univariate
predictability equations on the model-generated data and compare the parameter estimates to
the true predictability coefficients and to the data. The Monte Carlo exercise also serves as
a way to investigate the small sample properties of the regression coefficients. Appendix D
describes the algorithm in detail.

We start by studying the properties of univariate return predictability regressions. The first
row of Table 9 reports the ‘true’ predictability coefficients for the one-year, three-year, and
five-year horizon equations, as well as the theoretical regression R2.!* In the top panel, the true
parameters come from an estimation of the VECM that assumes a break in dp in 1991; in the
bottom panel we specify two breaks in 1954 and 1994.

The second and fourth rows report the same coefficients and R? estimated on simulated data.
Row 2 uses the unadjusted dp ratio, and row 4 the adjusted ZZE to predict returns. The second
row shows that the model with the unadjusted dp ratio fails to detect the return predictability
that is present in the data. The simulation-based estimate of , and the regression R? are close
to zero and do not increase enough with the horizon. The one-year ahead coefficient is not
significant when we use the small-sample standard error. Moreover, this failure of the model
matches the failure in the data. Row 3 shows the results of the same univariate regressions in
the data using the unadjusted dp ratio. The slope coefficients, standard errors, and R? line up
closely with the results from the Monte Carlo simulation without break adjustment. In row 4,
we adjust each Monte Carlo series for a break in 1991 (top panel) or two breaks in 1954 and
1994 (bottom panel). The predictability coefficients at all horizons now line up closely with
their true values. The model with adjusted dp ratio recovers the predictability pattern of row
1. Moreover, the predictability coefficients, their standard errors, and the regression R? from
the model in row 4 match the ones from regressions of observed returns on observed adjusted
dividend-price ratios (row 5). Results for dividend growth regressions are not reported but the

simulations recover the lack of predictability in the true x4 coefficients implied by the VECM.
[Table 9 about here.]

Comparing row 4 to row 1, we notice that there is some small sample bias. In line with
the findings of Stambaugh (1999), the estimate for «, is upward biased. In the first panel, the
true value of the slope coefficient in the one-year ahead return regression is .222 versus .264 in
simulation, a bias of .042. At the five-year horizon, the upward bias is only .016. Likewise, the
R? of the regression is slightly upward biased in the simulation: 10.5% versus 8.9% at one-year

horizon and 28% versus 25% at the five-year horizon. In the two-break case reported in the

11 As Campbell, Lo, and MacKinlay (1997) point out, there is no closed form solution for the long-horizon R2.
We approximate it by simulating the structural model for 100,000 periods.
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second panel, the bias is smaller. The one-year ahead coefficient estimate is .483 versus the
true value of .456. The upward bias disappears at the five-year horizon. Overall, the bias is
small relative to the magnitude of the coefficients, and therefore does not affect our conclusions.
Finally, the small sample standard errors, averaged across Monte Carlo simulations of the same
length of the data, are very similar to the asymptotic standard errors from the data (middle
columns).

Panels 2 and 3 of Table 3 report the out-of-sample prediction errors from a second Monte
Carlo exercise. We simulate the structural model under the null hypothesis that the data
generating process has one break in 1991 (panel 2) or has two breaks in 1954 and 1994 (panel
3). We compare the same three out-of-sample forecasting exercises as in the data (panel 1).
In addition, we look at the forecast errors when we only correct for the second break and
not the first one. The ‘true’ parameters in panels 2 and 3 are the same and were obtained
from the VECM parameters estimated under the assumption of two breaks in 1954 and 1994
for the period 1947-2004, the same forecasting period as in panel 1. The details are shown in
Appendix D. The Monte Carlo exercise regenerates the pattern we found in the data. When the
unadjusted dividend-price ratio is used as a forecasting variable, the out-of-sample prediction
errors are large and close to the random walk errors. On the other hand, when we implement
the one-break or two-break adjustment in the model, the simulated data generate substantially
lower prediction errors, mimicking the improvement in the data.

The simple model (11-13) replicates the patterns of univariate one-year ahead and long-
horizon regression results in-sample as well as one-year ahead out-of-sample prediction errors
found in the data. In particular, it regenerates (7) the failures of using the unadjusted dp ratio

as a predictor, and (7i) the successes of using the adjusted Zl; ratio.

8 Conclusion

The macroeconomics literature has recently turned to models with persistent changes in funda-
mentals to explain the dramatic change in valuation ratios in the bull market of the 1990s. Most
such models imply a persistent decline in expected returns or in the equity premium. Lettau,
Ludvigson, and Wachter (2004) argued that a persistent decline in the volatility of aggregate
consumption growth leads to a decline in the equity premium. Another class of models argues
for persistent improvements in the degree of risk-sharing among households or regions, either
due to developments in the market for unsecured debt or the market for housing-collateralized
debt (Krueger and Perri (2005) and Lustig and Van Nieuwerburgh (2005b)). In the model of
Lustig and Van Nieuwerburgh (2005¢), the improvement in risk sharing implies a persistent
decline in the equity premium. McGrattan and Prescott (2005) argued that persistent changes

in the tax code can explain the persistent decline in the equity premium. Lastly, models of
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limited stock market participation argue that the gradual entry of new participants has persis-
tently depressed equity premia (Vissing-Jorgensen (2002), Calvet, Gonzalez-Eiras, and Sadini
(2003), and Guvenen (2003)). Other models argue that there was a persistent increase in the
long-run growth rate of the economy in the 1990s (Quadrini and Jermann (2003) and Jovanovic
and Rousseau (2003)).

In this paper we argue that such a persistent downward change in expected returns and/or
a persistent upward change in the long-run growth rate of the economy leads to a persistent
decline in the mean of financial ratios. Such breaks in the mean of valuation ratios have
important effects on estimation and inference of return forecasting regressions. We consider
various econometric techniques to detect shifts in the mean of price ratios and suggest a simple
procedure to extract that stationary component. The adjusted price ratios robustly forecast
returns. The predictability is also present out-of-sample. At the same time, we show that shifts
in the steady-state expected returns and growth rate of fundamentals are responsible for the

instability of the return forecasting relation and lack of out-of-sample return predictability.
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A Data Description

Data used in sections 2, 3, 5, and 6 We use annual end-of-year data from 1926-2004 from CRSP

on the value weighted market return (NASDAQ, NYSE, AMEX), with and without dividend capitalization.

Piy1+Diy1
Py

We denote the capitalized net return series by R, 1 + Ry41 = , and the uncapitalized series by R,

1+ RfY, = P;tl. We construct

1. the dividend yield DEI as the difference of capitalized and uncapitalized series,

2. the dividend level as the product of the dividend yield D;;t“l and the uncapitalized price P,

3. the dividend-price ratio g‘*
t

t+1, Py,

+11 as the ratio of the dividend level D;; and the uncapitalized price at time

4. dividend growth as the change in the dividend level D‘%:Dt

5. we check that capitalized returns satisfy 1+ R;1q1 = (1 + %ﬂ) %‘ <1 + Dfl+1>

Pry1

We then define log returns 741 = log(1l + R:), log dividend growth Ad;;; = log (1 + Dt%:[)t), and the
lagged log dividend-price ratio dp; = d; — p; = log (%:). The latter is our independent variable in the analysis.

We note that this is not equal to the log dividend yield, dy+1 — p; which some other researchers have used.

Data used in Section 4 We obtained monthly S&P 500 dividend-price and price-earnings ratios and
end-of-month composite price index data from Haver. The data are from January 1946-December 2004. This
allows us to construct annual end-of-year series for dividends, earnings and prices. This data set also contains
returns and dividends. This is the data we use in Section 7 of the main text. Book-to-market ratios are from
Vuolteenaho (2000) for 1927-1999. The observations for 1999-2004 are constructed using the clean-surplus ratio
method with same Haver earnings and dividend data.

The second panel of Table 7 reports the subsample and full sample means of the log earnings-price ratio
(ep), dividend-earnings ratio (payout rate), and the implied mean changes in long-run expected returns 7 or
expected dividend growth d. The implied change in 7, holding d = 0.0709 fixed, is computed as:

T=d+ (1+d)

|
> =

Likewise, the implied change in d, holding 7 = .1098 fixed, is computed as:

al
|

||l

1| |l

e Bl
+

B A Modified Log-Approximation

In this section we extend the Campbell-Shiller log-linear approximation to allow for time-varying steady-state
growth rates and returns. This framework is a useful organizing principle for the empirical analysis in the
main text, but most of our specifications do not impose the approximation. Our results do not depend on the

accuracy of the approximation, but the framework helps to understand the intuition and implications.



The gross return of an asset is defined as

P, D
Rt+1 = 7t+1 ; b+l (20)
t
_ Dy 1+ Piy1/Dyn (21)
D, Py /Dy

As of period t, the steady-state (gross) growth rate of dividends is D; and steady-state expected (gross) returns
are R, implying a steady-state level of the price-dividend ratio PD;:

S D,

""" R, - D, (22)
Taking logs and rearranging yields the steady-state log price dividend ratio
pd, = d; — log(exp(7;) — exp(dy)). (23)

Instead of presuming that the steady-state growth rates and expected returns are constant, we allow for the
possibility that the steady-state may change over time. The only requirement that we impose on the steady-state

log returns and log growth rates is that they are martingales:
Assumption 1. E;[Fyi;] =7 and Ei[diy;] = d.

In other words, the steady-state is constant in expectation only. Although the log price dividend ratio is a
nonlinear function of steady-state returns and growth, we assume for simplicity that the steady-state log P/D

ratio is also (approximately) a martingale:
Assumption 2. E;[pd, ;] = pd,.

This assumption follows from assumption 1 for the specific processes for steady-state returns and growth
that we consider in the main text: an unforecastable break in 7 and/or d.
Log-linearizing (21) around the steady-state in ¢t 4+ 1 and expressing the variables in deviations from steady-

state yields

pdy — pdy = (Adyy — dp) — (reg1 — 1) 4 pes1 (pder — pdy i)

_ _ (24)
+ Apdy | + ATy — Adiy
where pdy = py — dy and pryq = %. The last two assumptions state that p; is a martingale, and that

deviations from the mean price-dividend ratio are uncorrelated with p:
Assumption 3. Ei[p;y;] = pi and E; [pryj(pdirj — pdy)] = 0.

Under assumptions 1, 2, and 3, we can take conditional expectations and solve the expectational difference

equation for pdy:

pdy — pd; = E[Adyyy — di] — Ey[reer —T1) + peBy[pdeyr — pdy ] (25)

= pl T EiAdiy; — di] — Eifreg; — 7] (26)
j=1



The log price dividend ratio is the sum of the steady-state price dividend ratio and the discounted sum of

expected dividend growth minus expected returns in excess of steady-state growth and returns:

pdy = pd, + Z pl EyAdyy ) — Eyffigs), (27)

j=1

where AciH_j = Ady4j — dy and 7y ; = 14 — 4. The expression in the main text for dp; follows from (27) and
dpy = —pdy.

C A Structural Model

Setup We propose a model for log dividend growth Ad and log returns r, where expected dividend growth
z and expected returns x follow an AR(1) with autoregressive coefficient ¢:

Adppy —d = 2 + €441 Zt41 = ¢z + Gyt (28)

T4l — T = Tt + Nt Tyr1 = ¢x + 1 (29)

where d is the long-run mean log dividend growth and 7 is the long-run mean return. The model has three
fundamental shocks: a dividend innovation €;11, an innovation in expected dividends (;;1, and an innovation

in expected returns &;41. Campbell (1991)’s return decomposition implies that
14 P
Ny1 = —7— &1+ ———Cep1 + €441 (30)
1—po 1—po

We assume that all three errors are serially uncorrelated and have zero cross-covariance at all leads and lags:
COU(EH-D Ct-i-j) = 07 vj 7é 17 and Cov(et—i-lvft-‘-j) = Oa v.] 7£ ]-a except CO'U(Ct,ft) =X and COU(C& 6t) =\

The Dividend-Price Ratio In steady-state, the log dividend-price ratio is dp = log (i;g), hence

DP ~ ™4 and p %g. The log dividend-price ratio can be written as
Tt — 2¢

dpy = dy —py = dp + 1= o

(31)

This equation clearly shows that the demeaned dividend-price ratio is an imperfect forecaster of returns. Returns

are predicted by x; (29) which not only contains the demeaned dp ratio, but also expected dividend growth z;:
zy = (1 pp)(dp; — dp) + 2.

Deriving the Reduced Form Model This structural model implies a reduced form model that

recovers the two predictability equations from Section (2):

(Adyt1 — d) = ka(dp, — dp) + 7'td+1 (32)
(res1 —7) = ke(dpe — dp) + 7114 (33)
(dpe1 — dp) = ¢(dpy — dp) + Ttdfl' (34)

The third equation of this Vector Error Correction Model is an AR(1) process for the dividend-price ratio.

Because of equation (6), the dividend-price ratio is the difference of two AR(1) processes with the same root ¢,



which is again an AR(1) process. We also considered a model where expected dividend growth has a different
autoregressive coefficient 1 # ¢: 2411 = ¥z + (1. In that case the dividend-price ratio is an ARMA(1,1) with
roots ¢ + 1 and —¢@p. Since the dp ratio is well described by an AR(1) model in the data, we set ¢ = 1.

The slope coefficients are related to the structural parameters:

. CO’U(Adt+17dt _pt> . 7(1 - p¢)(02 - X)

= = 35
rd Var(ds —pr) Tt ol-2x (35)
o — COU(T’t+1, dt — pt) _ (1 - P¢)(U§ - X) (36)
" Var(dy — pt) 0f + 0% —2x
The innovations to the VECM, 7 = (74,77, 79), are given by:
d _hRd_ For

T T G (1—p¢>> +Zt<1—p¢) (37

r —Fd K §e41 — Ge1
_ _ 38
Tit1 €t+1+$t(1—p¢>+2t<l—p¢) s y— (38)
dp __ €t+1 - Ct-‘rl (39)

T e

The structural model imposes a restriction on the innovation vector: thd_fl = (7'{5r1 — Ttr+1). Another way to

write this restriction is as a restriction on a weighted sum of k, and kq:
Kr — kg =1— po.

We call this restriction the present value constraint.

Identification Leaving aside the mean parameters (d,, dp) which play no role in the demeaned system,
the structural parameter vector is © = (¢, 0¢,0¢,0¢, x, A) The variance 0727 is implied by (30).

The vector of parameters from the reduced form model is b = (kq, Ky, ¢, Xr), where X, is the variance-
covariance matrix of 7. There are six unique elements in this covariance matrix and the present value constraint
imposes three restrictions on these six elements. In addition, the present value constraint imposes a restriction
on one of the elements in (x,, K4, ¢). Hence, there are five unique elements in b = (k,, Kq, 077, 04,0+ ra), Where
0. and 0,4 are the standard deviations of 77 and 7%, and 0,r ra is the covariance between the two. When
we estimate the non-singular system of equations (32) and (33), we can use these five coefficients to identify
five out of six structural parameters in ©. Therefore, whenever we back out structural parameters from the
reduced form estimates, we find it convenient to tabulate results for a range of values for V,, which measures
the contribution of expected dividend growth to the variance of the dividend-price ratio:

o2 U?

V. = z - . 40
= pd)%o%, ~ (I 1ol -2y (40)

D Monte Carlo Simulations

In-sample The Monte Carlo exercise simulates the model under the null hypothesis of 1 break or 2 breaks
in the dividend-price ratio. I then asks what the univariate long-horizon slope coefficients and R? are in a small
sample (of the same length as the data) when we use the unadjusted dp as regressor versus the adjusted dp. For

the one-break case reported in the top panel of Table 9, we use the following algorithm:



step 1 To find the true parameters, we estimate the 1-,3-,5-year VECM under the assumption of 1 break in

1991 for the full sample. This delivers reduced form estimates:
b= (.0121,.2098, .1410, .1868, .0176).

Throughout, p = .9616, the value implied by the mean price-dividend ratio in the sample.

step 2 We invert these reduced form parameters to obtain structural parameters based on the identification
scheme described above. We need to take a stance on the fraction of the variance in the dividend-price
ratio attributable to expected dividend growth (equation 40). We set V, = 0.3, but the results are not
sensitive to this choice. The implied structural parameters are:

© = (.8344,.0182,.0355,.1371,.0004, —.0005).

step 3 In each Monte Carlo iteration, we draw a new 178 x 3 vector of i.i.d. standard normal variables. The
1
structural shocks (e¢, (;, &) are these standard normal variables pre-multiplied by X2, where X, is the

covariance matrix of the structural innovations:

o2 X 0
Yu= 1A 0? X
0 x O’?

step 4 We recursively build up time-series for o, r — 7, 2z, and Ad — d according to (29) and (28). We form a

time series for the demeaned dividend-price ratio from (31).

step 5a Under the null hypothesis of 1 break in 1991, the break-adjusted series for returns, dividend growth and
the dividend-price ratio are obtained by adding constant long-run means 7, d, and dp to the demeaned
series. l.e. the adjusted dp series is the demeaned series plus the mean over the entire sample 1927-2004,
which is dp = —3.272. Likewise, the adjusted dividend growth series Ad is formed by adding to the
demeaned series Ad — d the sample mean d = .0432. We then back out 7 = d + (1 + d) exp(dp) = .0827,

and form the adjusted return series as the demeaned series plus this 7.

step 5b On the other hand, the unadjusted series still displays a break in 1991. To obtain the unadjusted
series we need to add in a different mean before and after 1991. As before, we assume d did not change,
so that the change in dp entirely comes from a change in 7. The unadjusted dp series is obtained by
adding in the 1927-1991 mean (-3.133) before 1991 and the 1992-2004 mean (-3.968) after 1991. Likewise
for returns we add in .0886 before 1991 and .0629 after 1991. These are the subsample means dp and 7
that were reported in lines 1 and 2 of Table 7 (left panel).

step 6 We form annualized, cumulative long-horizon returns and dividend growth rates % E;VZI Aryy; and

% Z;vzl Adyy; in the same way. There is one set of unadjusted series and one set of adjusted series.

step 7 After the formation, we discard the first 100 observations (burin-in), and are left with the same number
of observations as in the data: 78- longest horizon+1. For the 1-, 3-, and 5-year system we report on,

the longest horizon is 5, so all statistics are computed with 74 observations.

step 8 We then run univariate 1-, 3-, and 5-year ahead predictability regressions of adjusted returns and divi-
dend growth on both unadjusted and adjusted dividend-price ratios. We keep track of the predictability

coefficients and regression R2.



step 9 We repeat this procedure 50,000 times and report the average coefficients and R? across Monte Carlo

iterations.

The Monte Carlo exercise in the two-break case is exactly analogous (bottom panel of Table 9). In step
1, we estimate the 1-, 3-,, and 5-year ahead VECM system under the null of 2-breaks in 1954 and 1994. The
VECM coefficient vector is
b = (0.0795, 0.4089,0.1391,0.1743,0.0157).

The implied structural parameter vector for V, = 0.3 is
O = (0.6974,0.0293,0.0635, 0.1339,0.0014, —0.0012).
To construct the unadjusted dp and return series we use the means reported in the right panel of Table 7.

Out-of-sample We conduct a separate Monte Carlo exercise for the out-of-sample predictability (panels
2 and 3 in Table 3). We simulate the model under the null hypothesis of two breaks in 1954 and 1994. For
simplicity we use the same true parameters in both panels 2 and 3. They are obtained from estimating the
1-year ahead VECM under the assumption of two breaks in 1954 and 1994, but for the period 1947-2004, which
is the same sample period as we use in the data (panel 1 of Table 3). We then construct adjusted and unadjusted

dp ratios as in the above algorithm, and run the same out-of-sample predictions as in the data.



Table 1: Forecasting Returns and Dividend Growth with the Dividend-Price Ratio.

This table reports estimation results for the equations Ady11 — d = kg(dp: — dp) + 7’{1_,_1 and ry11 — 7 = kr(dps — dp) + Ty
The table reports point estimates and standard errors in parentheses of k, and kg, as well as regression R? in square brackets.
The parameters (F,E, dTp) are the sample means of log returns r, log dividend growth Ad and the log dividend-price ratio dp. The
top panel compares the case of no break in the log dividend-price ratio (dp is fixed) with the case where there is a break in the
log dividend-price ratio: dipl is the sample mean log dividend-price ratio for 1927-1991 and @2 is the mean for 1992-2004. The
estimation is by GMM, where the moments are the OLS normal conditions. Standard errors are by Newey-West with four lags.
Row 1 reports results for the full sample; rows 2 and 3 report results for two subsamples. Row 4 reports the F-statistic and
associated p-value from a Chow test with null hypothesis of no structural break in 1991 in the forecasting equations. The bottom
panel compares the case of no break in the log dividend-price ratio (dp is fixed) with the case where there are two breaks in the log
dividend-price ratio: (dp; is the sample mean log dividend-price ratio for 1927-1954 (row 6), dpy is the mean for 1955-1994 (row
7), and d725§ is the mean for 1995-2004 (row 8). Row 9 panel reports the F-statistic and associated p-value from a Chow test with

null hypothesis of no structural breaks in 1954 and 1994 in the forecasting equations.

Returns Dividend Growth
Sample No Break 1 Break (’91) No Break 1 Break ('91)
1927-2004 .094 .235 .005 .019
(.046) (.058) (.037) (.047)
[.038] [.100] [.000] [.001]
1927-1991 .235 .235 .014 0.014
(.065) (.065) (.053) (.053)
.087] .087] .001] .001]
1992-2004 .235 .235 .035 .035
(.134) (.134) (.103) (.103)
[.199] [.199] [.006] [.006]
Chow F-stat 3.408 134 114 .024
pval .038] .875] .892] 1.977]
Sample No Break 2 Breaks (’54,’94) No Break 2 Breaks (’54,’94)
1927-2004 .094 .455 .005 124
(.046) (.081) (.037) (.073)
[.038] [.223] [.000] [.032]
1927-1954 .10 .10 .037 .037
(.175) (.175) (.182) (.182)
[163] 163] .002] .002]
1955-1994 .383 .383 142 142
(.106) (.106) (.077) (.077)
[.240] [.240] [.064] .064]
1995-2004 .532 .532 .226 .226
(.129) (.129) (.097) (.097)
[.546] [.546] [.126] [.126]
Chow F-stat 4.390 .235 .998 .500

p-val .003] [.918] [.414] [.736]




Table 2: Tests for Change in Mean of Log Dividend-Price Ratio

The top half of the table reports the test-statistic of a supF Perron structural break tests of the null hypothesis of no break against
the alternative hypothesis of one (first row) or two (second row) breaks with unknown break date. It reports the p-value of the test
statistic, as well as the resulting break date. The last column reports the estimated change in means before and after the break(s).
The bottom half of the table reports first and second order autocorrelation coefficients, an Augmented Dickey Fuller test, testing
the null hypothesis of a unit root (and associated p-value), and the time-series standard deviation. It does so for the unadjusted
log dividend-price ratio (row 1), the log price ratio adjusted for a change in its mean in 1991 (row 2), and the log dividend-price

ratio adjusted for a change in its mean in 1954 and 1994 (row 3).

Structural Break Tests of dp

Hy H, supF-Test p-value Date(s) Adp
dp 0 break 1 break 13.7 < 1% 1991 -.86
0 break 2 breaks 28.9 < 1% 1954, 1994 -.37,-.78

Persistence Properties of Adjusted Dividend-Price Ratio

AC(1) AC(2) ADF Test p-val s.d.
dp, unadjusted 91 81 1.383  .586 42
dp, adjusted, 1 break 7 55 3.016  .038 26

El;, adjusted, 2 breaks .61 .23 -4.731 .010 .20




Table 3: Out-of-Sample Predictability.

The table reports one-period-ahead return forecast errors based on the Random Walk model (row 1), based on the forecasting

equation ri41 — 7 = Ky (dps — ?p) + 7/, with fixed dp (row 2), and based on the same forecasting equation but with a change in

dp in 1991 (row 3), and two changes in the mean dp in 1954 and 1994 (row 4). In rows 5 and 6, we use HEH as forecaster, the
dividend-price ratio adjusted with the Hamilton procedure, using two regimes or three regimes. In row 6, we use the recursively
adjusted dividend-price ratio gfvp, using the Perron procedure. All numbers denote returns per annum. The second and third panels
report results from a Monte Carlo exercise. We simulate the structural model under the null hypothesis that the data generating
process has one break in 1991 (panel 2) or has two breaks in 1954 and 1994 (panel 3). We compare the same three out-of sample
forecasting exercises as in the data (panel 1). Except in the last panel, we also look at the forecast errors when we only correct
for the second break and not the first one. The structural parameters in panels 2 and 3 are the same and were obtained from the
Vector Error Correction Model (VECM) parameters estimated under the assumption of two breaks in 1954 and 1994 for the period
1947-2004, the same forecasting period as in panel 1.

Mean absolute error ~ Root mean squared error

Panel 1: Data

Random Walk 1338 .1605
Unadjusted dp 1411 .1685
dp - 1 break 1309 1558
dp - 2 breaks 1158 1421
—~H

dp - recursive Hamilton, 1 break .1309 .1548
—~H

dp - recursive Hamilton, 2 breaks .1158 .1498
—~P

dp - recursive Perron .1336 .1637

Panel 2: Monte Carlo - 1 break

Random Walk 1212 1525
Unadjusted dp 1210 .1555
3{) - ex-post, 1 break .1058 1334

Panel 3: Monte Carlo - 2 breaks

Random Walk 1222 1533
Unadjusted dp .1203 1516
Zl; - ex-post, 1 break 1165 .1493
Zlvp - ex-post, 2 breaks .1064 .1336




Table 4: Tests for Change in Mean of Financial Ratios

The top half of the table reports the test-statistic of a supF Perron structural break tests of the null hypothesis of no break against
the alternative hypothesis of one (first row) or two (second row) breaks with unknown break date. It reports the p-value of the test
statistic, as well as the resulting break date. The last column reports the estimated change in means before and after the break(s).
These tests are performed for the log earnings-price ratio ep = e — p, the log book value -to-market value of equity ratio bm = b—m,
the log dividend-earnings ratio de = d — e, the log dividend-price ratio adjusted for repurchases dp”¢P, and the log dividend-price
ratio of the universe of CRSP firms that ezcludes the NASDAQ firms dp™®®.

Structural Break Tests

H, H, supF-Test p-value Date(s) Amean

ep 0 break 1 break 15.5 < 1% 1990 -.67

0 break 2 breaks 18.0 < 1% 1953, 1994 -.50, -.62
bm 0 break 1 break 9.3 < 10% 1953 -.80

0 break 2 breaks 17.9 < 1% 1953, 1990 =71, -.33
de 0 break 1 break 5.6 > 10% 1993 -.24

0 break 2 breaks 5.3 > 10% 1990, 1993 +.27, -.46
dp™*® 0 break 1 break 10.2 < 5% 1992 =75

0 break 2 breaks 18.1 < 1% 1954, 1995 -.35, -.70
dpreP 0 break 1 break 3.7 > 10% 1990 -.43

0 break 2 breaks 4.5 > 10% 1954, 1991 -.23, -.34

0 break 3 breaks 20.1 < 1% 1957, 1973, 1990 -.46, +.50, -.57




Table 5: Forecasting Returns With Other Financial Ratios.

This table reports estimation results for the equation r¢41 —7 = kr(yt — ) + Tt’"_H, where y is the log earnings-price ratio ep = e—p
in the first row, the log book-to-market value ratio bm = b — m in the second row, the dividend-price ratio without the NASDAQ
firms dp™®® in the third row, and the repurchase adjusted dividend-price ratio dp™¢P in the fourth row. The table reports point
estimates and standard errors in parentheses of k.., and the regression R? in brackets. The regressor is the unadjusted valuation
ratio in the first column, the one-break adjusted valuation ratio in the second column, and the two-break adjusted valuation ratio
in the third column. For the predictor dp”“P, we report the three-break case as well. The break dates for all regressors are reported
in Table 4. The sample is 1946-2004 in row 1, and 1927-2004 in all other rows.

Predictor y No Break 1 Break 2 Breaks 3 Breaks

ep 119 214 216
(.030) (.039) (.045)
[.104] [.190] [.185]
bm .070 .255 .308
(.036) (.063) (.064)
[.030] [.154] [.188]
dpn®® 110 .250 417
(.048) (.056) (.090)
[.043] [.105] [.182]

dp"P 191 282 .361 576

(.054) (.065) (.084) (.097)

[.079] [.126] [.161] [.250]




Table 6: Forecasting with the Dividend-Price Ratio - Real-Time Adjustments

This table redoes the estimation in table 1, but estimates break dates in real-time. For the one-break case, a regime switching
model is estimated for dp. The probability of switching from the high to the low dp regime exceeds 0.50 for the first time in 1995.
Likewise, for the two-break case, a regime switching model with three regimes is estimated. The 0.50-probability switch from the

high to the medium dp regime occurs in 1960; the switch from the medium to the low dp regime occurs in 1996 at the 50% level.

—~P —~H —~H
dp - Rec. Perron dp - 2 Regimes dp - 3 Regimes
Returns Div. growth Returns Div. growth Returns Div. growth
K .299 153 218 .027 .353 .109
(s.e.) (.092) (.102) (.066) (.047) (.094) (.069)

[R?] [073] 037 [.086] [.003] 139 [.026]




Table 7: Implied Changes in Steady-state Expected Returns and Dividend Growth

The top panel (bottom panel) of the table reports the mean log dividend-price ratio (log earnings-price ratio) in the subsamples,
as well as the difference between the two. On the second row is reports the mean return 7 in the subsamples if all of the changes in
dp (ep) in the first row were attributable to changes in mean returns. The third row reports mean dividend growth rates d in the
subsamples if all of the changes in dp (ep) in the first row were attributable to changes in mean dividend growth. The left panel
reports the case of one break; the right panel the case of two breaks. For the log dividend-price ratio the break date is estimated to
be 1991 for the one break case (1954 and 1994 for the two break case). For the log earnings-price ratio, the break is estimated to be
1990 for the one break case (1953 and 1994 for the two break case). In the bottom panel, we also report the change in the payout
rate, the log dividend-earnings ratio de. The sample for the top panel is 1927-2004, the sample for the bottom panel is 1946-2004
(see data appendix A).

Dividend-Price Ratio

27-91 92-04  Change 27-54 55-94 95-04 Changes
dp -3.133  -3.968 -.835 -2.940 -3.301  -4.086 -.362, -.785
7 |, d constant 8.86%  6.29%  -2.60% 9.83% 8.16%  6.07% -1.67%, -2.09%
d T, T constant 5.00%  7.54%  2.54% 4.07% 5.68% 7.76%  1.61% , 2.08%

Earnings-Price Ratio

46-90  91-04  Change 46-53  54-94  95-04
ep 2540  -3.202  -.662 2217 -2.652  -3.267  -.435, -.616
Payout rate de 665  -.779  -.114 -.606 661 -.889 -.056, -.227
7|, d constant 11.72%  9.24%  -2.47% 13.70%  11.25%  8.87%  -2.46%, -2.38%

d 1, T constant 6.38% 8.79%  2.41% 4.52% 6.83% 9.16% 2.31%, 2.33%




Table 8: Estimation with Long-Horizon Moments

This table reports GMM estimates for the parameters (kq, kr, @), their asymptotic standard errors and p-values. The results in
panel A are for the system with one-year ahead equations for dividend growth and returns (H = 1, N = 0). The results in panel B
are for the system with one-year, three-year and five-year ahead equations for dividend growth and returns (H = {1,3,5}, N = 2).
The estimation is by GMM. The first stage weighting matrix is the identity matrix. The asymptotic standard errors and p-values
are computed using the Newey-West HAC procedure (second stage weighting matrix) with four lags in panel A and H = 5 lags in
panel B. The first number in the last column denotes the present-value constraint violation of the univariate OLS slope estimators
(1 — pp°ts) =1 (k2ls — Iigls). In panel B this number is the average violation of the 3 constraints, one at each horizon. It is expressed
in the same units as kg and k,. The second number in the last column reports the average moment violation. In panel A that
number is not available (N/A) because the system is exactly identified. The dividend-price ratio in rows 1 and 4 is the unadjusted
one. In rows 2 and 5, the dividend-price ratio is adjusted for one break in 1991 (see equation 8), and in rows 3 and 6, it is the series
adjusted for two breaks in 1954 and 1994. All estimation results are for the full sample 1927-2004.

Kd Ky 10} PV violation moment violation

Panel A: No Long-Horizon Moments H = {1}

No Break .005 .094 .945 -.046 N/A
(.037) (.046) (.052)

1 Break ('91) 019 2353 813 004 N/A
(.047) (.0554) (.052)

2 Breaks (*54, '94) 124 4553 694 ~.001 N/A

(.073) (.0792) (.070)

Panel B: Long-Horizon Moments H = {1, 3,5}

No Break .021 .068 990 .189 .205
(.018) (.038) (.032)

1 Break (’91) .012 210 .834 .076 .085
(.019) (.043) (.042)

2 Breaks (’54, '94) .080 409 697 .100 144

(.065) (.078) (.060)




Table 9: Long-Horizon Predictability in Data and Monte Carlo Exercise.

The table reports results from univariate regressions of cumulative long-horizon returns on the log dividend-price ratio. The left
columns denote slope coefficients for one-year, three-year, and five-year horizon regressions; the middle columns report standard
errors for the slope coefficients; the right columns report the corresponding regression R2. The rows labeled ‘Data, dp unadj.’
denote regressions run with real data using the unadjusted log dividend-price ratio as independent variable. The rows labeled
‘Data, dp adj.’ denote regressions run with real data using the log dividend-price ratio, adjusted for a break in the mean dp. In
the top panel there is one break in this mean in 1991; in the bottom panel there are two breaks in 1954 and 1994. The results
for the data are contrasted with a the results from a Monte carlo exercise. The return and dividend growth system is estimated
until 1991 in the top panel (1954 in the bottom panel) on real data. The estimated parameters imply ‘true’ structural parameters.
The theoretical long-horizon slope coefficients and regression R? are reported in the row with label ‘True Values in Sim.” For these
parameters, the structural model is then simulated 10,000 times for 78 periods. The row ‘Sim., dp unadj.” denotes the Monte carlo
average slope coefficient and R? statistic using the unadjusted log dividend-price ratio as independent variable. The row ‘Sim., dp
adj.” also reports regression coefficients and statistics of regressions on artificial data, but now the independent variable comes from

a model where the mean 7 is adjusted to equal the change in dp in the data.

Ko s.e. R% (%)
Horizon 1 3 5 1 3 5 1 3 5
One Break in 1991
True Values in Sim. .222 187 .159 N/A N/A N/A 8.9 20.0 25.2
Sim., dp unadj. 115 .092 .075 .064 .034 .025 5.1 11.5 14.6
Data, dp unadj. .087 .095 071 .065 .037 .026 2.4 8.1 9.2
Sim., dp adj. .264 214 175 .093 .048 .034 10.5 22.7 28.0
Data, dp adj. .220 .200 150 .084 .047 .033 8.6 20.0 22.0
Two Breaks in 1954 and 1994

True Values in Sim. .456 .330 .249 N/A N/A N/A 20.7 37.0 38.8
Sim., dp unadj. 128 .089 .064 .063 .032 .023 6.2 11.5 12.8
Data, dp unadj. .087 .095 .071 .065 .037 .026 2.4 8.1 9.2
Sim., dp adj. 483 .340 .249 110 .052 .037 21.4 37.5 38.6
Data, dp adj. 442 .355 231 .102 .054 .041 20.7 374 30.8




Figure 1: Forecasting Returns - Rolling Regressions

The top panel plots estimation results for the equation riy1 — 7 = kr(dpt — d7)) + T{+1. It shows the estimates for s, using 30-year
rolling windows. The dashed line in the left panels denote the point estimate plus or minus one standard deviation. The parameters
7 and d7)) are the sample means of log returns r and the log dividend-price ratio dp. The data are annual for 1927-2004. The middle
panel gives the slope coefficient x, from a regression where the right-hand side variable is @, adjusted for 1 break in 1991 (see

Section 3.3). The bottom panel gives the slope coefficient k, from a regression where the right-hand side variable is EE, adjusted
for 2 breaks in 1954 and 1994 (see Section 3.3).
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Figure 2: The Empirical Distribution of the Dividend-Price Ratio.

The figure plots the smoothed empirical distribution of the log dividend-price ratio dp (solid line), alongside the smoothed density
obtained from drawing from the empirical distribution with replacement (bootstrap, dash-dotted line), and the smoothed density
from a Monte-Carlo exercise (dashed line).
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Figure 3: Change in the Mean of the Dividend-Price Ratio.

The top left panel plots the log dividend-price ratio dp: = d; — p: as well as its sample means %1 in the subsample 1927-1991 and
dp, in the subsample 1992-2004. The bottom left panel overlays the subsample means dp; in 1927-1954, dpy in 1955-1994, and dps
in 1995-2004. The top right panel plots the adjusted dividend-price ratio th = dpt — ?pl,t =1,...,7 and dpt — @27t =7,.,T.
The bottom right panel plots the adjusted dividend-price ratio in the two-break case. In the two bottom panels, the adjusted series
is rescaled so that it coincides with the adjusted series for the first subsample.
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Figure 4: Recursive Estimation of the Empirical Distribution of the Dividend-Price Ratio.

We recursively estimate an AR(1) for the log dividend-price ratio dp, dpi+1 = ¢ + ¢dp: + Ttdfl using data up to time t + 1, and

bootstrap percentiles of the empirical distribution by drawing with replacement from the residuals {Tldp, s ,Ttdpl}. The dashed
lines represent the 2.5, 5, 95, and 97.5 percentiles of the bootstrapped distribution. The initial sample is 1927-1951. Each successive
exercise adds one year of data. The solid line represents the observed log-dividend-price ratio in deviation from its sample mean.
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Figure 5: The Recursively Adjusted Dividend-Price Ratio.

P
The left panel plots the adjusted dividend-price ratio &, for the Perron model with recursive break estimation. The right panel

H
plots the adjusted dividend-price ratio, &, , for Hamilton regime switching model, both with two and three regimes. In both
figures, the adjusted series is rescaled so that it coincides with the adjusted series for the first subsample.
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Figure 6: Regime Switching Model for the Log Dividend-Price Ratio - Two Regimes

this figure reports estimation results from a Hamilton regime-switching model for the log dividend-price ratio d — p.
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Figure 7: Forecasting Returns - Rolling Estimates, Real Time Adjustments

The figures plots k, estimates for 30-year rolling regressions of ryy1 —7 = n,a@})t + 7/, 1. The dividend-price ratio lll})t is recursively
adjusted as described in three different ways: (i) recursive-Perron in the top panel, (ii) a 2-regime Hamilton model in the middle
panel, and (iii) a 3-Regime Hamilton model in the bottom panel. The data are annual for 1927-2004.
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Figure 8: Estimation with Long-Horizon Moments

This figure compares the univariate OLS long-horizon regression coefficients, k4(H)—OLS and r,(H)—OLS to the GMM estimates
that impose the present-value restriction (14), kq(H) — GMM and k»(H) — GM M. The system contains 10 equations, 5 return
and 5 dividend growth equations. The horizons (in years) are H € 1,3,5,7,10. The top panel uses the unadjusted dp ratio as

predictor, the middle panel uses the £ ratio adjusted for one break in 1991, and the bottom panel uses the Z’E ratio adjusted for
two breaks in 1954 and 1994.
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