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Abstract

The question we ask is: within the set of a three-period-lived OLG
economies with a stochastic endowment process, a stochastic dividend
process, and sequentially complete markets, under what set of con-
ditions may a set of government transfers dynamically Pareto domi-
nate the laissez faire equilibrium? We start by characterizing per-
fect risk sharing and find that it implies a strongly stationary set of
state-dependent consumption claims. We also derive the stochastic
equivalent of the deterministic steady-state by steady-state optimal
marginal rate of substitution. We show then that the risk sharing of
the recursive competitive laissez faire equilibrium of any overlapping
generations economy with weakly more than three generations is non-
stationary and that risk is suboptimally shared. We then show that
we can construct a sequence of consumption allocations that only de-
pends on the exogenous state and which Pareto dominate the laissez

faire allocations in an ex interim as well as ex ante sense. We also
redefine conditional Pareto optimality to apply within this framework
and show that under a broad set of conditions, there also exists a se-
quence of allocations that dominates the laissez faire equilibrium in
this sense. Finally, we apply these tools and results to an economy
where the endowment is constant, but where fertility is stochastic, i.e.
the number of newborn individuals who enters the economy follows a
Markov Process.
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1 Introduction

Within the set of a three-period lives OLG economies with a stochastic
endowment process, under what broad set of conditions may government
transfers dynamically Pareto dominate a complete-market Lucas-tree econ-
omy?

Theoretically, a fundamental result about OLG models is that within
the class of n-period-lived OLG economies with a deterministic endowment
process, the “classical case” is dynamically Pareto efficient, but not Pareto
optimal in steady-state by steady-state comparison. In stochastic exten-
sions of this class of models, prices satisfy a version of the Cass criterion,
and hence allocations are optimal as long as risk-sharing among agents is
also optimal. We will show here that the laissez-faire competitive equi-
librium for these models does not allocate risk optimally, and that it is
possible to Pareto dominate this equilibrium. To establish this result, we
will first show generally that optimal risk-sharing requires that allocations
be strongly stationary, in the sense that the time t allocation depends only
on the realization of the exogenous shock at time t. Since the laissez-faire

competitive equilibrium necessarily depends on lagged endogenous variables,
it is not strongly stationary and hence allocates risk suboptimally.

We then show that the stochastic extension of the Pareto optimal steady-
state known to exist in the deterministic model is, in fact, strongly sta-
tionary, and hence Pareto optimal for the stochastic model. We derive a
set of government taxes and transfers which will implement this stochastic
steady-state in the model, and show, via the second welfare theorem, that
the steady-state can also be supported as a competitive equilibrium after
imposition of the required lump sum taxes and transfers.

The nature of the Pareto improvement as we move from the laissez-faire

equilibrium to the optimal equilibrium can be studied using simulations.
Simulations are required because the laissez-faire competitive equilibrium
must be generated recursively. In the simulations, it is apparent that old
agents bear too much risk, since their income is derived entirely from savings
and investment in the productive asset. As dividends and prices fluctuate,
so does retirement income. Young and middle-aged cohorts face too little
risk, save too much and consume too little. At the optimal allocation, old
agents accept reductions in average consumption in exchange for reductions
in the variance of their allocations. Middle-aged and young (in an ex ante

sense) trade increased risk for increases in average consumption levels.
The specific welfare comparisons we make are drawn from Demange

(2002) optimality criteria. In particular, we consider conditional or in-
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terim, optimality, in which young agents born into different states of nature
are treated as if they were different individuals. We also consider the less
constrained notion of ex ante optimality in which the young are treated as
if they were able to make choices prior to their birth. This optimality crite-
rion is the appropriate one for a benevolent and long-lived central planner.
In the context of specific Pareto optimality criteria, we also use the notion
of short-run optimality, which limits consideration of Pareto improvements
to finite numbers of agents, to establish our main result on the inoptimality
of the competitive equilibrium.

For applied work, these results have clear implications for how one should
approach questions regarding funded vs. non-funded social pension systems
and all models regarding intertemporal and intergenerational risk-sharing
and savings behavior over the life cycle. The results we obtain also bear on
the current debate over Social Security privatization. When one examines
the overall set of intertemporal government transfers in the U.S. economy,
it becomes apparent that the U.S. economy is not at a laissez-faire equilib-
rium. Rather, we are at one in which there are active government taxes
and transfers at work. The most obvious of these is the Social Security
system. But this isn’t the only transfer at work. There are additional
transfers in place which actually benefit young and middle-aged households.
By an application of the benefit principle for taxation, the younger fami-
lies who receive these benefits should also pay for them, though at a later
stage in life when they are better able to afford it. From this perspective,
these benefits amount to a transfer from older households to younger ones,
in compensation for the benefits received earlier by the older households.

From these observations, we can view reforms to eliminate these inter-
generational income transfers as an attempt to move the U.S. economy back
toward something approximating the laissez-faire equilibrium. Our results
suggest that this might not be a good idea.

1.1 Literature

Economists have been concerned with the optimality of competitive equilib-
rium allocations in a dynamic, stochastic economies since the first discovery
that dynamic economies can exhibit phenomena that lead to competitive
allocations which are not Pareto optimal. The Cass criterion provides a
way for determining whether an allocation is suboptimal – generally due
to capital overaccumulation – in the context of the neo-classical growth
model using the competitive equilibrium prices associated with the alloca-
tion (Cass, 1972). Gale (1973) invented the following terminology: when
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mrs < 1 he calls this the “Samuelsonian case”, whereas when mrs > 1
he calls this the “classical case”. He further established that the “Samuel-
sonian case” is dynamically Pareto suboptimal, whereas it is not possible to
dynamically Pareto dominate the “classical case”.

In the context of overlapping generations models, most analyses of the
welfare properties of equilibrium have been undertaken in the context of the
simplest version of the model in which agents live two periods, and trade
a single good, generally called ”consumption”. The earliest examination
of welfare properties in stochastic models were by Muench (1977), Peled
(1982), and Aiyagari and Peled (1991). In the simple model, the compet-
itive equilibrium prices and allocations are always strongly stationary, in
the sense that endogenously determined variables are functions of the ex-
ogenous shocks alone. Hence, for models in which the exogenous shock
is taken to have finite support, the model can be analyzed using standard
finite-dimensional vector space techniques. The Peled and Aiyagari and
Peled papers exploit this fact to show that if the competitive equilibrium
is Pareto optimal, then the dominant root of the pricing kernel (i.e. the
matrix of state contingent asset prices) at the equilibrium allocation will be
strictly less than one.

These results have been extended in a number of directions. Work
by Abel, Mankiw, Summers and Zeckhauser (1989) characterized the effi-
ciency properties of competitive equilibrium in the benchmark model with
production using the Cass criterion. Zilcha (1990) provides a similar char-
acterization. Chattopadhyay and Gottardi (1999) show the optimality of
competitive equilibrium in a two-period-lived agents model with more than
one good traded in each period. This extension is not trivial, since Spear
(1985) shows that strongly stationary equilibrium don’t exist generically
when agents trade more than a single good in each period. A similar result
obtains for single commodity models if agents live more than two periods.
Finally, Demange (2002) provides a general characterization of various no-
tions of optimality in stochastic OLG settings, and shows that the stationary
competitive equilibrium in a model in which agents trade a single good and
live more than two periods satisfies the Cass criterion, and hence will be
optimal except for possible inefficiencies in risk-sharing. Our work extends
Demange’s in showing that not only does the competitive equilibrium for
this model not allocate risk efficiently, but it is also feasible to construct a
sequence of state contingent consumptions to a strongly stationary equilib-
rium.

The observation that the risk sharing among the individuals in the so-
ciety might be better with a social security system than without, has been
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made by among others Ball and Mankiw (2001), Bohn (2001), and Smet-
ters (2004). All these contributions fail, however, in discussing the dynamic
Pareto properties of the equilibria.

2 The Model

2.1 The Deterministic Benchmark Economy

We work with an overlapping generations model in which agents become
economically active at age 20, and live for three 20 year periods, which we
call youth, middle-age, and retirement. Households in the model receive a
deterministic labor income when young (wy) and middle-aged (wm). They
have two assets available: bonds which are in zero net supply and pay one
unit of consumption next period, and equity, which are in fixed supply,
normalized to one. Each period a dividend δ is paid out to the equity
holders.

Agent’s preferences are given by a utility function

U (cy, cm, cr) = u (cy) + βu (cm) + β2u (cr)

where the discount factor β is such that 0 < β ≤ 1. The period util-
ity functions u (·) are strictly concave, strictly increasing and satisfy Inada
conditions. For the deterministic market economy, agents demands are
solutions to the optimization problem

max
(cy,cm,cr)

u (cy) + βu (cm) + β2u (cr)

cy = wy − qby − pey

cm = wm + by +
(

p′ + δ
)

ey − q′bm − p′em

cr = bm +
(

p′′ + δ
)

em

where q, q′ and q′′ are bond prices in each of the agent’s three periods of
life, and p, p′ and p′′ are asset prices.

The market clearing conditions for the model are

by + bm = 0,

ey + em = 1,

and the overall resource constraint

cy + cm + cr ≤ wy + wm + δ = ω.
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In the context of this deterministic model, we show first that the solu-
tion to the central planners optimization problem leads to an allocation in
which the interest rate is zero, and which is not the competitive equilibrium
allocation.

Proposition 1. For the deterministic benchmark model with δ = 0, the

optimal steady-state allocation has the interest rate equal to one.

Proof. The social planner’s problem for this case is

cy + cm + cr = wy + wm

The first-order conditions for this problem are

u′ (cy) − λ = 0

βu′ (cm) − λ = 0

β2u′ (cr) − λ = 0.

Now, consider the competitive steady-state equilibrium. For this version of
the model, each agent solves

max
(cy,cm,cr)

u (cy) + βu (cm) + β2u (cr)

cy = wy − qby

cm = wm + by − q′bm

cr = bm

The first-order conditions for this problem are

u′ (cy) q = βu′ (cm)

u′ (cm) q′ = βu′ (cr) .

From the first-order conditions, it is clear that the steady-state with q =
q′ = 1 generates the optimal allocation. One can show that any equilibrium
sequence with qt < 1 for all t generates a sequence of allocations which
eventually becomes infeasible.

Now consider the benchmark economy with a productive asset which
yields a dividend of δ > 0 in each period, and which is owned by the initial
old generation. The social optimum for this version of the model is the same
as in the first benchmark, except that total resources in every period have
increased by δ. The marginal rates of substitution at the optimal allocation

6



are the same as in the first case, however, so that the implicit interest rate
at the social optimum is zero. The competitive equilibrium for this version
is considerably different, though. Agents optimizations for this case are

max
(cy,cm,cr)

u (cy) + βu (cm) + β2u (cr)

cy = wy − qby − pey

cm = wm + by +
(

p′ + δ
)

ey − q′bm − p′em

cr = bm +
(

p′′ + δ
)

em

where ei is the type i = y,m agent’s holdings of the asset and the p’s are
the asset prices. The first-order conditions for this problem are

u′ (cy) q = βu′ (cm)

u′ (cy) p = βu′ (cm)
(

p′ + δ
)

u′ (cm) q′ = βu′ (cr)

u′ (cm) p′ = βu′ (cr)
(

p′′ + δ
)

.

Market-clearing requires that by +bm = 0 and ey +em = 1. At a steady-state
equilibrium, the first-order conditions imply that

p = q (p + δ)

or

p =
δ

1 − q
.

Since the asset is productive, it will have positive value and hence, at the
steady-state competitive equilibrium, q < 1. Since

q =
p

p + δ

it also follows that as δ gets larger, q becomes monotonically smaller. It
is also clear that when δ = 0, q = 1, and hence, that as δ gets larger,
the competitive equilibrium allocation diverges from the socially optimal
steady-state.

While the competitive equilibrium for the benchmark economy with a
productive asset is not Pareto optimal in a steady-state-by-steady-state com-
parison, the CE for this benchmark case is dynamically Pareto optimal, since
any reallocation away from the CE steady-state toward the socially optimal
allocation necessarily makes old agents worse off.
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For later reference, we note that since the social optimum for the bench-
mark model constitutes a steady-state Pareto optimum, the second welfare
theorem implies that this allocation can be obtained as a competitive equi-
librium after imposing lump sum transfers which allocate the dividend from
the asset to the three types of agents. We can also implement this via
a proportional tax on the dividend. For this variation on the model, the
budget constraints take the form

cy = wy − qby − pey + τy

cm = wm + by + [p + (1 − t) δ] ey − qbm − pem + τm

cr = bm + [p + (1 − t) δ] em

where we have imposed that prices be at their steady-state equilibrium val-
ues, t is the tax rate on the return to the asset, and τ i, i = y,m, r is a
lump sum transfer that each agent receives from the government. The
government budget constraint is

tδ − τ = 0

where τ = τy + τm + τ r. For this version of the benchmark model, the bond
and asset prices are related (via the first-order conditions) by

p = (1 − t)
qδ

1 − q
.

Note next that when t = 1, p = 0 and τ = δ, so that the asset has effectively
been nationalized. In this case, the steady-state equilibrium allocation will
be the socially optimal steady-state. By continuity, there will be tax rates
t < 1 at which the resulting competitive steady-state dominates (in steady-
state comparisons) the competitive equilibrium at t = 0. We emphasize,
however, that if we start at the t = 0 steady-state and then impose a positive
tax on the asset return, we make the old generation at the time of the tax
regime change worse off.

2.2 The Stochastic Economy

As in the deterministic benchmark case, we denote total endowment by ω.
For the stochastic extension of the model the exogenous state of the economy
in period t is given by st ∈ St, t = 1, 2, 3, . . ., where S = {1, 2, 3, . . . , S} (and
S both denotes the set of exogenous states and the number of exogenous
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states). The exogenous state st follows a Markov process with time-invariant
transition probabilities given by

πs,s′ = Pr
{

st = s′ | st−1 = s
}

.

For simplicity of notation, let us here assume that the number of exoge-
nous states in St is 2: St = {l, h}. We can then write the time-invariant
transition matrix

Π =

[

1 − πh,l πh,l

πl,h 1 − πl,h

]

.

Unconditional expected total per period aggregate endowment is nor-
malized to 1. The set of endowments is given by

Ω =
{

ωl, ωh
}

,
πl,h

πh,l + πl,h
ωh +

πh,l

πh,l + πl,h
ωl = 1.

Total aggregate endowment each period is split between transfers to the
young and middle-aged individuals in the economy and a fruit from a tree,
where the former can be thought of corresponding to labor income, whereas
the latter can be thought of as capital income.

ws
y + ws

m + δs = ωs s ∈ {l, h}

2.2.1 Competitive Equilibrium

As in the benchmark model agents receive an age and state dependent in-
come when young (wy) and middle-aged (wm). They have two assets avail-
able: bonds which are in zero net supply and pay deterministically one unit
of consumption next period, and equity, which is in fixed supply, normal-
ized to one. Each period a dividend δ is paid out to the equity holders. The
dividend process follows a two-stage Markov process.

Each agent maximizes discounted life-time expected utility conditional
on the state in which the agent is born.

E (U) = u (cy) + βE [u (cm)] + β2E [u (cr)]

subject to the individuals’ period-by-period budget constraints

cy = wy − qby − pey

cm = wm + bm + (p + δ) ey − qbm − pem

cr = wr + bm + (p + δ) em
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As before, u (·) is a strictly increasing, strictly concave function that satisfies
the Inada conditions, and q and p are the prices of equities and bonds.

The market clearing conditions are

by + bm = 0,

ey + em = 1,

and the overall resource constraint

cy + cm + cr ≤ wy + wm + δ = ω.

In any period, young and middle aged individuals will solve their opti-
mization problem. The first order condition with respect to the two assets
for the young agents are

−qu′ (cy) + βE
[

u′ (cm)
]

= 0

−pu′ (cy) + βE
[(

p′ + δ
)

u′ (cm)
]

= 0

−qu′ (cm) + βE
[

u′ (cr)
]

= 0

−pu′ (cm) + βE
[(

p′ + δ
)

u′ (cr)
]

= 0

One can show that the competitive equilibrium in a stochastic overlap-
ping generations models with either more than one good, or in which agents
live more than two periods is generically not strongly stationary, in the sense
that equilibrium prices and allocations depend only on the current realiza-
tion of the exogenous state variable1. In these models, the best we can hope
for is that there is a recursive representation of equilibrium in which prices
and allocations depend on the current state of nature and a set of lagged
endogenous variables.

At any point in time, the economy is characterized by the realization of
the endowment process (ω), lagged bond holdings and equity holdings by
the middle aged (by,−1, ey,−1) The vector s ∈ S ⊂ R

3 is the state of the
economy. Hence, an equilibrium is a sequence of allocations {by(s), ey(s)}
and a sequence of prices {q(s), p(s)} such that

1. Each individual solves her/his optimization problem subject to budget
constraint

1This result was first shown by Spear (1985) for OLG economies in which agents live
two periods but trade multiple goods. To the best of our knowledge, the corresponding
result for single good economies in which agents live more than two periods was first
shown by Aiyagari while he was visiting Carnegie Mellon in 1984, though the result does
not appear to have been published anywhere.
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2. The bond and equity markets clear and the aggregate resource con-
straint holds.

3 Optimality in the Stochastic Economy

We turn now to the main part of the paper, and examine the competitive
equilibrium for a model with aggregate shocks to total resources laid out in
Section 2, and examine the risk-sharing properties and related optimality
issues of this equilibrium.

Our first result characterizes perfect risk sharing.

Theorem 2. Perfect risk sharing implies a strongly stationary consumption

sequence.

Proof. The optimal stationary risk-sharing allocation will be a solution to
the optimization problem

max
f

∑

i=y,m,r

γiEiui (fi)

subject to

fy (ωs, z) + fm (ωs, z) + fr (ωs, z) = ωs

where each agent’s allocation is assumed to be a function of current resources
ωs, and lagged endogenous variables, which we denote by z.We index the
expectation operator by each agent’s type to allow for different notions of
optimality. The different notions we consider are ex ante optimality across
all agents, resource state conditional ex interim optimality (in which the
planner considers takes the expectation for young agents over lagged en-
dogenous variables, but not over the resource state in which the young were
born), and conditional optimality (in which the planner takes the current re-
source state and realized lagged endogenous variables of the young as given).
Letting µ be the (assumed known) invariant distribution of lagged endoge-
nous variables, the expected utility for each middle-aged or retired agent in
the optimization problem for any optimality concept is given by

∫

[

πlui

(

fi

[

ωl, z
])

+ πhui

(

fi

[

ωh, z
])]

du (z) for i = m, r.

For an ex ante notion of optimality, this will also be the expected utility of
the young. In the resource conditional ex interim case, the expected utility
of the young will be

∫

uy (fy [ωs, z]) dµ (z)
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while in the conditional case, the objective function for the young will simply
be uy (fy [ωs, z]) . For the ex ante and resource conditional ex interim cases,
the first-order conditions for the optimization are

γiπsu′

i (fi) g (z) − λs = 0, for s = l, h and i = y,m, r

fy (ωs, z) + fm (ωs, z) + fr (ωs, z) = ωs

where g (z) is the Radon-Nikodym derivative of the measure µ with respect
to z. These conditions imply that

γiπsu′

i (fi) = γjπsu′

j (fj) for s = l, h and i 6= j.

Hence, we can solve for say fy and fm in terms of fr. Substituting back
into the resource constraints will then yield allocations which are strongly
stationary. Taking ratios in the first set of first-order conditions, we get the
usual equality of state contingent marginal rates of substitution condition:

πlu′

i

(

fi

[

ωl, z
])

πhu′

i (fi [ωh, z])
=

λl

λh
for i = y,m, r.

Note in particular that the probability g(z) for lagged endogenous state
variables drops out, since it is the same across current realizations of total
resources. For the conditional optimality case, the first-order conditions for
the middle-aged and retired are as above, while for the young, they become

γyu′

y (fy) − λs = 0.

In this case, since the Lagrange multiplier associated with the resource con-
staint doesn’t depend on lagged endogenouse variables, the allocation of the
young will also be independent of these variables. Since the first-order con-
ditions of the middle-age and retired remain as before, their allocations are
also independent of lagged endogenous variables, and we again obtain the
result that optimal allocations are strongly stationary.

This result is quite intuitive. Since the exogenous uncertainty is in-
dependent of any endogenous uncertainty, the optimal allocation simply
ignores endogenous fluctuations, and allocates total resources in a way that
minimizes the variance associated with these fluctuations. There is one
additional curious possibility that we might need to consider, which is that
the weights in the social planner’s problem might themselves be functions of
lagged endogenous variables. Since the first-order conditions require that

γyπ
su′

y (fy) = γmπsu′

m (fm) = γrπ
su′

r (fr) for s = l, h
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this would yield allocations depending on the lagged endogenous variables.
But in this case, since the planner is free to choose the weights, ex ante op-
timization would lead him to choose constant weights, since these minimize
the variances of each agent’s allocation. Note finally that this result can be
extended readily to Markovian shock processes.

This result tells us immediately that the competitive equilibrium in a
stochastic OLG economy in which agents live for more than two periods or
consume more than a single good each period does not allocate risk opti-
mally. This does not imply, however, that the competitive equilibrium is
not Pareto optimal. To see this, consider a stochastic economy in which
agents live two periods and consume ℓ > 1 goods per period. Suppose that
endowments of the young are stochastic on a two point support:

[

ωL, ωH
]

.
We will denote the states as low and high, and assume that ωH ≫ ωL. We
know that for this economy, the competitive equilibrium cannot be strongly
stationary, and hence, risk is allocated suboptimally. Suppose at some time
t we try to reallocate consumptions in such a way as to reduce the variance
of the old agent’s consumption at time t+1. This requires that we increase
the old agent’s consumption in the low state while decreasing it in the high
state. Doing this will make a young agent born in the high state better off,
but will make the young agent born in the low state worse off. Hence, we
can’t improve risk sharing in this setting, and the competitive equilibrium
is, in fact, Pareto optimal.

We turn next to an analysis of the socially optimal stationary equilibrium
in the stochastic version of our benchmark model, and examine two distinct
notions of optimality, following Demange (2002). The first is the notion of
stationary ex ante optimality, where we allow the social planner to choose
allocations for unborn generations which maximize their expected utility.
This is in contrast to interim or conditional optimality, in which the social
planner is constrained to treat agents born in different states of nature as if
they were different agents.

The social planner’s problem in the ex ante case is

max
(cy,cm,cr)

Eu (cy) + βEu (cm) + β2Eu (cr)

subject to

cy
s + cm

s + cr
s = wy + wm + δs, s = l, h.

Since
Eu (ci) = πslu (cs

i ) + πsh (cs
i )

for i = y,m, r and s ∈ {l, h} the resource state in the previous period, it
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follows that the first-order conditions for the social planner’s problem are

u′
(

cs
y

)

− λs = 0, for s = l, h

βu′ (cs
m) − λs = 0, for s = l, h

β2u′ (cs
r) − λs = 0, for s = l, h

together with the resource constraints for the two possible state realizations.
Since the optimal allocations clearly won’t depend on any lagged realizations
of the state or on lagged allocations, they are strongly stationary.

Now, in the benchmark deterministic version of the model, we saw that
at the socially optimal steady-state, the intertemporal marginal rate of sub-
stitution was 1. The following proposition generalizes this result to the
stochastic model.

Proposition 3. For any two-stage Markov process, in the limit, consump-

tion is optimally distributed such that

β
u′ (cm

s )

u′ (cy
s)

= β
u′ (cr

s)

u′ (cm
s )

= 1 s ∈ {l, h}

given the resource constraints

cy
s + cm

s + cr
s = ωs.

Proof. The social planner faces the following optimization problem

max
{cl

y,cl
m,cl

r,ch
y ,ch

m,ch
r}

{

Πl

[

u
(

cl
y

)

+ β
[

πllu
(

cl
m

)

+ πlhu
(

ch
m

)]

+ β2
[

πllπllu
(

cl
r

)

+ πllπlhu
(

ch
r

)

+ πlhπhlu
(

cl
r

)

+ πlhπhhu
(

ch
r

)]

]

+ Πh

[

u
(

ch
y

)

+ β
[

πhlu
(

cl
m

)

+ πhhu
(

ch
m

)]

+ β2
[

πhlπllu
(

cl
r

)

+ πhlπlhu
(

ch
r

)

+ πhhπhlu
(

cl
r

)

+ πhhπhhu
(

ch
r

)]

]

}

,

where {Πh,Πl} is the limit distribution of the Markov process. The resource
constraints are

λ : cl
y + cl

m + cl
r = ωl

µ : ch
y + ch

m + ch
r = ωh
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The intertemporal rates of substitution can be expressed as:

β
u′
(

cl
m

)

u′

(

cl
y

) =
Πl

Πlπll + Πhπhl

β
u′
(

cl
r

)

u′ (cl
m)

=
Πlπll + Πhπhl

Πl (πllπll + πlhπhl) + Πh (πhlπll + πhhπhl)

...

All the right hand side expressions are equal to 1 and the result follows.

4 Numerical simulations

The numerical simulations are meant to illustrate our theoretical results, to
give an indication of the quantitative importance of the suboptimality of the
C.E., and to give an estimate for the time necessary to reach the stationary,
optimal equilibrium.

4.1 Parametrization

As a benchmark, we work with a parametrization of the model in which
both the dividend and labor income are stochastic. Specifically, we assume
that labor’s share of the total endowment is 2

3 , and the ratio of labor income
when young to labor income when middle-aged is 3

5 . So, for any given total
endowment ω, we have

δ =
1

3
ω,

wy =
3

8

2

3
ω =

1

4
ω,

wm =
5

8

2

3
ω =

5

12
ω.

The endowment-process follows a two-stage Markov process. For the
benchmark simulations, the endowment process is assumed to be i.i.d. with
realizations

{

ωl, ωh
}

= {0.95, 1.05}.
The time-preference parameter (β) is equal to 1 and the risk aversion

coefficient is set equal to 2.

4.2 Numerical results

For these parameters, the socially optimal allocation gives each agent 0.35
units of consumption in the high state, and 0.317 units in the low state.
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Table 1: Summary statistics, benchmark

cy cm cr

Low 0.19719 0.30268 0.45013
(SD) 0.00018 0.00099 0.00117

High 0.21388 0.32490 0.51122
(SD) 0.00020 0.00112 0.00131

The expected utility for the social optimum is Eu = −9.02. The standard
deviation of the social optimum is 0.0233.

At the competitive allocation, Table 1 shows the average consumptions
and standard deviations of consumption for the various types of agents in
the high and low states

The expected utility for a typical agent can be estimated from the simu-
lation data using the fact that the equilibrium allocations follow an ergodic
stochastic process, so that time-series and cross-sectional averages will be
the same. From this data, we find that Eu = −10.14. Hence, the socially
optimal allocation improves overall expected utility for this calibration of
the model by roughly 11%. The overall average standard deviations of con-
sumption for each type of agent are σy = 0.008, σm = 0.011, and σr = 0.031.
Clearly, the old bear far more risk in the competitive equilibrium than they
do at the social optimum.

We turn next to the question of full Pareto optimality. We have seen that
the socially optimal stochastic steady-state does allocate risk efficiently, but
this leaves open the question (as we saw in the example above) of whether
this allocation actually dynamically Pareto dominates the competitive equi-
librium. On this issue, we have the following result.

Theorem 4. If agents live more than two periods, the laissez-faire compet-

itive equilibrium allocation is not dynamically Pareto optimal.

Proof. Since the competitive equilibrium is not strongly stationary, risk is
not allocated optimally. This means that in any given period t, some agents
will face contingent allocations in the following period such that their state-
contingent marginal rates of substitution at these allocations are not equal.
These agents can generate an ex ante Pareto improvement by having the
agents with the smaller MRS move along her indifference curve toward the
diagonal (reducing variance while keeping expected utility constant), while
the agent with the larger MRS takes the opposite side of this swap. As we
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illustrated earlier, this makes the agent with the higher MRS strictly better
off. We can obviously also find an reallocation between these two agents
which makes them both strictly better off. This reallocation also clearly
makes no other agent in the economy worse off, so it constitutes a short-run
Pareto improvement, and hence, the competitive equilibrium is not short-
run optimal. Since short-run optimality is necessary for long-run optimality,
it follows that the competitive equilibrium is not Pareto optimal.

We illustrate these results in our numerical simulation by first showing
directly that the kind of improved risk-sharing described in the theorem is
indeed possible in the simulated economy. The diagram below shows the
tree of realized consumptions for middle-aged and old agents over a span
of four periods. In the tree, branches going up indicate realizations of the
high resource state, while branches going down indicate a low resource state
realization. For each allocation at each node of the tree, we calculate the
marginal rate of substitution between low and high state allocations for both
middle-aged and old, and, as is apparent from the diagram, the middle-aged
have uniformly higher MRS’s than do the old, indicating that there is always
a risk-improving reallocation of the type indicated above that is possible.

We can generalize this direct demonstration to show that such improve-
ments are always possible using the fact that the distribution of allocations
generated by the competitive equilibrium is ergodic, and hence time aver-
ages and cross-sectional averages will be the same. Consider a middle-aged
and a retired agent at any time t. For the parametrization of the model,
the state-contingent MRS for the middle-aged agent will be

MRShl
m =

(

cl
m

ch
m

)2

while that of the old agent will be

MRSkl
r =

(

cl
r

ch
r

)2

where ci
j is the j = H,L state allocation of agent i = m, r. Using the

resource constraint, we can write the old agent’s MRS as

MRShl
r =

(

rl − cl
y − cl

m

rh − ch
y − ch

m

)2

=

(

r̂l − cl
m

r̂h − ch
m

)2
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Figure 1: Tree realizations

where r̂s is the total state s resources net of the allocation of the young.
Now, consider the middle-aged agent’s share of net resources in the low
state

cl
m

r̂l

and suppose that this agent gets the same share of net resources when the
state is high. In this case, her MRS will be

MRSlh
m =





cl
m

(

cl
m

r̂l r̂h
)





2

=

(

r̂l

r̂h

)2

.

Since the old agent’s share in the high state in this case is 1− cl
m

r̂l = cl
r

r̂l , it
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follows that the old agents state-contingent MRS will be

MRSlh
r =





cl
r

(

cl
r

r̂l r̂h
)





2

=

(

r̂l

r̂h

)2

and hence, since the MRS’s are equal, we would have optimal risk-sharing.
Since we know that the CE does not allocate risk optimally, it must be the
case that one agent’s share of the net resources in, say, the high state is
greater than the other agent’s. So, suppose the middle-aged agent gets a
smaller share in the high state than she does in the low state. Let 0 < ε < 1
and assume that her high state share is

(1 − ε)
cl
m

r̂l
.

Then the old agent’s high state share will be

(1 + ε)
cl
r

r̂l
.

Plugging these into the MRS formulas, we have

MRSlh
m =

(

cl
m

(1 − ε) cl
m

r̂l r̂h

)2

=

(

r̂l

(1 − ε) r̂h

)2

and

MRSlh
r =

(

cl
r

(1 + ε) cl
r

r̂l r̂h

)2

=

(

r̂l

(1 + ε) r̂h

)2

and the old agent will have a smaller state-contingent MRS than the middle-
aged.

The simulated data show that these kinds of opportunities for improved
risk-sharing always exist. Figure 2 shows the shares for old and middle-aged
in each of the resource states for a simulated time-series (after convergence
of the numerical algorithm used to compute the equilibrium) consisting of
3000 periods. Clearly, the old get a uniformly higher share of net resources
in the high state, while the middle-aged get a higher share in the bad state.
Hence, via the argument above, there are always opportunities for improved
risk-sharing.
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Figure 2: Share comparisons

5 Transition to the optimal allocation

We have now established that the weakly stationary sequence of allocations
resulting from the recursive stochastic equilibrium is dynamically not op-
timal. In any overlapping generations setting, the essence of the dynamic
suboptimality concept is that it is then possible to Pareto improve and move
to optimal one.

The hard – and interesting – question is whether from any state s ∈ R
3

it is possible to construct a sequence which would make every individual
conditionally weakly better off, at least one individual strictly better off, and
which would end up in the ex ante strongly stationary optimal allocation as
described in Proposition 3.

In order to formalize the transition, define the central planner’s welfare

function as of time τ, given a partial history hτ
t =

[

(

ĉj
y, ĉ

j
m, ĉj

r

)τ

j=t

]

, where

ĉj
i , i = y,m, r is a competitive equilibrium consumption for an agent if type

i at time j

W
(

hτ−1
t

)

max
cy,cm,cr

E
[

u
(

cτ
y

)]

+ βE [u (cτ
m)] + β2E [u (cτ

r )]

subject to reservation utilities and resource constraints.

u
(

cτ
y

)

≥ u
(

c̃τ
y

)

βE [u (cτ
m)] ≥ E

[

U τ−1 | hτ−1
t

]

− u
(

cτ−1
y

)

− β2E
[

u
(

cτ+1
r

)

| hτ−1
t

]

β2E [u (cτ
r )] ≥ E

[

U τ−2 | hτ−2
t

]

− u
(

cτ−2
y

)

− βE
[

u
(

cτ−1
m

)

| hτ−1
t

]

ω ≥ cτ
y + cτ

m + cτ
r

20



Define a function P : R
3(T−t)
++ → R as the sum of the expected utilities

of all individuals alive between time t and time T

P
(

ct
y, c

t
m, ct

r, . . . , c
t
y, c

t
m, cT

r

)

=
∑

t

E
[

u
(

ct
y

)]

+βE
[

u
(

ct+1
m

)]

+β2E
[

u
(

ct+2
r

)]

such that for every time t and every allocation c−t ∈ R
N−1
++

W
(

cτ , h
τ−1
t

)

− W
(

xτ , h
τ−1
t

)

> 0 iff P
(

cτ , hτ−1
t

)

− P
(

xτ , h
τ−1
t

)

> 0

A function P satisfying the last equation is called an ordinal potential, and
a game that possesses a ordinal potential is called a ordinal potential game.2

In order to implement this algorithm, we proceed with the following
steps:

• Given the decision rules of the agents and the laws of motions of
prices and aggregates, we take an arbitrary point in the state space
(

ω, b−1
y , e−1

y

)

, generate all possible sequences of length N of the the
realizations of the exogenous variable. These sequences of realizations
can be ordered in a binary tree with

∑N
n=1 2n−1 nodes.

• For each realization of the exogenous variable, given the state and the
the individuals’ decision rules, we calculate the consumption-triplet
for young, middle-aged and old.

• Looking ahead one period at the child nodes n1, n2 of any node n, we
impose optimal risk-sharing on the middle-aged and old at the child
nodes (i.e. the young and middle-aged at node n), subject to the condi-
tion that the old get at least the same expected utility as they would
have at the competitive equilibrium. Since this generates a strict
Pareto improvement for the node n young, we transfer consumption
on the the four grandchild nodes n11, n12, n21, n22 nodes from the old
to the grandchild node young, making them strictly better off.

• Moving ahead to node ni, i = 1, 2, we repeat the process of impos-
ing optimal risk-sharing between middle-aged and old on subsequent
nodes, and transferring resources to the young on the grandchild nodes.

2Monderer and Shapley (1996) proved several properties of potential games that might
be helpful for us, like: equilibrium refinement, finite improvement property, and that
the entire sequence of allocations might be interpreted as a sequence of Nash equilibria.
The usefulness of the potential function is not just that it is (locally) maximized at a
Nash equilibrium. It also provides a direct tool to prove equilibrium stability under the
directional adjustment hypothesis in (2). Indeed, in the absence of noise, the potential
function itself is a Liapunov function.
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Figure 3: Consumption through the transition

• This process terminates when we reach the social optimum, which for
our parametrization of the model economy has all agents consuming
ĉl = ωl/3 = 0.317 and ĉH = ωH = 0.35.

The diagram below illustrates how the algorithm attains the strongly
stationary social optimum in a finite number of steps. Given the way we
have defined the reallocation algorithm, the number of periods it takes to
attain the social optimum is the same along all branches of the binary tree.

The next diagram shows the same process, but in terms of the changes
in expected utility. For this construction, we hold the overall expected
discounted utility at birth constant at the competitive equilibrium values
during the reallocation process, up to the point where it becomes possible
to strictly dominate the (now strongly stationary) allocation. As in the pre-
vious diagram, the dotted lines are the average expected utilities given the
exogenous resource state, while the solid line is the overall average expected
utility.

5.1 Decentralized optimality

Since the socially optimal allocation for the economy is a Pareto optimal
steady-state, the second welfare theorem implies that it can be supported
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Figure 4: Discounted utility through the transition

as a competitive equilibrium after some reallocation of resources. Since we
know that with the productive asset pays any positive dividend, the result-
ing competitive equilibrium will not be strongly stationary and hence not
optimal, it follows that to implement the optimal steady-state, the central
planner (which we will refer to hereafter as the government) must com-
pletely tax away the dividend, and then redistribute it back to the agents as
lump sum transfers. One way the government could implement the optimal
steady-state would be to give agents exactly the right shares of total re-
sources so as to implement the optimal allocation as a no-trade equilibrium.
While this is easy enough to do in our simple three-period setting, in more
complicated economies, it would require the government to hit an alloca-
tion target having measure zero in the space of all possible state contingent
allocations. So, we inquire instead whether, having taxed away the divi-
dend and then rebated it arbitrarily, agents can then trade via competitive
markets to the optimal allocation. The answer to this question is yes, if
we introduce a set of Arrow securities to allow agents to insure themselves
against the intertemporal effects of the resource shocks.

To show this result, we denote the post-transfer endowments of agents
as ω̃s

i , for i = y,m, r and s = h, l. We assume that agents can (as before)
trade one period bonds in zero net supply in order to allocate income in-
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tertemporally. We also introduce a set of Arrow securities, denoting the
holdings of a type i agent born in resource state s which pays off in one unit
of consumption in state s′ by ass′ . We will denote the bond prices by qs, as
before, and let ps be the (nominal) price of the Arrow security that pays off
in state s. With these modifications, the budget constraints for the model
(under the assumption that we are at a strongly stationary allocation) take
the form

cs
y = ω̃s

y − qsbs
y for s = h, l

∑

s′

ps′ass′

y = 0 for s = h, l

css′

m = ω̃s′

m + bs
y + ass′

y − qs′bs′

m for
(

s, s′
)

∈ {h, l}2

∑

s′′

ps′′as′s′′

m = 0 for s′ = h, l

cs′s′′

r = bs′

m + as′s′′

m for
(

s′, s′′
)

∈ {h, l}2 .

The constraint on the Arrow securities requires that they be self-financing
in the sense of allowing transfers only between different states of nature and
not over time. While this constraint is not necessary, it helps clarify the
different functions of the two types of assets.

The first-order conditions for the budget constrained utility maximiza-
tions of young and middle-aged agents are

−qsu′
(

cs
y

)

+
∑

s′

πs′u′(css′

m ) = 0 for s = h, l

u′

(

css′

m

)

− λsps′ = 0 for
(

s, s′
)

∈ {h, l}2

−qs′u′

(

css′

m

)

+
∑

s′′

πs′′u′(cs′s′′

r ) = 0 for
(

s′, s′′
)

∈ {h, l}2

u′

(

cs′s′′

r

)

− λs′ps′′ = 0 for
(

s′, s′′
)

∈ {h, l}2

together with the budget constraints above. Here, λs is the Lagrange mul-
tiplier associated with the self-financing condition on the Arrow securities.
Market clearing for the model requires that

cs
y + cs′s

m + cs′s
r = ω̃s

y + ω̃s
m + ω̃s

r for s = h, l

bs
y + bs

m = 0 for s = h, l

as′s
y + as′s

m = 0 for
(

s, s′
)

∈ {h, l}2 .
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Now, the first-order condition for the middle-aged agent implies that con-
sumption of the middle-aged at equilibrium can’t depend on the agent’s
birth state, since the right-hand expected utility of consumption when old
for the agent doesn’t depend on the birth state. Together with the re-
source constraints, this implies that consumption when old only depends on
the current resource state. The first-order conditions for the Arrow securi-
ties then imply that the Lagrange multipliers are independent of the lagged
shock. Note also that the consumption market-clearing conditions are re-
dundant given asset market-clearing and the budget constraints. Finally,
the first-order conditions for the Arrow securities implies that

u′
(

ch
m

)

u′ (cl
m)

=
ph

pl

while the first-order condition with respect to the middle-aged agent’s bond
holdings implies that

u′
(

ch
m

)

u′ (cl
m)

=
ql

qh

so that the bond and Arrow security prices are not independent.
Hence, we are left then with a system of 14 equations in 14 variables: the

2 bond prices, 4 bond holdings, 8 Arrow security holdings. These equations
can be solved under standard conditions using standard techniques.

To show that the competitive equilibrium allocation allocates risk opti-
mally, consider the first-order conditions for the Arrow security holdings for
a middle aged agent. Fixing s and taking s′ = h, l, and taking ratios we get

u′
(

ch
m

)

u′ (cl
m)

=
ph

pl
.

Doing the same thing for the old agent, we find

u′
(

ch
r

)

u′ (cl
r)

=
ph

pl
.

Hence, the middle-aged and old have their state-contingent marginal rates
of substitution equalized and are sharing risk optimally. The first-order
conditions with respect to bond holdings, together with the price dependence
between bond and Arrow security prices show that the state-contingent MRS
of the young is also equal to ph/pl.

To show finally that the socially optimal allocation will be attained in
this setting, we need to make one more assumption: the government transfer
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to the old is not so large that the endowment allocation is already optimal.
We need this assumption since it’s possible that if the transfer to the old
is large, the endowment allocation will be in the classical region. Given
this assumption, we can determine the competitive equilibrium prices which
support the social optimum by plugging in the consumptions at the social
optimum in the equilibrium equations above, and backing out the prices.

There are a couple of important observations about this result that we
should make. First, the result shows in particularly stark form the im-
portance of providing some form of intergenerational insurance if we are
interested in agents’ overall welfare. It is clear from the budget constraints,
particularly for the old agents, that the Arrow securities allow the agent to
smooth consumption across shock realizations in ways that the bond hold-
ings alone do not. This suggests an obvious role for government insurance
programs in the absence of private provision of assets of this form.

The second observation concerns the fact that we can find a strongly
stationary equilibrium with Arrow securities, but not with privately held
productive assets. We believe the reason for this is that the productive
asset is in positive net supply, and must be held (i.e. owned) in order for
the benefit of the dividend to be realized. Think of allowing the price of
the asset to depend on the previous period’s resource shock realization, as
the Arrow security price does. This will allow middle-aged and old agents
to use the productive asset to hedge risk associated with bond prices, but
it also means that the price the young must pay to acquire the asset now
depends on the resource state in the period prior to their birth. Since they
must hold this asset to realize any gain from it, this immediately introduces
a history dependence into the equilibrium prices which precludes it from
being strongly stationary, and hence, from allocating risk optimally.

While we have demonstrated how the second welfare theorem can be
applied, the requirement that the government essentially confiscate the full
return on the assets is obviously problematic. To the extent that asset
returns provide incentives in more complicated economic environments in
which agents make investments in productive activities, removing this incen-
tive by taxing it completely away will cause obvious problems. So, we look
next at an alternative to the full application of the second welfare theorem,
by considering a tax on dividends that is significantly less than confiscatory,
coupled with a lump sum rebate of the tax which moves the economy in
the ”right direction” toward the social optimum, and ask whether this will
implement a set of Pareto improving allocations.
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5.1.1 Stochastic steady state with taxes and transfers

Kubler and Krueger (2002) showed via a numerical example that a pay-as-
you-go social security system can lead to Pareto improvements after bad
state realizations in a model similar to ours, so there is reason to think this
will also be so here. The model with taxes and transfers is the same as our
benchmark model, except that we modify the budget constraints to reflect
the fact that the government now imposes a proportional tax of t on the
dividend realization, and uses the proceeds from this tax to give lump sum
transfers τ i, i = y,m, r to the households. Hence, the sequential budget
constraints become

cy ≤ ωy − qby − pey + τy

cm ≤ ωm + by + ey

[

p′ + (1 − t) δ
]

− q′bm − p′em + τm

cr ≤ bm + em [p” + (1 − t) δ] + τr.

The government’s budget constraint requires that in each period

τy + τm + τr = tδ.

We compute the recursive competitive equilibrium of the tax-transfer model
for tax rates of 25%, 50% and 75%, under the assumption that all of the
lump sum transfer goes to the old. The results for each tax level clearly
improve risk-sharing and raise expected utility. The table below shows
the variance of consumption for the old, the overall expected utility, and
minimum consumption for the young at each tax rate.

Table 2: Summary statistics, benchmark

Tax rate var (cr) min (cy) EU

0.00 0.000934 0.19692 −10.14377318
0.25 0.000859 0.2053 −9.963402732
0.50 0.000770 0.21629 −9.75796138
0.75 0.000645 0.23241 −9.51129027

The chart below plots the consumptions of the young in the zero tax case
and the 75% tax case over a typical run of 100 periods. From the diagram,
it is clear that the young will be getting strictly more consumption under
the tax-transfer equilibrium than in the zero tax case. Combining this
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observation with the expected utility improvement, we infer that the tax-
transfer equilibrium will in fact Pareto dominate the zero tax equilibrium.

Consumption of Young
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Figure 5: Consumption of young individuals at different tax rates

6 Stochastic fertility

One obvious extension of the model we have been examining is to allow
for varying population size. Indeed, if we take the 20 year time span of
each period of the model seriously, over these time spans, it is likely that
households will face risk from variations in population fertility rates, which
lead to larger or smaller cohorts entering into the economy.

This extension of the model parallels the model examined by Geanako-
plos, Magill and Quinzii (2004). For this version of the model, we assume
that the size of the young cohort born at any point in time can take on
one of two values, n or N, with n < N. Population states follow a Markov
process, and, for simplicity, we will assume that for all transitions, the large
and small cohort sizes are equally probable. The eight possible population
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states for the economy are

• State 0 : {n, n, n}

• State 1 : {n, n,N}

• State 2 : {n,N, n}

• State 3 : {n,N,N}

• State 4 : {N,n, n}

• State 5 : {N,n,N}

• State 6 : {N,N, n}

• State 7 : {N,N,N}

where the first entry is the size of a newly born young cohort, followed by
the middle aged cohort and then the old. Figure 6 shows the possible
transitions between population states.

1 3

0 2 5 7

4 6

Figure 6: Markov population state transitions

Except for the variable population sizes, the model is the same as in the
previous section. The only difference is that now, the resource constraint
takes the form

ηtcy + ηt−1cm + ηt−2cr ≤ ηtwy + ηt−1wm

where ητ is the population size of the cohort born in τ = t, t − 1, t − 2. As
with the fixed population model, the competitive equilibrium for this model
cannot be strongly stationary, and hence we again work with simulations of
the recursive equilibrium. For the simulation, we use the same parametriza-
tion as for the model with constant population: wy

y = 3/12, wm
m = 5/12,

n = .8, N = 1.2, and δ = (ηy
y · wy

y + ηm
m · wm

m) /2.
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Low and High State Consumption Shares
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Figure 7: Some caption

The results for this version of the model parallel those of the fixed popula-
tion case. Old agents bear a great deal of risk, and there exist opportunities
for short-run Pareto improvements in risk-sharing between old and middle-
aged agents. The table below shows the covariance matrix generated by
the simulation between cy

y, cm
m, and cr

r. From the variance numbers, the old
bear more than 6 times the risk of the young for this version of the model.

0.019456 −0.000754 0.014966

−0.000754 0.022779 0.043581

0.014966 0.043581 0.143634

When we replicate the net-share analysis for this version of the model
that we did for the fixed-population version, we get the following diagram
on the share relationships.

This diagram is based on a simulated time-series of 1000 periods, and
compares the transition from state 0 to either itself or state 4. As in
the fixed-population case, we see the same general patten in which the old
consume a higher share of net resources in the high state (state 4 in this
case) than in the low state, which again indicates that there are risk-sharing
improvements available. Note that there are some low state shares in the
high state range in the data. This occurs because the transition from state
1 is to either state 0 or state 4. This transition has the same resource
configuration as the state 0 transition, but weights the middle-aged more
heavily because of the large cohort of old agents.

The social optimum for this version of the model is the solution to the
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Table 3: test

State EU at Social Optimum EU at CE

0 −1.41740 −1.47286
1 −1.66273 −1.69497
2 −1.33518 −1.36426
3 −1.53218 −1.56536
4 −1.42902 −1.46994
5 −1.63986 −1.67929
6 −1.35431 −1.37652
7 −1.52844 −1.57316

problem

max
(cy,cm,cr)

ηtEu (cy) + ηt−1Eu (cm) + ηt−2Eu (cr)

subject to

ηtcy + ηt−1cm + ηt−2cr ≤ ηtwy + ηt−1wm + D

where we weight each cohort by its size. We can also define this problem in
ex post terms, if we wish. The solution is the same as in the fixed-population
model, in the sense that at the optimum (and assuming the discount rate is
zero) each agent consumes an equal share of the realized endowment. As
before, we can also show that this is the optimal risk-sharing allocation. For
our calibration of the model, the following table shows the expected utilities
of an agent born in each state, given the possible transitions from that state.

Hence, as in the fixed-population model, the socially optimal allocation
dominates the competitive allocation state by state, although in this case,
the utility improvement is significantly less in percentage terms, averaging
roughly 2.5%.

As with the fixed-population model, the second welfare theorem is ap-
plicable, though again with the caveat that it must be implemented by tax-
ing away the dividend completely. So, as with the fixed-population model,
we ran several experiments with taxes and transfers working in conjunction
with competitive markets to see whether these would improve risk-sharing
and increase welfare. Since the modelling set up for these experiments was
similar to those for the fixed population model, we omit the details, except
to note that for these experiments, we adopt the same parametrization as
Geanakoplos et al. (2004). The diagram below shows the conditional ex-
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Figure 8: Low and high state consumption shares

State Price
0 104.69

(2.765)

1 91.52
(1.531)

2 170.56
(5.857)

3 143.47
(4.075)

4 123.79
(2.647)

5 111.09
(1.964)

6 187.55
(3.506)

7 157.95
(3.910)

pected utility for agents born in each of the different population states for
tax rates of 0%, 25%, 50%, 75% and 95%. As in the fixed population model,
these expected utilities are monotonically increasing as we increase the tax
rates.

We note finally that we also obtain the Geanakoplos et al. (2004) re-
sult on the predictability of asset prices. The following table shows that
asset prices for each state together with their standard errors. The chart
below shows the asset prices together with error bars going out two standard
deviations.

From the chart, it is clear that states 0 and 5 have some overlap, as do
2 and 6, 2 and 7, and 6 and 7. However, none of these overlapping prices
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Figure 9: Unconditionally expected utility at different tax rates

occur for possible state transitions, so that asset prices will be predictable
from one state to the next.

7 Conclusion

The analysis we have presented demonstrates unambiguously that the laissez-

faire competitive equilibrium in a multi-period OLG economy with pro-
ductive assets will be Pareto suboptimal because of imperfect risk-sharing.
The deviation from the first welfare theorem arises because of the restricted
market participation imposed on unborn agents by the finite lifetimes as-
sumption underlying the OLG environment, and the endogenous market-
incompleteness generated by the weak stationarity of the competitive equi-
librium in the multi-period setting.

We established that in a OLG economy where the exogenous state is
governed by a Markov process, the strongly stationary ex ante optimal allo-
cation is characterized by that the cross sectional marginal rates of substitu-
tion between two consecutive age groups are equal to 1. The fundamentally
interesting result is that from any competitive equilibrium state, it is possi-
ble to construct a sequence which will make every individual conditionally

weakly better off, at least one individual strictly better off, and which will
end up in the ex ante strongly stationary optimal allocation in a finite num-
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ber of periods.
On a very fundamental level, these results also have clear and obvious

policy implications for the ongoing debate over whether governments should
provide social insurance. Compared with a situation where the government
has no role in redistributing income across generations, our exercise shows
that government intervention can improve upon the risk sharing between
the individuals and therefore the welfare of everybody. The exact extent
of government intervention is harder to quantify. Since the two factors of
production are supplied inelastically in our model economy, we are also
ignoring any potential tax-induced distortions which might reduce welfare.
In a world where governments can not solely rely on lump-sum taxation,
there will exist trade-offs between risk sharing and efficiency in production.
We leave this open for further research.
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