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Abstract

We construct and estimate by maximum likelihood an equilibrium search model

where wages are set by Nash bargaining and idiosyncratic productivity follows a

geometric Brownian motion. The proposed framework enables us to endogenize

job destruction and to estimate the rate of learning-by-doing. Although the range

of the observations is not independent of the parameters, we establish that the

estimators satisfy asymptotic normality. The structural model is estimated using

Current Population Survey data on accepted wages and employment durations. We

show that it captures almost perfectly the evolution through tenure of the cross-

sectional distribution of wages. We find that the returns to tenure are slightly higher

for workers without tertiary education than for tertiary educated workers.
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1 Introduction

The attachment of workers to their jobs is often supported by active labor market pro-

grammes such as wages or employment subsidies. Determining their optimal design cru-

cially depends on the rate at which workers learn as a by-product of work.1 This is why a

large body of empirical research has focused on estimating the rate of learning-by-doing.2

Yet, due to the lack of structural approaches, the task of quantifying the aggregate benefits

of these active labor market policies remains elusive. This paper attempts to contribute

to such an objective by estimating the returns to tenure in an equilibrium set-up.

The proposed framework is an “estimable” version of the Mortensen and Pissarides

(1994) framework. To our knowledge, this paper is the first to estimate by maximum like-

lihood the Mortensen-Pissarides model, despite the fact that it has become the standard

framework of analysis for aggregate labor markets. In order to render the model suitable

for empirical purposes, we modify the stochastic process that changes jobs’ output: in-

stead of considering Poisson processes, we introduce geometric Brownian motions. Thus

the job’s idiosyncratic productivity follows a random walk with constant mean growth

rate. Obviously, the deterministic trend captures the average rate at which workers accu-

mulate human capital through learning-by-doing. To preserve the tractable aggregation

properties that are required for equilibrium analysis, we follow Mortensen and Pissarides

in assuming that productivity and thus human capital are purely match-specific. We also

consider that firms and workers cannot commit so that wages are set by Nash bargaining.3

Notwithstanding these simplifying assumptions, the empirical analysis raises several

challenges. First of all, the rate of learning-by-doing cannot be estimated in a deter-
1See for example Cossa, Heckman and Lochner (2003) for an analysis of the diverging evaluations of

the Earned Income Tax Credit depending on the chosen model for skill-accumulation (on-the-job training
versus learning-by-doing).

2The related literature is too extensive to be comprehensively reported. An arbitrary sample includes
the seminal paper of Altonji and Shakotko (1987) and more recent contributions by Topel (1991), Altonji
and Williams (2005) and Dustmann and Meghir (2005).

3The Nash-bargaining solution does not take into account the difficulty of relating wages to job-specific
human capital. As explained in Felli and Harris (1996), wages increase with human capital to the extent
that workers are able to appropriate some of the return. As specific human capital enhances the worker’s
productivity only in its current working place, it is not clear why the worker should receive any of the
return on it. We do not address this issue and instead follow the typical practice of assuming that each
party receives a fixed share of the expected surplus at any point in time.
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ministic set-up. When workers deterministically progress along the learning curve, the

likelihood of observing an individual close to the reservation wage converges to zero as

tenure accumulates. Given the presence of such observations in the data, the introduction

of uncertainty is a prerequisite to the estimation of the learning-by-doing rate. But idio-

syncratic shocks lead to endogenous separations. This feature distinguishes our approach

from previous structural estimations that were based on the premise that job destruc-

tion is induced by an exogenous process.4 Endogenous separations greatly complicate

the derivations since we have to deduce all the sample paths that breach the reservation

threshold. Nevertheless, we show that the convenient analytical properties of Brown-

ian motions allows us to address this potentially daunting problem and consequently to

express the joint distribution of wages and job spells in closed-form.

The second main difficulty is due to the non-standard property of the likelihood func-

tion. As the reservation wage and consequently the support of the data is a function

of the estimated parameters, standard regularity conditions are not satisfied. This pe-

culiarity is well know since Flinn and Heckman (1982). In order to circumvent it, they

proposed to evaluate the likelihood function in two steps. First of all, the reservation

wage is set equal to the lowest wage observed in the sample. Since the lowest wage is a

super-consistent estimator, one can treat the estimated reservation wage as being equal

to its true value when evaluating the other parameters. This estimation procedure yields

consistent estimates for deterministic search-marching models. When job destruction is

endogenous, however, workers and firms separate precisely at the reservation wage. As

a result, the likelihood of observing the reservation wage is equal to zero and the lowest

reported wage is not anymore a super-consistent estimator.

Thus we have to rely on a different estimation method than the two-step approach

proposed by Flinn and Heckman (1982). Our problem bears similarities to the estimation

of optimal production frontiers. Optimal frontiers models also imply that the range of the

observations changes with the parameters being estimated. Moreover, they share with our

model the additional implication that agents are never exactly on the optimal frontier.

Intuitively, firms cannot perfectly counteract random perturbations. Hence, they remain

within the neighborhood of the optimal combination of input without ever achieving it
4See Eckstein and Wolpin (1995) for an early estimation of an equilibrium search model in a deter-

ministic environment and Flinn (2006) for an analysis of the minimum wage effects.

3



perfectly. Given that the estimation of optimal frontiers is one of the most popular area

of applied econometrics, great attention has been devoted to the econometric solutions

for this kind of problem. In an influential paper, Greene (1980) showed that when the

likelihood of observing the actual boundary of the distribution is equal to zero, stan-

dard regularity conditions need not be satisfied in order to produce standard asymptotic

distribution results. We adapt Green’s proof to our set-up and establish that, despite

the appearance, endogenous separation actually simplifies the analysis since it allows to

estimate the likelihood function as if it were completely standard.

After having analyzed the equilibrium of the economy and derived the properties of the

likelihood function, we estimate the model using data from the January 2004 supplement

of the Current Population Survey. Individuals are placed in two different sub-samples

according to their educational attainments. The estimation procedure returns estimates

for the rate of learning-by-doing of 2.3% per year for workers without tertiary education

and 2% for tertiary educated workers. The two estimated volatility parameters are almost

identical with a very low value of around 7%. We assess the ability of the model to fit the

cross-sectional joint distributions of wages and jobs spells and find that it fits the data

surprisingly well given its parsimonious specification.

The rest of the paper is organized as follows. The proofs of the propositions are

collected in the Appendix. Section 2 lays out the set-up and characterizes the equilibrium.

The econometric procedure and the asymptotic properties of the estimates are detailed

in Section 3. Section 4 describes the data and discusses the estimation results. Section 5

concludes.

2 The model

We consider a labor market with search frictions where jobs’ output are subject to random

fluctuations. Our set-up differs in three respects from the one proposed by Mortensen

and Pissarides (1994) : firstly we allow initial outputs to differ, secondly we assume that

productivity follows a geometric Brownian motion and finally we introduce learning-by-

doing. Given that the Current Population Survey (henceforth CPS) does not contain

informations on the number of posted vacancies, the data will not allow us to estimate
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the parameters of the matching function. Thus we take the rate of contact between

searchers and firms as given. Notice that it is quite straightforward to close the model in

order to endogenize job creation by assuming calibrated values for the aggregate matching

function.

2.1 The production process

Consider a market in which homogenous workers, who live forever, are either employed or

looking for a job. Each competitive firm has one job which can be either filled or vacant.

Firms use only labor to produce a unique multi-purpose good. When an unemployed

worker meets a firm with a vacant job, they sample a positive output for their match. The

initial productivity is a random draw from the ergodic distribution G (·), which is assumed
to be continuously differentiable.

Both parties instantaneously observe the initial productivity. Then, the firm can

decide whether or not to make a job offer. If the firm “passes” on the applicant, it does

not incur any specific cost for doing so and it continues to keep its vacancy open to other

workers. Similarly, the worker can choose to refuse the job offer and instead to keep

looking for a better opportunity.

In the case where both parties decide to match, they immediately start to produce

and output begins to fluctuate. We abstract from aggregate shocks so that stochastic

shocks are uncorrelated across jobs. The stochastic process that changes the idiosyncratic

output is a geometric Brownian motion. Thus, its law of motion is given by

dP it
P it

= ζdt+ σdBit (1)

where dBit is the increment of a standard Brownian motion. The subscript i indexes jobs.

In the remainder of the text we will neglect it when not necessary. According to (1), the

expected output at time t + T of a job with current output Pt is equal to PteζT . Hence

ζ is the rate at which productivity increases. It can also be refereed to as the rate of

job-specific human capital accumulation given that workers become identical after joining

the unemployment pool. The parameter σ reflects dispersion: the higher it is, the faster

output fluctuates.
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The introduction of Brownian motions contrasts with the standard practice of con-

sidering Poisson processes. Whereas Brownian motions have continuous sample paths,

Poisson processes are by definition discontinuous. It is explained in Prat (2006) why

Brownian motions deliver more accurate predictions about the rate of job turnover and

the shape of the wage distribution. It is also shown in Prat (2006) how most of the sta-

tistics of interest can be derived in closed-form using stochastic calculus. As we will see

in section 3, the convenient analytical properties of Brownian motions are crucial for the

empirical purpose of this paper. We introduce an exogenous source of uncertainty such

that jobs are forced out of business when hit by random shocks that arrive at the Poisson

rate δ.

We also assume that workers do not receive alternative job offers while employed.

Thus we do not consider on-the-job search, so that trade in the labor market is com-

pletely separated from production. This restriction is imposed due to technical reasons

as it is notoriously involved to combine idiosyncratic uncertainty with on-the job-search.

Actually, it is shown in Nagypál (2005) that the wage distribution cannot be expressed in

closed-form when workers search on the job and uncertainty is modelled using a diffusion

process. These difficulties partly explain why empirical models of employers competition

typically assume away idiosyncratic uncertainty.5 As we want to investigate the explana-

tory power of idiosyncratic uncertainty, we make the converse simplification of neglecting

on-the-job search and leave to further research the task of devising a comprehensive model.

2.2 Optimal job separation

Because trading in the labor market is a costly process, matched pairs have to share a

quasi-rent. We assume a Nash-bargaining rule whereby each party obtains a constant

share of the job’s surplus S(Pt) at each point in time. The rent of each party is defined

as the difference between the asset value obtained by participating in the match and the

disagreement outcome of continued search. Since the two rents remain proportional, it
5A notable exception is the recent paper by Postel-Vinay and Thuron (2005). They estimate a model

with i.i.d. productivity shocks, on-the-job search and wage renegotiation by mutual consent. Given the
complexity of their set-up, they do not incorporate human capital accumulation and take job separation
as exogenous. Nevertheless, the likelihood function of the model cannot be analytically characterized, so
they have to rely on Optimal Minimum Distance estimation.
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cannot be the case that one is positive and the other negative. Hence it is clear that

workers and firms always separate by common agreement.

Let U denote the steady-state expected value of search by an unemployed worker.

The search effort costs the worker s and he meets at the flow rate λ a firm with an open

vacancy. The contact leads to a match if the initial output drawn from the distribution

G(·) is at least as great as the reservation output R. Under the assumption that workers
are risk-neutral and that they discount the future at rate r, U satisfies the following

equation

rU = −s+ λ

Z +∞

R

βS(P )dG(P ) (2)

where β denotes the worker’s bargaining power. As opposed to the labor force whose size

is fixed and normalized to one, new firms enter the market until arbitrage opportunities

are exhausted. Thus free-entry ensures that the firm’s outside option is equal to zero.

Accordingly the total surplus of the match can be decomposed in the following way

rS (Pt) = Pt − rU − δS (Pt) +
E

dt
[dS (Pt)] (3)

where it is assumed that firms discount the future at the same rate than workers. The

additional term δS (Pt) corresponds to the loss incurred by both parties when the job is

hit by an exogenous destruction shock. Notice also that the surplus evolves through time

due to output fluctuations. In the deterministic case, one can immediately solve for S (Pt)

by combining equations (2) and (3). In the stochastic case, we have to solve the partial

differential equation satisfied by S (Pt) as explained in the Appendix.

Proposition 1 The expected surplus of a match with current output Pt and reservation

output R is given by

S (Pt;R) =
Pt

r + δ − ζ
−
µ

1

r + δ

¶
rU −

∙
R

r + δ − ζ
−
µ

1

r + δ

¶
rU

¸µ
Pt
R

¶α

(4)

where α is the negative root of the following quadratic equation

σ2

2
α (α− 1) + αζ − r − δ = 0
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One can solve for the optimal reservation output using a standard first-order condition

with respect to R. The resulting solution is homogenous of degree zero in Pt, so that R is

identical across matches, as one should expect. Its optimal value is given by

R =

µ
α

α− 1

¶µ
r + δ − ζ

r + δ

¶
rU (5)

From the definition of α, it is easily seen that R is upper-bounded by the opportunity

cost of employment rU . Within the neighborhood of R, output is too low to cover costs

but the job might again turn profitable thanks to future shocks. Therefore the worker and

the firm procrastinate up to the point where the value of waiting equals the operational

losses. On the contrary, there is no labor-hoarding when productivity is constant and the

reservation output is equal to the opportunity cost of employment.

2.3 The equilibrium

This section characterizes the equilibrium rate of unemployment and the cross-sectional

distributions of jobs spells and wages. It will be shown in section 3 that these statistics

have closed-form solutions when the sampling distribution G(·) is lognormal. But for
the moment we keep the analysis as general as possible by not imposing any parametric

assumption. First of all, we notice that the Nash-bargaining problem is satisfied if and

only if wages are such that

w(Pt) = βPt + (1− β)rU (6)

The wage follows from output by a location transformation. So we can restrict our

discussion without loss of generality to the cross-sectional distribution of output. The

derivations are based on the premise that the labor market is in steady state so that

job flows are constant and balance at all time.6 The statistics of interest are derived

using a progressive approach: starting from the most informative one, namely the joint

distribution of jobs spells and output, we aggregate it step by step in order to obtain the

rate of unemployment.
6Although conventional for obvious technical reasons, the steady-state assumption is actually quite

restrictive. We refer to Jolivet et al. (2004) for empirical evidence in its favor.
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Proposition 2 The measure of ongoing job relationships with current output x and

tenure T is given by

υ(x, T ) = uλ

µZ +∞

R

h (x, T ;P ) dG(P )

¶
(7)

where u denotes the rate of unemployment. The analytical expression for h (x, T ;P ) reads

h (x, T ;P ) =

⎧⎪⎨⎪⎩ e−δT

Ã
e
− 12

µ
ln(x)−ln(P )−µT

σ
√
T

¶2
σ
√
2πT

−
¡
R
P

¢ 2µ
σ2 e

− 12

µ
ln(x)+ln(P )−2 ln(R)−µT

σ
√
T

¶2
σ
√
2πT

!
; if x > R

0; otherwise.
(8)

where µ = ζ − σ2

2
is the trend of ln (Pt) and d =

p
µ2 + 2δσ2.

The first term on the right side of (7) measures the number of contacts between

searchers and firms. The function h (x, T ;P ) is the conditional joint density of current

output and tenure given initial output. From the set of sample paths starting from P

and reaching x after tenure T , it deduces all those that breach the separation threshold

R.7 The unconditional joint density is obtained integrating h (x, T ;P ) with respect to

G(P ), since entrants draw their starting output from G(·). The sampling distribution is
integrated from R up to infinity because contacts lead to matches solely when P is above

R.

The mass of jobs with a given current output is readily obtained from (7) after having

integrated tenure from 0 up to infinity. The following proposition shows that the resulting

integral can be expressed analytically.

Proposition 3 The measure of ongoing job relationships with current output x is given

by

υ(x) = uλ

µZ +∞

R

ϕ(x;P )dG(P )

¶
(9)

7Notice that an econometrician who observes the wages of workers at different points in time of their
jobs spells could use equation (8) to compute the likelihood of the sample paths.
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where the function ϕ(x;P ) reads

ϕ(x;P ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P
¡
x
P

¢µ−d
σ2
−1
Ã
1−(RP )

2d
σ2

d

!
; if x ≥ P

P
¡
x
P

¢µ+d
σ2
−1
Ã
1−(Rx )

2d
σ2

d

!
; if x ∈ [R,P ]

0; otherwise

(10)

The aggregate rate of employment follows integrating equation (9) from R up to infin-

ity. Again the calculation leads to a closed-form expression that is given in Proposition 4.

The expression is reminiscent of the equilibrium rate of unemployment under certainty.

Actually, when uncertainty vanishes so that σ goes to zero, the term (R/P )
µ+d

σ2 becomes

negligible and the expression of u converges to the standard one.

Proposition 4 The equilibrium rate of unemployment is equal to

u =
δ

δ + λ
R +∞
R

³
1−

¡
R
P

¢µ+d
σ2

´
dG(P )

(11)

In this section we have presented the statistics that will be useful for the econometric

estimation. Next section details the econometric procedure and analyzes the property of

the likelihood function.

3 Estimation procedure

We now discuss how to estimate the model’s parameters. The searching costs parameter

s is not identified because it enters the likelihood function only through its impact on

R. As explained below, we will treat the reservation output as if it were an endogenous

parameter to be estimated. After all the parameter estimates have been obtained, the

equilibrium conditions can be used to retrieve the implied searching costs. Conversely, the

values of r and β have to be fixed prior to the estimation. While not so problematic for r

since it has been estimated with precision in other research, the calibration of β is more

unsettling. Although the bargaining power is theoretically identified due to the highly
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non-linear likelihood function, trials show that in practice the model fails to pin it down.

In the absence of informations on firm profits, it is not surprising that the dataset does

not allow us to recover both sizes and allocations of the jobs’ surpluses. This difficultly

has been recognized since a long time and is now gradually overcome by research based

on matched employer—employees data (see Cahuc et al., 2005; Dey and Flinn, 2005).

Given the one-sided nature of the CPS data, we stick to the usual practice of assuming

symmetric bargaining.

3.1 The likelihood function

Following these preliminary steps, the likelihood of the sample can be expressed as a

function of the remaining set of parameters. We slightly restrict the generality of the

problem by assuming that the sampling distribution G(·) can be completely parametrized
in terms of a finite-dimensional vector Ω so that the set of estimated parameters Θ =

{ζ, δ,σ,Ω, R,λ}.
The likelihood of the sample is computed as follows. Let Y denote the set of observa-

tions, so that Y = {y1, y2, ..., yn} where n is the total number of workers in the sample.
The individual observations are defined using three variables: wi , T i, τ i. The variables

wi and T i report the current hourly wage and job tenure respectively. In the case where

worker i fails to report the length of his job spell, T i is obviously ignored. If worker i is

currently searching for a job, yi is set equal to the unemployment duration τ i. The likeli-

hood function is therefore made of three distinct components. The individual contribution

of a job searcher is equal to the density associated with an on-going unemployment spell of

length τ conditional on unemployment times the probability of observing an unemployed

worker

f(τ , u) = f(τ |u)u =
³
λ eG(R)e−λ eG(R)τ´u = δλ eG(R)e−λ eG(R)τ

δ + λ
R +∞
R

³
1−

¡
R
P

¢µ+d
σ2

´
dG(P )

where eG(R) = 1 − G(R). The likelihood of observing an employed worker paid wage w
is given by υ(x, T ). The density can be further decomposed reinserting (11) into (9) to
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obtain

f(w, e) = υ(x (w)) =
δλ
³R +∞

R
ϕ(x(w);P )dG(P )

´
δ + λ

R +∞
R

³
1−

¡
R
P

¢µ+d
σ2

´
dG(P )

Notice that output is defined as a function of the observed wage. Its implicit value

follows from combining (5) with (6)

x(w) =
w − (1− β)

¡
α−1
α

¢ ¡
r+δ
r+δ−ζ

¢
R

β

Similarly, the joint likelihood of observing a worker paid wage w with a job tenure

equal to T is given by

f(w, T, e) = υ(x (w) , T ) =
δλ
³R +∞

R
h (x, T ;P ) dG(P )

´
δ + λ

R +∞
R

³
1−

¡
R
P

¢µ+d
σ2

´
dG(P )

Putting together these three components, the log likelihood for the observed sample

reads

lnL (Θ, Y ) = n

Ã
ln(λ) + ln(δ)− ln

Ã
δ + λ

Z +∞

R

Ã
1−

µ
R

P

¶µ+d

σ2

!
dG(P )

!!

+nU ln
³
G̃(R)

´
− λG̃(R)

X
i∈U

τ +
X
i∈W

ln

µZ +∞

R

ϕ(x(w);P )dG(P )

¶
+
X
i∈H

ln

µZ +∞

R

h(x(w), T ;P )dG(P )

¶
(12)

where nU is the number and U the set of indices of job searchers in the sample, W is

the set of indices of employees who only report their current wage and H is the set of

indices of employees who report both wage and job spell. Despite being absent from the

analytical expression of the likelihood function, the parameters ζ, σ and Ω are implicitly

identified. Whereas ζ and σ determine the values of µ, d, ϕ(·) and h(·), the parametric
vector Ω obviously influences G(·). Notice that is treated for the sake of the estimation
as a primitive parameter of the model.

The likelihood function is continuously differentiable and its parameters belong to a
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compact support. It does not, however, satisfy all the standard requirements for a well-

behaved likelihood function since the support of the distribution of the data is a function

of the parameters. Furthermore, the likelihood of observing the reservation wage is equal

to zero. As explained in the introduction, this feature implies that we cannot use the

smallest observed wage as a super-consistent estimator. Yet next proposition shows that,

under very mild requirements, the estimators satisfy asymptotic normality.

Proposition 5 Suppose that (i) The parameter space Γ is compact and contains an open

neighborhood of the true value Θ0 of the population parameter; (ii) The sampling distrib-

ution G(P ) is continuously differentiable. Then the maximum likelihood estimator

bΘ = argmax
Θ∈Γ

lnL (Θ, Y )

converges in probability to Θ0 so that
√
n
³bΘ−Θ0

´
d−→ N (0,H−1JH−1) where H is the

Hessian of the likelihood function and J is the information matrix.

The proof of Proposition 5 relies on the fact that f(w(R), e) and f(w(R), T, e) are

both equal to zero. As shown in Greene (1980), this property justifies the interchange of

the order of integration and differentiation and consequently allows us to characterize the

asymptotic property of the estimator by linear approximation. Our problem is slightly

less standard than the one considered by Greene because the derivative of the density

functions with respect to Θ are not equal to zero when evaluated at the reservation

output. Thus the interchange of the order of integration and differentiation is justified

solely for the first derivative. This is why the hessian matrix H is not equal to −J
so that the asymptotic covariance matrix cannot be simplified and set to J−1. But, as

explained in Newey and McFadden (1994), the information matrix equality is not essential

to asymptotic normality. The only complication is technical and due to the more intricate

form of the asymptotic variance. This result has direct relevance for the model studied

in this paper but is also of more general interest since it is likely to apply to a wide class

of models where exit is endogenized.
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3.2 Log-normal sampling distribution

We have characterized the estimation procedure for general sampling distributions. The

econometric implementation of the model requires to narrow our analysis to a particular

family of distributions. Accordingly, we will hereafter assume that G(·) belongs to the
lognormal family. Lognormal distributions are commonly assumed because they satisfy

the “recoverability condition” defined by Flinn and Heckman (1982), meaning that their

location and scale parameters can be recovered from truncated observations. The class of

functions which satisfy the “recoverability condition” is larger than the lognormal family

as it encompasses among others gamma and exponential distributions.8 Thus lognormality

is eventually justified by its good fit of the data. In our case, the lognormal assumption has

a more crucial role. Given the intricate expression of the likelihood function, there is little

hope to derive it in closed-form. Yet, when initial outputs are lognormally distributed in

the population, the likelihood function has an analytical expression so that approximation

errors due to numerical integrations can be avoided.

Proposition 6 Under the assumption that the initial output are drawn from a lognormal

distribution, so that

G(P ) =
e−

1
2(

ln(P )−Σ
ξ )

2

Pξ
√
2π

(13)

the likelihood functions L (Θ) has a closed-form solution. The resulting expression is

reported in Appendix.

Given its length, we do not include the expression of L (Θ) in the main body of the

paper. As intricate as it is, it may come as a surprise to the reader that a closed-form

expression can be derived. But this result is better understood recalling that geometric

Brownian motions are also lognormal processes.

8See Flinn (2006) for a careful discussion of the class of functions which satisfy the “recoverability
condition”.
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4 Empirical results

4.1 Data

Whereas most surveys systematically ask unemployed workers to report the time they have

been searching for a job, employees are rarely asked the length of their job spells. As a

result data on job durations are scarcer than data on unemployment durations. A notable

exception is the January/February supplement of the Current Population Survey. The

CPS is structured as a rotating panel with 4 months of participation, 8 months without

interviews, and 4 more months of participation after which the household is taken out of

the panel. In January, the current wages and job spells of the Outgoing Rotation Groups9

are collected. More precisely, employees are asked the following question: “How long have

you been working continuously for your present employer?”.

Hence the job tenure supplement provides data on both job spells and wages for a

supposedly random sample of one fourth from the January 2004 CPS. We use data on

males and females with an age between 20 and 65 years. Since our model does not

include a state of non participation to the labor market, we have restricted our sample to

individuals who indicated that they were currently employed or were actively searching

for a job. For the same reason, we have excluded individuals observed as self-employed,

working part time or employed in the non-civilian labor force. After excluding observations

with missing wage data, we split the sample into two sub-samples: one containing workers

with a high school graduation diploma or less and another one containing workers with

tertiary education. So we consider that the sample is actually composed of two distinct

labor markets depending on the education level. While restrictive, this hypothesis is not

uncommon in the literature. Its main interest in our case is that it will enable us to

estimate two distinct reservation wages. Finally we have trimmed each sub-sample by

excluding the top and bottom percentile of the wage distribution. The trimming of the

bottom percentile is particularly important for the estimation of the reservation wage

since it allows us to avoid implausibly low estimates due to measurement errors.10

9In our case, the Outgoing Rotation Groups are composed of the households that entered the panel
in October 2002 and 2003.
10The trimming of the data is particularly useful given the nature of the observations. For the workers

which are not paid on an hourly basis, we have divided their gross weekly wage by the usual hours of
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TABLE 1

DESCRIPTIVE STATISTICS

No Tertiary Education Tertiary Education

Mean Standard Dev.
of Mean

Mean Standard Dev.
of Mean

Age 40.4 .165 40.9 .136

Female .417 .007 .477 .006

Working week (hours) 41.4 .087 42.8 .08

Average spells (months)

Unemployed 4.5 .246 4.44 .28

Job 92.5 1.6 94.8 1.27

Hourly wage

All jobs 13.7 .10 20.8 .13

Job spell<1 year 11.8 .27 17.8 .36

Entrants 10.3 .36 16.8 .73
Number

of Observations
Number

of Observations

Labor Market Position

Unemployed 413 316

Employed 4336 6534

Reported job spells

Total number 3676 5776

Job spell<1 year 535 787

Entrants 154 195

Sample size 4749 6850

Descriptive statistics for the two sub-samples are reported in Table 1. Age and Sex

are quite similar. Whereas working hours do not differ much, the other work related

data exhibit significant discrepancies. As one might expect, employees with a higher

education earn on average a higher wage. More interestingly, even though the rate of

unemployment is two times higher for workers without tertiary education, the average

unemployment durations are almost identical. This points to differences in the matching

work per week in order to impute their hourly wage. Obviously this computation interacts potential
measurement errors and for some observations lead to extremely low wages.
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process between the two groups of workers and provides support to the premise that we

are actually considering distinct labor markets.

Table 1 also reports descriptive statistics for jobs with a reported tenure below one

year. Their wage distribution will be very close to the estimated sampling distribution

because the estimation procedure actually approximates the latter using data with short

jobs spells. This points to potential bias as can be seen from the statistics of the wage

distribution for entrants.11 The wage distribution of jobs with less than one year of

tenure has a higher mean than the entrants distribution. This feature of the data is easily

explained by on-the-job search as workers that quit their job select offers which are above

their current wage. Since our model excludes on-the-job search, the job-ladder effect is

ignored and consequently our estimates of the sampling distribution are biased upwards.

This is in turn will lead to downward bias for the estimates of the rate of learning-by-doing.

However figures 1 and 2 suggests that these biases are not likely to be severe. Both

figures report the non-parametric kernel density estimates of the three wage distributions.

Although the entrants distribution differ from the distribution for workers with less than

one year of tenure, the discrepancies appear to be relatively mild. To the contrary, the

aggregate wage distributions exhibit a much higher dispersion. This feature fits well the

model since Brownian motions are diffusion processes, meaning that their distribution

becomes more and more dispersed as time elapses.

Turning our attention to the divergences between the sub-samples, we observe that

they display the same qualitative features. Yet, we notice two obvious differences. Firstly,

the densities are more dispersed for tertiary educated workers. Secondly, their aggregate

wage distribution appears to be more closely related to the distribution among job en-

trants.

4.2 Estimates

Table 2 contains the estimated parameters for yearly periods along with their standard

deviations. We also estimate the deterministic model using the procedure devised by

Flinn and Heckman (1982). Table 2 makes clear that their approach is nested into the
11We are able to identify individuals entering the employment pool by excluding those that were working

a year ago.
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Figure 1: Wage densities for workers without tertiary education.
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Figure 2: Wage densities for workers with tertiary education.
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one proposed in this paper. Notice that in addition to the learning-by-doing rate ζ

and variance parameter σ, the model also allows us to estimate the expected value and

standard deviation of the reservation wage wr. On the contrary, the values reported for

the deterministic model correspond to the lowest wage in each sub-sample so that their

standard deviations are not well defined.

The estimates of Σ and ξ imply that the mean and dispersion of the sampling distri-

butions are higher in the deterministic model than in the stochastic model. This result

is expected because the deterministic model is based on the premise that the sampling

distribution and the aggregate distribution are one and the same. To the opposite, the

estimation of the stochastic model sets the parameters Σ and ξ so as to fit the distribution

of wages for jobs with a tenure close to zero. As shown in Figures 1 and 2, the aggregate

distributions are located to the right and exhibit a higher dispersion than the entrants

distributions, which is reflected by the different estimates of Σ and ξ.

The exogenous rates of job destruction δ are quite similar in both models. This is

somewhat surprising since the stochastic model generates endogenous separations. Thus

one might expect that the rate of exogenous job destruction would be significantly lower

in a stochastic environment. However, for the very small estimates of the variance pa-

rameters, endogenous separation is a marginal phenomenon. Accordingly the separation

rates are quit similar in both models and imply that the average job spell is close to

92 weeks for workers with tertiary education and to 94 weeks for workers without ter-

tiary education. Thus the estimated average lengths of a job replicate the values of the

descriptive statistics reported in Table 1.

The estimated values of λ imply that searchers with and without tertiary education

receive job offers every 6 and 4 months respectively. Although the models over-estimate

the average unemployment duration for workers without tertiary education, the estimates

of their unemployment rate is biased downward to 6.4% while its value in the data is

8.7%. These opposite biases highlight the tension contained in the data between the

informations on unemployment duration and aggregate unemployment rate. They point

towards violation of the stationarity assumption that is most probably explained by a

significant and recent entry into the labor force of workers without tertiary education.
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TABLE 2

ESTIMATES

No Tertiary Education Tertiary Education

Parameters Stochastic Deterministic Stochastic Deterministic

wr 3.92
(.182)

4.11
(___)

4.84
(.084)

5.15
(___)

ζ .023
(.0038)

___ .020
(.0014)

___

σ .0685
(.0047)

___ .0705
(.0020)

___

δ .131
(.0049)

.133
(.071)

.125
(.0292)

.126
(.0811)

Σ 2.84
(.083)

3.01
(.008)

3.27
(.044)

3.41
(.0076)

ξ .464
(.0079)

.526
(.011)

.570
(.004)

.609
(.009)

λ 1.93
(.0062)

1.94
(.057)

2.69
(.0315)

2.66
(.0567)

ln L −28885 −29045 −47192 −47329
Calibrated Parameters: r = 0.05 β = 0.5

We now turn our attention to the estimates which are specific to the stochastic model.

First of all, we notice that the variance parameters σ are quite low. With a standard

deviation close to 7%, the stochastic model predicts that sample paths are almost deter-

ministic. Nonetheless, one cannot constrain σ to be equal to zero and at the same time

estimate ζ. The reason is that the lower-bound of the joint distribution is an increasing

function of tenure in a purely deterministic environment. As a result, the likelihood of

observing a job with a tenure equal to T and a wage inferior to eζTwr is zero. Given

that both samples contain such observations, setting σ equal to zero yields a sample like-

lihood of minus infinity as long as ζ significantly differs from zero. In other words, the

deterministic model necessarily collapses to the case where the sampling and aggregate

wage distributions are indistinguishable. Thus there is a fundamental link between the

introduction of uncertainty and the estimation of the learning-by-doing rate, the former

being necessary to implement the latter.

The rate of learning-by-doing ζ is almost 10% lower for tertiary educated workers.

To interpret this finding it is useful to recall that in our model learning is purely match-

20



specific. Our estimates do not capture the accumulation of general human capital which

is known to be higher for skilled workers. Given this limitation, our result concurs with

the findings in Dustmann and Meghir (2005) according to which skilled workers have

lower returns to tenure. Quantitatively speaking, the model predicts that 10 years of

tenure result in a wage increase of 18.8% for low-skilled worker and 16.9% for high-skilled

workers. Accordingly our estimates of the cumulative returns to tenure are in the middle

of the range separating the low returns obtained by Altonji and Williams (2005) and of

the high returns obtained by Topel (1991).

We now turn to the ability of the model to fit the sample information. Of most

interest to our analysis are its predictions about the joint distributions of wages and

tenure. The data for jobs with a tenure below 1, 5, 10 and 20 years are reported against

their simulated counterparts in Figures 3 and 4. Both panels illustrate the ability of

the model to fit almost perfectly the gradual increase in dispersion of the cross-sectional

distributions. Yet careful inspection shows that the simulation tends to be a little bit

less responsive to changes in tenure. We also notice that the model matches very well

the right tails of the distributions. This a classical test for models of wage dispersion

due to the “heavy tail” property of the data. As explained in Prat (2006), endogenous

diffusion of job output implies that the cross-sectional distribution aggregates underlying

distributions with right-tails of Pareto functional form. Therefore it is not be surprising

that the model easily fits the wage distribution at high quantiles.

Since we have excluded on-the-job-search, one may wonder whether the fit of the wage

distribution is achieved at the expense of the turnover process. To address this potential

concern, we report in Figures 4 and 5 the actual distributions of jobs spells together

with their structural estimations. While not as convincing than for wages, the model

predictions are still reasonably close to the data. The model systematically under-predict

the rate of job destruction in the first year. As discussed in Ridder and van der Berg

(2003), the difficulty to explain the occurrence of many short job spells is also inherent

to models of on-the-job-search. Nonetheless, this result is somewhat disappointing since

it is shown in Prat (2006) that the framework estimated in this paper has the potential

to fit the hazard rate of job separation. Unfortunately this would require us to set the

idiosyncratic variance σ at a higher value than the one resulting from the estimation.
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Figure 3: Wage densities at different jobs spells for workers without tertiary education.
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Figure 4: Wage densities at different jobs spells for workers with tertiary education.
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Figure 5: Jobs spells distribution for workers with no tertiary education.
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Figure 6: Jobs spells distribution for workers with tertiary education.
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5 Conclusion

It has been shown in this paper how the production side of the Mortensen and Pissarides

(1994) framework can be estimated by maximum likelihood using cross-sectional data.

The analysis establishes that a parsimoniously specified model can convincingly fit the

cross-sectional features of the data once learning-by-doing is taken into account. We

find that workers without tertiary educations have slightly higher returns to tenure than

tertiary educated workers. A concrete contribution of the analysis is to identify the rate

of learning-by-doing in an equilibrium set-up, whereas the estimates previously available

in the literature are typically based on “reduced-form” estimations. The model could

easily be closed by introducing an aggregate matching function and so used to evaluate

the impact of learning-by-doing on various labor market policies. Applying the model to

cross-sectional data would also be straightforward and certainly helpful to obtain more

precise informations on the variance parameter.

As we have deliberately tipped the balance in favor of tractability over realism, the

model lends itself naturally to several extensions. We conclude by briefly discussing some

of these. The most obvious refinement would be to introduce general human capital.

Although not so demanding at the conceptual level, we suspect that this extension will

come at the cost of closed-form solutions. More interesting is the introduction of on-the-

job search since it would connect our model with the burgeoning econometric literature

based on employers competition. Until recently, uncertainty and on-the-job search have

been considered in isolation. But, as attested by a series of recent papers (Nagypál,

2006; Postel-Vinay and Thuron, 2005; Yamagushi, 2006), the interest of combining both

dimensions is now widely recognized. Such a research project raises serious technical

challenges and for the moment available estimates are based on indirect inference methods.

This paper shows that stochastic calculus might help to alleviate some of the difficulties.

Finally, we also hope that the derivations of the asymptotic properties of the estimators

would be of some use to researchers interested in other areas than labor economics since

our result should apply to a wide class of models with endogenous exit.
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APPENDIX

• Proof of Proposition 1: We guess that R does not depend on current output and so

is the same across jobs. Then the Bellman equation satisfied by the surplus within the

continuation region follows by Ito’s Lemma

(r + δ)S(P it , R) = P
i
t − rU + ζP itS1(P

i
t , R) +

(P itσ)
2

2
S11(P

i
t , R)

where number subscripts denote the partial derivatives of the function. It is well known

that the general solution of this partial differential equation is of the form

S(P it , R) = C(R)

µ
P it
R

¶α

+D (R)

µ
P it
R

¶η

+EP it

∙Z +∞

t

e−(r+δ)(τ−t)
¡
P iτ − rU

¢
dτ

¸
(14)

where C andD are some constants of integration which do not depend on the current state

P it , while α and η are respectively the negative and positive roots of the characteristic

equation
σ2

2
χ (χ− 1) + χ (ζ − γ) + γ − r − δ = 0

We impose the following boundary conditions on the solution of (14)(
limP it−→+∞ S(P

i
t , R) =

P it
r+δ−ζ −

¡
1
r+δ

¢
rU

limP it−→Rt S(P
i
t , R) = 0

The first boundary condition implies that we can setD (R) equals to zero in order to elim-

inate the positive root η. The solution proposed in (4) satisfies both differential equation

and boundary conditions. The optimal reservation productivity is set so as to maximize

the surplus. Since current revenues are independent of the reservation productivity, it can

be shown that ∂S(·,R)
∂R

= 0 when12

∂S(P it , Rt)

∂P it

¯̄̄̄
P it=Rt

= 0 (15)

12See Merton(1973), p.171.
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It is commonly referred to equation (15) as the smooth-pasting condition. Its solution

reads

R =

µ
α

α− 1

¶µ
r + δ − ζ

r + δ

¶
rU (16)

which is equivalent to (5) and verifies our guess that R is independent of P it .

• Proof of Proposition 2: Consider a match i that is operational at date t. We define
the stopping time τ i1 as the time of arrival of the first exogenous destruction shock and

τ i2 = min
©
τ > t : P iτ = R

ª
So τ i2 is the first time at which the job would have been endogenously destroyed. Hence, job

i is operational at time t+T if and only if τ i1 and τ
i
2 are superior to t+T . As death shocks

and idiosyncratic fluctuations in output are independent, it follows by complementarity

that

Pr
©
P it+T ∈ A ∩ τ i2 > t ∩ τ i1 > t

¯̄
P it
ª

=
¡
Pr
©
P it+T ∈ A

¯̄
P it
ª
− Pr

©
P it+T ∈ A ∩ τ i2 ≤ t+ T

¯̄
P it
ª¢
∗ Pr

©
τ i1 > t+ T

ª
(17)

where the Borel set A ⊂ (R,+∞). These probabilities are more easily computed con-
sidering ln(P it+T/P

i
t ) since it is a standard Brownian motion starting at 0. Thus the

expression of Pr
©
P it+T ∈ A

¯̄
P it
ª
is

Pr
©
P it+T ∈ A

¯̄
P it
ª
=

Z
A

e
−1
2

Ã
ln(x)−ln(Pit)−µT

σ
√
T

!2

σ
√
2πT

dx (18)

where µ = ζ− σ2

2
is the trend of ln (P it ). The expression of Pr

©
P it ∈ A ∩ τ i2 ≤ t|P it−T

ª
is easily obtained from the reflection principle when the drift µ is equal to zero. The

general expression is derived in Harrison (1985) through a change of measure

Pr
©
P it+T ∈ A ∩ τ i2 ≤ t+ T

¯̄
P it
ª
=

Z
A

µ
R

P it

¶ 2µ

σ2 e
− 1
2

Ã
ln(x)+ln(Pit)−2 ln(R)−µT

σ
√
T

!2

σ
√
2πT

dx (19)
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Equation (8) is obtained substituting (18) and (19) into (17), and multiplying the result-

ing expression by Pr {τ i1 > t+ T} = e−δT . According to Bayes’ rule, the unconditional
density

Pr
©
P it+T ∈ A ∩ τ i2 > t ∩ τ i1 > t

ª
= Pr

©
P it+T ∈ A ∩ τ i2 > t ∩ τ i1 > t

¯̄
P it ∈ B

ª
∗ Pr

©
P it ∈ B

ª
where the Borel set B ⊂ (R,+∞). Therefore, under the assumption according to which
initial output P it are drawn from G (·), the unconditional density is obtained integrat-
ing the conditional density (8) with respect to G (·). Finally the unconditional measure
υ(x, T ) is given by the unconditional density multiplied by the rate of job creation. Ac-

cording to the stationarity assumption, the mass of jobs created at each point in time is

constant and equal to µλ.

• Proof of Proposition 3: By definition, the mass of jobs with current output equal to
x is given by

υ(x) =

Z +∞

0

υ(x, T )dT = uλ

Z +∞

0

µZ +∞

R

h (x, T ;P ) dG(P )

¶
dT

Reversing the order of the integrals allows us to find an analytical solution for υ(x). A

few algebra yields

h (x, T ;P ) =
³ x
P

´µ+d

σ2

⎛⎝e− 1
2

³
ln(x)−ln(P )+dT

σ
√
T

´2
σ
√
2πT

−
µ
R

P

¶− 2d
σ2 e

− 1
2

³
ln(x)+ln(P )−2 ln(R)+dT

σ
√
T

´2
σ
√
2πT

⎞⎠
where d =

p
µ2 + 2δσ2. Using the result in Leland and Toft (1997) according to which

for positive values of x

Z τ

0

e
− 1
2

³
ln(x)+dT

σ
√
τ

´2
σ
√
2πT

dT =

µ
1

d

¶µ
−Φ
µ
− ln (x)− dτ

σ
√
τ

¶
+ x−

2d
σ2Φ

µ
− ln (x) + dτ

σ
√
τ

¶¶
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where Φ(.) is the standard normal cumulative distribution function, we obtain

lim
τ→+∞

Z T

0

e
− 1
2

³
ln(x)+dτ
σ
√
τ

´2
σ
√
2πτ

dT =
x−

2d
σ2

d

Using this limit to the integrate h (x, T ;P ) with respect to T and ensuring that the

integration is always performed over positive values, yields

ϕ(x;P ) =

Z +∞

0

h (x, T ;P ) dT =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P
¡
x
P

¢µ−d
σ2
−1
Ã
1−(RP )

2d
σ2

d

!
; if x ≥ P

P
¡
x
P

¢µ+d
σ2
−1
Ã
1−(Rx )

2d
σ2

d

!
; if x ∈ [R,P ]

0; otherwise

(20)

The expression of υ(x) reported in Proposition 3 follows directly.

• Proof of Proposition 4: Given that the size of the labor force has been normalized to
one, the rate of employment is equal to the integral of υ(x) from R up to infinity. Thus

1− u =

Z +∞

R

υ(x)dx

= uλ

Z +∞

R

µZ +∞

R

ϕ(x;P )dG(P )

¶
dx = uλ

Z +∞

R

µZ +∞

R

ϕ(x;P )dx

¶
dG(P )

Integrating ϕ(x;P ) with respect to x is straightforward though tedious. It yields

Z +∞

R

ϕ(x;P )dx =

µ
1

δ

¶Ã
1−

µ
R

P

¶µ+d

σ2

!

The expression of the unemployment rate u is immediately obtained reinserting this so-

lution into the previous equation and simplifying.

• Proof of Proposition 5: When G(P ) is continuously differentiable, the density func-
tions f(w, e), f(w, T, e) and consequently the likelihood function L (Θ) are also contin-

uously differentiable. Since Z +∞

R(Θ)

f(w, e;Θ)dw = 1
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Leibnitz’s rule implies that

∂

∂Θ

Z +∞

R(Θ)

f(w, e;Θ)dw =

Z +∞

R(Θ)

∂f(w, e;Θ)

∂Θ
dw − f(R (Θ) , e;Θ)∂R(Θ)

∂Θ

=

Z +∞

R(Θ)

∂f(w, e;Θ)

∂Θ
dw = 0

The second equality holds because, ϕ(R;P ) = 0 for all P , so that f(R (Θ) , e;Θ) = 0.

Similarly, since h (R (Θ) , T ;P ) = 0 for all values of P and T , we have f(R (Θ) , T, e;Θ) =

0. Thus Z +∞

R(Θ)

∂f(w, e;Θ)

∂Θ
dw =

Z +∞

R(Θ)

∂f(w, T, e;Θ)

∂Θ
dw = 0

Therefore the order of integration can be reversed and the central limit theorem yields

√
n

Ã
nX
i=1

∂ ln f (Θ, yi)

∂Θ

!
d−→ N (0, J)

where J is the information matrix. Since the estimator bΘ is consistent, by the law of large

number
1

n

Ã
nX
i=1

∂2 ln f (Θ, yi)

∂Θ2

!
p−→ H

where H is the Hessian matrix. Notice, that the Hessian matrix is not equivalent to the

information matrix asZ +∞

R(Θ)

∂2f(w, e;Θ)

∂Θ∂Θ0
dw =

∂

∂Θ0

Z +∞

R(Θ)

∂f(w, e;Θ)

∂Θ
dw + fΘ(R (Θ) , e;Θ)

∂R(Θ)

∂Θ

= fΘ(R (Θ) , e;Θ)
∂R(Θ)

∂Θ
6= 0

Given that the likelihood function satisfies all the other regularity conditions, asymptotic

efficiency and asymptotic normality of the maximum likelihood estimator are established.

• Proof of Proposition 6: The proof of proposition 6 follows by direct calculation.
Given that the algebra is tedious, we decompose the solution in several steps. First

consider the integral with respect to h(x, T ;P ). Under the parametric assumption that
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G(P ) is lognormal, it reads
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where eΦ (x) = 1− Φ(x) and

ρ2(T ) = ξ2

ξ2+σ2T

A (x, T ) = −µT + ln(x) B (x, T ) =
−(A(x,T )ρ2(T )+Σ(1−ρ2(T )))

2

+A(x.T )2ρ2(T )(1−ρ2(T ))

C(x, T ) = 2 ln(R) + µT − ln(x) D(x, T ) =
−(C(x,T )ρ2(T )+Σ(1−ρ2(T )))

2

+C(x,T )2ρ2(T )(1−ρ2(T ))
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Now consider the integral with respect to ϕ(x, P )
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Finally consider
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The closed-from expression of the likelihood function is obtained inserting (21), (22) and

(23) into (12). Notice that the unemployment rate also has an analytical solution
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