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Abstract 

I consider a version of the chain store game where the incumbent firm’s type 

evolves according to a Markov process with two states:  a “tough” type who 

always fights entry, and a “weak” type who prefers to accommodate.  There 

exists a minimal level of persistence necessary for the incumbent to be able to 

sustain any reputation for being tough.  Above that level, as the number of 

markets T increases, in equilibrium play alternates between intervals of entry by 

competitors and intervals of deterrence.  When T is infinite, then regardless of the 

discount factor there exists a sequential equilibrium in which the incumbent’s 

payoff is bounded below her Stackelberg payoff.  Both results are in contrast to 

the outcome when the incumbent’s type is fixed.  One interpretation is that 

reputation is not permanent, but must be renewed occasionally. 

   

 

1. Introduction 

In Selten’s (1978) chain store game, a single long-lived incumbent firm (the 

“chain store”) faces a sequence of T potential entrants (“competitors”) in distinct, 

identical markets.  Each competitor lives for only a single period.  He chooses whether to 

enter the market and compete with the incumbent, or to stay out.  Whether or not entry is 

profitable depends on the incumbent’s subsequent decision to accommodate the entry or 

to fight it through a price war.  In the short run, accommodation is the better response for 

the incumbent, but she may decide to fight if doing so will deter future competitors from 
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entering.  Selten (1978) shows, however, that when T is finite, there is a unique subgame 

perfect equilibrium, in which all competitors enter and the incumbent always 

accommodates.  In this paper, I consider the case that the incumbent may be one of two 

types:  the regular, or weak, type, who prefers accommodation to fighting, and the tough 

type, who prefers to fight even in the short run.  The incumbent’s type evolves following 

a Markov process.  If the Markov process has at least a certain minimal level of 

persistence, then as the number of markets T increases, in equilibrium play alternates 

between intervals of deterrence (in which the competitor enters with probability zero, out 

of fear of being fought) and intervals of entry (with positive probability of entry).  Price 

wars – where entry occurs and is fought – arise in equilibrium with a probability that 

approaches 1 as T grows.  However, as the persistence of the Markov process also 

increases, entry is deterred in nearly 100% of the markets.  When the number of markets 

is infinite, then for any parameterization of the game, there exists a sequential 

equilibrium in which the incumbent’s payoff is bounded below her Stackelberg payoff.  

That bound is independent of the discount factor. 

Selten’s (1978) result is known as the chain store paradox:  in the unique subgame 

perfect equilibrium of the finite-horizon game, no matter how many times the incumbent 

fights entry, the next competitor believes that she will accommodate if he enters.  It is 

impossible for the incumbent to build a reputation for fighting, and thus she cannot deter 

entry.  Selten (1978) models only the regular, or weak, type of incumbent.  Kreps and 

Wilson (1982) and Milgrom and Roberts (1982) show that reputation can play a role in 

the chain store game by introducing a small probability that the incumbent is a tough, or 

crazy, type who always fights entry.  In their models, types are permanent  –  a tough 
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type remains tough for all T periods, and a weak type remains weak.  Kreps and Wilson 

(1982) and Milgrom and Roberts (1982) show that in equilibrium, the competitor in the t-

th-to-last market stays out if he believes that the incumbent is tough with probability 

greater than dt, where d ∈ (0, 1) is the probability of being fought that makes him 

indifferent between entering and staying out.  That is, the threshold belief to deter entry 

falls exponentially away from the end of the game.  One intuition is that near the last 

period, a reputation for toughness has little value, but when there are many markets 

remaining, the incumbent is more willing to fight.  Early in the game, the chance that the 

incumbent will try to establish a reputation for being tough by fighting is itself enough to 

deter entry.  In equilibrium, for any small ex ante probability p0 that the incumbent is 

tough, entry is deterred in except in the last N periods, where N is the smallest integer 

such that p0 > dN.  In the infinite horizon case, Fudenberg and Levine (1989) show that as 

the incumbent becomes more and more patient, the lower bound on her payoff in any 

Nash equilibrium approaches her Stackelberg payoff – that is, in equilibrium competitors 

sty out in nearly all markets. 

In this paper, I again consider two types of incumbent, but, more realistically, 

allow her to switch between types.  The tough incumbent may be one whose production 

costs are so low that she can easily win a price war with an entrant, and even benefit from 

the publicity generated by the competition.  Under that interpretation, it is natural to 

suppose that the incumbent’s type may change over time, as production costs vary due to, 

for example, fluctuations in the prices of inputs, or as consumer demand changes.  

Similarly, a firm facing a temporary cash crunch may be unwilling or unable to fight a 

price war. 
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Introducing impermanence into the incumbent’s type qualitatively changes 

equilibrium play with a finite horizon.  Not only can entry be deterred after 

accommodation (that is, the incumbent can regain a lost good reputation), but in fact 

deterrence can follow immediately after accommodation.  As will be shown, in some 

cases the incumbent need not fight a price war to reestablish herself as tough.  In the 

models of Kreps and Wilson (1982) and Milgrom and Roberts (1982), on the other hand, 

accommodation leads to entry in all subsequent markets.  In the infinite horizon case, 

moving away from perfect persistence decreases the lower bound on the incumbent’s 

payoff  –  in contrast to Fudenberg and Levine’s (1989) result, there are equilibria where 

she gets (in expectation) strictly less than her Stackelberg payoff, regardless of the 

discount factor.  With changeable types, a bad reputation does not last forever.  The 

incumbent can thus accommodate occasionally without suffering permanent harm.  That 

temptation to accommodate, however, may in turn lead more competitors to enter, so the 

overall effect is to lower the range of equilibrium payoffs for the incumbent. 

Other research looking at games where types change over time includes the work 

of Tadelis (1999, 2002, 2003) and Mailath and Samuelson (2001), who study the market 

for firms’ names (and thus their reputations) when such transactions are not observed by 

consumers.  (A similar story provides another explanation for how an incumbent’s type 

changes  –  a weak owner or manager might be placed by a tough one, without the 

public’s knowledge.  Aoyagi (1996) examines a version of the chain store game in which 

the owner of the firm changes, but not its type.)  Holmstrom (1999) studies the behavior 

of a manager who wants to convince potential employers that his talent level, which 

follows a random walk, is high.  Phelan (forthcoming) models capital taxation by a 
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government that switches between being trustworthy and not.  Similarly, in Cole, Dow, 

and English’s (1995) model, governments alternate between being more or less myopic; 

the less myopic government is willing to repay sovereign debt.  Athey and Bagwell 

(2004) study competition and collusion in procurement auctions between two suppliers, 

each of whom receives private and imperfectly persistent cost shocks.  Finally, Cripps, 

Mailath, and Samuelson (2004, 2005) suggest a very different motivation for studying 

impermanent types.  They demonstrate that in a simultaneous-move, infinite-horizon 

game with imperfect monitoring, a reputation cannot last forever:  eventually the 

temptation to exploit it is too great.  They conclude, then, that for reputation to be more 

than a transitory phenomenon in such a setting, it must be renewable  –  types must be 

changeable.1 

In the current model, the incumbent’s type switches between tough and weak 

according to a Markov process:  a tough type becomes weak with probability q, and a 

weak type becomes tough with probability r < 1 – q.  The stationary probability of a 

tough type, r/(r + q), is assumed to be small, so that ex ante the incumbent is very likely 

to be the regular type, as is usual in the literature on reputation.  Also, 1 – q > d and r < d, 

so that the incumbent’s being known to be tough in one period suffices to deter entry in 

the next period, but the chance that a weak incumbent becomes tough does not.   A 

couple of results follow immediately.  If the number of markets T is fixed (and finite), 

then as the Markov process approaches perfect persistence (as q and r approach 0), then 

equilibrium payoffs approach those from Kreps and Wilson’s (1982) and Milgrom and 

Roberts’ (1982) permanent-type case.  As r rises toward 1 – q (no persistence), 
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equilibrium payoffs tend toward those of the i.i.d. case, where no reputation can be 

sustained. 

The interesting case is when r < d < 1 – q are fixed, and the number of markets T 

increases.  With permanent types, the finite-horizon equilibrium features a long period (in 

fact, increasing without bound as T grows) of deterrence at the beginning of the game, 

followed by entry at the end.  With changing types, in contrast, play alternates between 

stretches of deterrence and periods where entry has positive ex ante probability.  

Roughly, the intuition is as follows:  in Kreps and Wilson’s (1982) and Milgrom and 

Roberts’ (1982) permanent-type model, the cutoff probability of the incumbent’s being 

tough, dt, that deters entry in the t-th-to-last market falls exponentially with t.  A similar 

process emerges with Markov types.  Eventually, though, dt falls below r, the probability 

that the incumbent is tough today when she was known to be weak yesterday.  But then a 

weak incumbent has no incentive to fight in the (t + 1)th-to-last market  –  entry will be 

deterred tomorrow even if she accommodates and reveals herself as weak.  Thus, only a 

tough incumbent will fight, and the cutoff deterrent probability dt+1 jumps back up to d.  

In fact, as T increases, the probability that in equilibrium entry occurs and is fought (a 

“price war”) approaches one.  Nevertheless, it can be shown that the limiting (for large T) 

fraction of markets in which entry is deterred tends toward one as the persistence of the 

incumbent’s type grows. 

When the number of markets T is infinite, then the finite-horizon strategies can be 

modified to construct a sequential equilibrium that cycles between entry and deterrence.  

The expected payoff to the incumbent in that equilibrium is strictly less than her 

Stackelberg payoff, and it does not vary with her discount factor.  As a corollary, when 
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the incumbent is patient enough, that cycling equilibrium can be used as a threat to 

support an equilibrium in which all competitors stay out, and the incumbent would 

always fight entry. 

The tough type of incumbent will be modeled in two ways, either as a committed 

type who must fight whenever given the chance, or as a strategic type who has the same 

action set as the weak type, but who prefers fighting to accommodation conditional on 

entry, and no entry to fighting.  It turns out that, subject to a restriction on beliefs, both 

specifications yield the same outcome with a finite horizon.  That is, the strategic type 

will always choose to fight in equilibrium.  The relevant restriction on beliefs is that after 

observing a choice of “fight,” competitors cannot revise their belief that the incumbent is 

tough downward.  Tough types are at least as likely to fight as weak types, even off the 

equilibrium path.  The equilibria constructed in the infinite horizon version also are valid 

for either specification of the tough type. 

In the next section I describe the model.  Section 3 contains a simple example.  

The results with finite and infinite horizons are in Sections 4 and 5, respectively.  Section 

5 is the conclusion. 

 

2. Model 

 There are T ∈ [1, … , ∞] periods and T + 1 players:  a single long-run incumbent, 

active in every period, and a sequence of T short-run competitors, each active in a single 

period only.  For the finite horizon case, let period t denote the t-th-to-last period, and 

player t the competitor active in that period.  (That is, time is counted backward from the 

end of the game.)  In the infinite horizon case, time is counted forward as usual. 
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 In any period, the incumbent may be either a weak type or a tough type.  Suppose 

that in period t she is weak.  At the start of the period, competitor t chooses whether to 

Enter market t or to Stay Out.  If the competitor stays out, then he gets a payoff of 0, and 

the incumbent gets payoff a > 1.  If the competitor enters, then the incumbent must 

choose whether to Fight the entry or to Accommodate it.  If she fights, then both players 

get a payoff of –1.  If she accommodates, then she gets a payoff of 0, and the entrant gets 

b > 0.  That extensive form stage game is illustrated in Figure 1.  A competitor’s total 

payoff from the T-period game is just his payoff from the stage game in the single period 

in which he is active.  Thus, the competitors have no strategic motivation.  Each wants 

only to maximize his payoff in the stage game.  They will enter, then, whenever the 

probability of being fought is less than d ≡ b/(b + 1). 

 

 

 The payoffs and action sets for the incumbent given above apply when she is a 

weak type.  The other type of incumbent is the tough type, which will be modeled in two 

ways.  The first way is to suppose that a tough incumbent has no choice but to fight 

whenever the competitor enters.  Her payoffs from the stage game are the same as the 

weak type’s.  That is, the tough incumbent is a committed type.  The other way is to 

Competitor  t Incumbent 

Fight 

Stay 
out 

Enter 

Accommodate 

(a, 0) (0, b) 

(−1, −1) 

Figure 1:  Stage-game Payoffs with a Weak Incumbent 
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model her as a strategic type, who has the same set of available actions in the stage game 

as the weak type, but who prefers fighting to accommodation.  For the sake of simplicity, 

the first way of modeling will be used in the rest of the body of the paper.  In the 

Appendix, it will be shown that the second modeling choice yields the same equilibrium 

outcome as the first, subject to a restriction on the competitors’ off-equilibrium beliefs:  

they cannot revise their belief that the incumbent is tough downward after seeing her 

choose to fight rather than accommodate.  That equivalence holds as long as the strategic 

tough type prefers fighting to accommodating, conditional on entry, and prefers the 

competitor’s staying out to fighting entry, by the same margin a that the weak incumbent 

prefers no entry to accommodating.  The fact that the tough incumbent prefers no entry 

rules out equilibria where a tough incumbent might accommodate entry in order to induce 

future competitors to enter as well, and the fact that the margin of preference is a implies 

that a weak incumbent’s incentives to deter entry are unchanged relative to the 

equilibrium with a commitment type. 

 With either way of modeling the tough type, the incumbent’s total payoff is the 

sum of her stage game payoffs in the T markets.    In the infinite horizon case, those 

payoffs are discounted at a rate δ per period, and their sum is weighted by (1 − δ).  With a 

finite horizon, for ease of exposition the incumbent is assumed to be perfectly patient.  

That simplification does not affect the results (except that if she is very impatient, she 

will have no incentive to build a reputation  –  the future gain from deterring entry is 

outweighed by the current cost of fighting). 

 The incumbent’s type evolves period by period according to a Markov process.  A 

tough type becomes weak with probability q > 0, and a weak type becomes tough with 
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probability r > 0, where r < 1 – q.  (The case of q = r = 0 corresponds to perfect 

persistence of the Markov process.  When r = 1 – q, there is no persistence.)  The 

stationary distribution of the process is a probability of being tough p0 ≡ r/(r + q).  Let p0 

also be the initial probability that the incumbent is tough in the first market in period T.  

That simplification economizes on notation, but is not necessary for the results.  The 

parameters of the game are common knowledge, and the outcomes of previous stage 

games are observed by all players.  (That is, the incumbent’s action is observed only if 

the competitor enters.)  The incumbent’s type, however, is known only to her.  She 

privately observes her type at the beginning of each period. 

 In keeping with the usual assumption in the literature on reputation that the tough 

type occurs with only small likelihood, let the limiting probability p0 be less than the 

cutoff deterrent probability d.  Also, let d be less than 1 – q, the probability that a tough 

type remains tough.  If d were greater than 1 – q, then in the last period, when only a 

tough incumbent will fight (a weak one has no future reputation to protect), the 

competitor will enter for sure.  Even if the incumbent was known to be tough in the 

previous period, the probability that she is tough today is only 1 – q, which is too low to 

deter entry.  Backwards induction, then, yields the same unraveling as in Selten (1978).  

In the unique sequential equilibrium when d > 1 – q, every competitor enters, and the 

incumbent accommodates whenever she is weak.  Thus, a tough type must remain tough 

with a probability at least d for any reputation to be sustainable, and so let 0 < r < r/(r + 

q) < d < 1 – q. 

 A pure (behavior) strategy maps public histories to a choice of entering or staying 

out for competitors, and maps complete histories (including the history of privately 
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observed types) to a choice of fighting or accommodating for the weak incumbent.  It will 

be useful to introduce the function M: [0, 1] → [r, 1 – q], defined as M(p) = (1 – q)p + r(1 

– p), which gives the probability that the incumbent will be tough tomorrow given that 

she is tough today with probability p.  Let the function W: [r, 1 – q] → [0, 1] be the 

inverse of M.  If tomorrow’s probability of being tough is to be p, then today’s must be 

W(p) = 
rq

rp
−−

−
1

.  Also, let pt denote the probability at the beginning of period t that the 

competitors assign to the incumbent’s being tough in that period.  That probability is 

based on the public history of actions, the parameters of the Markov process, and the 

incumbent’s strategy. 

 

3. Examples 

This section contains two partially parameterized examples to illustrate the 

dynamics of reputation when types are changeable.  The first example looks at a three-

period game, and the second extends the first to a large number of markets. 

 

Example 1:  Suppose that the number of markets T is 3 and that the cutoff probability of 

being fought to deter entry d is 0.53.  Suppose also that both the probability that a weak 

incumbent becomes tough r and the probability that a tough one becomes weak q are 

equal to 0.4.  The stationary and initial probability of being tough p0, then, is 0.5.  The 

sequential equilibrium of this game can be solved through backwards induction.  Since 

the tough incumbent is a committed type who always fights, only the strategies of the 
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competitors and the weak incumbent, as well as the competitors’ beliefs, need to be 

calculated. 

 In the last market, in period 1, the weak incumbent’s best response to entry is to 

accommodate.  The competitor, then, will enter if his belief that the incumbent is tough p1 

is less than d = 0.53. 

 In period 2, the weak incumbent will fight if the competitors’ current belief p2 that 

she is tough is greater than W(0.53) = 0.65.  In that case, competitor 1 gets no information 

about her type from her action, and so his belief in period 1 will be M(p2) > 0.53; he will 

stay out.  On the other hand, if the weak incumbent reveals herself as weak by 

accommodating in period 2, then competitor 1’s belief will be M(0) = r = 0.4, and he will 

enter.  Since a > 1, it is worthwhile for the incumbent to fight in period 2 in order to deter 

entry in period 1:  −1 + a > 0 + 0. 

 If the competitors’ belief p2 is below 0.65, then in equilibrium the weak 

incumbent must play a mixed strategy, just as in Kreps and Wilson (1982) and Milgrom 

and Roberts (1982).  If she fights with probability one, then competitor 1’s belief p1 will 

be M(p2) < 0.53, and he will enter.  Since fighting does not deter entry in that case, the 

weak incumbent would prefer to accommodate.  But if the weak incumbent 

accommodates with probability one, competitor 1 will conclude after observing the 

incumbent fight that she is tough for sure.  His belief p1 will be M(1) = 0.6 > 0.53, and he 

will stay out.  Now the weak incumbent would prefer to fight, since doing so would deter 

entry in the last market.  Thus, equilibrium must involve mixing.  The weak incumbent is 

willing to mix if competitor 1 enters with probability (a – 1)/a ∈ (0, 1) after observing the 

incumbent fight in period 2; he enters for sure if he sees accommodation.  Competitor 1, 
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in turn, is willing to randomize only if his belief p1 is equal to the cutoff probability d.  If 

the weak incumbent chooses to fight with probability β(p2) ≡ 
)(

)(1
1 2

2
dW

dW
p

p −
−

, then the 

competitors’ updated belief, after observing her fight in period 2, that she was tough in 

that period is W(d).  Competitor 1’s belief p1, then, will be M(W(d)) = d, as desired. 

 Thus, in equilibrium the weak incumbent will choose to fight in market 2 with 

probability β(p2) when p2 < 0.65, and with probability one if p2 > 0.65.  The total 

probability that entry will be fought, then, is the smaller of p2 + (1 – p2)β(p2) = p2/0.65 

and 1.  Competitor 2’s best response is to enter if p2 < dW(d) = (0.53)(0.65) = 0.3445.  

Since M(0) = 0.4, though, even if the incumbent in period 3 revealed herself as weak, 

competitor 2’s belief will be greater than his cutoff 0.3445.  Therefore, he never enters. 

 In period 3, the weak incumbent will accommodate entry.  By doing so, she 

reveals herself as weak, but competitor 2 will stay out anyway.  Since competitor 2 stays 

out, no information is gained in period 2 about the incumbent’s type, so competitor 1’s 

belief p1 will be M2(0) = 0.48 < 0.53, and thus he will enter.  If competitor 3 enters, the 

weak incumbent gets a total payoff of 0 + a + 0 = a from accommodating.  She cannot do 

better by fighting.  Competitor 2 will stay out in any case.  Even if fighting in market 3 

convinces the competitors that she is tough for sure, by period 1 their belief p1 will have 

declined to M 2(1) = 0.52 < 0.53, which is too low to deter entry.  Thus, fighting yields a 

payoff of −1 + a + 0 < a, and so the weak incumbent will accommodate.  As in period 1, 

then, competitor 3 knows that only a tough incumbent will fight, and his best response is 

to enter if his belief p3 < d = 0.53.  Since the initial belief p0 is 0.5, competitor 3 will 

enter. 
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 In the unique sequential equilibrium, then, competitors 1 and 3 enter, and 

competitor 2 stays out.  The weak incumbent accommodates the two entries, and the 

tough incumbent fights, as always. 

***** 

 

 In Example 1, play switches from entry in the first market, to deterrence in the 

second, and then back to entry in the last market.  Example 2 shows that the pattern of 

alternating entry and deterrence recurs as the number of markets increases. 

 

Example 2:  As in Example 1, let the cutoff probability of being fought to deter entry d be 

0.53, and let the transition probabilities q and r both be 0.4.  Now, though, suppose that 

the number of markets T is large.  Equilibrium play in the last three periods is the same as 

in Example 1.  Note that the minimum probability of facing a tough incumbent that deters 

competitor 3 from entering, 0.53, is the same as competitor 1’s cutoff:  both know that 

only a tough competitor will fight them.  A weak incumbent deciding whether or not to 

fight in period 4, then, faces the same tradeoff as she does in period 2.  In equilibrium, 

she must mix with probability β(p4) on fighting if p4 < 0.65, and to fight for sure 

otherwise.  (Similarly, in equilibrium competitor 3 must mix with the same probabilities 

as competitor 1 when he is indifferent, at p3 = d.)  Competitor 4’s cutoff belief for entry, 

then, is 0.3445, the same as competitor 2’s, and so he never enters. 

 Likewise, a weak incumbent in period 5 and competitor 5 behave just as their 

periods 1 and 3 counterparts do.  A weak incumbent in period 6 thus finds herself in the 

same position as in periods 2 and 4, and so on. 
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 In equilibrium, the weak incumbent accommodates in odd-numbered periods.  In 

even-numbered periods, she fights with probability 1 when the competitor’s belief pt is at 

least 0.65, and with probability β(pt) otherwise.  Competitors in odd-numbered periods 

enter when pt < d, stay out when pt > d, and randomize with probability (a – 1)/a on entry 

when pt = d.  Competitors in even-numbered periods stay out.  That equilibrium is 

unique.  On the equilibrium path, play cycles between entry, met by accommodation from 

weak incumbents and a fight from tough ones, in odd periods, and deterrence in even 

periods, regardless of the number of markets T.  That pattern is very different from the 

outcome in the permanent-type case, in which entry can occur only in the last few 

markets, and thus the fraction of markets in which entry is deterred approaches 1 as T 

grows.  

 

4. Results – Finite Horizon 

 The situation described in Example 2 is atypical in two ways.  First, in the odd-

numbered periods, the incumbent deters entry for exactly one period either by 

accommodating (and revealing herself as weak), or by fighting, even if fighting 

convinces competitors that she is tough for sure.  The reason is that there is very little 

persistence in the incumbent’s type, so that the probability of being tough two periods 

after being weak (0.48) is nearly the same as it is two periods after being tough (0.52).  

Both probabilities are below the cutoff for deterrence, 0.53.  More generally, though, if 

the Markov process has greater persistence, beliefs are slower to converge from the 

extremes to the stationary probability p0.  Thus, the fact that being revealed as weak 

today still deters entry tomorrow does not imply that a weak incumbent will 
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accommodate: being revealed as tough may deter entry for more than one period.  The 

basic intuition of the example, however, is robust.  As will be shown in Theorem 1, given 

any parameters of the game, eventually even being revealed as weak is enough to deter 

entry for a long enough time that beliefs have a chance to converge very close to p0, 

regardless of where they started.  That result will imply that play alternates being entry 

and deterrence. 

 The second way in which Example 2 is unusual is that there is no randomization 

on the equilibrium path.  Competitors either strictly prefer to enter or strictly prefer to 

stay out, and in periods when they enter a weak incumbent always accommodates.  In 

general, there may be non-trivial mixing in equilibrium, which makes the distinction 

between “periods of entry” and “periods of deterrence” less straightforward, for two 

reasons.  Besides the fact that a competitor may choose to enter or stay out randomly, 

beliefs in a period (and thus the competitor’s action) may depend on the outcomes of 

prior randomizations.  For the sake of uniformity, define a “period of entry” as one in 

which the ex ante probability that the competitor enters is strictly positive.  That is, 

period t is a period of entry if there is a path of play that occurs in equilibrium with 

positive probability along which the competitor enters in market t.  Otherwise, t is a 

“period of deterrence.” 

 In order to establish the results of Theorems 1 through 3 (that play alternates 

between entry and deterrence, that price wars arise in equilibrium, and that entry is nearly 

always deterred when the incumbent’s type is very persistent), the sequential equilibrium 

of the game, given the number of markets T, payoffs a and b, and transition probabilities 

q and r, is constructed below.  The derivation will show that i) the equilibrium is 
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generically unique, ii) behavior strategies depend only on the period and the competitors’ 

current (public) beliefs and not otherwise on history, and iii) in each period there is a 

cutoff probability that the incumbent is tough such that the competitor will enter if beliefs 

are below the cutoff and stay out if they are above.  Remember that d (≡ b/(b + 1)) is the 

minimal probability of being fought that deters entry, p0 (≡ r/(r + q)) is both the initial 

and stationary probability that the incumbent is tough, and pt is the competitors’ belief at 

the start of period t.  In addition, define dt as the cutoff belief to deter entry in period t.  

Note that dt cannot be greater than d, which deters entry even when only a tough 

incumbent fights.  Let µt be the probability that the period-t competitor enters when he is 

indifferent (at pt = dt).  If dt < r, then µt does not exist, because pt cannot be less than r.  

Also, µT typically does not exist, since generically the initial belief p0 does not equal dT.  

Let the function βt(pt) give the probability that a weak incumbent fights in period t, 

conditional on entry and pt. 

 The equilibrium strategies are defined recursively below:  dt and βt(⋅) are given in 

Step t, and µt is defined in Step t + 1.  Beliefs come from Bayes’ rule on the equilibrium 

path (that is, at histories reached with positive probability in equilibrium).  There are two 

ways for a deviation to lead off the path.  If a competitor who is supposed to stay out 

enters, then beliefs are updated according to the incumbent’s continuation strategy and 

the Markov parameters, just as in equilibrium.  If an incumbent who is supposed to fight 

with probability one in period t accommodates, she is believed to be weak for sure, and 

so pt−1 = M(0) = r.  (Conditional on entry, fighting always occurs with positive 

probability in equilibrium, because the incumbent may be tough.) 
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Step 1:  As in the examples, a weak incumbent will always accommodate, so β1(p) = 0 

for all p.  Consequently, d1 = d. 

 

Step 2:  Again as in the examples, a weak incumbent will fight for sure if p2 > W(d1), 

since doing so will deter entry in period 1.  If p2 ≤ W(d1), then β2(p2) = 
)(

)(1
1 1

1

2

2
dW

dW
p

p −
−

, 

so that if competitor 1 sees the incumbent fight in market 2, his belief p1 will equal d1, 

and thus he will be indifferent between his actions.  To make the weak incumbent willing 

to mix in period 2, it must be that µ1 = (a – 1)/a.  Given β2(⋅), the total probability of 

being fought is 
⎭
⎬
⎫

⎩
⎨
⎧

1,
)(

min
1

2
dW

p , so the cutoff for entry d2 is dW(d1). 

 

Step t:  Define n(t) as follows: 

 

 { }nt
n dMtntn −≤−∈= )0(:}1,,1{min)( K , 

 

and define s(t) as t – n(t).  (Note that the constraint set must be nonempty, because 

)0(1−tM  < p0 < d = d1.)  The value n(t) is the number of periods that the Markov process 

must act, starting from probability 0 at time t, until the expected probability of being 

tough is below the cutoff for deterrence.  That is, if the incumbent is known to be weak in 

period t, and no further information about her type is revealed for n(t) periods, then in 

period s(t) the competitor will enter, and not before.  (Generically, the case that 

)(
)( )0( ts

tn dM =  does not arise, and so from here on it is ignored.)  To illustrate the 



 

 19

definition, in Examples 1 and 2, n(2) = 1, since M(0) < d1, and n(3) = 2, since d2 < M(0) 

and d1 > M 2(0). 

 There are two cases, according to whether or not being known to be tough in 

period t deters entry in market s(t); that is, whether )(
)( )1( ts

tn dM >  or )(
)( )1( ts

tn dM < .  

(Again, generically the case of equality does not arise.)  Note that for n < n(t), the 

definition of n(t) implies that nt
n dM −>)1( , since M n(1) > M n(0).  In the first case, 

where )1()0( )(
)(

)( tn
ts

tn MdM << , period s(t) is the earliest period in which the 

incumbent’s behavior in period t can affect his future payoff.  In previous periods, the 

competitor will stay out regardless of what he observed in period t.  If pt ≤ )( )(
)(

ts
tn dW , 

then the weak incumbent must randomize, just as in period 2 – always fighting will not 

deter entry in period s(t), but if she never fights, then a deviation to fighting will convince 

the competitors that she is tough for sure, which will prevent competitor s(t) from 

entering.  The incumbent fights with probability βt(pt) = 
)(

)(1
1 )(

)(
)(

)(

ts
tn

ts
tn

t

dW

dW
pt

p −

−
, so that 

competitor s(t) is indifferent between his two actions.  For the incumbent to be willing to 

mix requires that µs(t) = (a – 1)/a, which pins down the value of µt-1 if n(t) = 1.  If n(t) > 1, 

then µs(t) was defined in an earlier step.  Note, though, that in any period x where dx > r, 

s(x + 1) = x, since M(0) = r < dx ≤ d < 1 – q = M(1), and so µx = (a – 1)/a.  Since 

rMd tn
ts ≥> )0()(
)( , then, µs(t) = (a – 1)/a, as required.  If pt > )( )(

)(
ts

tn dW , then the 

weak incumbent will fight for sure, since doing so suffices to deter entry in period s(t).  
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The total probability that entry will be fought, then, is 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

1,
)(

min
)(

)(
ts

tn
t

dW

p
, so the 

cutoff for entry dt is )( )(
)(

ts
tn ddW . 

 The second case is )(
)()( )1()0( ts

tntn dMM << .  Again, before market s(t) all 

competitors will stay out, regardless of what happens in market t, but in this case 

competitor s(t) will enter even if the incumbent was known to be tough in period t.  In 

period t, then, a weak incumbent will always accommodate, since her continuation payoff 

from s(t) on does not vary with that period’s belief ps(t) for )()( tsts dp < :  the weak 

incumbent in that case is willing to mix in period s(t), and so gets the payoff from 

accommodating and revealing herself as weak regardless of ps(t).  That is, the incumbent’s 

action in period t affects beliefs but not payoffs in period s(t).  The weak incumbent’s 

probability of fighting in period t βt(pt), then, is zero, so dt = d. 

 To summarize, if )(
)( )1( ts

tn dM > , then βt(pt) = 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

− )(

)(1
1

,1min
)(

)(
)(

)(

ts
tn

ts
tn

t

dW

dW
pt

p
 

and dt = )( )(
)(

ts
tn ddW .  If )(

)( )1( ts
tn dM < , then βt(pt) = 0 and dt = d.  The value of µt-1, 

if it exists, is (a – 1)/a. 

***** 

 

 The recursive formulation above defines the equilibrium, but it does not 

immediately provide much insight into its characteristics.  Theorem 1 below 

demonstrates that if the number of markets T is large enough, then the equilibrium 

features alternating stretches of periods of deterrence and periods of entry.  The method 
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of proof is first to show that starting in any market t0 and working backwards away from 

the end of the game, there must eventually be a period of deterrence, because the cutoff 

probability dt falls below r.  The intuition for that result is similar to Kreps and Wilson’s 

(1982) and Milgrom and Roberts’ (1982).  Second, again working backwards from any t0, 

there must eventually be a period of entry.  Otherwise, roughly, there must at some point 

occur a long string of very low dt’s, so that in the period s immediately prior even 

accommodating will deter entry for the duration of the string.  If the string is long 

enough, then (since no new information is revealed when no competitor enters) beliefs at 

the end are nearly independent of the starting belief.  In that case, the weak incumbent 

has no incentive to fight in period s and will accommodate, as in period 3 in the 

examples.  That result turns out to imply that entry must occur.  To summarize, then, the 

proof of Theorem 1 shows that before any t0, there must be a period of deterrence and 

also a period of entry, as long as T is large enough.  That is, entry and deterrence must 

alternate. 

 

Theorem 1:  Let t0 be given.  For generic values of the parameters a, b, q, and r there is a 

T0 < ∞ such that whenever T ≥ T0, the unique sequential equilibrium has the following 

property: there exist td, te ≥ t0 such that period td is a period of deterrence and period te is a 

period of entry. 

 

Proof:  The generic uniqueness is derived in the recursive formulation of the equilibrium 

above.  Next, I show that there exists td ≥ t0 such that period td is a period of deterrence, 

as long as T ≥ td.  It suffices to show that for large enough t, the cutoff probability for 
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deterrence dt falls below r, since beliefs can be no lower than r.  Note that if dt > r, then 

dt+1 = dW(dt), as shown in the derivation of the equilibrium.  Since dt ≤ d < 1 – q, for all dt 

> r the ratio 

 

 1
)1(
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)1(
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and the partial derivative of the ratio with respect to dt 

 

 0
)1()( 2

1

>
−−

=
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂ +

rqd
dr

d
d

d

tt

t

t

. 

 

Thus, as t increases the ratio dt+1 / dt < 1 shrinks at a increasing rate as long as dt > r, and 

so eventually dt must fall below r. 

 It remains only to prove the existence of te.  It suffices to show that ds > p0 for 

some s ≥ t0:  if there is no entry in the n periods before s, where n is large enough that 

s
n dM <)1( , then the period- s competitor must have belief ps < ds and will therefore 

enter, regardless of the belief at period s + n.  Suppose that there is no such s.  Then there 

must be a period x < t0 such that dx-1 > p0 and dt < p0 for all t ≥ x.  (Once again, the 

nongeneric case of equality is ignored.)  Let n(1) be chosen large enough that 

x
n dM <)1()1( , and let d(1) = )}1(:max{ 0 nttxdt +≤≤ .  In period t0 + n(1), then, 

))1(()1(0 ddWd nt ≤+ :  belief d(1) is sufficient to deter entry up to period x, and no belief 
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is sufficient to deter entry longer.  Since d(1) < p0 by assumption, dW(d(1)) < d(1), and so 

in fact ))1((ddWdt ≤  for all t ≥ t0 + n(1).  Define d(2) to be equal to dW(d(1)).  By 

similar reasoning, then, if n(2) is large enough that )1()0()2( dM n > , then 

))2(()3( ddWddt ≡≤  for all t ≥ t0 + n(1) + n(2).  No belief can deter entry past period x, 

and belief d(2) deters entry up to period t0 + n(1), by which point beliefs will have grown 

through the Markov process to at least d(1), which deters entry up to period x. 

 Continuing in that fashion, eventually there is a period t* such that for t ≥ t*, dt < 

r (since the ratio d(j + 1) / d(j) shrinks to zero, as shown above).  But then, since 

rM =)0(1 , at period t* + 1 a belief of 0 will deter entry up to period x, and no belief can 

deter entry longer.  Thus, in period t* + 1 the weak incumbent’s best response is to 

accommodate, and so dt*+1 = d > p0, in contradiction of the assumption that dt < p0 for all 

t ≥ x.           Q.E.D. 

 

 The result that the minimal deterrent probability dt can drop below r implies that 

deterrence can immediately follow accommodation.  That is, after the incumbent loses 

her reputation for toughness by accommodating, she may not need to be seen to fight to 

restore it.  The threat that she would fight if given the opportunity may suffice to deter 

entry. 

 Theorem 2 shows that as the number of markets T increases, the probability that a 

price war (in which the competitor enters and the incumbent fights) occurs in equilibrium 

approaches one.  In fact, for any N > 0, the probability that at least N such price wars 

occur approaches one. 
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Theorem 2:  Let N > 0 and ε > 0 be given.  For generic values of the parameters a, b, q, 

and r there is a T0 < ∞ such that whenever T ≥ T0, the unique sequential equilibrium has 

the following property: the probability that action profile (Enter, Fight) will be played at 

least N times is at least 1 − ε. 

 

Proof:  First, note that in every period in which the competitor enters, the probability that 

the incumbent fights is at least r (the minimum probability that she is tough). 

 The proof of Theorem 1 shows that as T increases, the number of periods t in 

which the cutoff belief for deterrence dt > p0 grows without bound.  For any such t, 

choose n(t) such that t
tn dM <)1()( .  If there is no price war in the n(t) periods before 

period t, then in period t the competitor’s belief pt must be below dt  –  either there has 

been no entry in the previous n(t) periods, in which case the inequality t
tn dM <)1()(  

guarantees that the Markov process has driven beliefs down far enough, regardless of 

their starting point; or in any of the n(t) periods where the competitor entered, the 

incumbent accommodated, in which case beliefs are even lower.  If there is no price war 

in the n(t) periods before period t, then, the period-t competitor will enter for certain. 

Thus, for any t such that dt > p0, there must be entry in one of the n(t) + 1 periods 

ending in period t.  Since the probability that an entry will be fought is at least r, and the 

number of such periods t grows without bound, the probability that at least N price wars 

will occur as T increases approaches one.      Q.E.D. 
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 The third and final main result for the game with a finite horizon concerns the 

frequency of entry as the persistence of the incumbent’s type grows.  With perfect 

persistence, Kreps and Wilson (1982) and Milgrom and Roberts (1982) show that that 

frequency converges to zero as the number of markets T increases.  The same is true in 

the limit here.  Theorem 3 shows that the frequency of entry that results when T increases 

to infinity, given the level of persistence, shrinks to zero as that level of persistence 

approaches one (holding the stationary probability fixed).  An immediate consequence is 

that the incumbent’s average payoff per period approaches a, her Stackelberg utility. 

 

Theorem 3:  Let p0 ∈ (0, 1) and be given.  Let { }∞=1),( kkk rq  be a sequence of transition 

probabilities in (0, 1)2 such that 

 i)  ),0,0(),(lim =∞→ kkk rq  

 ii)  rk < 1 – qk for all k, and 

 iii)  0)/( pqrr kkk =+ for all k. 

Then for generic values of the parameters a and b such that p0 < d ≡ b/(b + 1), the unique 

sequential equilibrium has the following property: [ ] 0),,,(limlim =∞→∞→ TkbaTk σ , 

where ),,,( Tkbaσ  is the fraction of periods that are periods of entry, as a function of a, 

b, qk, rk, and T. 

 

Proof:  As shown in the proof of Theorem 1, as the number of markets T increases, the 

number of periods t such that dt > p0 and dt−1 < p0 grows without bound.  Recall from the 

construction of the equilibrium that the “target belief” in a period (that is, the posterior 
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probability that the incumbent is tough after the competitor enters and the incumbent 

fights) is equal to dt / d > dt > p0.  Thus, by fighting entry in period t, the incumbent will 

deter entry at least until the next period s < t when ds > p0  −  the Markov process cannot 

drive a belief that starts above p0 to a level below p0. 

 In the equilibrium constructed, in any period the difference in the number of 

periods of deterrence following accommodating and the number of periods of deterrence 

after achieving the target belief (by fighting) is at most one period.  Thus, even if the 

posterior belief at the end of period t is 0, entry will be deterred at least until period s + 1 

(that is, nt
n dM −>)0(  for 1 ≤ n ≤ t – s – 1), and so periods s + 1 to t – 1 are periods of 

deterrence if the number of markets T is at least t.  How long is that stretch of deterrence?  

Since ds > p0, and the equilibrium construction establishes that ds+1 = dW(ds), it must be 

that ds+1 > dW(p0) = dp0 , which exceeds rk as rk shrinks to zero.  Since 

)0(1
1

−−
+ < st

s Md , and the increasing function M converges to the identity function as rk 

and qk shrink to zero, the length of the stretch of deterrence t – s – 1 grows without bound 

as k increases.  That is, the number of consecutive periods where the cutoff belief is 

below p0 becomes very large, and all but the first of those periods must be a period of 

deterrence.  (If T is between s and t, then since the initial probability that the incumbent is 

tough is p0, all the periods up through period s + 1 are again periods of deterrence.) 

 On the other hand, the number of consecutive periods in which the cutoff belief is 

above p0 (the only ones in which entry may occur) is bounded above as persistence 

grows.  The highest a cutoff belief dt can be is d.  Starting from that level, how many 

periods n does it take until dt+n < p0?  As shown in the derivation of the equilibrium, 



 

 27

whenever ds > r, ds+1 = dW(ds).  As k grows, then, the function W approaches the identity 

function, and n approaches the smallest integer satisfying dn < p0. 

 Thus, the limiting (as T grows) fraction of the periods in which entry is deterred 

approaches one as k (and the persistence of the incumbent’s type) increases. Q.E.D. 

 

5. Results – Infinite Horizon 

In the equilibrium of the game with a finite horizon, in each market strategies 

depend only on the number of periods remaining until the next time that the weak 

incumbent would accommodate entry with probability one.  In the infinite horizon, it is 

possible to construct equilibria where such times re-occur at regular intervals.  In the last 

several periods of each interval, play is the same as at the end of the finite-horizon 

equilibrium.  At the beginning of the interval (that is, immediately after the period in 

which the weak incumbent accommodates for sure), there is added a stretch of periods in 

which no competitor enters.  If that stretch is long enough, then beliefs at the end of it are 

nearly independent of the belief at the beginning, and so in the prior period the weak 

incumbent has nothing to lose by accommodating and revealing her type (just as in the 

second case of Step t in the construction of the finite-horizon equilibrium). 

The intuition for why entry is deterred in the “extension periods” is as follows:  if 

a competitor deviates by entering in one of those periods, then play immediately jumps 

ahead to later in the interval, to a period from the finite-horizon equilibrium in which the 

incumbent fights with high probability.  That is, entry brings close the end of the interval, 

thus giving the incumbent the proper incentive to fight and deter entry.  In this cycling 

equilibrium, which is described formally in Theorem 4 below, entry occurs infinitely 
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often, and thus the incumbent expected payoff is strictly below her Stackelberg payoff a.  

(Recall that in this section time is counted forwards again, and that the incumbent 

discounts the future at a rate δ per period.) 

 

Theorem 4:  For generic values of the parameters a, b, q, and r, there exists an ε > 0 such 

that for any discount factor δ ∈ (0, 1), there is a sequential equilibrium in which the 

expected payoff to the incumbent is no greater than a − ε. 

 

Proof:  The proof is constructive.  If δ < 1/a, it is easy to verify that there is an 

equilibrium in which the weak incumbent accommodates in every period, since the cost 

(−1) of fighting rather than accommodating outweighs the discounted gain from deterring 

entry in the next period (δa).  Competitors enter when their belief is below d.  That 

equilibrium gives the incumbent a payoff strictly below a. 

 Suppose that δ > 1/a.  In the equilibrium to be constructed, in every period play is 

in one of S** + N stages, where the values of S** ≥ 2 and N ≥ 0 are given below.  Play 

begins in stage S** + N.  The transition rule between stages is as follows: if play in 

period t is in stage s ∈ {2, … , S**}, then in period t + 1 play is in stage s – 1.  In period t 

is in stage 1, then in the next period play moves to stage S** + N.  In the other states (if N 

> 0), s ∈ {S** + 1, … , S** + N}, the transition depends on the competitor’s action.  If he 

stays out, then the next period is in stage s – 1.  If he enters, play jumps in the next period 

to stage S** − 1. 
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 Referring back to the finite-horizon equilibrium of the previous section, define 

S** as }:min{** rdtS t <= , S* as } and :min{* 0
1

0 pdpdtS tt <>= + , and N as 

{ }*
1*)**(

1*
1 )1( and )0(:min S

SSn
S

n dMdMnN <>= +−+
+

+ , where the value dt is the 

cutoff belief in the t-th-to-last period of the finite-horizon equilibrium.  That is, in the 

equilibrium of the finite horizon game, market S** is the closest period to the end of the 

game in which the cutoff belief is below r, and market S* + 1 is the closest in which the 

cutoff belief is below p0.  The value of N is large enough that both i) starting from a belief 

of 0, after the Markov process operates N + 1 times the updated belief exceeds dS*+1 < p0, 

and ii) starting from a belief of 1, N + S** − S* + 1 iterations of the Markov process 

drive beliefs below dS* > p0. Strategies in each stage are described below.  Beliefs on the 

equilibrium path come from Bayes’ rule.  If a competitor who is supposed to stay out 

enters, then beliefs are updated according to the incumbent’s continuation strategy and 

the Markov parameters, just as in equilibrium.  If an incumbent who is supposed to fight 

with probability one in period t accommodates, she is believed to be weak for sure, and 

so pt+1 = M(0) = r. 

 In stage s ∈ {1, … , S**}, the incumbent fights with probability βs(pt), where pt is 

the current competitor’s belief, and the function βs gives the mixing probability in the s-

th-to-last market of the equilibrium with finite T (given that T  ≥ s).  The competitor 

enters if pt < ds and stays out if pt > ds, where ds is the cutoff belief in period s of the 

finite-horizon equilibrium.  The competitor’s probability of entry µs when he is 

indifferent (at pt = ds) must be modified slightly relative to the finite-horizon case to 

adjust for discounting by the incumbent: let µs = (δa – 1)/δa.  In state s ∈ {S** + 1, … , 
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S** + N}, the incumbent behaves after entry just as though the state were S**:  she fights 

with probability βS**(pt).  The entrant stays out regardless of his belief. 

In stage 1, the weak incumbent accommodates.  That action is optimal because, 

by the definition of N, any posterior belief will deter entry until stage S*, and no belief 

will deter entry longer.  The competitor’s strategy of entering in stage 1 when his belief is 

below d is thus a best response.  The strategies in stages 2 through S** are mutual best 

responses, just as they are in the finite-horizon case.  (Note that −1 + δ[1 − (δa – 1)/δa]a 

= 0 + δ⋅0, so the incumbent is indifferent between fighting and accommodating today if 

tomorrow’s competitor i) enters with probability (δa – 1)/δa after observing fight today, 

and ii) enters for certain after observing accommodation.)  In stages S** + 1 through N, if 

the competitor enters, then the stage in the next period will be S** − 1, and so the strategy 

for the incumbent of behaving just as in stage S** is a best response.  Since (by 

definition), dS** < r, then, the competitor, again as in stage S** , prefers to stay out. 

All that remains is to demonstrate that the incumbent’s expected payoff in 

equilibrium is bounded below a for any discount factor.  On the equilibrium path, 

competitors stay out in stages S* + 1 through S* + N, yielding the incumbent a payoff of 

a per period.  The competitor enters in stage S*, and by construction the expected payoff 

from then through stage 1 is 0.  The incumbent’s total discounted expected payoff, then, 

is .
1
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coefficient on a is continuous in δ and is strictly less than 1 for all δ ∈ [1/a, 1].  (The 

limit as δ approaches 1 is (S** + N – S*) / (S** + N).)  Thus, the expected payoff to the 

incumbent with any discount factor is no greater than a − ε for some ε > 0.  Q.E.D. 
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If the incumbent is patient enough, then there is also an equilibrium in which she 

always fights, and thus entry is deterred in every period – the Stackelberg outcome.  The 

threat of reversion to the equilibrium of Theorem 4 gives the weak incumbent incentive 

to fight.  Corollary 5 formalizes that result. 

 

Corollary 5:  For generic values of the parameters a, b, q, and r, there exists a δ < 1 such 

that for any discount factor δ ∈ (δ, 1), there is a sequential equilibrium in which entry is 

deterred in every period and the expected payoff to the incumbent is a. 

 

Proof:  The strategies are for the competitor in every period to stay out, and for the 

incumbent to fight entry, as long as entry has never been accommodated.  Beliefs are 

constant at p0.  After the first time the incumbent accommodates, play switches to the 

equilibrium described in Theorem 4, in stage S** + N with a belief equal to r.  As long as 

)(0)1()1)(1( εδδδδ −+−≥+−− aa , those strategies are an equilibrium.  Q.E.D. 

 

Thus, if the incumbent firm is patient, there are equilibria where she obtains 

Stackelberg payoffs, but it is never the case that those are the only equilibria. 

 

6. Summary and Discussion 

In the finite-horizon chain store game, the introduction of even very slight 

impermanence of the incumbent firm’s type qualitatively alters the nature of the 

sequential equilibrium and the dynamics of reputation.  Instead of maintaining a nearly-
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permanent reputation and discouraging potential entrants until the last few markets, the 

incumbent finds herself repeatedly tested by entrants, even when the last market is 

arbitrarily far in the future.  A reputation for toughness deters competitors only 

temporarily; it must be continually refreshed.  An effective reputation is one that 

deteriorates over time.  If competitors believe with high probability that the incumbent is 

tough, then they will not enter, and thus will get no new information about the 

incumbent’s type.  The Markov process then drives beliefs down toward the stationary 

probability p0. 

On the other hand, in some periods (when the cutoff probability for deterrence is 

below r), entry is deterred even if the incumbent has just revealed herself as weak by 

accommodating in the previous market.  That observation suggests that what drives 

deterrence is not so much a reputation for toughness  –  immediately after an 

accommodation the probability that the incumbent has become tough is very low  –  but 

rather a reputation for wanting to build a reputation for toughness, by fighting.  That 

interpretation helps to explain the discontinuity between Selten’s (1978) results and the 

results of Kreps and Wilson (1982) and Milgrom and Roberts (1982).  Under Bayesian 

updating, it is impossible to revise a belief upward from zero.  When the probability of 

the tough type is zero, the incumbent has no hope of establishing a reputation for 

toughness, and thus cannot have a credible reputation for wanting a reputation for 

toughness.  In the model in this paper, in any period the probability that the incumbent is 

tough is bounded away from zero, and thus the incumbent can rebuild an effective 

reputation even after revealing herself as weak. 
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The qualitative difference in equilibrium between perfect and imperfect 

permanence results when the parameters of the Markov process (as well as the payoffs) 

are fixed, and the number of markets T is allowed to increase.  Alternatively, T could be 

fixed and the Markov parameters allowed to approach perfect persistence.  In particular, 

if the transition probabilities between types q and r shrink to 0 while their ratio (which 

determines the stationary distribution) and T remain constant, then it is straightforward to 

see from the derivation of equilibrium in Section 4 that equilibrium payoffs for all T + 1 

players (and in fact the expected path of play) approach those from the permanent-type 

equilibrium: with arbitrarily high probability the incumbent’s type does not change 

during the game, and since the function W(⋅) approaches the identity function, the cutoff 

beliefs and mixing probabilities converge to their permanent-type analogues. 

When the number of markets T is limitless, again the set of equilibrium outcomes 

changes qualitatively when the incumbent’s type becomes changeable.  As with 

permanent types, there exists an equilibrium in which the incumbent always fights entry, 

and thus no competitor enters.  Now, however, that equilibrium cannot be supported by 

the threat that all future competitors will enter if the incumbent ever reveals herself as 

weak by accommodating.  Since a weak type may switch to being tough, that threat is no 

longer credible.  Instead the Stackelberg outcome is supported by another equilibrium, of 

a sort that does not exist when types do not change.  In it, play cycles between entry and 

deterrence, and the incumbent’s expected payoff is strictly below her Stackelberg payoff 

a.  That cycling equilibrium exists even when the incumbent is very patient.  Thus, the 

reputation effects in Fudenberg and Levine (1989) that guarantee commitment payoffs to 

the long-run player when types are permanent become weaker when persistence is less 
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than perfect.  Fudenberg and Levine’s (1989) proof relies on the insight that there is a 

bound on the number of times that entry can be fought before competitors become 

convinced that the incumbent will always fight.  With changing types, though, beliefs do 

not stay above the necessary threshold.  Again, an effective reputation deteriorates. 

Finally, although for the sake of clarity and concreteness I have analyzed only the 

particular case of the chain store game, there is no obvious reason why similar results 

would not hold for other Stackelberg-type stage games.  That observation suggests that 

existing results on reputation may not be robust to a relaxation of the assumption of 

perfect persistence.  An extension of the model presented here to the infinite-horizon case 

is another interesting avenue for future research. 
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Appendix: Strategic Tough Type 

 In this appendix, I return to the case of the strategic type of tough incumbent.  In 

response to entry in the stage game, the strategic tough type can either fight or 

accommodate, but strictly prefers fighting to accommodating, and prefers no entry to 

fighting by the same margin a that the weak incumbent prefers no entry to 

accommodating.  With a finite horizon, if the competitors are assumed not to revise their 

beliefs downward after seeing the incumbent fight, even off the equilibrium path, then the 

unique sequential equilibrium with a strategic tough type is the same as with a 
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commitment type.  That is, the strategic tough type always fights entry, and so the weak 

incumbent and the competitors behave just as they do with the commitment type. 

 Assumption A1, which gives the restriction on beliefs, is very similar in concept 

to the D1 refinement in the literature on signaling games.  (See, for example, Section 11.2 

of Fudenberg and Tirole (1991).)  Roughly, the set of situations in which a weak 

incumbent finds it optimal to fight is a strict subset of those in which a tough incumbent 

wants to fight, and so competitors should not believe that a weak incumbent is more 

likely to fight than a tough one. 

 

Assumption A1:  For any period t > 1 and belief pt that the incumbent is tough, if the 

period-t competitor enters and is fought, then the next period’s belief pt-1 ≥ M(pt). 

 

Theorem A1:  Let parameters a, b, q, r, and T be given, and suppose that Assumption A1 

holds.  Then in the generically unique sequential equilibrium of the game with a strategic 

tough type, the tough incumbent always fights entry, and the strategies of the weak 

incumbent and the competitors are the same as in the equilibrium with a committed tough 

type. 

 

Proof:  The proof is inductive.  Let )(ˆ ptβ , td̂ , and tµ̂  denote respectively the values in 

equilibrium of the weak incumbent’s probability of fighting entry in period t as a function 

of the current belief, competitor t’s cutoff belief for entry, and competitor t’s probability 

of entry when indifferent.  Recall that )( ptβ , td , and tµ  are the equilibrium values 

derived in Section 4 for the game with a committed tough type. 
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Step 1:  In the last market, a weak incumbent will accommodate entry, and a tough one 

will fight, so )(ˆ ptβ = 0 = )( ptβ , and td̂ = d = td . 

 

Step 2:  Since fighting gives the tough incumbent a higher instantaneous payoff in period 

2, and her payoff in market 1 is weakly increasing in p1 regardless of her type in period 1, 

Assumption A1 ensures that the tough incumbent will fight entry. 

 The weak incumbent’s incentives, then, are the same as in Section 4.  Deterring 

entry creates a benefit equal to a in period 1 (whatever her type in that period) at an 

immediate cost of 1.  Thus, she again will fight entry with probability )(ˆ2 pβ = )(2 pβ , 

and competitor 1’s probability of entering when indifferent 1µ̂   must equal 1µ .  Note that 

the incumbent’s expected payoff from period 2 on is weakly increasing in p2, for both 

types. 

 

Step t:  Since her continuation payoff from market t – 1 on is weakly increasing in pt-1, 

Assumption A1 again implies that the tough incumbent will fight entry.  The weak 

incumbent and competitor t face the same situation as with a committed tough type (since 

again the gain to the incumbent of deterring entry is independent of her type), and so 

)(ˆ ptβ  = )( ptβ , td̂  = td , and if they exist 1ˆ −tµ  = 1−tµ . 

***** 

 

Thus, the tough incumbent fights entry in every market, and the strategies of the 

weak incumbent and the competitors are the same as those derived in Section 4. Q.E.D. 
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 Note that the result that a strategic tough type always fights entry does not depend 

on the restriction that her gain in the stage game from deterring entry is exactly a.  As 

long as that gain is strictly positive, Assumption A1 still implies that in equilibrium the 

incumbent always fights entry when she is tough.  The equilibrium in that case is 

qualitatively similar to the commitment-type equilibrium, but the mixing probabilities of 

the competitors differ, because the gain to an incumbent from deterring entry in a future 

period now depends on her expected type in that period, which in turn depends on her 

current type and the number of periods before the deterrence. 

 In the infinite horizon case, it is straightforward to demonstrate that the 

equilibrium of Theorem 4 remains an equilibrium when the tough type is strategic  –  the 

tough type’s strategy is to always fight entry.  If, in addition, the tough type’s payoffs are 

such that she gets a if there is no entry, 0 if entry is fought, and c < 0 if entry is 

accommodated, then it is not necessary to rescale the payoff bound in Theorem 4, and 

Corollary 5 goes through as before. 

 


