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1 Introduction

Ericson and Pakes (1995) (hereafter EP) introduced an approach to modeling industry dynamics in which

entry, exit, and investment, together with idiosyncratic shocks, result in heterogeneity among firms. The

analysis of such models — which we will refer to as EP-type models — relies on computation of Markov

perfect equilibria (MPE) using dynamic programming algorithms (e.g., Pakes and McGuire (1994)). A great

advantage of the EP framework is that it is easily extended to cover many important dynamic phenomena.1

A major shortcoming, however, is the computational complexity of solving for MPE. Methods that acceler-

ate these computations have been proposed (Judd (1998), Pakes and McGuire (2001) and Doraszelski and

Judd (2003)). However, in practice computational concerns have typically limited the analysis to industries

with just a few firms. Such limitations have made it difficult to construct realistic empirical models, and

application of the EP framework to empirical problems has been rare (exceptions include Gowrisankaran

and Town (1997), Benkard (2004), Jenkins, Liu, Matzkin, and McFadden (2004), and Ryan (2005)). More

generally, model details are often dictated as much by computational concerns as economic ones.

In an EP-type model, at each time, each firm has a state variable that captures its competitive advantage.

Though more general state spaces can be considered, we focus on the simple case where the firm state is an

integer. The value of this integer can represent, for example, a measure of product quality, the firm’s current

productivity level, or its capacity. Each firm’s state evolves over time based on investments and random

shocks. The industry state is a vector representing the number of firms with each possible value of the firm

state variable. Even if firms are restricted to symmetric strategies, the number of relevant industry states (and

thus, the compute time and memory required for computing a MPE) becomes enormous very quickly. For

example, most industries contain more than 20 firms, but it would require more than 20 million gigabytes

of computer memory to store the policy function for an industry with just 20 firms and 40 firm states. As a

result, it seems unlikely that exact computation of equilibria will ever be possible in many applied problems

of interest.

With this motivation, in this paper we instead propose an approximation method, one that dramatically

reduces the computational complexity of EP-type models in industries with many firms. The intuition behind

our approach is as follows. Consider an EP-type model in which firm shocks are idiosyncratic. In each

period, some firms receive positive shocks and some receive negative shocks. Now suppose there are a large

number of firms. It is natural to think that changes in individual firms’ states average out at the industry
1See, for example, Berry and Pakes (1993), Gowrisankaran (1999), Fershtman and Pakes (2000), de Roos (2002), Judd, Schmed-

ders, and Yeltekin (2002), Doraszelski and Markovich (2003), Langohr (2003), Song (2003), Markovich (2003), Benkard (2004),
Besanko and Doraszelski (2004), Goettler, Parlour, and Rajan (2004), Jenkins, Liu, Matzkin, and McFadden (2004), and Besanko,
Doraszelski, Kryukov, and Satterthwaite (2005), as well as Pakes (2000) for a survey.
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level, such that the industry state does not change much over time. In that case, each firm could make near-

optimal decisions knowing only its own firm state and the long run average industry state. We call oblivious

strategies, strategies for which a firm considers only its own state and the long run average industry state, and

we will define a new solution concept, called oblivious equilibrium, in which firms use oblivious strategies.

Computing an oblivious equilibrium is simple because dynamic programming algorithms that optimize over

oblivious strategies require compute time and memory that scale only with the number of firm states, and

not with the number of firms. Indeed, it is easy to compute oblivious equilibria for industries with thousands

of firms and hundreds of firm states.

To formalize the intuition above, we prove an asymptotic result that provides sufficient conditions for

oblivious equilibria to closely approximate MPE as the market size grows. It may seem that this would be

true provided that the average number of firms in the industry grows to infinity as the market size grows.

However, this is not sufficient. If the market is highly concentrated — for example, as is the case with

Microsoft in the software industry — then the approximation is unlikely to be accurate. A strategy that does

not keep track of the dominant firm’s state will not perform well. Instead, we show that, alongside some

technical requirements, a sufficient condition for oblivious equilibria to well approximate MPE asymptoti-

cally is that they generate a firm size distribution that is “light-tailed,” in a sense that we will make precise.

For example, if the demand system is given by a logit model and the spot market equilibrium is Nash in

prices, then the condition holds if the average firm size is uniformly bounded for all market sizes.

We provide an algorithm based on dynamic programming that computes oblivious equilibria. The algo-

rithm is computationally light, often terminating within a couple minutes of run time on a common laptop

computer even for industries with thousands of firms. It is also easy to implement, requiring, typically,

fewer than two hundred lines of Matlab code. This represents a considerable savings over existing algo-

rithms. Another distinguishing feature of the algorithm is that it places no a priori restrictions on the number

of firms or the number of firm states. Instead, these are determined endogenously and computed alongside

the oblivious equilibrium.

Our asymptotic result provides a condition under which the approximation is accurate for large markets.

We also derive bounds on the approximation error that can be efficiently computed for any given applied

problem. Despite the practical importance of such error bounds, there are very few cases in the approximate

dynamic programming literature where researchers have been able to provide useful bounding techniques for

high-dimensional stochastic control problems. Possibly the only relevant examples involve optimal stopping

(Haugh, Kogan, and Wang 2004) and portfolio optimization (Haugh, Kogan, and Wang 2005). As such, our

bounding technique represents a significant contribution. We show that these error bounds can be derived
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quite generally; they do not require many of our modeling assumptions. Furthermore, while it is important

that there be no aggregate shocks for the asymptotic results to hold, we are able to derive error bounds

even for models that incorporate aggregate shocks. Using this bounding algorithm, we find that oblivious

equilibria often offer accurate approximations for industries involving hundreds of firms, and in some cases

even tens of firms.

These results suggest that, by using oblivious equilibria to approximate MPE, it is possible to greatly

increase the set of problems that can be analyzed using EP-type models. Still, there remains a set of problems

where exact computation is beyond reach but the approximation is not likely to work well. Such problems

would likely involve industries with moderate to large numbers of firms that still remain highly concentrated.

Our hope is that, by including more information in the approximation, the concept of oblivious equilibrium

can also serve as a basis for approximations for these cases. For example, extending the approximation so

that firms track not just their own state, but also the states of several of the largest firms in the industry,

and/or the total number of firms in the industry, may yield better approximations.2 Deriving bounds on the

approximation error for such cases is not a trivial extension of the proofs in this paper, and thus will be a

topic of future research.

Though our emphasis is on the use of oblivious equilibrium as an approximation of MPE, oblivious

equilibrium can also be motivated as a behavioral model in its own right. If observing the industry state and

designing strategies that keep track of it are costly, and do not lead to significant increases in profit, firms

may be better off using oblivious strategies.

The concept of oblivious equilibrium is closely related to Hopenhayn (1992). Hopenhayn models an

industry that hosts an infinite number of firms, each of which garners an infinitesimal fraction of the market.

His model is tractable because it assumes that the industry state is constant over time, implicitly assuming a

law of large number holds. This assumption is based on the same intuition that motivates our consideration

of oblivious equilibrium. However, our goal is to analyze models that closely reflect real world industries

that have finite numbers of firms. Also, our EP-type model is more general because the transitional dynamics

resulting from firms’ investment strategies are generated by equilibrium behavior that is explicitly modeled.

Hopenhayn abstracts from this aspect of the model and instead assumes that firms’ state trajectories (their

productivities) follow exogenous Markov processes.3

Our approach also has similarities to a number of other past literatures. The light-tail condition we

consider is analogous to notions of diffuse industry structure in large markets associated with Sutton (1991)’s
2Note also that related approaches have been used in the past, most notably to solve stochastic growth models (Krusell and

A. A. Smith (1998)).
3Note that Klette and Kortum (2003) and Melitz (2003) model investment explicitly in Hopenhayn-style models.
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exogenous sunk cost model. Though our goals are different, our asymptotic results are close in spirit to the

work of Novshek and Sonnenschein (1978) who, in a static setting, provide conditions under which Cournot-

Nash equilibrium converges to Walras competitive equilibrium when there is free entry. The notion that,

for asymptotically large markets, strategies can remain effective while ignoring information and strategic

behavior also appears in Vives (2002), in the context of Cournot models. Finally, Jovanovic and Rosenthal

(1988) consider sequential equilibria in a model where equilibrium strategies can often be represented as

simple functions of summary statistics of the distribution of firm states. This differs from our context, where

equilibrium strategies are in reality very complex, but can sometimes be well approximated using simple

functions.

There are a variety of relevant economic issues that can be studied using our methods. As an example,

we briefly explore an important question in industrial organization: what features of an industry determine

whether an industry becomes fragmented or remains concentrated as the market grows in size? Sutton (1991)

sought to identify simple features of an industry that distinguish models that lead to these two outcomes. In

our model, through computational experiments, we show that an arbitrarily small increase in a single model

parameter that identifies the extent of vertical product differentiation, can turn an asymptotically fragmented

market into an asymptotically concentrated one. These results show that the predictions of Sutton (1991)

may sometimes be quite sensitive. For example, they imply that very different market structures might

be observed in the same industry across markets that are the same size and that have indistinguishable

characteristics. Note that our results remain broadly consistent with Sutton (1991) since the extent of vertical

product differentiation impacts the returns to investment. Consistent with Sutton (1991), industries with

higher returns to investment (even if the difference may be arbitrarily small) tend to be more concentrated.

The paper is organized as follows. In Section 2 we outline the dynamic industry model. In Section 3 we

introduce the concept of oblivious strategies and oblivious equilibrium. In Section 4 we provide conditions

under which oblivious strategies approximate MPE strategies asymptotically as the market size grows. In

Section 5 we provide methods for computing oblivious equilibria and error bounds. In Section 6 we report

results from computational experiments. Finally, Section 7 presents conclusions and a discussion of future

research directions.
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2 A Dynamic Model of Imperfect Competition

In this section we formulate a model of an industry in which firms compete in a single-good market. Our

model is close in spirit to that of Ericson and Pakes (1995), but with some differences. Most notably, we

modify the entry and exit processes in Ericson and Pakes (1995) so as to make them more realistic when

there are a large number of firms. Additionally, our asymptotic results do not hold with aggregate industry

shocks so our model includes only idiosyncratic shocks.

2.1 Model and Notation

The industry evolves over discrete time periods and an infinite horizon. We index time periods with non-

negative integers t ∈ N (N = {0, 1, 2, . . .}). All random variables are defined on a probability space

(Ω,F ,P) equipped with a filtration {Ft : t ≥ 0}. We adopt a convention of indexing by t variables that are

Ft-measurable.

Each firm that enters the industry is assigned a unique positive integer-valued index. The set of indices

of incumbent firms at time t is denoted by St. At each time t ∈ N, we denote the number of incumbent firms

as nt.

Firm heterogeneity is reflected through firm states. To fix an interpretation, we will refer to a firm’s state

as its quality level. However, firm states might more generally reflect productivity, capacity, the size of its

consumer network, or any other aspect of the firm that affects its profits. At time t, the quality level of firm

i ∈ St is denoted by xit ∈ N.

We define the industry state st to be a vector over quality levels that specifies, for each quality level

x ∈ N, the number of incumbent firms at quality level x in period t. We define the state space S ={
s ∈ N∞

∣∣∣ ∑∞
x=0 s(x) <∞

}
. Though in principle there are a countable number of industry states, we will

also consider an extended state space S =
{
s ∈ <∞+

∣∣∣ ∑∞
x=0 s(x) <∞

}
. This will allow us, for example,

to consider derivatives of functions with respect to the industry state. For each i ∈ St, we define s−i,t ∈ S

to be the state of the competitors of firm i; that is, s−i,t(x) = st(x) − 1 if xit = x, and s−i,t(x) = st(x),

otherwise. Similarly, n−i,t denotes to the number of competitors of firm i.

In each period, each incumbent firm earns profits on a spot market. A firm’s single period expected

profit π(xit, s−i,t) depends on its quality level xit and its competitors’ state s−i,t.

The model also allows for entry and exit. In each period, each incumbent firm i ∈ St observes a positive

real-valued sell-off value φit that is private information to the firm. If the sell-off value exceeds the value of

continuing in the industry then the firm may choose to exit, in which case it earns the sell-off value and then
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ceases operations permanently.

If the firm instead decides to remain in the industry, then it can invest to improve its quality level. If a

firm invests ιit ∈ <+, then the firm’s state at time t+ 1 is given by,

xi,t+1 = xit + w(ιit, ζi,t+1),

where the function w captures the impact of investment on quality and ζi,t+1 reflects uncertainty in the

outcome of investment. Uncertainty may arise, for example, due to the risk associated with a research and

development endeavor or a marketing campaign. We denote the unit cost of investment by d.

In each period new firms can enter the industry by paying a setup cost κ. Entrants do not earn profits in

the period that they enter. They appear in the following period at state xe ∈ N and can earn profits thereafter.

Each firm aims to maximize expected net present value. The interest rate is assumed to be positive and

constant over time, resulting in a constant discount factor of β ∈ (0, 1) per time period.

In each period, events occur in the following order:

1. Each incumbent firms observes its sell-off value and then makes exit and investment decisions.

2. The number of entering firms is determined and each entrant pays an entry cost of κ.

3. Incumbent firms compete in the spot market and receive profits.

4. Exiting firms exit and receive their sell-off values.

5. Investment outcomes are determined, new entrants enter, and the industry takes on a new state st+1.

2.2 Model Primitives

The model as specified is general enough to encompass numerous applied problems in economics. Indeed,

similar models have been applied to advertising, auctions, collusion, consumer learning, environmental

policy, international trade policy, learning-by-doing, limit order markets, mergers, network externalities,

and other applied problems. To study any particular applied problem it is necessary to further specify the

primitives of the model, including:
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profit function π

sell-off value distribution ∼ φit

investment impact function w

investment uncertainty distribution ∼ ζit

unit investment cost d

entry cost κ

discount factor β

Note that in most applied problems the profit function would not be specified directly, but would instead

result from a deeper set of primitives that specify a demand function, a cost function, and a static equilibrium

concept. An important parameter of the demand function, that we will focus on below, is the size of the

relevant market, which we will denote as m.

2.3 Assumptions

We make several assumptions about the model primitives, beginning with the profit function. An industry

state s ∈ S is said to dominate s′ ∈ S if for all x ∈ N,
∑

z≥x s(z) ≥
∑

z≥x s
′(z). We will denote this

relation by s � s′. Intuitively, competition associated with s is no weaker than competition associated with

s′.

Assumption 2.1.

1. For all s ∈ S, π(x, s) is increasing in x.

2. For all x ∈ N and s, s′ ∈ S, if s � s′ then π(x, s) ≤ π(x, s′).

3. For all x ∈ N and s ∈ S, π(x, s) > 0, and supx,s π(x, s) <∞.

4. For all x ∈ N, y ∈ N, and s ∈ S, π(x, s) is differentiable with respect to s(y). Further, for any
x ∈ N, y ∈ N, s ∈ S, and h ∈ S such that s+ γh ∈ S for γ > 0 sufficiently small, if∑

y∈N
h(y)

∣∣∣∣∂ lnπ(x, s)
∂s(y)

∣∣∣∣ <∞,

then
d lnπ(x, s+ γh)

dγ

∣∣∣
γ=0

=
∑
y∈N

h(y)
∂ lnπ(x, s)
∂s(y)

.

The assumptions are natural. Assumption 2.1.1 ensures that increases in quality lead to increases in

profit. Assumption 2.1.2 states that strengthened competition cannot result in increased profit. Assumption

2.1.3 ensures that profits are positive and bounded. The first part of Assumption 2.1.4 requires partial

differentiability of the profit function with respect to each s(y). Profit functions that are “smooth”, such
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as ones arising from random utility demand models like the logit model, will satisfy this assumption. The

second part of Assumption 2.1.4 is technical and essentially requires that the profit function is Fréchet

differentiable.

We also make assumptions about investment and the distributions of the private shocks:

Assumption 2.2.

1. The variables {φit|t ≥ 0, i ≥ 1} are i.i.d. and have finite expectations and well-defined density
functions with support <+.

2. The random variables {ζit|t ≥ 0, i ≥ 1} are i.i.d. and independent of {φit|t ≥ 0, i ≥ 1}.

3. For all ζ, w(ι, ζ) is nondecreasing in ι.

4. For all ι > 0, P[w(ι, ζi,t+1) > 0] > 0.

5. For all ι > 0, P[w(ι, ζi,t+1) = 0] > 0.

6. There exists a positive constant w ∈ N such that |w(ι, ζ)| ≤ w, for all (ι, ζ). There exists a positive
constant ι such that ιit < ι, ∀i,∀t.

7. For all k ∈ {−w, . . . , w}, P[w(ι, ζi,t+1) = k] is continuous in ι.

8. The transitions generated by w(ι, ζ) are unique investment choice admissible .

Assumptions 2.2.1 and 2.2.2 imply that investment and exit outcomes are idiosyncratic conditional on

the state. Assumption 2.2.3 and 2.2.4 imply that investment is productive. Assumption 2.2.5 is used to

ensure the Markov chain that describes the industry evolution admits an invariant distribution (in particular,

to ensure it is aperiodic). Assumption 2.2.6 places a finite bound on how much progress can be made or lost

in a single period through investment. Assumption 2.2.7 ensures that the impact of investment on transition

probabilities is continuous. Assumption 2.2.8 is an assumption introduced by Doraszelski and Satterthwaite

(2003) that ensures a unique solution to the firms’ investment decision problem. It is used to guarantee

existence of an equilibrium in pure strategies, and is satisfied by many of the commonly used specifications

in the literature.

We assume that there are a large number of potential entrants who play a symmetric mixed entry strategy.

In that case the number of actual entrants is well approximated by the Poisson distribution (see appendix for

a derivation of this result). This leads to the following assumptions:

Assumption 2.3.

1. The number of firms entering during period t is a Poisson random variable that is conditionally
independent of {φit, ζit|t ≥ 0, i ≥ 1}, conditioned on st.

2. κ > β · φ̄, where φ̄ is the expected net present value of entering the market, investing zero each period,
and then exiting at an optimal stopping time.
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We denote the expected number of firms entering at industry state st, by λ(st). This state-dependent

entry rate will be endogenously determined, and our solution concept will require that it satisfies a zero

expected profit condition. Modeling the number of entrants as a Poisson random variable has the advantage

that it leads to more elegant asymptotic results. Assumption 2.3.2 ensures that the sell-off value by itself is

not sufficient reason to enter the industry.

2.4 Equilibrium

As a model of industry behavior we focus on pure strategy Markov perfect equilibrium (MPE), in the sense

of Maskin and Tirole (1988). We further assume that equilibrium is symmetric, such that all firms use a

common stationary investment/exit strategy. In particular, there is a function ι such that at each time t,

each incumbent firm i ∈ St invests an amount ιit = ι(xit, s−i,t). Similarly, each firm follows an exit

strategy that takes the form of a cutoff rule: there is a real-valued function ρ such that an incumbent firm

i ∈ St exits at time t if and only if φit ≥ ρ(xit, s−i,t). In the appendix we show that there always exists

an optimal exit strategy of this form even among very general classes of exit strategies. Let M denote

the set of exit/investment strategies such that an element µ ∈ M is a pair of functions µ = (ι, ρ), where

ι : N×S → <+ is an investment strategy and ρ : N×S → <+ is an exit strategy. Similarly, we denote the

set of entry rate functions by Λ, where an element of Λ is a function λ : S → <+.

We define the value function V (x, s|µ′, µ, λ) to be the expected net present value for a firm at state x

when its competitors’ state is s, given that its competitors each follows a common strategy µ ∈M, the entry

rate function is λ ∈ Λ, and the firm itself follows strategy µ′ ∈M. In particular,

V (x, s|µ′, µ, λ) = Eµ′,µ,λ

[
τi∑
k=t

βk−t (π(xik, s−i,k)− dιik) + βτi−tφi,τi

∣∣∣xit = x, s−i,t = s

]
,

where i is taken to be the index of a firm at quality level x at time t, τi is a random variable representing the

time at which firm i exits the industry, and the subscripts of the expectation indicate the strategy followed

by firm i, the strategy followed by its competitors, and the entry rate function. In an abuse of notation, we

will use the shorthand, V (x, s|µ, λ) ≡ V (x, s|µ, µ, λ), to refer to the expected discounted value of profits

when firm i follows the same strategy µ as its competitors.

An equilibrium to our model comprises an investment/exit strategy µ = (ι, ρ) ∈ M, and an entry rate

function λ ∈ Λ that satisfy the following conditions:
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1. Incumbent firm strategies represent a MPE:

(2.1) sup
µ′∈M

V (x, s|µ′, µ, λ) = V (x, s|µ, λ) ∀x ∈ N, ∀s ∈ S.

2. At each state, either entrants have zero expected profits or the entry rate is zero (or both):

∑
s∈S λ(s) (βEµ,λ [V (xe, s−i,t+1|µ, λ)|st = s]− κ) = 0

βEµ,λ [V (xe, s−i,t+1|µ, λ)|st = s]− κ ≤ 0 ∀s ∈ S

λ(s) ≥ 0 ∀s ∈ S.

In the appendix, we show that the supremum in part 1 of the definition above can always be attained simul-

taneously for all x and s by a common strategy µ′.

Doraszelski and Satterthwaite (2003) establish existence of an equilibrium in pure strategies for a closely

related model. We do not provide an existence proof here because it is long and cumbersome and would

replicate this previous work. With respect to uniqueness, in general we presume that our model may have

multiple equilibria.4

Dynamic programming algorithms can be used to optimize firm strategies, and equilibria to our model

can be computed via their iterative application. However, these algorithms require compute time and mem-

ory that grow proportionately with the number of relevant industry states, which is often intractable in

contexts of practical interest. This difficulty motivates our alternative approach.

3 Oblivious Equilibrium

We will propose a method for approximating MPE based on the idea that when there are a large number

of firms, simultaneous changes in individual firm quality levels can average out such that the normalized

industry state remains roughly constant over time. In this setting, each firm can potentially make near-

optimal decisions based only on its own quality level and the long run average industry state. With this

motivation, we consider restricting firm strategies so that each firm’s decisions depend only on the firm’s

quality level. We call such restricted strategies oblivious since they involve decisions made without full

knowledge of the circumstances — in particular, the state of the industry.
4Doraszelski and Satterthwaite (2003) also provide an example of multiple equilibria in their closely related model.
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3.1 Oblivious Strategies and Entry Rate Functions

Let M̃ ⊂ M and Λ̃ ⊂ Λ denote the set of oblivious strategies and the set of oblivious entry rate functions.

Since each strategy µ = (ι, ρ) ∈ M̃ generates decisions ι(x, s) and ρ(x, s) that do not depend on s, with

some abuse of notation, we will often drop the second argument and write ι(x) and ρ(x). Similarly, for an

entry rate function λ ∈ Λ̃, we will denote by λ the real-valued entry rate that persists for all industry states.

3.2 Oblivious Equilibrium

Note that if all firms use a common strategy µ ∈ M̃, the quality level of each evolves as an independent tran-

sient Markov chain. Let the k-period transition sub-probabilities of this transient Markov chain be denoted

by P kµ (x, y). Then, the expected time that a firm spends at a quality level x is given by
∑∞

k=0 P
k
µ (xe, x), and

the expected lifespan of a firm is
∑∞

k=0

∑
x∈N P

k
µ (xe, x). Denote the expected number of firms at quality

level x at time t by s̃t(x) = E[st(x)]. The following result offers an expression for the long-run expected

industry state when dynamics are governed by oblivious strategies and entry rate functions.

Lemma 3.1. Let Assumption 2.2 hold. If firms make decisions according to an oblivious strategy µ ∈ M̃

and enter according to an oblivious entry rate function λ ∈ Λ̃, and the expected time that a firm spends in

the industry is finite, then

(3.1) lim
t→∞

s̃t(x) = λ
∞∑
k=0

P kµ (xe, x),

for all x ∈ N.

We omit the proof, which is straightforward. To abbreviate notation, we let s̃µ,λ(x) = limt→∞ s̃t(x) for

µ ∈ M̃, λ ∈ Λ̃, and x ∈ N. For an oblivious strategy µ ∈ M̃ and an oblivious entry rate function λ ∈ Λ̃

we define an oblivious value function

Ṽ (x|µ′, µ, λ) = Eµ′

[
τi∑
k=t

βk−t (π(xik, s̃µ,λ)− dιik) + βτi−tφi,τi

∣∣∣xit = x

]
.

This value function should be interpreted as the expected net present value of a firm that is at quality level

x and follows oblivious strategy µ′, under the assumption that its competitors’ state will be s̃µ,λ for all

time. Note that only the firm’s own strategy µ′ influences the firm’s state trajectory because neither the

profit function nor the strategy µ′ depends on the industry state. Hence, the subscript in the expectation

only reflects this dependence. Importantly, however, the oblivious value function remains a function of
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the competitors’ strategy µ and the entry rate λ through the expected industry state s̃µ,λ. Again, we abuse

notation by using Ṽ (x|µ, λ) ≡ Ṽ (x|µ, µ, λ) to refer to the oblivious value function when firm i follows the

same strategy µ as its competitors.

We now define a new solution concept: an oblivious equilibrium consists of a strategy µ ∈ M̃ and an

entry rate function λ ∈ Λ̃ that satisfy the following conditions:

1. Firm strategies optimize an oblivious value function:

(3.2) sup
µ′∈M̃

Ṽ (x|µ′, µ, λ) = Ṽ (x|µ, λ), ∀x ∈ N.

2. Either the oblivious expected value of entry is zero or the entry rate is zero (or both):

λ
(
βṼ (xe|µ, λ)− κ

)
= 0

βṼ (xe|µ, λ)− κ ≤ 0

λ ≥ 0.

It is straightforward to show that an oblivious equilibrium exists under mild technical conditions. Fur-

thermore, if the entry cost is not prohibitively high then an oblivious equilibrium with a positive entry rate

exists. We omit the proof of this for brevity. With respect to uniqueness, we have been unable to find mul-

tiple oblivious equilibria in any of the applied problems we have considered, but similarly with the case of

MPE, we have no reason to believe that in general there is a unique oblivious equilibrium.5

Note that we assume that, even if firms are using oblivious strategies, the sequence of single-period

profits received are the ones associated with Nash, and not oblivious, static behavior. For example, if single-

period profits are derived from a game in which firms compete in prices, we assume firms price according to

Nash equilibrium strategies, and are not oblivious with respect to pricing behavior. We make this assumption

because we are interested in the dynamic behavior of the industry, and we believe that assuming oblivious

pricing behavior, which would be cumbersome, would not change our conclusions in that respect.

We will later explore situations where the number of firms is large and oblivious equilibria approximate

MPE, in a sense that we will define precisely. First, we analyze the long-run behavior of an industry where

strategies and the entry rate function are oblivious.
5However, since oblivious strategies rule out strategies that are dependent on competitors’ states, there are likely to be fewer

oblivious equilibria than there are MPE.
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3.3 The Invariant Industry Distribution

In Lemma 3.1, we characterized the long-run expected industry state. Our next result characterizes the

long-run distribution. The symbol ⇒ denotes weak convergence as t→∞.

Lemma 3.2. Let Assumptions 2.2 and 2.3 hold. Assume that firms follow a common oblivious strategy

µ ∈ M̃, the expected entry rate is λ ∈ Λ̃, and the expected time that each firm spends in the industry is finite.

Let {Zx : x ∈ N} be a sequence of independent Poisson random variables with means {s̃µ,λ(x) : x ∈ N},

and let Z be a Poisson random variable with mean
∑

x∈N s̃µ,λ(x). Then,

(a) {st : t ≥ 0} is an irreducible, aperiodic and positive recurrent Markov chain;

(b) the invariant distribution of st is a product form of Poisson random variables;

(c) for all x, st(x) ⇒ Zx;

(d) nt ⇒ Z.

To conclude this section we state an important result for later use. First note that

st(x) =
∑
i∈St

1{xit=x} =
nt∑
j=1

1{x(j)t=x},

where 1A denotes the indicator of event A. Hence, for example, 1{xit=x} = 1 if xit = x, and 1{xit=x} = 0,

otherwise. {x(j)t : j = 1, . . . , nt} is a random permutation of {xit : i ∈ St}. That is, we randomly pick a

firm from St and assign to it the index j = 1; from the remaining firms we randomly pick another firm and

assign to it the index j = 2, and so on.

Lemma 3.3. Let Assumptions 2.2 and 2.3 hold. Assume that firms follow a common oblivious strategy

µ ∈ M̃, the expected entry rate is λ ∈ Λ̃, and the expected time that each firm spends in the industry is

finite. Let {Yn : n ∈ N} be a sequence of integer-valued i.i.d. random variables, each distributed according

to s̃µ,λ(·)/
∑

x∈N s̃µ,λ(x). Then, for all n ∈ N,

(
x(1)t, . . . , x(nt)t

∣∣∣nt = n
)
⇒ (Y1, . . . , Yn).

Proofs of Lemmas 3.2 and 3.3 can be found in the appendix. The Poisson entry process is key to

proving these results. Lemma 3.3 ensures that if we sample a firm randomly from those firms currently

in the industry and the industry state is distributed according to the invariant distribution, the firm’s state

will be distributed according to the normalized expected industry state. Further, each subsequent time we

sample without replacement we get an independent sample from the same distribution. For brevity, when
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we consider sampling a random firm from among those currently in the industry and the industry state is

distributed according to the invariant distribution, we will say that we are sampling a firm from the industry’s

invariant distribution.

It is straightforward to show that if per-period profit is bounded, say by some quantity π, then the

expected time a firm spends in the industry is finite for any oblivious strategy µ ∈ M̃ that comprises

an oblivious equilibrium. This follows from the fact that the sell-off value has support in <+ and the

continuation value from every state is bounded above by π
1−β + φ. Hence, the probability of exiting in each

period is bounded below by a positive constant. This implies that the previous lemmas apply when firms use

oblivious equilibrium strategies.

4 Asymptotic Results

In this section, we establish asymptotic results that provide conditions under which oblivious equilibria offer

close approximations to MPE as the market size grows. As specified above, our model does not explicitly

depend on market size. However, market size would typically enter the profit function, π(xit, s−i,t), through

the underlying demand system; in particular, profit for a firm at a given state (x, s) would typically increase

with market size. Therefore, in this section we consider a sequence of markets indexed by market sizes

m ∈ <+. All other model primitives are assumed to remain constant within this sequence except for the

profit function, which depends on m. To convey this dependence, we denote profit functions by πm.

We index functions and random variables associated with market size m with a superscript (m). From

this point onward we let (µ̃(m), λ̃(m)) denote an oblivious equilibrium for market sizem. Let V (m) and Ṽ (m)

represent the value function and oblivious value function, respectively, when the market size ism. To further

abbreviate notation we denote the expected industry state associated with (µ̃(m), λ̃(m)) by s̃(m) ≡ s̃µ̃(m),λ̃(m) .

The random variable s(m)
t denotes the industry state at time t when every firm uses strategy µ̃(m) and

the entry rate is λ̃(m). We denote the invariant distribution of {s(m)
t : t ≥ 0} by q(m). In order to simplify

our analysis, we assume that the initial industry state s(m)
0 is sampled from q(m). Hence, s(m)

t is a stationary

process; s(m)
t is distributed according to q(m) for all t ≥ 0. Note that this assumption does not affect long-run

asymptotic results since for any initial condition the process approaches stationarity as time progresses.

It will be helpful to decompose s(m)
t according to s(m)

t = f
(m)
t n

(m)
t , where f (m)

t is the random vec-

tor that represents the fraction of firms in each state and n(m)
t is the total number of firms, respectively.

Similarly, let f̃ (m) ≡ E[f (m)
t ] denote the expected fraction of firms in each state and ñ(m) ≡ E[n(m)

t ] =

14



∑
x∈N s̃

(m)(x) denote the expected number of firms. Using Lemma 3.3, it is easy to check that f̃ (m) = s̃(m)

ñ(m) .

With some abuse of notation, we define πm(xit, f−i,t, n−i,t) ≡ πm(xit, n−i,t · f−i,t).

4.1 Assumptions about the Sequence of Profit Functions

In addition to Assumption 2.1, which applies to individual profit functions, we will make the following

assumptions, which apply to sequences of profit functions. Let S1 = {f ∈ S|
∑

x∈N f(x) = 1} and

S1,z = {f ∈ S1|∀x > z, f(x) = 0}.

Assumption 4.1.

1. supx∈N,s∈S πm(x, s) = O(m). 6

2. For all increasing sequences {mk ∈ N|k ∈ N}, n : N 7→ N with n(mk) = o(mk), x, z ∈ N with
x > z, and f ∈ S1,z , limk→∞ πmk

(x, f, n(mk)) = ∞.

3.

sup
m∈<+,x∈N,f∈S1,n>0

∣∣∣∣d lnπm(x, f, n)
d lnn

∣∣∣∣ <∞.

The assumptions are again natural. Assumption 4.1.1, which states that profits increase at most linearly

with market size, should hold for virtually all relevant classes of profit functions. It is satisfied, for example,

if the total disposable income of the consumer population grows linearly in market size.7 Assumption 4.1.2

is also natural. It states that if the number of firms grows slower than the market size then the largest firm’s

profit becomes arbitrarily large as the market grows. Assumption 4.1.3 requires that profits are “smooth”

with respect to the number of firms and, in particular, states that the relative rate of change of profit with

respect to relative changes in the number of firms is uniformly bounded. To provide a concrete example,

we show in Section 4.5 that these assumptions are satisfied by a single-period profit function derived from a

demand system given by a logit model and where the spot market equilibrium is Nash in prices.

4.2 Asymptotic Markov Equilibrium

Our aim is to establish that, under certain conditions, oblivious equilibria well-approximate MPE as the

market size grows. We define the following concept to formalize the sense in which this approximation

becomes exact.

Definition 4.1. A sequence (µ̃(m), λ̃(m)) ∈ M × Λ possesses the asymptotic Markov equilibrium (AME)

6In this notation, f(m) = O(m) denotes lim supm
f(m)

m
< ∞. f(m) = o(m) denotes lim supm

f(m)
m

= 0.
7For example, if each consumer has income that is less than some upper bound Ȳ then total disposable income of the consumer

population (an upper bound to firm profits) is always less than m · Ȳ .
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property if for all x ∈ N,

lim
m→∞

Eµ̃(m),λ̃(m)

[
sup
µ′∈M

V (m)(x, s(m)
t |µ′, µ̃(m), λ̃(m))− V (m)(x, s(m)

t |µ̃(m), λ̃(m))

]
= 0 .

Recall that the process st is taken to be stationary, and therefore, this expectation does not depend on t.

The definition of AME assesses approximation error at each firm state x in terms of the amount by which

a firm at state x can increase its expected net present value by deviating from the oblivious equilibrium

strategy µ̃(m), and instead following an optimal (non-oblivious) best response that keeps track of the true

industry state. Recall that a MPE requires that the expression in square brackets equals zero for all states

(x, s). In that sense, the notion of AME relates to the more common notion that ε-equilibria approximate

true equilibria in games as ε→ 0 (Fudenberg and Levine 1986).

Note that standard MPE solution algorithms (e.g., Pakes and McGuire (1994)) aim to compute point-

wise ε-equilibria; that is, where a firm cannot improve its net present value by more than ε starting from

any state (x, s). The AME property instead considers the benefit of deviating to an optimal strategy starting

from each firm state x, averaged over the invariant distribution of industry states. It would not be possible

to obtain our results point-wise. This is because in an oblivious equilibrium firms may be making poor

decisions in states that are far from the expected state. Offsetting this effect is the fact that these states have

very low probability of occurrence, so they have a small impact on expected discounted profits.8

If a sequence of oblivious equilibria has the AME property then, asm grows, supµ′∈M V (m)(x, s|µ′, µ̃(m), λ̃(m)) ≈

V (m)(x, s|µ̃(m), λ̃(m)) for states s that have significant probability of occurrence. This implies that, asymp-

totically, µ̃(m) is a near optimal strategy (so it approximately satisfies the MPE equation) when the industry

starts in any state that has significant probability of occurrence. Additionally, one can show that when the

sequence of oblivious equilibria has the AME property then it is also the case that

limm→∞Eµ̃(m),λ̃(m)

[∣∣∣V (m)(xe, s(m)
t |µ̃(m), λ̃(m))− Ṽ (xe|µ̃(m), λ̃(m))

∣∣∣] = 0. Since βṼ (xe|µ̃(m), λ̃(m)) =

κ for all m, asymptotically, βV (m)(xe, s|µ̃(m), λ̃(m)) ≈ κ for states s that have significant probability of

occurrence. Hence, asymptotically, λ̃(m) satisfies the zero profit condition at such states. In summary, if

Eµ̃(m),λ̃(m)

[
supµ′∈M V (m)(x, s(m)

t |µ′, µ̃(m), λ̃(m))− V (m)(x, s(m)
t |µ̃(m), λ̃(m))

]
is small, MPE strategies

and entry rates at relevant states should be well approximated by oblivious ones. We will later present

computational results that support this point.9

8Note that Pakes and McGuire (2001) use a similar concept as a stopping rule in their stochastic algorithm.
9One might attempt to formalize this argument by following a similar line of reasoning as Fudenberg and Levine (1986) or

Altman, Pourtallier, Haurie, and Moresino (2000), who provide conditions under which, if a sequence of restricted games, Gm,
converges to a game of interest, G, in an appropriate way, then any convergent sequence of εm−equilibria of Gm with εm → 0
converges to an equilibrium of G. Our model does not have a well defined limit game, which makes it hard to apply this argument.
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4.3 Uniform Law of Large Numbers

The following theorem establishes that when the number of firms is large, the industry state becomes approx-

imately constant (i.e., s(m)
t ≈ s̃(m)) with high probability. We use →p to denote convergence in probability

as m→∞.

Theorem 4.1. If limm→∞ ñ(m) = ∞ then

sup
x∈N

∣∣∣s(m)
t (x)
ñ(m)

− s̃(m)(x)
ñ(m)

∣∣∣ →p 0.

The theorem can be proved by invoking a uniform law of large numbers (Vapnik and Chervonenkis

(1971)) and using Lemma 3.3. It suggests that when the expected number of firms is large, using an oblivious

strategy might be close to optimal, and that a sequence of oblivious equilibria possesses the AME property.

However, for this to be the case it turns out that additional conditions are required.

4.4 A Light-Tail Condition Implies AME

Even when there are a large number of firms, if the market tends to be concentrated — for example, if the

market is usually dominated by a single firm — the AME property is unlikely to hold. To ensure the AME

property, we need to impose a “light-tail” condition that rules out this kind of market concentration.

Note that d lnπm(y,f,n)
df(x) is the semi-elasticity of one period profits with respect to the fraction of firms in

state x. We define the maximal absolute semi-elasticity function:

g(x) = max
m∈<+,y∈N,f∈S1,n>0

∣∣∣∣d lnπm(y, f, n)
df(x)

∣∣∣∣ .
For each x, g(x) is the maximum rate of relative change of any firm’s single-period profit that could result

from a small change in the fraction of firms at quality level x. Since larger competitors tend to have greater

influence on firm profits, g(x) typically increases with x, and can be unbounded.

Finally, we introduce our light-tail condition. For each m, let x̃(m) ∼ f̃ (m), that is, x̃(m) is a random

variable with probability mass function f̃ (m). According to Lemma 3.3, x̃(m) can be interpreted as the

quality level of a firm that is randomly sampled from among all incumbents while the industry state is

distributed according to its invariant distribution.

Assumption 4.2. For all quality levels x, g(x) <∞. For all ε > 0, there exists a quality level z such that

E
[
g(x̃(m))1{x̃(m)>z}

]
≤ ε,
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for all market sizes m.

Put simply, the light tail condition requires that states where a small change in the fraction of firms has

a large impact on the profits of other firms, must have a small probability under the invariant distribution.

In practice this typically means that very large firms (and hence high concentration) rarely occur under the

invariant distribution.

Recall that g(x) is the maximum rate of relative change of any firm’s single-period profit that could

result from a small change in the fraction of firms at quality level x. The first part of the assumption requires

that for any x, this quantity is finite. If this condition is not satisfied, a small change in the number of firms

at quality level x can have an arbitrarily large impact on other firms’ profits as the market size grows. It

is unlikely that an oblivious equilibrium will provide a good approximation in this situation. Note that the

assumption imposes that g(x) is finite for each x, but allows g(x) to grow arbitrarily large as x grows.

To interpret the second part of the assumption it is helpful to first understand a weaker condition:

E[g(x̃(m))] <∞. This weaker condition ensures that the expected impact of a randomly sampled incumbent

is finite. It can be viewed as a “light tail” condition, since it requires that the probability of sampling firms at

large quality levels dies off sufficiently quickly so that the expected impact remains finite. For any x and z,

the product g(x)1{x>z} is equal to 0 if x ≤ z but otherwise is equal to g(x). Hence, E[g(x̃(m))1{x̃(m)>z}]

is similar to E[g(x̃(m))] but ignores the impact of any sampled firm if its quality level is z or lower. Con-

sequently, E[g(x̃(m))1{x̃(m)>z}] bounds the expected impact of the presence of a randomly sampled firm if

the impact of any firm with quality level z or lower is ignored.

It is easy to see that the condition E[g(x̃(m))] <∞ is equivalent to a condition that, for any ε > 0, there

exists a quality level z such that E[g(x̃(m))1{x̃(m)>z}] ≤ ε. This is because increasing z sufficiently will

result in ignoring a larger and larger fraction of firms in computing the expected impact and the expected im-

pact when none of the firms is ignored is finite. Assumption 4.2 poses a stronger condition in that it requires

that a quality level z can be chosen such that E
[
g(x̃(m))1{x̃(m)>z}

]
≤ ε for all market sizes m simultane-

ously. This is like the “light tail condition” E[g(x̃(m))1{x̃(m)>z}] ≤ ε, or equivalently E[g(x̃(m))] < ∞,

which applies to a fixed market size, but it precludes the possibility that the tail becomes arbitrarily “fat”

as the market size increases. In a sense, it requires that the tails of quality distributions f̃ (m) are uniformly

“light” over market sizes m.

As an alternative motivation for the light-tail condition, we note that if g(x) is increasing and unbounded,

then if there exists γ > 0, such that, supmE[g
(
x̃(m)

)1+γ
] <∞, Assumption 4.2 is satisfied. The condition

is slightly stronger than requiring uniformly bounded first moments of g(x̃(m)).

The following theorem establishes that, asymptotically, the average number of firms grows at least
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linearly in the market size.

Theorem 4.2. Under Assumptions 2.1, 2.2, 2.3, 4.1.2, and 4.2, ñ(m) = Ω(m) 10.

The proof can be found in the appendix. The intuition behind the result is simple. If the number of firms

were to grow slower than the market size, profits would blow up and the zero profit condition at the entry

state would not be met.

The next result, which is also proved in the appendix, establishes a stronger form of convergence than

Theorem 4.1. First, we define ‖f‖1,g =
∑

x |f(x)|g(x).

Theorem 4.3. Let Assumptions 2.1, 2.2, 2.3, 4.1.2, and 4.2, hold. Then, as m grows, n(m)
t /ñ(m) →p 1 and

‖f (m)
t − f̃ (m)‖1,g →p 0.

This new form of convergence allows us to ensure the AME property, which leads to the main result of

this section.

Theorem 4.4. Under Assumptions 2.1, 2.2, 2.3, 4.1, and 4.2, the sequence {µ̃(m), λ̃(m)} of oblivious equi-

libria possesses the AME property.

This result is proved in the appendix.

4.5 Example: Logit Demand System with Price Competition

To provide a concrete example of the conditions required for the asymptotic results above, we consider a

model where the single-period profit function is derived from a demand system given by a logit model, and

where the spot market equilibrium is Nash in prices. The model is described in detail in Subsection 6.1,

where we use it for our computational simulations.

In the appendix we show that the single period profit function implied by this model satisfies Assump-

tions 2.1 and 4.1. Furthermore, we show that, in this model, the function g(x̃(m)) takes a very simple form,

g(x̃(m)) ≈ (x̃(m))θ1 ,

where θ1 is the parameter on quality in the logit demand model. Therefore, the light tail condition amounts

to a simple condition on the equilibrium distribution of firm states. (Under our assumptions, such a condition

is equivalent to a condition on the equilibrium size distribution of firms.)

10In this notation, f(m) = Ω(m) implies that lim infm
f(m)

m
> 0. With an additional technical regularity condition, it is

straightforward to show that ñ(m) = O(m). Hence, it must be that, asymptotically, ñ(m) grows linearly in m.
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The light tail condition requires that for all ε > 0, there exists a quality level z such thatE
[(
x̃(m)

)θ1 1{x̃(m)>z}

]
≤

ε, for all market sizes m. If θ1 < 1 then the light-tail condition is satisfied if supmE
[
x̃(m)

]
< ∞, i.e., if

the average firm quality level remains uniformly bounded over all market sizes. This condition allows for

relatively “fat-tailed” distributions. For example, if x̃(m) converges in distribution to a log-normal distribu-

tion, then the light-tail condition is satisfied. On the other hand, if x̃(m) converges to a Pareto distribution

with parameter one (which does not have a finite first moment), then the light-tail condition would not be

satisfied.

5 Algorithm and Bounds

In this section we propose an algorithm that computes oblivious equilibria for a particular set of model

primitives. We then derive expressions that bound the approximation error associated with a particular

oblivious equilibrium. While the asymptotic results from Section 4 provide conditions under which the

approximation will work well as the market size grows, the error bound can be used to evaluate the oblivious

equilibrium as an approximation for MPE for a particular set of model primitives.

5.1 Computing Oblivious Equilibria

Algorithm 1 (below) is designed to compute an oblivious equilibrium. It starts with two extreme entry rates:

λ = 0 and λ = 1
κ

(
supx,s π(x,s)

1−β + φ̄
)

. Under mild assumptions, any oblivious equilibrium entry rate must

lie between these two extremes. The algorithm searches over entry rates between these two extremes for one

that leads to an oblivious equilibrium.11 For each candidate entry rate λ, an inner loop (lines 5-8) computes

an oblivious equilibrium firm strategy for that fixed entry rate. If the termination conditions of both the inner

and outer loops are satisfied with ε1 = ε2 = 0, we have an oblivious equilibrium. Small values of ε1 and ε2

allow for small errors associated with limitations of numerical precision.

The algorithm is easy to program and computationally efficient. In each iteration of the inner loop, the

optimization problem to be solved is a one dimensional dynamic program. The state space in this dynamic

program is the set of quality levels a firm can achieve. In principle, there could be an infinite number of

them. However, beyond a certain quality level the optimal strategy for a firm is not to invest, so its quality

cannot increase to beyond that level. In the numerical experiments we present in Section 6, the state space
11Note that there are potentially many alternative methods for searching over entry rates for an oblivious equilibrium. For

example, one alternative would be to start at an arbitrary entry rate and then implement small increments and decrements to the
entry rate until an entry rate is found that leads to an oblivious equilibrium.
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Algorithm 1 Oblivious Equilibrium Solver

1: λ := 0; λ := supx,s π(x, s)/κ
2: µ(x) := 0 for all x
3: repeat
4: λ := (λ+ λ)/2
5: repeat
6: µ′ := µ
7: Choose µ ∈ M̃ to maximize Ṽ (x|µ, µ′, λ) simultaneously for all x ∈ N
8: until ‖µ− µ′‖∞ ≤ ε1
9: if βṼ (xe|µ, λ)− κ ≥ 0 then

10: λ := λ
11: else
12: λ := λ
13: end if
14: until |βṼ (xe|µ, λ)− κ| ≤ ε2

never had more than two hundred states per firm. The exact number of states is determined during execution

of the algorithm.

Whether this algorithm is guaranteed to terminate in a finite number of iterations remains an open issue.

However, in over 90% of the numerical experiments we present in the next section, it converged in less than

five minutes (and often much less than this). In the rest, it converged in less than fifteen minutes.12

5.2 Error Bounds

To bound approximation error, we first need to define what is meant by approximation error. Consider an

oblivious strategy and entry rate function (µ̃, λ̃) ∈ M̃ × Λ̃. We will quantify approximation error at each

firm state x ∈ N by

E

[
sup
µ′∈M

V (x, st|µ′, µ̃, λ̃)− V (x, st|µ̃, λ̃)

]
.

The expectation is over the invariant distribution of st. Hence, approximation error is the amount by which

a firm at state x ∈ N can improve its expected net present value by unilaterally deviating from the oblivious

equilibrium strategy µ̃, and instead following an optimal (non-oblivious) best response, averaged over com-

petitor states drawn from the invariant industry state distribution. Recall that the AME property required

that the approximation error converge to zero as market size grows.

The next theorem provides two bounds on the approximation error. Recall that s̃ is the long run expected

state in oblivious equilibrium (E[st]). Let ax(y) be the expected discounted sum of an indicator of visits to

12The algorithm was programmed in Matlab. The experiments were executed on two UNIX shared machines. A Sun Enterprise
6500, Solaris 2.8, with 16 GB RAM, 12 GB swap, and 18 GB tmp; and a Sun Enterprise 5500, Solaris 8, with 4 GB RAM, 4 GB
swap, and 8.7 GB tmp.
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state y for a firm starting at state x that uses strategy µ̃ .

Theorem 5.1. Let Assumptions 2.1, 2.2, and 2.3 hold. Then, for any oblivious equilibrium (µ̃, λ̃) and firm

state x ∈ N,

(5.1) E

[
sup
µ′∈M

V (x, st|µ′, µ̃, λ̃)− V (x, st|µ̃, λ̃)

]
≤ 2

1− β
E[∆|π|(st)],

where ∆|π|(s) = maxy∈N |π(y, s)− π(y, s̃)|, and

(5.2)

E

[
sup
µ′∈M

V (x, st|µ′, µ̃, λ̃)− V (x, st|µ̃, λ̃)

]
≤ 1

1− β
E[∆π(st)] +

∑
y∈N

ax(y) (π(y, s̃)− E [π(y, st)]) ,

where ∆π(s) = maxy∈N (π(y, s)− π(y, s̃)).

The derivation of these bounds can be found in the appendix. It is worth mentioning that the result can

be generalized a great deal. In particular, most of the prior assumptions can be dropped; for instance, most

alternative entry processes will not change the result. In the next subsection we show that the bounds can be

obtained even for models that incorporate common aggregate shocks to profits.

The first bound is simpler so we will use it to build the intuition behind the bounds. According to the

first bound, if one period profits when the state is sampled from the invariant distribution are close to one

period profits evaluated at the expected state, then the oblivious equilibrium offers a close approximation.

This is because, in that case, firms cannot improve their expected discounted profits much by unilaterally

deviating from the oblivious strategy and keeping track of the industry state.

The second bound is more involved. We provide it because it is much tighter. Note that the right-hand-

side of the second bound depends on the initial firm state x, whereas the right-hand-side of the first bound

does not.

Both bounds can be easily estimated via simulation algorithms. Computing the bounds involves com-

puting an expectation over the industry state st. Once the oblivious equilibrium has been computed, the

industry state has a known distribution, namely, the product form of Poisson random variables with mean

s̃ (by Lemma 3.2). In particular, note that the bounds are not a function of the true MPE or even of the

optimal non-oblivious best response strategy. Computing either of these strategies could require solving a

high-dimensional dynamic program.

In our computational experiments, we also make use of a stronger bound that applies when the quality

level of a firm can change by at most one unit per time period (w̄ = 1), a common feature of EP-type models.
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Theorem 5.2. Let Assumptions 2.1, 2.2, and 2.3 hold. Further, assume that the quality level of any firm can

change by at most one unit per time period. Then, for any oblivious equilibrium (µ̃, λ̃), firm state x ∈ N,

and a ∈ N,

E

[
sup
µ′∈M

V (x, st|µ′, µ̃, λ̃)− V (x, st|µ̃, λ̃)

]
≤ 1

1− β

[
E[∆Aπ(st)] + βa−xE[∆Acπ(st)]

]
+

+
∑
y∈N

ax(y) (π(y, s̃)− E [π(y, st)]) .(5.3)

where ∆Aπ(s) = maxy∈A (π(y, s)− π(y, s̃)), A = {0, . . . , a− 1} and x ∈ A.

The proof of this result is similar to that of Theorem 5.1 and is omitted. In general, E [π(y, s)] −

π(y, s̃) ≥ 0 and is increasing in y. Therefore, E [maxy∈A (π(y, s)− π(y, s̃))] increases as the set A in-

creases, making the first term of our previous bound (5.2) large. In this new bound (5.3), the term that

involves maxy∈Ac is the larger one because it involves the maximum over the larger states. However, this

is offset by the factor of βa−x. The term βa−x appears because it takes at least a− x periods to transition

from state x to any state in Ac. When using this bound in the computational experiments, we choose the set

A to minimize the right-hand-side.

5.3 Error Bounds in a Model with Aggregate Profit Shocks

Because the model above contains only idiosyncratic shocks, it is limited in its ability to capture the kind

of industry wide business cycles that are often observed in real world industries. To address this issue, in

this subsection we extend the error bounds to a model with a profit shock, zt, that is common to all firms in

the industry. zt might represent a common demand shock, a common shock to input prices, or a common

technology shock. These common shocks will serve to generate periods over which profits are high (or low)

for all firms in the industry simultaneously. Note that these shocks will result in an industry that experiences

some variation even if the number of firms becomes large. Therefore, the asymptotic results in the previous

section will not hold in this model. However, we can still obtain bounds on the approximation error for any

given set of model primitives, and it may be that these bounds are small, such that the approximation would

still be useful in practice.

The following assumption defines the aggregate shock process and restates the assumptions on the profit

function.13

13Note that for simplicity we model the aggregate shock as an integer. However, it does not change anything to make zt a vector.
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Assumption 5.1. Let Z = {zt ∈ N : t ≥ 0} be a stationary Markov process with a well defined invariant

distribution. Single-period profits for firm i at time t are given by π(xit, s−i,t, zt). For all z, π(x, s, z)

satisfies Assumption 2.1. Additionally, supx,s,z π(x, s, z) <∞.

In this model, a strategy is a function µ(x, s, z) that depends on the firm’s own state, the competi-

tors’ state and the level of the aggregate shock. An entry rate is a function, λ(s, z), that depends on

the industry state and the level of the aggregate shock. To formalize these notions, let Mz denote the

set of exit/investment strategies such that an element µ ∈ Mz is a pair of functions µ = (ι, ρ), where

ι : N× S ×N → <+ is an investment strategy and ρ : N× S ×N → <+ is an exit strategy. We denote the

set of entry rate functions by Λz , where an element of Λ is a function λ : S × N → <+.

Define the value function, V (x, s, z|µ′, µ, λ), to be the expected net present value for a firm at state x

when its competitors’ state is s, and the value of the aggregate shock is z, given that its competitors each

follow a common strategy µ ∈ Mz , the entry rate function is λ ∈ Λz , and the firm itself follows strategy

µ′ ∈Mz . Because this definition is analogous to the one in section 2.4, we omit the details here for brevity.

An equilibrium in this model comprises an investment/exit strategy µ = (ι, ρ) ∈ Mz , and an entry rate

function λ ∈ Λz such that:

1. Incumbent firm strategies represent a MPE:

sup
µ′∈Mz

V (x, s, z|µ′, µ, λ) = V (x, s, z|µ, λ) ∀x ∈ N, ∀s ∈ S, ∀z ∈ N.

2. At each state, either entrants have zero expected profits or the entry rate is zero (or both):

∑
s∈S, z∈N λ(s, z) (βEµ,λ [V (xe, s−i,t+1, zt+1|µ, λ)|st = s, zt = z]− κ) = 0

βEµ,λ [V (xe, s−i,t+1, zt+1|µ, λ)|st = s, zt = z]− κ ≤ 0 ∀s ∈ S, ∀z ∈ N

λ(s, z) ≥ 0 ∀s ∈ S, ∀z ∈ N.

Because the aggregate shocks are likely to be of first order importance to strategies, in extending the notion

of oblivious strategies to this model it makes sense to make strategies a function of the current value of the

shock. Thus, an oblivious strategy in this model will be a function µ ∈ Mz such that, for all x, z ∈ N and

s, s′ ∈ S, µ(x, s, z) = µ(x, s′, z). That is, firms’ strategies are functions only of their own state and the

level of the aggregate shock. Similarly, an oblivious entry rate in this model is a function λ ∈ Λz such that,

for all z ∈ N and s, s′ ∈ S, λ(s, z) = λ(s′, z). That is, the oblivious entry rate is a function only of the level

of the aggregate shock. Let M̃z ⊂ Mz and Λ̃z ⊂ Λz denote the set of oblivious strategies and the set of
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oblivious entry rate functions respectively.

Let s̃µ,λ be the long-run expected industry state when dynamics are governed by oblivious strategy µ

and oblivious entry rate function λ. We define an oblivious value function as,

Ṽ (x, z|µ′, µ, λ) = Eµ′

[
τi∑
k=t

βk−t (π(xik, s̃µ,λ, zk)− dιik) + βτi−tφi,τi

∣∣∣xit = x, zt = z

]
.

This value function should be interpreted as the expected net present value of a firm that is at quality level x

when the aggregate shock has value z and the firm follows oblivious strategy µ′, under the assumption that

its competitors’ state will be s̃µ,λ for all time.

An oblivious equilibrium consists of a strategy µ ∈ M̃z and an entry rate function λ ∈ Λ̃z that satisfy

the following conditions:

1. Firm strategies optimize an oblivious value function:

sup
µ′∈M̃z

Ṽ (x, z|µ′, µ, λ) = Ṽ (x, z|µ, λ), ∀x ∈ N, ∀z ∈ N.

2. Either the oblivious expected value of entry is zero or the entry rate is zero (or both):

∑
z∈N λ(z)

(
βEµ,λ

[
Ṽ (xe, zt+1|µ, λ)

∣∣∣zt = z
]
− κ

)
= 0,

βEµ,λ

[
Ṽ (xe, zt+1|µ, λ)

∣∣∣zt = z
]
− κ ≤ 0, ∀z ∈ N

λ(z) ≥ 0, ∀z ∈ N.

We now introduce the error bound for this model,

Corollary 5.1. Let Assumption 5.1, 2.2, and 2.3 hold. Then, for any oblivious equilibrium (µ̃, λ̃), and firm

state x ∈ N,

E

[
sup
µ′∈M

V (x, st, zt|µ′, µ̃, λ̃)− V (x, st, zt|µ̃, λ̃)

]
≤ 2

1− β
E[∆|π̃|(st, zt)],

where ∆|π̃|(s, z) = maxy∈N |π(y, s, z) − π(y, s̃µ̃,λ̃, z)|, and the expectations is taken over the invariant

distribution of (st, zt).

The proof is analogous to Theorem 5.1 and is therefore omitted. In addition, as above, this bound is

quite general and does not rely on many of the detailed modeling assumptions. Finally, as in Theorems 5.1

and 5.2 tighter versions of the bound can be obtained.
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6 Computational Experiments

In this section we conduct some computational experiments to evaluate how oblivious equilibrium performs

in practice, and also to demonstrate the range of applications that are possible using our methods. We begin

with the model to be analyzed. The model is similar to Pakes and McGuire (1994). However, it differs in

the entry and exit processes, in the demand system, and in that we do not consider a common shock.

6.1 The Computational Model

SINGLE-PERIOD PROFIT FUNCTION. We consider an industry with differentiated products, where each

firm’s state variable represents the quality of its product. There are m consumers in the market. In period t,

consumer j receives utility uijt from consuming the good produced by firm i given by:

uijt = θ1 ln(
xit
ψ

+ 1) + θ2 ln(Y − pit) + νijt , i ∈ St, j = 1, . . . ,m,

where Y is the consumer’s income, pit is the price of the good produced by firm i, and ψ is a scaling

factor. νijt are i.i.d. random variables distributed Gumbel that represent unobserved characteristics for

each consumer-good pair. There is also an outside good that provides consumers zero utility. We assume

consumers buy at most one product each period and that they choose the product that maximizes utility.

Under these assumptions our demand system is a classical logit model.

Let N(xit, pit) = exp(θ1 ln(xit
ψ + 1) + θ2 ln(Y − pit)). Then, the expected market share of each firm is

given by:

σ(xit, s−i,t, pt) =
N(xit, pit)

1 +
∑

j∈St
N(xjt, pjt)

, ∀i ∈ St .

We assume that firms set prices in the spot market. If there is a constant marginal cost c, the Nash equilibrium

of the pricing game satisfies the first-order conditions,

(6.1) Y − pit + θ2(pit − c)(σ(xit, s−i,t, pt)− 1) = 0 , ∀i ∈ St .

There is a unique Nash equilibrium in pure strategies, denoted p∗t (Caplin and Nalebuff (1991)). Expected

profits are given by:

πm(xit, s−i,t) = mσ(xit, s−i,t, p∗t )(p
∗
it − c) , ∀i ∈ St .

SELL-OFF PRICE. φit are i.i.d. exponential random variables with mean K.

TRANSITION DYNAMICS. A firm’s investment is successful with probability aι
1+aι , in which case the quality
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of its product increases by one level. The firm’s product depreciates one quality level with probability δ,

independently each period. Note that our model differs from Pakes and McGuire (1994) here because the

depreciation shocks in our model are idiosyncratic. Combining the investment and depreciation processes,

it follows that the transition probabilities for a firm in state x that invests ι are given by:

P
[
xi,t+1 = y

∣∣∣xit = x, ι
]

=



(1−δ)aι
1+aι if y = x+ 1

(1−δ)+δaι
1+aι if y = x

δ
1+aι if y = x− 1 .

6.2 Numerical Results: Behavior of the Bound

Our first set of results investigate the behavior of the approximation error bound under several different

model specifications. A wide range of parameters for our model could reasonably represent different real

world industries of interest. In practice the parameters would either be estimated using data from a particular

industry or chosen to reflect an industry under study. We begin by investigating a particular set of represen-

tative parameter values. Following Pakes and McGuire (1994) we fix a = 3 and δ = 0.7. Additionally, we

fix marginal cost at c = 0.5, income at Y = 1, θ2 = 0.5, and ψ = 1. The discount factor is β = 0.95. The

entry cost is κ = 35 and the entry state is xe = 10. The average sell-off value is K = 10. In this case,

β · φ < κ, so the sell-off value by itself is not sufficient reason to enter the industry (assumption 2.3.2).

Additionally, both sell-off values and entry costs are substantially larger than marginal costs, consistent with

empirical evidence.

In our computational experiments we found that the most important parameter affecting the approxima-

tion error bounds was θ1, which determines the importance that consumers place on product quality. If θ1 is

small, the degree of vertical differentiation between products is small. This reduces the impact of changes

in the industry state on profits, making the MPE strategies less sensitive to the industry state. Additionally,

when θ1 is small it turns out that the invariant distribution s̃ is very “light-tailed”. Oblivious strategies work

well in this case, and the approximation error bound is small. If θ1 is large, we get the reverse implications

and the approximation error bound is larger.

Based on these experiments, here we consider two different values of θ1 and the investment cost d:

(θ1, d): (0.1, 0.1) and (0.5, 0.5). The former (“Low”) is a situation where the level of vertical differentiation

is low and it is inexpensive to invest to improve quality. The latter (“High”) is the opposite. As a point of

comparison, if a firm increases its state from x = 10 to x = 20, its single-period profits increase by 7% and

40% respectively in the two cases (holding competitors constant).
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For each set of parameters, we use the approximation error bound in Theorem 5.2 to compute an upper

bound on the percentage error in the value function,
E[supµ′∈M V (x,s|µ′,µ̃,λ̃)−V (x,s|µ̃,λ̃)]

E[V (x,s|µ̃,λ̃)]] , where (µ̃, λ̃) are the

OE strategy and entry rate, respectively, and the expectations are taken with respect to s. We estimate the

expectations using simulation.14 We compute the previously mentioned percentage approximation error

bound for different market sizes. As the market size increases, the expected number of firms increases and

the approximation error bound decreases.

In Figure 1 we present the percentage approximation error bound as a function of the expected number

of firms for the two levels of vertical differentiation (the two curves are obtained by varying the market size).

For the low vertical differentiation case it takes around 60 firms to bring the bound down to 2%, and 250

firms to bring it below 1%. For the high case it takes around 250 firms to bring the bound to 5% and 1000

firms to bring it near 2%.

When the level of vertical differentiation is high, the number of firms required to have a good approxi-

mation is large, requiring hundreds and even thousands of firms. The approximation would be better if the

industry state s were always close to its mean, s̃. One aspect of the model that interferes with this is the

Poisson entry process, which leads to a large amount of variability in the number of firms inside the industry.

Recall that we chose to model the entry process this way because it facilitated the asymptotic arguments in

Section 4. However, the expressions for the approximation error bounds remain correct for a wide range

of entry models. To investigate this issue further, as an alternative, we tried using an entry process where

the number of entrants each period is deterministic, but still satisfies a zero profits condition.15 This entry

process implies a smaller variability in the number of firms.

Figure 2 presents the results with the new entry process. In the case of low vertical differentiation, the

approximation error bound is less than 2% with just 30 firms and it is around 1% with 100 firms. When the

level of vertical differentiation is high the approximation error bound is around 5% when there are 120 firms

and around 2% for 700 firms.

Going one step further in reducing the variability of the industry dynamics, we tried shutting down entry

and exit altogether and considered an industry with a fixed number of firms. This situation can be viewed as

a particular case of the model presented in Section 2, with a constant sell-off value equal to zero and a very
14The expected value function is estimated with a relative precision of 1% and a confidence level of 99%. The bound is estimated

with a relative precision of at most 10% and a confidence level of 99% (in cases where the bound is very small it is difficult to
achieve better precision than this). Note that the percentage approximation error bound depends on the state x so for the purposes of
this section we consider the percentage bound evaluated at the entry state. For the computations we took the maximum achievable
state, x̃max, to be a state such that the expected number of visits of a firm using µ̃ was at most 10−5. In computing the bounds, we
conservatively assumed that the maximum achievable state under the best response (non-oblivious) strategy was 2x̃max.

15Note that the zero profits condition typically requires a fractional number of entrants to be satisfied exactly, so to accommodate
this we instead randomized the number of entrants between the two neighboring integers. For example, if the equilibrium entry rate
is 2.5, then the number of entrants is 2 or 3 with probability 0.5. Allowing for fractional numbers ensures existence of equilibrium.
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high entry cost. See Figure 3 for the results.16 For the low case the approximation error bound is less than

0.5% with just 5 firms, while for the high case it is 5% for 5 firms, less than 3% with 40 firms, and less than

1% with 400 firms.

Most economic applications would involve from less than ten to several hundred firms. These results

show that the approximation error bound may sometimes be small (<2%) in these cases, though this would

depend on the model and parameter values for the industry under study.

6.3 Closeness to Markov Perfect Equilibrium

Having gained some insight into what features of the model lead to low values of the approximation error

bound, the question arises as to what value of the error bounds is required to obtain a good approximation.

To shed light on this issue we compare long-run statistics for the same industry primitives under oblivious

equilibrium and MPE strategies. A major constraint on this exercise is that it requires the ability to actually

compute the MPE. With the current algorithms we are able to compute MPE for industries with a maximum

of five to ten firms. Because we require the ability to compute equilibria for many different parameter values,

to keep computation manageable we use four firms here. We therefore limit our analysis to the case of a

fixed number of firms (no entry and exit), because only for that case were the approximation error bounds

small under oblivious strategies (with only four firms). We use the same parameter specifications as in

the previous subsection. Because of computational constraints in computing the MPE, we also impose a

maximum state that a firm can reach of xmax = 15, at which point investment is assumed to have no further

effect. The market size is fixed, m = 30.17

Recall that under oblivious equilibrium strategies, the industry state is described by an ergodic Markov

chain (Lemma 3.2). Under our assumptions, this is also true under MPE strategies (see also Ericson and

Pakes (1995)). Therefore, both systems have a well defined invariant distribution that describes their long-

run behavior. We compare the average values of several economic statistics of interest under the oblivious

equilibrium and the MPE invariant distributions. The quantities compared are: average investment, average

producer surplus, average consumer surplus, average share of the largest firm (C1), and average share of the

largest two firms (C2). Table 1 reports these statistics for a wide range of parameters. The table also reports

the maximum value (across all states) and weighted average value of the approximation error bound, as well

as the maximum and weighted average of the actual benefit from deviating and keeping track of the industry

state (the actual difference
E[supµ′∈M V (x,s|µ′,µ̃,λ̃)−V (x,s|µ̃,λ̃)]

E[V (x,s|µ̃,λ̃)]] ). Note that the the latter quantity should always

16Since now there is no entry state, we report the percentage error bound evaluated at the most visited state.
17The code used to compute MPE was generously provided by Uli Doraszelski.
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be smaller than the approximation error bound. In the results below we concentrate on the maximum values

of these quantities.

The table is separated into two groups. The first five rows correspond to industries with a relatively

low cost of investment (low value of d relative to θ1). In these industries the industry state tends to have

a symmetric distribution (see Figure 4) reflecting a rich investment process. The last five rows of the table

correspond to industries with a relatively high cost of investment. In these industries the industry state tends

to be skewed (see Figure 5), reflecting low levels of investment.

From the computational experiments we conclude the following:

1. When the bound is less than 1% the long-run quantities estimated under oblivious equilibrium and

MPE strategies are very close.

2. Performance of the approximation depends on the richness of the equilibrium investment process.

When the bound is between 1-20% and there is a rich investment process, the long-run quantities

estimated under oblivious equilibrium and MPE strategies are still quite close. When the bound is

above 1% and there is little investment, the long-run quantities can be quite different on a percentage

basis (5% to 20%), but still remain fairly close in absolute terms (see Table 2).

3. The performance bound is not tight. For a wide range of parameters the performance bound is as

much as 10 to 20 times larger than the actual benefit from deviating.

The previous results suggest that MPE dynamics are well-approximated by oblivious equilibrium strate-

gies when the approximation error bound is small (less than 1-2% and in some cases even up to 20 %). These

results, together with those from Subsection 6.2, demonstrate that the oblivious equilibrium approximation

significantly expands the range of applied problems that can be analyzed computationally.

6.4 Example: The Evolution of Industry Structure as Market Size Increases

An important question in industrial organization is to understand what features of an industry are most

critical to determining the industry’s structure. Of particular interest (Sutton 1991) is whether a market

becomes fragmented, or remains concentrated, as the market grows in size. Sutton (1991) and Shaked and

Sutton (1987) suggest that the presence of “endogenous” sunk costs imposes a lower bound to concentration.

Our model is a dynamic model of endogenous sunk costs because, while entrants pay the same cost of

entry regardless of market size (an “exogenous” sunk cost), in larger markets they may need to invest large

amounts to become as large as the incumbent firms (an “endogenous” sunk cost). In what follows we show
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that under slightly different parameterizations of our model we get two extremely different outcomes: a

fragmented and a very concentrated industry.

We use the same parameter specifications as in Subsection 6.2 with the only difference that now we

consider ψ = 7 in the utility of the consumers. This specification makes it easier to obtain the two different

situations. We fix d = 0.5 and we compute the oblivious equilibrium for θ1 = 0.9 and θ1 = 1.2. In Figures

6 and 7 (see also Table 3) we present the average industry states obtained for different market sizes in the

two cases. For θ1 = 0.9, as the market size grows the industry becomes fragmented. The number of firms

grows but firms do not grow in size, so the market share for every firm converges to zero. When θ1 = 1.2

the entry rate decreases and firms grow larger as market size grows. In this second case, the industry state is

heavy-tailed.18

These results have a clear intuition: when θ1 > 1 consumers care more about quality and this increases

the returns to investment. What results is a quality race between firms, so there are a small number of

firms in the industry that become ever larger with the market size. When θ1 < 1 returns to investment are

lower and investment is not worthwhile above a certain point regardless of the market size. (Our simulations

suggest that for all θ1 < 1 the industry fragments, whereas for θ1 > 1 the industry remains concentrated as

market size increases.)

These results contradict Sutton (1991) in one sense because Sutton (1991) sought predictions about

market structure that are robust across a wide class of models. Here, different market structures result from

the same model through an arbitrarily small change in a single parameter. An implication of this result is that

the same industry might be observed with very different market structures across markets that are the same

size and that have indistinguishable characteristics. However, our results remain broadly consistent with

Sutton’s predictions because the parameter that determines market structure in our model pertains directly

to the returns to investment. Consistent with the predictions of Sutton (1991), industries with higher returns

to investment tend to be concentrated. Our results show, however, that this relationship can be very fragile.

7 Conclusions and Future Research

The goal of this paper has been to increase the set of applied economic problems that can be addressed using

Ericson and Pakes (1995)-style dynamic models of imperfect competition. Due to the curse of dimension-
18To show the results more clearly, we forced the highest quality level to be 80. This leads the industry state to have a mass of

firms near 80 for the larger market sizes. Without this arbitrary cutoff firms would grow even larger and it becomes difficult to solve
for the oblivious equilibrium (because the expected lifespan of a firm tends to infinity and the industry state is heavy-tailed) as well
as to show the results graphically.
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ality, existing dynamic programming methods have limited application of these models to industries with

a small number of firms and a small number of states per firm. Even with accelerated methods (e.g., Judd

(1998), Pakes and McGuire (2001) and Doraszelski and Judd (2003)), it seems likely that it will never be

possible to solve for an MPE exactly in many problems of interest. As an alternative, we proposed a method

for approximating MPE behavior using an oblivious equilibrium, where firms make decisions only based on

their own state and the long run average industry state.

We began by showing that the approximation works well asymptotically, where asymptotics were taken

in the market size. A sufficient condition for an oblivious equilibrium to well approximate a MPE asymp-

totically is that the sequence of industry states generated by the oblivious equilibria is “light-tailed” (as

described by Assumption 4.2). This condition is also sufficient to establish that a model of the type intro-

duced in Hopenhayn (1992) yields a good approximation of a finite industry. We also introduced a simple

algorithm to compute an oblivious equilibrium. A nice feature of the algorithm is that there is no need to

place a’ priori restrictions on the number of firms in the industry or the set of states that a firm can reach. As

a result, computational considerations place very few constraints on model details.

To facilitate using oblivious equilibrium in practice, we derived approximation error bounds that indicate

how good the approximation is in any particular problem under study. These approximation error bounds

are quite general and thus can be used in a wide class of models. We believe them to be the first bounds of

this type in this literature. Through computational experiments, we showed that oblivious equilibrium often

yields a good approximation of MPE behavior for industries with a couple hundred firms, and sometimes

even with just tens of firms.

We have considered very simple strategies that are functions only of a firm’s own state and the long run

average industry state. While our results show that these simple strategies work well in many cases, there

remains a set of problems where exact computation is not possible and yet our approximation will not work

well either. Such cases would likely involve industries with moderate to large numbers of firms that still

remain highly concentrated. For such cases, we hope is that our methods will serve as a basis for developing

better approximations that use additional information, such as the total number of firms in the industry, or

the states of the largest firm (or firms). Solving for equilibria of this type would be more difficult than

solving for oblivious equilibria, but is still likely to be computationally feasible. Since showing that such an

approach would provide a good approximation is not a simple extension of our results, this will be a subject

of future research.
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A Proofs and Mathematical Arguments

A.1 Proofs and Mathematical Arguments for Section 2

A.1.1 The Poisson Entry Model

Suppose there are N potential entrants. Each potential entrant enters if the setup cost κ is less than the

expected present value of future cash flows upon entry. Let vN (i) be the expected present value of future

cash flows for each entering firm if i firms enter simultaneously. vN (i) is non-increasing in i. One can then

pose the problem faced by potential entrants as a game in which each entrant employs a mixed strategy and

enters with some probability pN . If we assume that every potential entrant employs the same strategy, the

condition for a mixed strategy Nash equilibrium when κ ∈ [vN (N), vN (1)] can be written as

(A.1)
N−1∑
i=0

(
N − 1
i

)
piN (1− pN )N−1−ivN (i+ 1)− κ = 0,

which is solved by a unique pN ∈ [0, 1]. If κ < vN (N), the equilibrium is a pure strategy with pN = 1,

whereas if κ > vN (1), the equilibrium is given by pN = 0. The following result, which we state without

proof, establishes that our Poisson entry model can be viewed as a limiting case as the number of potential

entrants N grows large.

Lemma A.1. Let the following conditions hold:

1. vN (i) is non-increasing in i, ∀N , and non-increasing in N , ∀i;

2. there exists a positive number M such that |vN (i)| < M, ∀N, ∀i;

3. there exists N , such that ∀N > N , vN (i)− κ changes sign in {1, N − 1};

4. there exists a function v(i) such that limN→∞ supi∈N |vN (i)− v(i)| = 0.

Then,

1. for each N > N , Equation (A.1) has a unique solution p∗N ∈ (0, 1);

2. the limit λ = limN→∞Np∗N exists, and if YN is a binomial random variable with parameters (N, p∗N )

and Z is a Poisson random variable with mean λ, then YN ⇒ Z.

The result states that if the number of potential entrants grows to infinity then the entry process converges

to a Poisson random variable. Hence, Poisson entry can be understood as the result of a large population of

potential entrants, each one playing a mixed strategy and entering the industry with a very small probability.
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A.1.2 Bellman’s Equation and Exit Cutoff Strategy

We define a dynamic programming operator:

(Tµ,λV )(x, s) = π(x, s)+E
[
max

{
φit, sup

ι≥0
(−dι+ βEµ,λ [V (xi,t+1, s−i,t+1)|xit = x, s−i,t = s, ιit = ι])

}]
,

for all x ∈ N and s ∈ S.

To simplify the notation in this section we will let V µ′

µ,λ ≡ V (·|µ′, µ, λ).

Lemma A.2. Let Assumptions 2.1 and 2.2 hold. Then, for all µ ∈ M and λ ∈ Λ, there exists µ∗ ∈ M,

such that:

V µ∗

µ,λ = sup
µ′∈M

V µ′

µ,λ = Tµ,λV
µ∗

µ,λ.

Further, V µ∗

µ,λ is the unique fixed point of Tµ,λ within the class of bounded functions.

Proof. Investment is bounded. Additionally, βφ ≤ ρ(x, s) ≤ π
1−β + φ, ∀x ∈ N, ∀s ∈ S. Therefore the

action space for each state is compact.

For a given state (x, s), expected one period profits including investment and sell-off value can be written

as:

π(x, s)− dι(x, s)P[φ < ρ(x, s)] + E[φ | φ ≥ ρ(x, s)]P[φ ≥ ρ(x, s)] .

Note that π(x, s) < π, investment is bounded, and φ has finite expectation. Therefore, expected one period

profits including investment and the sell-off value are uniformly bounded for all states (x, s). The result

follows by Propositions 1.2.2 and 3.1.7 in Bertsekas (2001).

By the lemma and the definition of the dynamic programming operator we observe that there exists an

optimal exit strategy that has the form of a cutoff value.

A.2 Proofs and Mathematical Arguments for Section 3

Lemma 3.2. Let Assumptions 2.2 and 2.3 hold. Assume that firms follow a common oblivious strategy

µ ∈ M̃, the expected entry rate is λ ∈ Λ̃, and the expected time that each firm spends in the industry is finite.

Let {Zx : x ∈ N} be a sequence of independent Poisson random variables with means {s̃µ,λ(x) : x ∈ N},

and let Z be a Poisson random variable with mean
∑

x∈N s̃µ,λ(x). Then,

(a) {st : t ≥ 0} is an irreducible, aperiodic and positive recurrent Markov chain;

(b) the invariant distribution of st is a product form of Poisson random variables;
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(c) for all x, st(x) ⇒ Zx;

(d) nt ⇒ Z.

Proof. If every firm uses a strategy µ ∈ M̃ and entry is according to an entry rate function λ ∈ Λ̃, then

X ≡ {st : t ≥ 0} is clearly an irreducible Markov chain. All states reach the state ∅ = {0, 0, . . .} with

positive probability and all states can be reached from ∅ as well. Now, take any state s ∈ S. There is a

positive probability that there is no entry, no exit and no firms’ state transitions. Therefore, for all s ∈ S,

P[st+1 = s
∣∣∣st = s] > 0, so X is aperiodic. Moreover X is positive recurrent because the expected time to

come back from state ∅ to itself is finite (see Kleinrock (1975)).

Now, let us write:

(A.2) st(x) =
t∑

τ=0

Wτ∑
i=1

1{Xi,t−τ=x} ,

where Wτ are i.i.d. Poisson random variables with mean λ, the first sum is taken over all periods previous

to (and including) t, the second sum is taken over the firms that entered the industry in each period, and

for each τ , Xi,t−τ are random variables that represent the state of firm i after t − τ periods inside the

industry when using strategy µ. Since firms use oblivious strategy µ ∈ M̃ and shocks are idiosyncratic

their state evolutions are independent, so 1{Xi,t−τ=x} are i.i.d. across i. It follows that
∑Wτ

i=1 1{Xi,t−τ=x} is

a filtered Poisson random variable, so it is a Poisson random variable. Thus st(x), as a sum of independent

Poisson random variables, is also Poisson. Given that the expected time a firm spends inside the industry is

finite, using characteristic functions it is straightforward to show that st(x) ⇒ Zx, ∀x ∈ N. To show that

{Zx : x ∈ N} is a sequence of independent random variables note that by the filtering property of Poisson

random variables (Durrett (1996)), for all t, {st(x) : x ∈ N} is a sequence of independent random variables.

By summing over x ∈ N, we can show that nt ⇒ Z.

Lemma 3.3. Let Assumptions 2.2 and 2.3 hold. Assume that firms follow a common oblivious strategy

µ ∈ M̃, the expected entry rate is λ ∈ Λ̃, and the expected time that each firm spends in the industry is

finite. Let {Yn : n ∈ N} be a sequence of integer-valued i.i.d. random variables, each distributed according

to s̃µ,λ(·)/
∑

x∈N s̃µ,λ(x). Then, for all n ∈ N,

(
x(1)t, . . . , x(nt)t

∣∣∣nt = n
)
⇒ (Y1, . . . , Yn).

Proof. The proof is rather involved, but relies on a simple idea. For a Poisson process, conditional on

n arrivals on an interval [0, T ], the unordered arrival times have the same distribution as n i.i.d. uniform
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random variables in [0, T ].

Let us condition on nt = n. {x(j)t : j = 1, . . . , n} are the random variables that represent the

state of each of the n firms in the industry when they are sampled randomly. The expected time a firm

spends inside the industry is finite, so the time a firm spends inside the industry is finite with proba-

bility one. Recall that a firm can increase its quality level by at most w states each period. There-

fore, ∀ε > 0, there exists a state z, such that for all j ∈ 1, . . . , n, ∀t, P[x(j)t > z] < ε
n . That

is, the probability of observing a firm in a very large state is negligible, because firms “do not have

time” to get that far. Hence, P
[⋃n

j=1{x(j)t > z} | nt = n
]
< ε ,∀t, so the sequence of random vec-

tors {(x(1)t, . . . , x(nt)t | nt = n) : t ≥ 0} is tight. By Theorem 9.1 in Durrett (1996) and the tightness

previously established, to prove the lemma it is enough to show that for all n, for all (z1, . . . , zn):

(A.3) lim
t→∞

P
[
x(j)t = zj , j = 1, . . . , n

∣∣∣nt = n
]

=
n∏
j=1

p(zj) ,

where p(·) is the PMF s̃µ,λ(·)/
∑

x∈N s̃µ,λ(x). Let T̃j be the entry date of firm (j) and Tj = t − T̃j be its

age. Then we can write:

P
[
x(j)t = zj , j = 1, . . . , n

∣∣∣nt = n
]

=
∑

0≤t1<∞,...,
0≤tn<∞

P[x(j)t = zj , j = 1, . . . , n | T1 = t1, . . . , Tn = tn, nt = n] ·

P [T1 = t1, . . . , Tn = tn | nt = n]

=
∑

0≤t1<∞,...,
0≤tn<∞

n∏
j=1

P
[
x(j)t = zj | Tj = tj

]
·

P [T1 = t1, . . . , Tn = tn | nt = n] ,(A.4)

The last equation follows because the evolution of firms is independent across firms. Note that if any tj has

a value greater than t, then P
[
T1 = t1, . . . , Tn = tn

∣∣∣nt = n
]

= 0. We can write

P
[
x(j)t = zj

∣∣∣Tj = tj

]
=

P
[
x(j)t = zj , Tj = tj

]
P [Tj = tj ]

=
P

[
Tj = tj , Xj,tj = zj

]
P [Tj = tj ]

=
P[Tj = tj ]P[Xj,tj = zj ]

P [Tj = tj ]
= P[Xj,tj = zj ] ,(A.5)

where, similarly to above,Xj,tj is a random variable that represents a firm’s state after tj periods conditional
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on having stayed in the industry. Note that for all k, {Xj,k : j ≥ 1} are i.i.d. The second to last equation

follows because the evolution of a firm is independent of its entry time.

Now we show that

lim
t→∞

P [T1 = t1, . . . , Tn = tn | nt = n] =
n∏
j=1

u[tj ] ,

for some probability mass function u. This equation can be derived directly. However, it is easier to invoke

the relationship between nt and a Poisson process and show that the equation holds using known results for

Poisson processes.

Similarly to equation (A.2), we can write:

nt =
t∑

τ=0

Wτ∑
i=1

1{Ai,t−τ=1} ,

where, for each τ , Ai,t−τ are i.i.d. Bernoulli random variables that equal one if the firm is still in the

industry after t − τ periods when using strategy µ. Since Ai,t−τ are i.i.d., nt,τ ≡
∑Wτ

i=1 1{Ai,t−τ=1} is a

filtered Poisson random variable, and is therefore Poisson. Call its mean αt,τ . It follows that nt is a sum of

independent Poisson random variables, so it is Poisson with mean
∑t

τ=0 αt,τ .

Consider {N(t) : t ≥ 0}, a homogeneous Poisson process on the real line with rate 1. Note that N(t)

and nt are equivalent in the sense that we can construct nt using the process
{
N(s) : 0 ≤ s ≤

∑t
τ=0 αt,τ

}
in the following way: for each 0 ≤ τ ≤ t, consider the events in the interval [αt,τ−1, αt,τ−1 + αt,τ ], where

αt,−1 = 0. Assign those events to firms that are still in the industry at time t and entered at period τ ,

nt,τ . Note that: i) N(αt,τ ) and nt,τ are both Poisson with mean αt,τ ; ii) N(t) has independent increments

and nt,τ are independent, for all τ ; iii) N(
∑t

τ=0 αt,τ ) and nt are both sum of independent Poisson random

variables with mean
∑t

τ=0 αt,τ .

Suppose N(
∑t

τ=0 αt,τ ) = n. Conditional on that event, the unordered arrival times of N(t) have the

same distribution as n i.i.d. uniform random variables in [0,
∑t

τ=0 αt,τ ] (Durrett (1996)). By the equivalence

argument described above, conditional on nt = n, the unordered arrival times of the n firms are i.i.d. discrete

random variables with PMF:

vt(τ) =
αt,τ∑t
j=0 αt,j

, 0 ≤ τ ≤ t .

Recall that αt,τ is the expected number of firms that entered at time τ and are still inside the industry at time

t. Since the entry rate is the same every period, every firm uses the same strategy which is independent of

every other firm, and shocks are idiosyncratic, αt,τ = α̃t−τ , where α̃t−τ is the expected number of firms
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that entered the industry at time s, for any s, and are still inside the industry at time s+ t− τ . This suggests

making a change of variable and defining:

ut(k) =
α̃k∑t
j=0 α̃j

, 0 ≤ k ≤ t .

ut(k) is the probability a random sampled firm from the industry at time t entered k periods ago, conditional

on nt = n. Taking the limit as t tends to infinity, we get that:

lim
t→∞

ut(k) ≡ u(k) =
α̃k∑∞
j=0 α̃j

, 0 ≤ k <∞ ,

provided that limt→∞E[nt] =
∑∞

j=0 α̃j < ∞, which is true by assumption. u(k) is the probability a ran-

dom sampled firm from the industry at time t� 0 entered k periods before the sampling period. Therefore

lim
t→∞

P [T1 = t1, . . . , Tn = tn | nt = n] =
n∏
j=1

u[tj ] .

Replacing the previous equation and equation (A.5) in equation (A.4) we obtain:

lim
t→∞

P
[
x(j)t = zj , j = 1, . . . , n | nt = n

]
=

n∏
j=1

∑
0≤t<∞

P[Xj,t = zj ]u(t)

where the interchange between the infinite sum and the limit follows by dominated convergence. The sum

yields the PMF p(·). The previous equation proves that Y1, . . . , Yn are i.i.d. with PMF p(·) which does not

depend on n.

To finish, consider t � 0. More formally, suppose that s0 is sampled from the invariant distribution,

which is well defined by Lemma 3.2. In this case, st is a stationary process; st is distributed according to

the invariant distribution for all t ≥ 0.

s̃µ,λ(x) = E[st(x)] = E

 nt∑
j=1

1{x(j)t=x}

 .

Conditioning on nt, and considering that we already proved that {x(j)t : j = 1, . . . , n} are i.i.d. with PMF

p(·), we get that p(·) = s̃µ,λ(·)/
∑

x∈N s̃µ,λ(x).
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A.3 Proofs and Mathematical Arguments for Section 4

A.3.1 Preliminary Lemmas

Lemma A.3. Under Assumptions 2.1, 2.2, and 2.3, for all x,

sup
m
Ṽ (m)(x|µ̃(m), λ̃(m)) <∞.

Proof. We will assume that x ≥ xe; the case of x < xe is trivial. Assume for contradiction that

supm Ṽ (m)(x|µ̃(m), λ̃(m)) = ∞. We will argue that this contradicts the zero profit condition for entering

firms. If a firm invests ι > 0, there is a probability p(ι) > 0 that the firm will increase its quality level by at

least one unit. Let τ be the time a firm takes to transition from state xe to state x. If a firm invests ι > 0 in

each period, by a geometric trials argument, E[τ ] < ∞. Therefore, there exists an investment strategy for

which the expected time and cost to transition from xe to x are uniformly bounded above over m. It follows

that supm Ṽ (m)(xe|µ̃(m), λ̃(m)) = ∞. This contradicts the zero profit condition.

Let `1,g = {f ∈ <∞+ | ‖f‖1,g <∞}. With some abuse of notation, let S1,g = S1 ∩ `1,g.

Lemma A.4. Let Assumptions 2.1, 2.2, and 2.3, hold. Then, for all x,

sup
m

sup
µ∈M

Eµ

[ ∞∑
k=t

βk−t sup
f∈S1

πm(xik, f, ñ(m))
∣∣∣ xit = x

]
<∞.

Proof. Let all expectations in this proof be conditioned on xit = x. First note that

(A.6) sup
m

sup
µ∈M

Eµ

[ ∞∑
k=t

βk−tπm(xik, s̃(m))

]
<∞ .

If not, supm Ṽ (m)(x|µ̃(m), λ̃(m)) = ∞, because total investment cost is bounded by ι
1−β , violating Lemma

A.3.

By Assumption 2.1.4, for any y ∈ N, f, f ′ ∈ S1,g, n ∈ <+, and m ∈ N,

∣∣lnπm(y, f, n)− lnπm(y, f ′, n)
∣∣ =

∣∣∣∣∣
∫ 1

γ=0

∑
x∈N

(
f(x)− f ′(x)

) (
∂ lnπm(y, f ′ + γ(f − f ′), n)

∂f(x)

)
dγ

∣∣∣∣∣
≤

∫ 1

γ=0

∑
x∈N

(
|f(x)− f ′(x)|

)
g(x)dγ

= ‖f − f ′‖1,g

< ∞.
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Letting f = (1, 0, 0, . . .), using Assumption 4.2, it follows that supx∈N,m∈N |πm(x, f, ñ(m))−πm(x, s̃(m))| ≡

C < ∞. By Assumption 2.1.2, for all m ∈ <+, x ∈ N, and f ∈ S1, πm(x, f, ñ(m)) ≤ πm(x, f, ñ(m)) ≤

πm(x, s̃(m)) + C. The result then follows from (A.6).

A.4 Proof of Theorem 4.2

Theorem 4.2. Under Assumptions 2.1, 2.2, 2.3, 4.1.2, and 4.2, ñ(m) = Ω(m).

Proof. Assume for contradiction that lim infm ñ(m)

m = 0. Then there exists an increasing sequence mk

such that limk
ñ(mk)

mk
= 0, and by Assumption 4.1.2, for all x, z ∈ N with x > z, and f ∈ S1,z ,

limk→∞ πmk
(x, f, ñ(mk)) = ∞.

Note that for any h ∈ S, y ∈ N, f ∈ S1,g, and n ∈ <+,

∑
x∈N

h(x)
∣∣∣∣∂ lnπm(y, f, n)

∂f(x)

∣∣∣∣ ≤ ‖h‖1,g.
It follows from Assumptions 2.1.4 and 4.2 that

lim
z→∞

sup
m

inf
f̂∈S1,z

sup
x

∣∣∣lnπm(x, f̃ (m), ñ(m))− lnπm(x, f̂ , ñ(m))
∣∣∣ = 0.

It follows that

lim
z→∞

sup
m

inf
f̂∈S1,z

sup
x

∣∣∣∣∣πm(x, f̃ (m), ñ(m))

πm(x, f̂ , ñ(m))
− 1

∣∣∣∣∣ = 0,

and therefore,

πm(x, f̃ (m), ñ(m)) ≥ (1− ε)πm(x, f̂ (m), ñ(m)),

for a sequence f̂ (m) ∈ S1,z with sufficiently large z, and for all x and m. This implies that for all x > z,

limk→∞ πmk
(x, f̃ (mk), ñ(mk)) = ∞, which contradicts Lemma A.3. It follows that ñ(m) = Ω(m).

A.4.1 Proof of Theorem 4.3

Lemma A.5. Let Assumptions 2.1, 2.2, 2.3, 4.1.2, and 4.2, hold. Then, for any δ > 0,

P

[∣∣∣∣∣n(m)
t

ñ(m)
− 1

∣∣∣∣∣ ≥ δ

]
≤ e−Ω(m).

Proof. By a simple analysis of the Poisson distribution, it is easy to show that if n is a Poisson random
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variable with mean ñ,

P
[∣∣∣n
ñ
− 1

∣∣∣ ≥ δ
]
≤ e−Θ(ñ).

By Lemma 3.2, n(m)
t is a Poisson random variable with mean ñ(m). By Theorem 4.2, ñ(m) = Ω(m). The

result follows.

Theorem 4.3. Let Assumptions 2.1, 2.2, 2.3, 4.1.2, and 4.2, hold. Then, as m grows, n(m)
t /ñ(m) →p 1 and

‖f (m)
t − f̃ (m)‖1,g →p 0.

Proof. Convergence of n(m)
t /ñ(m) follows from Lemma A.5. To complete the proof, we will establish

convergence of ‖f (m)
t − f̃ (m)‖1,g. Note that for any z ∈ N,

‖f (m)
t − f̃ (m)‖1,g ≤ zmax

x≤z
g(x)|f (m)

t (x)− f̃ (m)(x)|+
∑
x>z

g(x)f (m)
t (x) +

∑
x>z

g(x)f̃ (m)(x)

≡ A(m)
z +B(m)

z + C(m)
z .

We will show that for any z,A(m)
z converges in probability to zero, that for any δ > 0, for sufficiently large z,

limm→∞ P[C(m)
z ≥ δ] = 0, and that for any δ > 0 and ε > 0, for sufficiently large z, lim supm→∞ P[B(m)

z ≥

δ] ≤ ε/δ. The assertion that ‖f (m)
t − f̃ (m)‖1,g →p 0 follows from these facts.

By Lemma 3.3, for any x, (f (m)
t (x) | n(m)

t = n) is distributed as the empirical mean of n i.i.d. Bernoulli

random variables with expectation f̃ (m)(x). It follows that for any x, (|f (m)
t (x) − f̃ (m)(x)| | nt = n)

converges in probability to zero uniformly over m as n grows. By Theorem 4.2 and the fact that n(m)
t /ñ(m)

converges in probability to 1, for any n, limm→∞ P[n(m)
t ≤ n] = 0. It follows that for any z, A(m)

z

converges in probability to zero.

By Assumption 4.2, for any δ > 0, for sufficiently large z, lim supm→∞C
(m)
z < δ, and therefore,

limm→∞ P[C(m)
z ≥ δ] = 0. By Tonelli’s Theorem, E[B(m)

z ] = C
(m)
z . Invoking Markov’s inequality, for

any δ > 0 and ε > 0, for sufficiently large z, lim supm→∞ P[B(m)
z ≥ δ] ≤ ε/δ. The result follows.

A.4.2 Proof of Theorem 4.4

The following technical lemma follows immediately from Assumption 4.1.3. We omit the proof.

Lemma A.6. Let Assumptions 2.1.3 and 4.1.3 hold. Then, for all ε > 0 there exists δ > 0 such that for all

n, n̂ ∈ <+ satisfying |n/n̂− 1| < δ,

sup
m∈<+,x∈N,f∈S1

∣∣∣∣πm(x, f, n)− πm(x, f, n̂)
πm(x, f, n̂)

∣∣∣∣ < ε.

41



Lemma A.7. Let Assumptions 2.1, 2.2, 2.3, 4.1, and 4.2 hold. Then, for all sequences {µ(m) ∈M},

lim
m→∞

Eµ(m),µ̃(m),λ̃(m)

[
τi∑
k=t

βk−t|πm(xik, s
(m)
−i,k)− πm(xik, f

(m)
−i,k, ñ

(m))|
∣∣∣ xit = x, s

(m)
−i,t ∼ q(m)

]
= 0.

Proof. For the purpose of this proof, we will assume that all expectations are conditioned on xit = x and

s
(m)
−i,t ∼ q(m). Note that if s(m)

−i,t is distributed according to q(m), then the marginal distribution of s(m)
−i,k is

also q(m), for all k > t. Let ∆(m)
it = |πm(xit, s

(m)
−i,t)− πm(xit, f

(m)
−i,t, ñ

(m))|. Fix ε > 0 and let δ > 0 satisfy

the assertion of Lemma A.6. Let Z(m) denote the event
∣∣∣n(m)
t /ñ(m) − 1

∣∣∣ ≥ δ. Applying Tonelli’s Theorem,

we obtain

Eµ(m),µ̃(m),λ̃(m)

[
τi∑
k=t

βk−t∆(m)
ik

]
≤

∞∑
k=t

βk−tEµ(m),µ̃(m),λ̃(m)

[
∆(m)
ik

]
=

∞∑
k=t

βk−t
(
Eµ(m),µ̃(m),λ̃(m)

[
∆(m)
ik 1¬Z(m)

]
+ Eµ(m),µ̃(m),λ̃(m)

[
∆(m)
ik 1Z(m)

])
≤

∞∑
k=t

βk−t
(
εEµ(m),µ̃(m),λ̃(m)

[
πm(xik, f

(m)
−i,k, ñ

(m))
]

+O(m)P[Z(m)]
)

≤ εEµ(m),µ̃(m),λ̃(m)

[ ∞∑
k=t

βk−t sup
f∈S1

πm(xik, f, ñ(m))

]
+
O(m)P[Z(m)]

1− β
,

where the second to last inequality follows from Lemma A.6 and Assumption 4.1.1. Since ε is arbitrary, the

expected sum is finite (by Lemma A.4), and P[Z(m)] ≤ e−Ω(m) (by Lemma A.5), the result follows.

The following technical lemma follows immediately from assumptions on the profit function. We omit

the proof.

Lemma A.8. Let Assumptions 2.1.3 and 2.1.4 hold. Then, for all ε > 0 there exists δ > 0 such that for

f, f̂ ∈ S1,g satisfying ‖f − f̂‖1,g < δ,

sup
m∈<+,x∈N,n∈<+

∣∣∣∣∣πm(x, f, n)− πm(x, f̂ , n)

πm(x, f̂ , n)

∣∣∣∣∣ < ε.

Lemma A.9. Let Assumptions 2.1, 2.2, 2.3, 4.1, and 4.2 hold. Then, for all sequences {µ(m) ∈M},

lim
m→∞

Eµ(m),µ̃(m),λ̃(m)

[
τi∑
k=t

βk−t|πm(xik, f
(m)
−i,k, ñ

(m))− πm(xik, s̃(m))|
∣∣∣ xit = x, s

(m)
−i,t ∼ q(m)

]
= 0.

Proof. For the purpose of this proof, we will assume that all expectations are conditioned on xit = x and
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s
(m)
−i,t ∼ q(m). Let ∆(m)

it = |πm(xit, f
(m)
−i,t, ñ

(m)) − πm(xit, s̃(m))|. Fix ε > 0 and let δ satisfy the assertion

of Lemma A.8. Let Z(m) denote the event ‖f (m)
−i,k − f̃ (m)‖1,g ≥ δ. Applying Tonelli’s Theorem, we obtain

Eµ(m),µ̃(m),λ̃(m)

[
τi∑
k=t

βk−t∆(m)
ik

]
≤

∞∑
k=t

βk−tEµ(m),µ̃(m),λ̃(m)

[
∆(m)
ik

]
=

∞∑
k=t

βk−tEµ(m),µ̃(m),λ̃(m)

[
∆(m)
ik 1¬Z(m)

]
+ Eµ(m),µ̃(m),λ̃(m)

[
∆(m)
ik 1Z(m)

]
≤ εC

1− β
+

∞∑
k=t

βk−tEµ(m),µ̃(m),λ̃(m)

[
∆(m)
ik 1Z(m)

]
,

for some constant C > 0. The inequality follows from Lemmas A.4 and A.8.

Note that ∆(m)
ik ≤ 2 supf∈S1

πm(xik, f, ñ(m)). Hence,

∞∑
k=t

βk−tEµ(m),µ̃(m),λ̃(m)

[
∆(m)
ik 1Z(m)

]
≤

∞∑
k=t

βk−tEµ(m),µ̃(m),λ̃(m)

[
2 sup
f∈S1

πm(xik, f, ñ(m))1Z(m)

]

≤ 2 sup
µ∈M

Eµ,µ̃(m),λ̃(m)

[ ∞∑
k=t

βk−t sup
f∈S1

πm(xik, f, ñ(m))1Z(m)

]
,

= 2P[Z(m)] sup
µ∈M

Eµ

[ ∞∑
k=t

βk−t sup
f∈S1

πm(xik, f, ñ(m))

]
,

because supµ∈M is attained by an oblivious strategy, so f (m)
−i,k evolves independently from x

(m)
ik . Since ε

is arbitrary, P[Z(m)] → 0 (by Theorem 4.3), and the expected sum is uniformly bounded over all m (by

Lemma A.4), the result follows.

Theorem 4.4. Under Assumptions 2.1, 2.2, 2.3, 4.1, and 4.2, the sequence {µ̃(m), λ̃(m)} of oblivious equi-

libria possesses the AME property.

Proof. Let µ∗(m) be an optimal (non-oblivious) best response to (µ̃(m), λ̃(m)); in particular,

V (m)(x, s|µ∗(m), µ̃(m), λ̃(m)) = sup
µ∈M

V (m)(x, s|µ, µ̃(m), λ̃(m)).

Let

V̂ (m)(x, s) = V (m)(x, s|µ∗(m), µ̃(m), λ̃(m))− V (m)(x, s|µ̃(m), λ̃(m)) ≥ 0.

The AME property, which we set out to establish, asserts that for all x ∈ N, limm→∞Eµ̃(m),λ̃(m) [V̂ (m)(x, s(m)
t )] =

0.
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For any m, because µ̃(m) and λ̃(m) attain an oblivious equilibrium, for all x,

Ṽ (m)(x|µ̃(m), λ̃(m)) = sup
µ̃∈M̃

Ṽ (m)(x|µ̃, µ̃(m), λ̃(m)) = sup
µ̃∈M

Ṽ (m)(x|µ̃, µ̃(m), λ̃(m)),

where the last equation follows because there will always be an optimal oblivious strategy when optimizing

an oblivious value function even if we consider more general strategies. It follows that

V̂ (m)(x, s) =
(
V (m)(x, s|µ∗(m), µ̃(m), λ̃(m))− Ṽ (m)(x|µ̃(m), λ̃(m))

)
+

(
Ṽ (m)(x|µ̃(m), λ̃(m))− V (m)(x, s|µ̃(m), λ̃(m))

)
≤

(
V (m)(x, s|µ∗(m), µ̃(m), λ̃(m))− Ṽ (m)(x|µ∗(m), µ̃(m), λ̃(m))

)
+

(
Ṽ (m)(x|µ̃(m), λ̃(m))− V (m)(x, s|µ̃(m), λ̃(m))

)
≡ A(m)(x, s) +B(m)(x, s).

To complete the proof, we will establish that Eµ̃(m),λ̃(m) [A(m)(x, s(m)
t )] and Eµ̃(m),λ̃(m) [B(m)(x, s(m)

t )] con-

verge to zero.

Let τi be the time at which firm i exits, and let ∆(m)
it = |πm(xit, s

(m)
−i,t)−πm(xit, s̃(m))|. It is easy to see

that

A(m)(x, s) ≤ Eµ∗(m),µ̃(m),λ̃(m)

[
τi∑
k=t

βk−t∆(m)
ik

∣∣∣ xit = x, s
(m)
−i,t = s

]

B(m)(x, s) ≤ Eµ̃(m),λ̃(m)

[
τi∑
k=t

βk−t∆(m)
ik

∣∣∣ xit = x, s
(m)
−i,t = s

]
,

and letting q(m) be the invariant distribution of s(m)
t with the oblivious strategy µ̃(m) and the oblivious entry

rate λ̃(m),

Eµ̃(m),λ̃(m)

[
A(m)(x, s(m)

t )
]
≤ Eµ∗(m),µ̃(m),λ̃(m)

[
τi∑
k=t

βk−t∆(m)
ik

∣∣∣ xit = x, s
(m)
−i,t ∼ q(m)

]

Eµ̃(m),λ̃(m)

[
B(m)(x, s(m)

t )
]
≤ Eµ̃(m),λ̃(m)

[
τi∑
k=t

βk−t∆(m)
ik

∣∣∣ xit = x, s
(m)
−i,t ∼ q(m)

]
.

By the triangle inequality,

∆(m)
ik ≤ |πm(xik, s

(m)
−i,k)− πm(xik, f

(m)
−i,k, ñ

(m))|+ |πm(xik, f
(m)
−i,k, ñ

(m))− πm(xik, s̃(m))|.
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The result therefore follows from Lemmas A.7 and A.9.

A.4.3 Derivations for the Logit Demand Model Outlined in Subsection 6.1

It is direct to check that Assumptions 2.1, 4.1.1, and 4.1.2 are satisfied. Now, we show that Assumption

4.1.3 is satisfied. Let ψ = 1. Note that

d lnπm(x, f, n)
d lnn

=
∂ lnπm(x, f, n)

∂ lnn
+
∂ lnπm(x, f, n)

∂px

∂px
∂ lnn

+
∑
i∈S

∂ lnπm(x, f, n)
∂pi

∂pi
∂ lnn

,(A.7)

where S is the set of firms in state s = fn, and px is the price charged by the firm in state x. The first term

takes into account the direct change in profits due to the change on the number of firms keeping prices fixed.

The second and third terms consider the change in profits implied by the change of prices. Now,

∂ lnπm(x, f, n)
∂ lnn

= −
n

∑
z∈N f(z)(1 + z)θ1(Y − pz)θ2

1 + n
∑

z∈N f(z)(1 + z)θ1(Y − pz)θ2 + (1 + x)θ1(Y − px)θ2
.

Therefore, supm∈<+,x∈N,f∈S1,n>0

∣∣∣∂ lnπm(x,f,n)
∂ lnn

∣∣∣ = 1. Similarly, it is possible to show that if θ2 ≤ 1
2 ,

supm∈<+,x∈N,f∈S1,n>0

∣∣∣∂ lnπm(x,f,n)
∂px

∂px

∂ lnn +
∑

i∈S
∂ lnπm(x,f,n)

∂pi

∂pi

∂ lnn

∣∣∣ < ∞. The complete derivation is

long and algebraically cumbersome so it is omitted. However, we note a couple of important points. To

compute ∂pi

∂ lnn we use equation (6.1) together with the implicit function theorem. Each term in the sum is

Θ
(

1
n

)
, hence the sum, even if it includes an infinite number of terms, remains bounded.

Now we derive the maximal absolute semi-elasticity function, g(x). Similarly to equation (A.7) we have

d lnπm(y, f, n)
df(x)

=
∂ lnπm(y, f, n)

∂f(x)
+
∂ lnπm(y, f, n)

∂py

∂py
∂f(x)

+
∑
i∈S

∂ lnπm(y, f, n)
∂pi

∂pi
∂f(x)

.(A.8)

Now,
∂ lnπm(y, f, n)

∂f(x)
= − n(1 + x)θ1(Y − px)θ2

1 + n
∑

z∈N f(z)(1 + z)θ1(Y − pz)θ2 + (1 + y)θ1(Y − py)θ2

Therefore,

(A.9) max
m∈<+,y∈N,f∈S1,n∈N

∣∣∣∣∂ lnπm(y, f, n)
∂f(x)

∣∣∣∣ = O
(
xθ1

)
.

The second and third terms in equation (A.8) can be bound in a similar way to (A.7). The result follows.
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A.5 Proofs and Mathematical Arguments for Section 5

A.5.1 Proof of Theorem 5.1

Theorem 5.1. Let Assumptions 2.1, 2.2, and 2.3 hold. Then, for any oblivious equilibrium (µ̃, λ̃) and firm

state x ∈ N,

(A.10) E

[
sup
µ′∈M

V (x, st|µ′, µ̃, λ̃)− V (x, st|µ̃, λ̃)

]
≤ 2

1− β
E[∆|π|(s)],

where ∆|π|(s) = maxy∈N |π(y, s)− π(y, s̃)|, and

(A.11)

E

[
sup
µ′∈M

V (x, st|µ′, µ̃, λ̃)− V (x, st|µ̃, λ̃)

]
≤ 1

1− β
E[∆π(s)] +

∑
y∈N

ax(y) (π(y, s̃)− E [π(y, s)]) ,

where ∆π(s) = maxy∈N (π(y, s)− π(y, s̃)).

Proof. We derive the second bound, beginning with the following proposition. Let µ∗ be an optimal (non-

oblivious) best response to an oblivious equilibrium (µ̃, λ̃) for a firm that is keeping track of the industry

state.

Proposition A.1.

E[V (x, s|µ∗, µ̃, λ̃)− Ṽ (x|µ̃, λ̃)] ≤ 1
1− β

E[∆π(s)] , ∀x ∈ N .

Proof. By a similar argument to the one at the beginning of the proof of Theorem 4.4, we have that

(A.12)

V (x, s|µ∗, µ̃, λ̃)− Ṽ (x|µ̃, λ̃) ≤ Eµ∗,µ̃,λ̃

[
τi∑
k=t

βk−t (π(xik, s−i,k)− π(xik, s̃))
∣∣∣xit = x, s−i,t = s

]
.

The equation can be rewritten as:

V (x, s|µ∗, µ̃, λ̃)− Ṽ (x|µ̃, λ̃) ≤
∞∑
k=t

βk−t
∑
y∈N
s′∈S

Pµ∗,µ̃,λ̃[xik = y, s−i,k = s′ | xit = x, s−i,t = s] ·

(
π(y, s′)− π(y, s̃)

)
,(A.13)

where Pµ∗,µ̃,λ̃[xik = y, s−i,k = s′ | xit = x, s−i,t = s] is the probability firm i, currently in state x with

competitors in state s, will be in state y and s′, respectively, k − t periods from now.
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We can write:

Pµ∗,µ̃,λ̃[xik = y, s−i,k = s′ | xit = x, s−i,t = s] = Pµ∗,µ̃,λ̃[xik = y | s−i,k = s′, xit = x, s−i,t = s] ·

Pµ∗,µ̃,λ̃[s−i,k = s′ | xit = x, s−i,t = s]

= Pµ∗,µ̃,λ̃[xik = y | s−i,k = s′, xit = x, s−i,t = s] ·

Pµ̃,λ̃[s−i,k = s′ | s−i,t = s].

The last equation follows because rival firms use strategy µ̃, which only depends on their own state, and the

entry rate is λ̃ independent of the industry state. Substituting into equation (A.13) gives:

V (x, s|µ∗, µ̃, λ̃)− Ṽ (x|µ̃, λ̃) ≤
∞∑
k=t

βk−t
∑
s′∈S

Pµ̃,λ̃[s−i,k = s′ | s−i,t = s]∑
y∈N

Pµ∗,µ̃,λ̃[xik = y | s−i,k = s′, xit = x, s−i,t = s]
(
π(y, s′)− π(y, s̃)

)
≤

∞∑
k=t

βk−t
∑
s′∈S

Pµ̃,λ̃[s−i,k = s′ | s−i,t = s]max
y∈N

(
π(y, s′)− π(y, s̃)

)
,(A.14)

Recall that q(s) is the invariant distribution of {st : t ≥ 0}, where st is the industry state at time t when

every firms uses strategy µ̃ and the entry rate is λ̃. Therefore, for any k ≥ t:

(A.15) q(s′) =
∑
s∈S

q(s)Pµ̃,λ̃[s−i,k = s′ | s−i,t = s]

Multiplying equations (A.14) by q(s) and summing over all s ∈ S we obtain:

∑
s∈S

q(s)
(
V (x, s|µ∗, µ̃, λ̃)− Ṽ (x|µ̃, λ̃)

)
≤

∑
s∈S

q(s)
∞∑
k=t

βk−t
∑
s′∈S

Pµ̃,λ̃[s−i,k = s′ | s−i,t = s] ·

max
y∈N

(
π(y, s′)− π(y, s̃)

)
=

∞∑
k=t

βk−t
∑
s′∈S

∑
s∈S

q(s)Pµ̃,λ̃[s−i,k = s′ | s−i,t = s] ·

max
y∈N

(
π(y, s′)− π(y, s̃)

)
=

∞∑
k=t

βk−t
∑
s′∈S

q(s′) max
y∈N

(
π(y, s′)− π(y, s̃)

)
(A.16)

The first equation follows by Fubini and the second one by equation (A.15). The previous argument is valid
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for any x ∈ N, therefore:

E[V (x, st|µ∗, µ̃, λ̃)− Ṽ (x|µ̃, λ̃)] ≤ 1
1− β

E[∆π(st)] , ∀x ∈ N ,

where st is a random vector distributed according to q.

Returning to the derivation of the bound, we have that:

(A.17)

E[V (x, s|µ∗, µ̃, λ̃)− V (x, s|µ̃, λ̃)] = E[V (x, s|µ∗, µ̃, λ̃)− Ṽ (x|µ̃, λ̃)] + E[Ṽ (x|µ̃, λ̃)− V (x, s|µ̃, λ̃)]

The first term is bounded by the previous proposition. Let us analyze the second term:

Ṽ (x|µ̃, λ̃)− V (x, s|µ̃, λ̃) = Eµ̃,λ̃

[
τi∑
k=t

βk−t (π(xik, s̃)− π(xik, s−i,k))
∣∣∣xit = x, s−i,t = s

]

=
∞∑
k=t

βk−t
∑
s′∈S

Pµ̃,λ̃[s−i,k = s′ | s−i,t = s] ·∑
y∈N

Pµ̃[xik = y | xit = x]
(
π(y, s̃)− π(y, s′)

)
.(A.18)

The last equation follows because under oblivious strategies firms’ trajectories are independent. Multiplying

each term by q(s), summing over all s ∈ S and interchanging sums in the right hand side using Fubini we

obtain:

(A.19) E[Ṽ (x|µ̃, λ̃)− V (x, st|µ̃, λ̃)] =
∞∑
k=t

βk−t
∑
y∈N

Pµ̃[xik = y | xit = x] (π(y, s̃)− E [π(y, st)]) ,

Finally, interchanging the sums

(A.20) E[Ṽ (x|µ̃, λ̃)− V (x, st|µ̃, λ̃)] =
∑
y∈N

ax(y) (π(y, s̃)− E [π(y, st)]) .

The second bound follows by equations (A.17), (A.20), and the proposition. The first one follows by a

similar argument, but with the difference that we take maxy∈N in equation (A.18) and we take absolute

value of the difference of one period profits in equations (A.14) and (A.18).
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B Tables and Figures

Table 1: Comparison of MPE and OE strategies (4 firms, no entry and exit)

Parameters Long Run Statistics (% Diff) Perf Bound (% Diff) Actual (% Diff)
Prod Cons Max Weighted Max Weighted

θ1 d Inv. Surp Surp C1 C2 Diff Avg Diff Avg
0.10 0.10 −0.26 −0.01 −0.02 0.03 0.03 0.14 0.13 0.08 0.07
0.30 0.30 −0.13 0.06 0.08 0.08 0.16 1.67 1.22 0.04 0.01
0.50 0.50 −0.11 0.20 0.28 0.18 0.50 6.64 3.61 0.21 0.06
0.70 0.70 −2.21 0.40 0.15 1.08 2.09 18.85 8.35 1.60 0.67
0.85 0.70 −2.19 0.23 −0.28 1.37 2.10 30.80 9.64 1.80 0.20
0.15 0.27 3.54 0.14 0.2 1.22 0.46 0.36 0.35 0.1 0.1
0.20 0.35 4.18 0.29 0.42 1.93 1.03 0.81 0.77 −0.09 −0.05
0.30 0.55 9.28 0.93 1.31 5.10 2.45 1.96 1.85 0.26 0.25
0.40 0.80 21.02 2.10 2.93 11.58 4.12 3.01 2.92 0.30 0.29
0.50 1.00 18.62 3.30 4.33 15.69 5.94 6.29 5.86 0.32 0.30

Long run statistics and value functions simulated with a relative precision of 1.0% and a confidence level of
99%. Error bound simulated with a relative precision of at most 10% and a confidence level of 99%.

52



Table 2: Comparison of MPE and OE Investment (4 firms, no entry and exit)
Parameters Investment
θ1 d MPE OE % Diff
0.10 0.10 0.752 0.754 −0.26
0.30 0.30 0.754 0.755 −0.13
0.50 0.50 0.741 0.742 −0.11
0.70 0.70 0.694 0.709 −2.21
0.85 0.70 0.748 0.765 −2.19
0.15 0.27 0.192 0.185 3.54
0.20 0.35 0.261 0.250 4.18
0.30 0.55 0.238 0.216 9.28
0.40 0.80 0.168 0.133 21.02
0.50 1.00 0.195 0.158 18.62

Investment simulated with a relative precision of
1.0% and a confidence level of 99%.

Table 3: Percentage approximation error bounds evaluated at the entry state for industries in Fig-
ures 6 and 7

Parameters Error
θ1 m Bound
0.9 100 13.5

400 5.7
1600 2.4

1.2 100 57.9
400 56.4

1600 23.9
Error bound and value functions simulated with
a relative precision of at most 10% and 1.0%, re-
spectively, and a confidence level of 99%.
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Figure 1: Percentage approximation error bound for Poisson entry process for different market
sizes.
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Figure 2: Percentage approximation error bound for deterministic entry process for different mar-
ket sizes.

0

2

4

6

8

10

12

30 60 120 250 500 1000 1800

Expected Number of Firms

%
 B

ou
nd

Low
High

54



Figure 3: Percentage approximation error bound for fixed number of firms.
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Figure 4: Average industry state for θ1 = 0.5 and d = 0.5.
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Figure 5: Average industry state for θ1 = 0.4 and d = 0.8.
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Figure 6: Average industry state for different market sizes for θ1 = 0.9.
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Figure 7: Average industry state for different market sizes for θ1 = 1.2.

0

1

2

3

4

5

6

7

8

1 21 41 61

Quality Level

Ex
pe

ct
ed

 N
um

be
r o

f F
irm

s

M=100

M=400

M=1600

57


