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Abstract

This paper analyzes monetary exchange in a search model allowing

for multilateral matches to be formed, according to a standard urn-ball

process. We consider three physical environments: indivisible goods

and money, divisible goods and indivisible money, and divisible goods

and money. We compare the results with Kiyotaki and Wright (1993),

Trejos and Wright (1995), and Lagos and Wright (2005) respectively.

We �nd that the multilateral matching setting generates very simple

and intuitive equilibrium allocations that are similar to those in the

other papers, but which have important di¤erences. In particular, sur-

plus maximization can be achieved in this setting, in equilibrium, with

a positive money supply. Moreover, with �exible prices and directed

search, the �rst best allocation can be attained through price posting

or through auctions with lotteries, but not through auctions without

lotteries. Finally, analysis of the case of divisible goods and money

can be performed without the assumption of large families (as in Shi

(1997)) or the day and night structure of Lagos and Wright (2005).
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1 Introduction

Search theoretic models of monetary exchange have traditionally carried the

assumptions that matches occur randomly and bilaterally, and that prices

are determined by bilateral bargaining. These assumptions have proven to

be useful in the development of models with indivisible money and goods

(Kiyotaki and Wright (1993)), indivisible money and divisible goods (Shi

(1995), Trejos and Wright (1995)), and models with divisible money and

divisible goods (Shi (1997), Molico (2004), Lagos and Wright (2005)). How-

ever, to a certain extent, they run counter to the spirit of clean economic

theorizing that motivates the research program (Wallace (2001)). The as-

sumption of random matching removes the search process itself from the

realm of choice theory by making it purely a technological phenomenon

that agents face. Similarly, the assumption of bilateral bargaining imposes

a particular price determination mechanism that has no justi�cation from

the theory of mechanism design (McAfee (1993)). Moreover, this particu-

lar choice of mechanism impels modelers to restrict attention to bilateral

matches � something that is di¢ cult to justify if one side of the market

randomizes over another, except in the limit when the length of time period

goes to zero.

In this paper we relax these assumptions, in a very standard monetary

exchange environment based on the models presented in the above papers,

to see how robust the central results of these models are, and to explore the

usefulness of a theory based on multilateral matching and directed search.

We use a standard urn-ball matching process generated by buyers random-

izing over sellers, and justi�ed as the directed search mixed strategy equi-

librium recently utilized in the labor market literature. (See, for example,

Montgomery (1991), Julien, Kennes, and King (2000), and Burdett, Shi,

and Wright (2001).)1 Three di¤erent physical environments are considered,

following the historical development of the literature: two-sided indivisibil-

ity, indivisible money and divisible goods, and two-sided divisibility. We

also consider two di¤erent price determination mechanisms: ex ante price

1Rocheteau and Wright (2005) also analyse monetary models with directed search.

However, directed search in their paper takes a di¤erent form, based on the competitive

search framework developed by Moen (1997). In that setting the aggregate market is di-

vided into submarkets, each of which is frictional, but where movement across submarkets

is directed by market-makers who perform a role similar to Walrasian auctioneers.
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posting and ex post bidding (auctions). In all cases, we characterize the

steady state monetary equilibria, examine their e¢ ciency properties, and

explore the in�uence of the quantity of �at money supplied. Overall, a key

di¤erence between these models and those with purely random matching is

that the ratio of buyers to sellers (that is, market tightness) now in�uences

the matching rate. The introduction of this new channel, through which

monetary policy can a¤ect the economy, signi�cantly alters the positive and

normative a¤ects of the policy.

With indivisible money and goods, as in Kiyotaki and Wright (1993),

we identify restrictions on the two key parameters (the discount factor and

the supply of money) that are necessary and su¢ cient for the existence of

monetary equilibria. When examining the issue of the optimal supply of

money we �nd that, in this environment, the expected aggregate surplus of

the economy is not strictly declining in the number of units of �at money, as

in Kiyotaki and Wright (1993). Rather, because the arrival rate for matches

is no longer parametric (but now a function of the ratio of buyers and sellers),

a positive optimal supply of money exists which maximizes expected surplus.

With indivisible money but divisible goods we consider directed search

equilibria under di¤erent pricing mechanisms: ex ante price posting (as in

Burdett, Shi, and Wright (2001) and ex post auctions (as in Julien, Kennes,

and King (2000)). In both settings, the supply of money now a¤ects the

expected surplus through two distinct margins: extensive and intensive.

The extensive margin is the same as in the model with indivisible goods

� through its in�uence on market tightness, the money supply a¤ects the

number of matches. The intensive margin is the same as in Trejos and

Wright (1995): the equilibrium price a¤ects the marginal costs and bene�ts

associated with production. With price posting, we �nd that there exists a

quantity of money that maximizes expected surplus. Interestingly, by way

of contrast, with ex post bidding, surplus maximization cannot be attained

unless lotteries are used in the presence of bilteral matches. This somewhat

surprising result comes about because of the price dispersion inherent in the

auction mechanism: this implies that, with concave utility and convex costs,

the intensive margin condition can not be satis�ed.

With divisible money and goods, we restrict attention to the case of ex

ante price posting and �nd that we can characterize a steady state distrib-

ution of money holdings with relative ease. This distribution has a simple
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two-point support that resembles the equilibrium in the model with indivis-

ible money. This shares some of the features of the distribution found by

Molico (2004) in a model based on Trejos and Wright (1995) with divisible

money, but is much simpler � and in some respects is similar to the one

found in Lagos and Wright (2005) in quite a di¤erent setting.2 Monetary

policy in this environment has both the intensive and extensive margins

mentioned above, but now has an extra dimension to consider: how changes

in the money supply are distributed across agents. We �nd, for example,

that increments to the money supply can be neutral if and only if they are

distributed only to existing money holders.

The remainder of the paper is organized as follows. Section 2 introduces

and analyses the model with two-sided indivisibility. Section 3 considers the

model with divisible goods and indivisible money. Section 4 studies the case

of two-sided divisibility. Section 5 presents a conclusion and suggestions for

further research, and an appendix contains proofs of some of the propositions

and an extra proposition not contained in the body of the paper.

2 Indivisible Goods and Money

2.1 The Model

There is a [0,1] continuum of in�nitely lived agents. Time is discrete and

the agents have a rate of time preference r > 0 or, equivalently, a discount

factor, � = 1=(1 + r). There is also a continuum of indivisible services (or

non-storable goods, where these goods are produced only after an agreement

to exchange). Agent i has the ability to produce one unit of one good. The

unit production cost for any agent is c � 0.
Tastes are heterogenous and modelled as follows. Given any two agents i

and j, we write iWj to mean �i wants to consume the good that j produces�-

that is i derives utility u > c from consuming what j produces if iWj and

he derives utility 0 from consuming what j produces otherwise. For any two

agents selected at random, we assume prob(iWi) = 0 and prob(jWi) = x.

To keep things simple, we also assume away the double coincidence of wants,

(and, thereby, the possibility of direct barter) so prob(jWi j iWj) = 0:

2 In particular, here, we do not use the day-night market structure employed in Lagos

and Wright (2005).
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Further, to focus on the impact of introducing multilateral matching, we

assume away the absence of any single coincidence of wants; thus, we set

x = 1:

In addition to the consumable goods, there is an object called �at money.

This money consists of a �xed quantity of M 2 [0; 1] indivisible units of
a storable object. Initially one (normalized) unit of money is randomly

allocated to M agents. We assume, in this section, that agents holding

money cannot produce.3 Thus no one can ever acquire more than one unit

of money, and hence all agents hold either 0 or 1 units of money.

We assume that all goods producers operate as sellers and that all money

holders operate as buyers. Thus, in equilibria with monetary exchange,

the number of buyers is given by M and the number of sellers is given by

(1 � M): Let � denote the ratio of buyers to sellers (market tightness),

thus: � = M=(1 �M): In each period, sellers appear identical and buyers

randomly choose which seller to visit - generating a simple urn-ball matching

process. For any two agents that meet, let �0 denote the probability that

the seller will accept money in exchange for goods. Similarly, let �1 denote

the probability that a money holder will accept the good in return for the

unit of money. Thus, monetary exchange occurs if and only if � � �0�1 > 0:

In this case, the probability of exchange for any given seller choosing �0 is

given by

�(�) = �(1� e��) = �(1� e�
M

1�M ) (1)

where 1 � e�� is the probability a seller gets at least one buyer. Similarly,

the probability of exchange for a money holder (buyer) is given by:

 (�) = �

�
1� e��

�

�
= �

1�M
M

(1� e�
M

1�M ) (2)

where the probability
�
1� e��

�
=� incorporates the fact that the good is

rationed randomly to only one buyer in the event of multiple buyers.

Equations (1) and (2) illustrate an important di¤erence between this

framework and that of Kiyotaki and Wright (1993). In their model, agents

encounter each other with the parametric Poisson arrival rate � 4 so that, for

a seller, the probability of encountering a buyer is �M . Similarly, for a buyer,

the probability of a encountering a seller is �(1�M). Thus, the associated
3This assumption is relaxed in Section 4, below.
4Using the notation from Rupert et al. (2000).
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probabilities of monetary exchange, corresponding to the expressions in (1)

and (2) respectively, are ��M and ��(1 �M): Trejos and Wright (1995),

for example, normalize by e¤ectively setting � = 1: Here, this would not be

an innocuous normalization, since the arrival rate is not parametric, but a

function of � = M=(1 �M): That is, in this framework, market tightness

a¤ects arrival rates and the equilibrium number of matches.

Let V0 and V1 be the value functions of agents with 0 and 1 units of

money, respectively - i.e. sellers and buyers. Since we only consider sta-

tionary, symmetric equilibria, Vj does not depend on time or on the agent�s

name. The payo¤s when trading occurs are u+ �V0 if a money holder, and

�c+ �V1 if a producer. The value function of a producer is given by

V0(�) = max
�0

�
�(�)[�V1

�
�0
�
� c] + (1� � (�))�V0

�
�0
�	

(3)

where � represents the strategies of all buyers and other sellers, which is

taken as given. Similarly, � 0 indicates the equilibrium strategies next period.

With a slight abuse of notation, the value function of a money holder is

V1 (�) = max
�1

�
 (�)

�
�V0

�
�0
�
+ u

�
+ (1�  (�))

�
�V1

�
�0
��	

(4)

We are now in a position to de�ne the relevant equilibrium.

2.2 The Equilibrium

In this paper we restrict attention to steady state symmetric equilibria.

De�nition 1 A steady state symmetric monetary equilibrium is a pair

(V0(�); V1(�)) satisfying the following conditions:

(i) Equations (3) and (4) where � = �0;

(ii) The monetary exchange constraints

� c+ �V1(�0) > �V0(�
0) (5)

u+ �V0(�
0) > �V1(�

0) (6)
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Hereafter, we will refer to steady state symmetric equilibria simply as

"equilibria". In these equilibria, � = �0, and the value functions are:

V1 (�) =
 (�) (u (1� � (1� � (�)))� �� (�) c)
(1� �) (1� �(1�  (�)� � (�))) (7)

and

V0 (�) =
� (�) (� (�)u� c (1� � (1�  (�))))
(1� �) (1� �(1�  (�)� � (�))) (8)

The di¤erence between V1 and V0 is given by

� = V1 (�)� V0 (�) =
u (�) + c� (�)

1� �(1�  (�)� � (�)) : (9)

De�ne the net gains from trading goods for money and money for goods as,

respectively:

�0 = �(V1 � V0)� c (10)

�1 = u� �(V1 � V0)

Substituting in the steady state values for V0 and V1, or for �, yields

�0 � 0() V0 � 0 (11)

�1 � 0() V1 � 0:

The equilibrium conditions are

�j

8><>:
= 1

2 (0; 1)
= 0

if �j

8><>:
> 0

= 0

< 0:

(12)

Notice that, from (7), V1 > 0 for all parameter values. From (11), this

implies that �1 > 0, and from (12) this implies that �1 = 1. Therefore, to

determine where monetary equilibria exist, we need only focus on �0.

Proposition 1 Let '(�; �) � � (�)
1��(1� (�)) and  (�) = (

1�e��
� ), then

a. �0 = 0 exists as a non-monetary equilibrium everywhere in the para-

meter space.

b. �0 = 1 exists as a monetary equilibrium when c 6 '(�; �)u:

c. �0 = �̂ = (1��)c
� (�)(u�c) 2 (0; 1) exists as a monetary equilibrium when

c 6 '(�; �)u:
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d. No monetary equilibria exist when c > '(�; �)u:

Proof. Notice that �0 has the same sign as �0 � �̂ where �̂ is de�ned by

u

c
=

(1� �)
� (�̂; �)

+ 1

or

�̂ =
(1� �)c

� (�) (u� c) :

Then �0 = 0 is always an equilibrium since �̂ > 0. Which implies

�0 � �̂ < 0 and hence, �0 < 0. The equilibrium condition is satis�ed and

there is an equilibrium where no one accepts �at money.

Next, notice that �̂ < 1 if

(1� �)c
� (�) (u� c) < 1 or c <

� (�)u

1� (� �  (�)) :

This means that �0 = 1 > �̂ is an equilibrium. There exists a monetary

equilibrium if the cost of producing a unit is small enough relative to other

parameters. (This is standard in search models of money, since agents must

incur a cost to obtain money, that cost must not be too high.) Since in

any well de�ned game there is always an odd number of equilibria, there

exists a mixed strategy equilibrium where �0 = �̂. If other agents accept

money with probability �̂, then one agent is indi¤erent between accepting

or rejecting money and randomizing is an equilibrium.

In simple �xed-price search models of �at money, such as this, it is stan-

dard to �nd parameter regions for which there is no monetary equilibrium.

Consider the equilibrium with �0 = 1. The associated trading constraint

�0 � 0 is
'(�; �) � � (�)

(1� �(1�  (�)) �
c

u
:

The LHS is strictly decreasing in �, and strictly increasing in �, which leads

to the following corollary.

Corollary 1 For any given u and c, and assume � = 1, the unique equilib-
rium is non monetary when

a. for all � and for all � > �� where �� < 1 ( �M < 1) is given by u
c =

(1��)
� (��)

+ 1;
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b. for all � and for all � < � where � is given by u
c =

(1��)
� (�) + 1.

Intuitively, too much money chasing too few goods and impatience elim-

inate the monetary equilibrium.

2.3 Monetary Policy

Consider a social planner who can choose M to maximize surplus, but must

respect all other constraints imposed by the decentralized economy. This

is essentially a static problem because the quantity of buyers (holders of

money) is independent of any past decisions. Suppose that a monetary

equilibrium exists whenever feasible. In this case, the objective of a central

authority (social planner) who controls M is to maximize surplus:

max
M

Y = X(M) (u� c) (13)

such that

� (�)

1� �(1�  (�) �
c

u
(14)

where the number of transactions each period is given by

X(M) = (1�M)
�
1� e�(M=(1�M))

�
(15)

and (u�c) is a constant. Maximizing surplus is equivalent to maximizing the
number of matches (that is, X(M) in (15)), which is achieved if the quantity

of money satis�es: M�=(1�M�) = 1:146, or M� = 0:533. In principle, the

money acceptance constraint may a¤ect the decision on how much money

to allocate to this economy. In particular, from the Corollary above, there

exists an �M < 1 beyond which there is only a non-monetary equilibrium.

The question then becomes whether or not M� < �M . From the Corollary,

there is also a �, below which there is only a non-monetary equilibrium.

To assess the signi�cance of these constraints on the determination of opti-

mal stock of money, Figure 1 below illustrates both the number of matches

and the LHS of (14) for di¤erent values of M and �: In this picture, the

thick black line at the bottom is the number of matches as a function of M ,

which peaks when M� = 0:533. The middle (grey) line is the value of the

LHS of (14) if � is small (� = :9), corresponding to very lengthy (annual)
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Figure 1: Matching function and '(�; �).

transactions. The top (light grey) line is the value of the LHS of (14) if � is

moderately large (� = :99), corresponding to (roughly) weekly transactions.

Clearly, at the value ofM� = 0:533, the LHS of (14) is above 0.75 for � = :9

and very close to 1.0 for � = :99: Thus, the cost/utility ratio c=u would

have to be very high in order for the constraint to be binding. Therefore, in

this model of monetary exchange, with indivisible goods and money, under

reasonable parameter values, the monetary acceptance constraint does not

in�uence the optimal choice of monetary policy, and we can reasonably pre-

sume that optimal monetary balances are those that maximize the number

of transactions.

2.3.1 A Comparison with Kiyotaki and Wright (1993)

In Kiyotaki and Wright (1993), agents face a parametric Poisson arrival rate

� so, in a monetary equilibrium, the number of transactions is given by

eX(M) = � (1�M)

and the surplus is therefore

Y = � (1�M) (u� c)

which is strictly decreasing in M . Kiyotaki and Wright therefore focus

attention, instead, on maximizing a social welfare function
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W =MV1 + (1�M)V0

which has a non-zero optimal M:

3 Divisible Goods and Indivisible Money

We now relax the assumption of indivisible goods, along the lines of Shi

(1995) and Trejos and Wright (1995), and consider two alternative pricing

mechanisms. Under the �rst pricing method, producers announce the terms

of trade prior to matching. In this setting, prices are determined ex ante

through price posting. Under the second pricing method, the terms of trade

are determined by local market conditions, which are revealed only after

matching. In this setting, prices are determined ex post through a bidding

game (or auction). As before, we assume that money holders are always

buyers and thus there is never a chance of direct trade.

Goods are now perfectly divisible. Let u(q) be the utility of consuming q

units of one�s consumption good and c(q) the disutility of producing q units

of one�s production good. Following Trejos and Wright (1995), we assume

u(0) = c(0) = 0; u0(0) > c0(0) = 0; u0(q) > 0; c0(q) > 0; u00(q) � 0; and

c00(q) � 0; for q > 0; with at least one of the weak inequalities strict. For

future reference, we de�ne q� by u0(q�) = c0(q�). Also, there is a bq > 0 such
that u(bq) = c(bq). It is important to understand, though, what is meant
by quantity in this setting. In Trejos and Wright (1995), q is interpreted

as either the quality of a service or the quantity of a perishable good. In

this model, the service interpretation is valid, but the goods interpretation

requires another assumption: due to the possibility of multilateral matching,

we need to restrict sellers to serve only one buyer at a time.

3.1 Ex ante pricing (price posting)

In this subsection, we consider a model that is similar to the (non-monetary)

price posting model presented in Burdett, Shi and Wright (2001). The main

di¤erence is that, in that model, sellers have one indivisible unit of a good

to sell, which can be priced according to a perfectly divisible numeraire.

Here, instead, sellers have a perfectly divisible good that they can produce

and sell, in exchange for a unit of the indivisible �at money. Each seller

announces, in advance of matching, the quantity level, q; at which they will
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produce, implying a nominal price p = 1=q. In both cases, sellers compete

in prices; however, the indivisibility is now on the other side of the market,

and sellers are attempting to acquire �at money In e¤ect then, here, sellers

bid for money.5

The equilibrium quantity (price) announcement is solved by a simple

game for which we �nd a Nash equilibrium. We start by assuming that

all sellers but one announce a quantity level q, but one seller considers

announcing a level eq 6= q: Buyers observe the announcements and select a

trading partner from among the deviating and non-deviating sellers using a

mixed strategy. The Nash equilibrium is a value q from which no unilateral

deviation is pro�table and buyers select among the sellers using the same

mixed strategy.

To be precise, we provide the following de�nition.

De�nition 2 An equilibrium quantity announcement is a qe satisfying

qe = argmax
~q
~V0 (~q; q)

where ~q is a deviation for a seller, taking as given all other sellers�strategies

q, and ~V0 is the value associated with the deviation. In any deviation, a seller

correctly anticipates that buyers�mixed strategies solve

~V1 (~q; q) = V1 (~q; q) :

where ~V1 is the value for a buyer from selecting a deviating seller.

Therefore, in equilibrium, qe = ~q = q:

3.1.1 The non-deviant sellers

The present values to non-deviant sellers, and to buyers selecting non-

deviant sellers are:

V0 (~q; q) = �
�
�V1

�
q0e
�
)� c(q)

�
+ (1� �)�V0

�
q0e
�

(16)

5 It is worth noting that this pricing environment, in common with Shi (1995) and

Trejos and Wright (1995), requires a lot of commitment, and the following results lean

heavily on this assumption. Alternatively, one could consider a setting in which sellers

could physically produce and announce truthfully their production ex ante in order to

attract buyers. The di¤erence in that setting is that the production cost is sunk in the

sense of being unavoidable in the case of no trade. It turns out that there is no monetary

equilibrium under this assumption. The explanation is that the hold up problem is so

severe that sellers will not produce at all or the equilibrium quantity is zero. We conjecture

that this is also the case in Shi (1995) and Trejos and Wright (1995).
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and

V1(~q; q) =  
�
u(q) + �V0

�
q0e
�
)
�
+ (1�  )�V1

�
q0e
�

(17)

respectively, where q0e is the equilibrium quantity in the next period.

The probabilities in the above value functions are a¤ected by buyers�

mixed strategies, captured by the buyer/seller ratio �, which is a function

of ~q and q: To save on notation we write � � �(~q; q). The probabilities of

trade for sellers and buyers, respectively, are given by:

� = 1� e�� (18)

and

 =
1� e��

�
: (19)

Here, also, to keep notation to a minimum, we restrict attention to monetary

equilibria where � = 1: The expressions above can characterize both a non-

monetary and a monetary equilibrium. In particular, if q = 0, then buyers

receive nothing in exchange for money and if q > 0, sellers are trading goods

for money.

3.1.2 The deviant seller

The value function for a buyer selecting the deviant seller is

~V1(~q; q) = ~ 
�
u(~q) + �V0

�
q0e
��
+ (1� ~ )�V1

�
q0e
�

(20)

where ~ = 1�e�~�
~�

is the buyer�s probability of trade and ~� = �(~q; q) is the

buyer/seller ratio summarizing the buyer�s mixed strategies over the devi-

ating seller and non-deviating sellers. Buyers mixed strategies are chosen

such that
~V1(~q; q) = V1(~q; q) (21)

where

V1(~q; q) =  
�
u(~q) + �V0

�
q0e
��
+ (1�  )�V1

�
q0e
�
: (22)

The deviant seller�s value function is

~V0 (~q; q) = ~�
�
�V1

�
q0e
�
)� c(~q)

�
+ (1� ~�)�V0

�
q0
�

where ~� = 1� e�~� is the probability of trade.
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The best deviation solves:

max
~q2R+

~V0 (~q; q) (23)

s.t.

(i) ~V1(~q; q) = V1(~q; q)

(ii)� c(~q) + �V1(q0e) > �V0(q
0
e)

(iii) u(~q) + �V0(q
0
e) > �V1(q

0
e)

Constraint (i) represents the fact that, in a deviation, a seller anticipate

buyers�behavior correctly in their mixed strategies. Using (20) and (21),

this can be re-written as:

(i)0 e = [u(q)� ��(q0e)]
[u(eq)� ��(q0e)] (24)

where �(q0e) = V1(q
0
e)� V0(q0e).

Constraints (ii) and (iii) are the exchange constraints. These two con-

straints simplify to:

(ii)0 eqmax 6 c�1
�
��

�
q0e
��

(25)

(iii)0 eqmin > u�1
�
��

�
q0e
��

(26)

The deviant seller�s problem then is reduced to:

max
~q2[eqmin;eqmax] ~V0 (~q; q) (27)

s.t. e = [u(q)� ��(q0e)]
[u(eq)� ��(q0e)] 

Notice that the constraint summarizes buyers� reaction functions with

respect to the deviating and non-deviating sellers� choices, and hence, is

always binding.

In a symmetric equilibrium ~q = q = qe, ~� = �; ~ =  ; and ~� = �:6 In

steady state qe = q0e. To simplify notation, for the remainder of this section,

we write the equilibrium qe as q only. (The subscript was introduced only

to di¤erentiate equilibrium from quantities chosen by non-deviant sellers.)

6The symmetric equilibrium is well-known to be unique in this type of environment.

See, for example, Burdett, Shi, and Wright (2001).

14



Proposition 2 In the symmetric steady-state equilibrium, the quantity an-
nouncement by sellers is characterized by:7

c0(q)

u0(q)
=

(� � 1)
(1�  � �)

[��(q)� c(q)]
[u(q)� ��(q)] : (28)

Proof. See Appendix.
The steady state symmetric equilibrium quantity implies ~V0(~q; q) = V0(~q; q) =

V0(q) and ~V1(~q; q) = V1(~q; q) = V1(q). Using this in (16) and (17), the steady

state values become

V0(q) =
� (� u(q)� (1� �(1�  )) c(q))
(1� �)(1� �(1�  � �)) (29)

and

V1(q) =
 (��u(q)� (1� �(1� �)) c(q))
(1� �)(1� �(1�  � �)) : (30)

It follows immediately that, as long as q > 0,

�(q) = V1(q)� V0(q) =
 u(q) + �c(q)

(1� �(1�  � �)) > 0 (31)

for all parameter values of � and �. The link between the trading constraints

(or net gains from trade) and the values at the steady state are established

as

�0(q) = �(�(q))� c(q) � 0() V0(q) � 0 (32)

�1(q) = u(q)� �(�(q)) � 0() V1(q) � 0:

As in the previous section, but now with production, V1(q) � 0 for all

parameter values. The buyers always want to participate in this market, a

consequence of the �at money assumption. Therefore we need only focus

on the sellers�value function to determine the condition for existence of a

steady state monetary equilibrium (i.e. when q > 0).

De�nition 3 A symmetric steady state equilibrium is a triple (q; V0; V1)

satisfying the following conditions:

7Astute readers may notice that equation (28) shares a similarity with the equilibrium

condition in standard search models of money using pairwise matching and bargaining

(e.g., Trejos and Wright (1995)).
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(i) ~q = q is the symmetric Nash equilibrium which solves the seller�s prob-

lem (27) of the ex ante game characterized by equation (28) taking

V0(q) and V1(q) as given;

(ii) the value functions V0 and V1 satisfy (29) and (30), taking q as given;

(iii) the sellers exchange constraint evaluated at q is satis�ed:

�0(q) � 0 (33)

From (25) and (32) any steady state equilibrium value of q 2 [0; qmax] is
both a necessary and su¢ cient condition for V0 (q) � 0, for given �; �:

3.1.3 Equilibrium

The existence and equilibrium properties of the model are now stated and

derived. As in the previous section, the steady state equilibrium is referred

to simply as an equilibrium.

Proposition 3 For any � 2 (0; 1) and M 2 (0; 1), in the steady state, there
exists a non-monetary equilibrium and a unique monetary equilibrium with

q 2 (0; q̂).8

Proof. First, the non-monetary equilibrium q = V0 = V1 = 0 is easily

established since it satis�es all the conditions from the de�nition of an equi-

librium. To show existence of the monetary equilibrium, write the following

transformation function representing the �rst derivative of the seller�s ob-

jective function evaluated at the steady state symmetric equilibrium q :

T (q) = g(�)[��(q)� c(q)]u0(q)� [u(q)� ��(q)]c0(q)

where�(q) is the steady state value from equation (31) and g(�) =
�

1��
 +��1

�
.

It implies that T (q) = 0 represents the �rst-order condition and, in the

steady state, the equation (28). To show existence, observe that T (0) = 0,

and T (q), is continuous since u(�) and c(�) are continuous, and recall that
8The assumption that c0(0) = 0 (which is standard in these models) is important here.

If, instead, c0(0) > 0 then monetary equilibria exist only in a restricted region of the

parameter space � as in the previous section. We consider this case in Proposition 10,

given in the appendix.
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only q 2 [0; qmax], are equilibrium steady state candidates. Now given the

assumption that c0(0) = 0,

T 0(0) = g(�)[��0(0)]u0(0) > 0

for all � 2 (0; 1) and � < 1. Next, when q = qmax then V0(qmax) = 0 ()
��(qmax)� c(qmax) = 0, and since V1(qmax) > 0, we �nd

T (qmax) = �[u(qmax)� ��]c0(qmax) < 0,

which shows that the equilibrium is such that q < qmax < q̂. By continuity

of T (q) there exist a q 2 (0; qmax) such that T (q) = 0.
Uniqueness is shown by setting T (q) = 0 and obtaining the �rst-order

condition
c0(q)

u0(q)
= g(�)

[��(q)� c(q)]
[u(q)� ��(q)] : (34)

The LHS is weakly increasing (non-decreasing) in q and the RHS is strictly

decreasing in q for any � and �. It is easily shown using L�Hopital�s rule

that evaluated at q = 0, the LHSjq=0 < RHSjq=0 is equivalent to T 0(0) > 0.
Therefore, there exists a unique value of q for which the �rst-order condition

is satis�ed, and hence, a unique monetary equilibrium.

An example of this equilibrium with u(q) = q, c(q) = q2 and � = 1

with � = :99 is illustrated in Figure 2, where the utility function and the

cost function form the lens (equal at both q = 0 and q = 1), V0 and V1
are the strictly concave functions, with V1 slightly higher than V0, and the

function T (q) is the dotted line. The equilibrium occurs where this dotted

line intersects the horizontal axis from above.
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Figure 2: The Ex Ante Pricing Equilibrium

Using the Implicit Function Theorem with (34) we write the equilibrium

as q(�; �) and derive some properties of the monetary equilibrium.

Lemma 1 For any given � 2 (0; 1), the equilibrium q 2 (0; qmax) is decreas-
ing in � (hence M) for all � 2 (0;1), with lim�!0 qmax = q̂ and q(0) = 0.

For any given �, the equilibrium q is strictly increasing in �.

Proof. (See Appendix)

The above results suggest that there exist parameter values for which the

equilibrium can be e¢ cient at the intensive margin. The following proposi-

tion establishes that.

Proposition 4 For any given �, there exists a �� for which the monetary
equilibrium is e¢ cient: q(��; �) = q� where u0(q�) = c0(q�). Otherwise the

monetary equilibrium is ine¢ cient as follows: if � ? �� then q 7 q�.

Proof. First we must show that q� < qmax. We know that

V0(qmax) = 0, D0 = 0

where D0 = [� u(q)� (1� � (1�  )) c(q)]. At q�, the �rst-order condition
is 1 = g(�)D0D1 or D0 = D1=g(�) > 0. By concavity of V0, it follows that

V0(q
�) > 0, and hence, q� < qmax. The remainder of the proof follows from

Lemma 1.

3.2 Ex post pricing (auctions)

In the previous subsection the terms of trade were determined ex ante: prior

to the matching allocation. As noted, this pricing mechanism assumes com-

mitment on the part of the sellers. Although one could �nd ways to ratio-

nalize this commitment, it is interesting to investigate alternatives where

the terms of trade are determined ex post. Since we allow for the possibility

of multilateral matches to form, the natural ex post mechanism to consider

is auctions. In this environment, and throughout this section of the paper,
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it is common knowledge that each buyer has only one unit of �at money.

Bidding, here, therefore takes the following structure. Because the margin of

adjustment is on the sellers�side (the quantity choice of the divisible good)

a bid from a buyer is proposition of a quantity required in exchange for his

unit of �at money. It follows that, within a multilateral match, where one

seller is matched with several buyers, competition between the buyers re-

duces the minimal quantity of output acceptable for the unit of money. (In

e¤ect, this is a procurement auction, where the unit of money corresponds

to the �xed budget of the buyer, and the quantity level is analogous to the

cost of input.) In all other respects, the model remains the same.

The matching process determines the number, n; of buyers matched

with a particular seller. As is usual with auction mechanisms, the outcome

depends on the number of buyers bidding. Let q be the vector of possible

outcomes from the auction in any period. Due to the common knowledge

assumption, the bidding outcome is reduced to two possible cases: when

n = 1 (a pairwise match) and when n > 1 (a multilateral match). Let the

outcome of the auction be qp when n = 1 and qm when n > 1. The value

functions for sellers and buyers, respectively are:

V0(q) = �p[�c(qp) + �V1(q0)]
+�m[�c(qm) + �V1(q0)] + (1� �m � �p)�V0(q0) (35)

where, for a seller, �p = �e��is the probability of a pairwise match, �m =

1� �e��� e�� is the probability of a multilateral match, 1� �m� �p is the
probability of no match, and q = (qp; qm) is the vector of possible outcomes.

Similarly, the value function for a buyer is given by:

V1(q) =  p[u(qp)+�V0(q
0)]+ m[u(qm)+�V0(q

0)]+(1� m� p)�V1(q0) (36)

where, for a buyer,  p = e�� is the probability of a pairwise match for

a buyer,  m = 1�e��
� is the joint probability of a multilateral match and

winning the bidding game, and 1� m� p is the probability of not winning
the bidding game.

We are now ready to consider the determination of quantities in equilib-

rium. From the structure of the auction, it should be clear that the quantity
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resulting from a pairwise match will be higher than from a multilateral match

(which we demonstrate in Lemma 2 below). In any pairwise matching event,

the buyer is bidding alone and thus proposes a (high) quantity level solving

�q = argmax
q

�
u(q) + �V0(q

0)
	

(37)

s.t.

� c(q) + �V1(q0) > �V0(q
0) (38)

where the constraint is required for the seller to participate in trade.9 This

has the obvious solution:

�q = c�1(��0) (39)

where �0 = V1(q
0)� V0(q0) as before. Thus, qp = �q:

In a multilateral matching event, the seller has multiple buyers and thus

the buyers propose a quantity level that cannot be beat by other buyers.

This is a simple Bertrand pricing game - the outcome of a simple auction.

Therefore, the equilibrium bid is one where each buyer is indi¤erent between

trading and not trading (i.e., remaining a buyer in the next period). Since

all bids are the same in this scenario in equilibrium, whether or not a par-

ticular buyer wins the auction, he receives the same expected payo¤. The

equilibrium quantity can therefore be found from the following problem:

q = argmax
q

�
�c(q) + �V1(q0)

	
(40)

s.t.

u(q) + �V0(q
0) > �V1(q

0) (41)

This has the solution:

q = u�1(��0): (42)

9 In a pairwise match such as this, one could think of alternative ways of determining

the price, (in particular: bargaining). Here, to be consistent with auctions, in the event

of pairwise matches, the buyer has the power to push the seller to her outside option with

the minimum acceptable quantity demanded or required. Interestingly, Halko, Kultti, and

Niinimaki (2004) show that this mechanism is evolutionary stable, while the hybrid mech-

anism with bargaining is not. In section 3.2.1, below, we also consider the introduction of

lotteries with pairwise matches.
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Thus, qm = q. The following lemma veri�es the existence of price dis-

persion in any candidate equilibrium and, as argued above, prices with mul-

tilateral matching are higher than with pairwise matching. 10

Lemma 2 For all �0 > 0, (q; �q) 2 (0; q̂)2 and q < �q; where q̂ is de�ned by

u(q̂) = c(q̂). Otherwise, �0 = 0 if and only if q = �q = 0 and �0 = �̂ > 0, if

and only if q = �q = q̂.

Proof. In appendix.
In the steady state, q = q0, and using(39) and (42) in (35) and (36), we

�nd the steady state values:

V0(q) =
�m
�
� pu(�q)�

�
1� �

�
1�  p

��
c(q)

�
(1� �)

�
1� �

�
1�  p � �m

�� (43)

and

V1(q) =
 p
�
(1� � (1� �m))u(�q)� ��mc(q)

�
(1� �)

�
1� �

�
1�  p � �m

�� : (44)

It follows immediately that as long as q > 0,

�(q) = V1(q)� V0(q) =
u(�q) p + c(q)�m
1� �(1�  p � �m)

> 0 (45)

and, using Lemma 2, it follows that V1(q) > 0 for all parameter values. Once

again, this implies that, for existence of a steady state equilibrium we need

only establish conditions under which V0(q) > 0:

De�nition 4 A steady state equilibrium is a tuple (q; �q; V0; V1) satisfying

the following conditions:

1. q and �q satisfy (39) and (42) respectively, taking V0 and V1 as given;

2. V0 and V1 satisfy (43) and (44).

The existence and uniqueness is stated in the following proposition.

10Notice that price dispersion occurs in this auction setting where the buyer has the bar-

gaining power in pairwise matches and the seller has the power with multilateral matches.

Hence, here, the bargaining power within a match is determined by the matching process.
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Proposition 5 For any � 2 (0; 1) and M 2 (0; 1), in the steady state, there
exists a non-monetary equilibrium and a unique monetary equilibrium with

0 < q < �q < q̂.11

Proof. First note that q and �q are maximized values such that respectively
a seller and a buyer is indi¤erent between trading or not. Therefore, we do

not have to worry about participation constraints. For any � 2 (0; 1) and
M 2 (0; 1) the existence of a non-monetary equilibrium is immediate since

q = �q = V0 = V1 = 0 satis�es all the equilibrium conditions. To show the

existence of a monetary equilibrium with 0 < q < �q, insert the steady state

value functions into (39) and (42) to get

c(�q) = �
 pu(�q) + �mc(q)

1� �(1�  b � �m)
(46)

and

u(q) = c(�q): (47)

Therefore, quantities are linked by a strictly convex function q = u�1(c(�q)).

Using this into (46) gives

c(�q) = �
 pu(�q) + �mc(u

�1(c(�q)))

1� �(1�  p � �m)
� H(�q):

De�ne T (�q) = H(�q)� c(�q). Clearly T (�q) is continuous, T (0) = 0, and

T 0(0) = �
 pu

0(0)
1��(1� p��m)

> 0 for all parameter values satisfying the assump-

tions of the proposition. Observe that T (q̂) = �u(q̂)
�

(1��)
1��(1� p��m)

�
< 0

meaning that �q = q̂ cannot be an equilibrium. By continuity and the Weier-

strass Intermediate Value Theorem, there exist a �q > 0, such that T (�q) = 0

and q = u�1(c(�q)) > 0. This implies � > 0 and from Lemma 2 we have

q < �q. Therefore, 0 < q < �q < q̂.

To show uniqueness, observe that H(�q) is strictly increasing and a linear

combination of a concave and a convex function. This implies that there is

a unique in�exion point below which H(�q) is concave and above which H(�q)

is convex. Therefore, the function T (�q) has also a unique concave and a

unique convex portion. Since T (0) = 0, T 0(0) > 0 and T (q̂) < 0, it implies

11As in the ex ante pricing model, changing the assumptions to allow for c0(0) > 0

restricts the parameter space for which a monetary equilibrium exist. The proof is similar

to the one provided for the ex ante case given in Proposition 10 in the appendix.
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that there must be a unique value �q 2 (0; q̂) such that T (�q) = 0. Since

u(q) = c(�q) then q > 0 is also unique.

Figure 3 provides a numerical example with u(�q) = �q and c(�q) = �q2 with

di¤erent values of �. The horizontal axis shows values of �q:As in Figure 2,

the lens is formed by the utility and cost functions. The T (�q) function is

represented by the dotted line, and the equilibrium value of �q occurs where

this function cuts the horizontal axis from above.

10.750.50.250

1

0.75

0.5

0.25

0

q

u(q),c(q),T(q)

q

u(q),c(q),T(q)

Figure 3: The Ex Post Pricing Equilibrium:

Using the Implicit Function Theorem, we now derive key properties of

the monetary equilibrium.

Lemma 3 For any given � 2 (0; 1), the equilibrium values (q; �q) 2 (0; q̂)2

are decreasing in � (henceM) for all 0 < � <1, with lim�!0 q = lim�!0 �q =

q̂ and q(0) = �q(0) = 0. For any given �, the equilibrium values (q; �q) are

strictly increasing in �.

Proof. (See Appendix)

Proposition 6 The steady state equilibrium of the ex post pricing game is

ine¢ cient.
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Proof. From the assumptions on u(q) and c(q), we know that q� is unique.

From Lemma 2, we know that, in any monetary equilibrium q < �q: It follows

immediately that we cannot have q = �q = q�:

It is worth noting that this proposition does not rule out the existence

of some e¢ cient matches (for example, if either q = q� or �q = q�) however,

in equilibrium, we can never have all matches e¢ cient. The ine¢ ciency may

entail either underproduction in all matches (with high � or low �), over-

production in all matches (with low � or high �), or underproduction in

some and overproduction in others. Interestingly, even if the average pro-

duction level is equal to the e¢ cient level (q�), the price dispersion inherent

in auctions guarantees that the equilibrium will always be ine¢ cient

It is also worth noting that this ine¢ ciency is not due to the usual holdup

problem common in search models with pairwise matching and bargaining.

In particular, the equilibrium in this model can be rationalized as a directed

search equilibrium. In models of this type, allowing sellers to announce re-

serve prices ex ante, and buyers directing their search using mixed strategies,

the equilibrium reserve price equals the sellers�outside option and buyers

perfectly randomize as they do here (see Julien, Kennes, and King (2000)).

3.2.1 Using a lottery in pairwise matching events

In light of the ine¢ ciency result of the above ex post pricing mechanism,

we now consider the following alternative. Here, in multilateral matching

events, the mechanism is precisely the same as above; however, in pairwise

matching events, we allow the buyer to propose a lottery. In particular, in

pairwise matches, the buyer proposes a contract asking the seller to produce

a quantity �q and a lottery in which the seller receives the buyer�s money

with probability � 2 [0; 1].12 In this case, the buyer solves

max
�q;�

fu(�q) + ��V0 + (1� �)�V1g
s:t:

�c(�q) + ��V1 + (1� �)�V0 � �V0

� � 1:

12See Berensten, Molico and Wright (2002) for the implications of using lottery on

money in a model with pairwise matching and bargaining.
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The introduction of this mechanism produces the following results.

Proposition 7 For � < 1, there exists a �� such that:

(i) for all � > ��, there exists a non-monetary and a unique monetary equi-

librium with � = 1. The monetary equilibrium has the characteristic

0 < q < �q < q̂.

(ii) for all � � � � ��, there exists a non-monetary equilibrium and two

monetary equilibria with � 2 (0; 1). One monetary equilibrium has

relatively high � and q0 < �q = q�. The other equilibrium has relatively

low � and q1 > �q = q�.

(iii) for all � < �, there exists a non-monetary equilibrium and a unique

monetary equilibrium where 0 = q < �q = q�.

Proof. See appendix.
The �rst part of the proposition says that if money supply is high enough,

o¤ering a lottery is not an equilibrium choice. The second part shows

that for a middle range of the money supply, there are multiple equilib-

ria, and the quantity exchanged in pairwise matches is e¢ cient. The last

part demonstrates that for low enough money supply, exchanges occur only

under pairwise matches with a lottery on money. Moreover, these exchanges

are e¢ cient.

This mechanism shares some features with the ex ante pricing implica-

tions as exempli�ed in the following corollary.

Corollary 2 As � ! 1, there exist a �� such that the unique monetary

equilibrium converges to q = q�.

This corollary follows again from the lemmas in the proof of Proposition

7 in the appendix where one can observe that as � ! 1, then F 0(q) ! 0.

This result is similar to the ex ante price posting outcome as stated in

Proposition 4. Namely, an e¢ cient monetary equilibrium is possible with

no price dispersion.
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3.3 Optimal monetary policy

With divisible and endogenous goods production, any discussion of op-

timal policy must consider not only the number of matches (X(M) =

(1�M)
�
1� e�(M=(1�M))

�
as in Section 2) but also the surplus from each

match, as measured by u(q(M)) � c(q(M)). Within any period, expected

surplus is the product of the two.

We consider two di¤erent cases. In the �rst, the policymaker can control

both M and q directly and independently. In the second, the policymaker

can control only M , and must accept the equilibrium response of q(M):

3.3.1 Choosing M and q Independently

The policymaker�s problem is:

max
fM;qg

Y = (1�M)
�
1� e�(M=(1�M))

�
[u(q)� c(q)] :

The solution to this problem is given by:

M� = 0:533

u0(q�) = c0(q�)

These two equations characterize optimality along the extensive margin

and the intensive margin respectively. Clearly, optimality along the exten-

sive margin is precisely the same as in Section 2 �here, the policymaker

seeks to maximize the number of matches, as before. Similarly, optimality

along the intensive margin is precisely the e¢ ciency condition considered

above.

3.3.2 Choosing M when q = q(M)

The policymaker�s problem is:

max
fMg

Y = (1�M)
�
1� e�(M=(1�M))

�
[u(q(M))� c(q(M))]
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Assuming concavity of the objective function, the �rst-order condition

is:

X 0(M) (u(q(M))� c(q(M))) +X(M)
�
u0(q(M))� c0(q(M))

�
q0(M) = 0

where the �rst term is the impact on a change in the stock of money on

the extensive margin and the second the impact on the intensive margin.

Optimality along the extensive margin is given X 0(M) = 0 and the e¢ cient

intensive margin is given by u0(q(M)) = c0(q(M)). In general, there is no

reason to presume that optimality along these two margins will coincide.

The function q(M), of course, depends on the speci�c pricing mechanism

used. With ex ante price posting, this is determined by (34). In principle,

then, with price posting, surplus maximization is possible through judicious

monetary policy. With ex post auctions, as pointed out above, since opti-

mality along the intensive margin is possible only in the presence of lotteries,

surplus maximization is possible only in that case.13

4 Divisible Goods and Money

We now relax the assumption that money is indivisible. We assume, instead,

that any agent can hold any amount m 2 R+. We restrict attention to the
ex ante price posting mechanism, since this is simple to work with and (as

shown above) admits equilibria that maximize expected surplus. In all other

respects, the model and general notation remain the same as in Section

3.1. In Section 3.1, as in Trejos and Wright (1995), agents are forced to

alternate between acting as buyers and sellers after each trade because of

the indivisibility of money. Once a buyer has made a trade, by disposing of

his unit of money, he has no choice but to become a seller next period. With

divisible money, it is not clear that a buyer who traded would act a seller

next period. For example, if the price paid is only half his money holdings,

he could, in principle, a¤ord to act as a buyer for two consecutive periods.

13As mentioned above, Trejos and Wright (1995) do not consider the problem of surplus

maximization in their model. Rather, they consider the problem of welfare maximization

with the equilibrium values of buyers and sellers in the social welfare function, weighted

by the proportions of each, with parametric matching rates una¤ected by the choice of

M .
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Moreover, an agent may choose to accumulate money holdings by acting as

a seller over consecutive periods. In this section, we allow agents to choose

whether to act as sellers (i = 0) or buyers (i = 1) at the beginning of each

period. We show that, in e¤ect, the Trejos and Wright (1995) setting with

alternating identities is a symmetric stationary Markov strategy equilibrium

with a stationary degenerate distribution of money holdings.

We assume that there is a set of sellers S � [0; 1] with mass �0 and a

set of buyers B � [0; 1] with mass �1, such that �0 + �1 = 1. We consider

the distribution (mi; �i); i = 0; 1, where mi is the money holding of agent

of type i, and �i is the fraction (measure) of agent i holding money mi, to

be a state variable. To keep the analysis simple, we consider the following

initial distribution of money holdings:

(mi; �i) =

(
(m1; �1) = (m;�)

(m0; �0) = (0; 1� �)

That is, a fraction � of agents holds the same number of units of money

m > 0; and the remaining fraction 1�� holds zero units. (In other words, the
initial distribution of money holdings is degenerate.) We will show that this

initial distribution can be a steady state Markov equilibrium distribution. To

proceed, we need to keep the notation general to account for the possibility

for agents of type i to change their money holding.

In a way analogous to that used in Section 3.1, each seller announces,

in advance of matching, a quantity level q(m0;m1) and a required money

transfer d(m0;m1), which potentially can depend on money holdings by

sellers and buyers. As a consequence, the implied price is given by p = d=q:

We will refer to the pair (m0;m1) � [q(m0;m1); d(m0;m1)] as a contract,

but to simplify notation we write  � [q; d].
The equilibrium  announcement is solved by a simple game for which

we �nd a Nash equilibrium. We start by assuming that all sellers but one

announce a contract , and one seller considers announcing a level e 6=
. Agents who decide to act as buyers observe the announcements and

select a trading partner from among the deviating and non-deviating sellers

using a mixed strategy. The added di¢ culty here is the fact that a part

of the deviating contract, namely the money transfer ~d, a¤ects the value in

subsequent periods. We therefore focus on Markov strategies: in deviating,

a seller only cares about the impact of his deviation on the value next period.

The Markov equilibrium is a value  from which no unilateral deviation is
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pro�table and buyers select among the sellers using the same mixed strategy.

The value functions for sellers and buyers are now written as V0(m0; )

and V1(m1; ), where mi is the state variable. We simplify the notation by

omitting the dependence of the values on distribution of money holdings

which is also a state variable.

To be precise, we provide the following de�nition.

De�nition 5 A Markov equilibrium contract announcement is a e satis-

fying

e = argmax
~
~V0 (m0; ~; )

where ~ is a deviation for a seller, taking as given all other sellers�strate-

gies , and the agent�s choice of type next period as given. ~V0 is the value

associated with the deviation. In any deviation, a seller correctly anticipates

that buyers�mixed strategies solve

~V1 (m1; ~; ) = V1 (m1; ~; ) :

where ~V1 is the value for a buyer from selecting a deviating seller.

Therefore, in equilibrium, e = ~ = :

4.1 The non-deviant sellers

The present values for non-deviant sellers, and to buyers selecting non-

deviant sellers are, respectively:

V0(m0; ~; ) = �
�
�c(q) + �V (m0 + d; 

0
e)
�
+ (1� �)�V0(m0; 

0
e) (48)

and

V1(m1; ~; ) =  
�
u(q) + �V (m1 � d; 0e)

�
+ (1�  )�V1(m1; 

0
e) (49)

where 0e is the equilibrium contract in the next period, and V (�; 0e) is the
value for an agent next period (which will depend on the choice of being a

buyer or a seller).14

The probabilities in the above value functions are the same as in Section

3.1. However, here, the buyers to sellers ratio is � = �
1�� . Also, again, we

14Embedded in equations (48) and (49) is the assumption that agents do not change

their type until they perform transactions, as in Trejos and Wright (1995).
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restrict attention to monetary equilibria where � = 1. The expressions above

can characterize both non-monetary and monetary equilibria. In particular,

if q = 0, then buyers receive nothing in exchange for money and if q > 0,

sellers are trading goods for money.

4.2 The deviant seller

The value function for a buyer selecting the deviant seller is

~V1(m1; ~; ) = ~ 
h
u(~q) + �V

�
m1 � ~d; 0e

�i
+ (1� ~ )�V1

�
m1; 

0
e

�
(50)

where the probabilities are the same as in Section 3.1. Buyers mixed strate-

gies are chosen such that

~V1(m1; ~; ) = V1(m1; ~; ) (51)

where

V1(m1; ~; ) =  
�
u(q) + �V

�
m1 � d; 0e

��
+ (1�  )�V1

�
m1; 

0
e

�
: (52)

The deviant seller�s value function is

~V0 (m0; ~; ) = ~�
�
�V

�
m0 + ~d; 0e

�
� c(~q)

�
+ (1� ~�)�V0

�
m0; 

0
e

�
where once more, the probabilities are the same as in Section 3.1. Since

agents are allowed to choose whether to act as a buyer or a seller each

period, the value is de�ned as

V
�
m0
i; 

0
e

�
= max

�h2[0;1]

�
�hV0

�
m0
i; 

0
e

�
+ (1� �h)V1

�
m0
i; 

0
e

�	
(53)

where �h is the agent�s Markov strategy as a function of the history of play

last period summarized by h 2 f0; 1g, meaning that the agent was a seller,
h = 0, or a buyer, h = 1, and m0

i is the money holding next period which

depends on whether the agent was a seller or a buyer.

The best deviation solves:

max
~2R+

~V0 (m0; ~; ) (54)

s.t.
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(i) ~V1(m1; ~; ) = V1(m1; ~; )

(ii)� c(~q) + �V (m0 + ~d; 0e) > �V0(m0; 
0
e)

(iii) u(~q) + �V (m1 � ~d; 0e) > �V1(m1; 
0
e)

(iv) ~d 6 m1

Constraint (i) represents the fact that, in a deviation, buyers anticipate

sellers�behavior correctly in their mixed strategies. Using (50) and (51),

this can be re-written as:

(i)0 e = [u(q)� ��(m1;m1 � d; 0e)]h
u(eq)� ��(m1;m1 � ~d; 0e)

i (55)

The trading constraints (ii) and (iii) simplify to:

(ii)0 eqmax 6 c�1
�
��

�
m0;m0 + ~d; 0e

��
(56)

(iii)0 eqmin > u�1
�
��

�
m1;m1 � ~d; 0e

��
The deviant seller�s problem then is reduced to:

max
f~q2[eqmin;eqmax]; ~dg ~V0 (m0; ~; ) (57)

s.t

(i)00 e =
[u(q)� ��(m1;m1 � d; 0e)]h
u(eq)� ��(m1;m1 � ~d; 0e)

i (58)

(ii)00 ~d 6 m1 (59)

In a symmetric Markov equilibrium ~ =  = e, ~� = �; ~ =  ; and
~� = �. To simplify notation, for the remainder of this section, we write the

equilibrium e as  only.

Proposition 8 The symmetric Markov equilibrium contract announcement

 = (q; d) by sellers is characterized by:
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1.

c0(q)

u0(q)
=

(� � 1)
(1�  � �)

[�(V (m0 + d; 
0)� V0(m0; 

0))� c(q)]
[u(q)� �(V1(m1; 0)� V (m1 � d; 0))]

: (60)

2. d(m) = m1 = m

Proof. See Appendix.

In a symmetric equilibrium we have ~V0(m0; ~; ) = V0(m0; ~; ) = V0(m0; )

and ~V1(m1; ~; ) = V1(m1; ~; ) = V1(m1; ). Furthermore, from Proposi-

tion 8 and the initial distribution assumption, we have, in equilibrium:

m0 = 0

m1 = m

We are now ready to analyze the decision to act as sellers of buyers at the

beginning of a period given the symmetric equilibrium contract announce-

ments. Rewrite the value function for an agent who decided to act as a seller

using (48) and (49), and (53) at the symmetric equilibrium:

V0(0; ) = �

�
�c(q) + �

�
max
�02[0;1]

�
�0V0

�
m; 0

�
+ (1� �0)V1

�
m; 0

�	��
+ (1� �)�V0(0; 0) (61)

and for an agent who decided to act as a buyer:

V1(m; ) =  

�
u(q) + �

�
max
�12[0;1]

�
�1V0

�
0; 0

�
+ (1� �1)V1

�
0; 0

�	��
+ (1�  )�V1(m; 0) (62)

It is quite clear that deciding to be a buyer next period without money

is a dominated strategy, that is V1 (0; ) = 0, and �1 = 1. We are left with

V1(m; ) =  
�
u(q) + �V0

�
0; 0

�
] + (1�  )�V1(m; 0)

�
: (63)

Therefore, any agent who was initially a seller will become a buyer upon

a successful trade. The decision to be a buyer or a seller next period, given

that an agent is a seller this period is not as straightforward. If a seller

chooses to be a buyer next period, �0 = 0, he receives

V0(0; ) = �
�
�c(q) + �V1

�
m; 0

��
+ (1� �)�V0(0; 0): (64)
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However, if he chooses to be a seller next period, �0 = 1, he receives

V0(0; ) = �
�
�c(q) + �V0

�
m; 0

��
+ (1� �)�V0(0; 0): (65)

We focus on steady state Markov strategies, hence, �0 = �00 between any

two periods. Suppose every agent chooses �0 = 0, but one seller considers

a deviation ~�0 2 (0; 1]. Consider �rst ~�0 = 1. This implies the agent is a

seller forever, bears the cost of production in any successful trade, and never

gets to consume. Clearly, this is a dominated strategy. Since we only have

one pure strategy equilibrium, �0 = 0, and any well de�ned games such as

this one have an odd number of equilibria, there cannot be a mixed strategy

equilibrium �0 2 (0; 1).

In the steady state  = 0, and the value functions are similar to the

ones derived in Section 3.1, but where buyers hold m units of money. That

is,

V0(0; ) =
� (� u(q)� (1� �(1�  )) c(q))
(1� �)(1� �(1�  � �)) (66)

and

V1(m; ) =
 (��u(q)� (1� �(1� �)) c(q))
(1� �)(1� �(1�  � �)) : (67)

De�nition 6 A symmetric steady state Markov equilibrium is a tuple

(q; d; V0; V1; �h) satisfying the following conditions:

(i) ~q = q and ~d = d = m is the symmetric Markov equilibrium which

solves the seller�s problem (57) of the ex ante game characterized by

equation (60) taking V0(0; ) and V1(m; ), and �h as given;

(ii) the value functions V0 and V1 satisfy (66) and (67), taking  as given;

(iii) the sellers exchange constraint evaluated at q and d is satis�ed;

(iv) the strategies �h solves (53), taking q; d; V0 and V1 as given.

4.3 Equilibrium

The existence and equilibrium properties are now stated and derived. As

in previous sections, the steady state equilibrium is referred to simply as an

equilibrium.
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Proposition 9 For any � 2 (0; 1) and � 2 (0; 1), in the steady state, there
exists a non-monetary Markov equilibrium and a unique monetary Markov

equilibrium with q 2 (0; q̂) and d = m.

The proof of this proposition is essentially the same of Proposition 3

and is omitted. One interesting aspect of the monetary equilibrium is that,

given the number of money-holders, output is independent of the amount of

money they hold.

Corollary 3 In the monetary equilibrium, given a �xed proportion of money
holders holding equal amounts, output is independent of the quantity of

money.

Proof. This can be observed by substituting the steady state values into
(60) giving the �rst-order condition for q that is independent of m.

Therefore, when considering steady state equilibria, changing the amount

of money holding proportionately to �m, for any � 2 R+ would have no real
e¤ect, only a nominal one via an increase in equilibrium d; and hence, p.

Thus, in this model, money is neutral in this sense. Molico (2004) �nds sim-

ilar results when analyzing proportional transfers in the Trejos and Wright

(1995) environment using numerical computation and a non-degenerate dis-

tribution of money, where all agents were allocate initially a positive amount.

It is easy to see that results similar to Lemma 1 and Proposition 4 also

hold. Here, output is decreasing in �, the fraction of agents holding m units

of money as in Section 3.1 and increasing on �. Moreover, as in Proposition

4, there exists a ratio �� such that q(��) = q�, giving e¢ ciency on the

intensive margin.

However, there is no reason why this ratio should coincide with �� =

:533, the fraction of agents holding money which maximizes the amount of

trade, the extensive margin, that we found in previous sections. Therefore,

there is still potentially a trade o¤ between the intensive and the extensive

margin. For instance, one can compare the implications of di¤erent initial

allocations of money. Let (�l;mh)0 and (�h;ml)00 be two possible initial

allocations where �l < �h and ml < mh. In equilibrium we obtain ql > qh,

and hence, p0 = mh

ql
and p00 = ml

qh
. It might then be possible to choose the

allocations such that p0 = p00, but with ql > qh with the �rst allocation.
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Therefore, if the goal is to achieve e¢ ciency at the intensive margin by

increasing output, it could be done without or minimal nominal e¤ects by

giving more money to less agents initially. However, this could potentially

mean moving away from the e¢ cient extensive margin. The existence of

this kind of trade o¤ can be shown to hinge on the shape of the utility and

cost function, i.e. tastes and technology, using di¤erent functional forms.

For example, u(q) = q, and c(q) = q2, with � = :533, yields � = 1:14 and

q(�) = q�, where e¢ ciency is achieved on all margins. This is illustrated in

Figure 4 where, once again, the function T (q) is given by the dotted line,

and the equilibrium occurs where this cuts the horizontal axis from above.
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Figure 4: The Ex Ante Pricing Equilibrium with Divisible Money

Finally, we can discuss the potential implications of using a lump sum

transfer � to all agents. In this case the implications would depend on the

initial fraction of agents who did not hold money prior to the transfer. If

the fraction is small enough, the fraction of agents choosing to act as seller

would remain the same, with sellers o¤ering contracts in equilibrium with

d = m + �. The lump sum transfer would not a¤ect the extensive margin,

and only have a nominal e¤ect since output is independent of m. On the

other hand, if the fraction of agents not holding money prior to the transfer is

large initially, the transfer may a¤ect the decision to act as buyers, a¤ecting

the monetary equilibrium.

Overall, then, the e¤ects of monetary policy depend crucially on how

any increments (or reductions) in the money supply are distributed. If

the proportion of money holders is kept constant, then this policy will be
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neutral. However, in general, monetary policy that changes the number of

money holders (and, hence, buyers) can have real a¤ects.

5 Conclusions

The monetary exchange framework developed by Kiyotaki andWright (1993),

Trejos and Wright (1995) and others is �exible enough to be able to encom-

pass multilateral matching and directed search, but still maintain its central

message: the existence of money as a medium of exchange depends on key

parameters such as peoples�discount factors and the quantity of money it-

self. We have found, though, that by doing this we have changed some of

the key policy implications of these models. In particular, this framework

points to the in�uence of money on the buyer-seller ratio and, thereby, the

matching rate. This introduces an extra channel for monetary policy that

allows for non-zero money balances to maximize expected surplus. With

divisible money, yet another consideration appears: the precise e¤ects of

increasing the money supply depend on who the money is distributed to.

This contrasts with results in other models with divisible money (Shi (1997)

and Lagos and Wright (2005)) but is similar to the results found in Molico

(2004). Interestingly, we also �nd that the indivisible money assumption in

Trejos and Wright�s (1995) model may not be as important as it �rst ap-

peared �since an equivalent distribution exists as a steady state equilibrium

with divisible money.

We also found the unexpected conclusion that auctions are incompatible

with expected surplus maximization, unless they allow for lotteries in the

event of bilateral matches. The equivalence between auctions and posted

prices, with large markets, that appears with �xed production (for example,

in the labor market literature cited above) does not hold in this monetary

framework. This is due to the fact that quantity adjusts with price in

these monetary models, optimal quantities (along the intensive margin) are

unique, and auctions induce price dispersion in equilibrium. In most directed

search labor market models, the quantity is �xed, so the intensive margin is

not a concern.

Modelling divisible money with multilateral matching and directed search

leads to a very tractable stationary distribution of money holdings �allow-

ing for simple analytical solutions, without introducing the extra modelling
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structures used by Shi (1997) or Lagos and Wright (2005). In this paper,

we restricted attention to steady state equilibria, and found that increases

in the money supply would be neutral only under proportional transfers to

all agents. Thus, arguably, money is neutral in the long run if new money

holdings are distributed in this way. It remains to be seen, though, what

occurs in this model if new money holdings are, for example, randomly dis-

tributed across the entire population. We conjecture that this would lead

to real e¤ects along the transition path but only nominal e¤ects in the long

run.

6 Appendix A

Proof of Proposition 2. The �rst-order condition of the deviant seller

without considering the constraint from equation (27) is

~�q[��(q
0
e)� c(~q)] = ~�c0(~q) (68)

where ~�q is the derivative with respect to ~q and represents the impact of a

deviation on the probability of trade. This also embeds the buyers reaction

through their mixed strategies as summarized by ~�. In order to obtain an

expression for this derivative, di¤erentiate the probabilities of trade for a

seller and a buyer:
~�q =

~��
~�q

and
~ q =

~ �
~�q:

where ~��and ~ � refer to the derivative with respect to ~�, and ~�q re�ects the

impact ~q on ~�. These two derivatives allows a link between the impact of

a deviation on the buyers�probability of trade with the one for the deviant

seller as follows:

~�q =
~��
~ �

~ q: (69)

Now to obtain a meaningful expression for ~ q, di¤erentiate the constraint

in (27) to get

~ q = �
[u(q)� ��(q0e)]
[u(~q)� ��(q0e)]2

 u0(~q)
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and using the constraint itself it simpli�es to

~ q = �
~ 

[u(~q)� ��(q0e)]
u0(~q):

Notice that as one would expect ~ q < 0. Using this into (69) and into the

�rst-order condition (68) yields

�
~��
~ 

~ �

[��(q0e)� c(~q)]u0(~q)
[u(~q)� ��(q0e)]

= ~�c0(~q):

In a symmetric equilibrium, ~q = q = qe, which implies ~� = �, ~� = �, and
~ =  . Furthermore, in steady state qe = q0e and referring to qe as simply q

we �nd

�
�� 

 ��

[��(q)� c(q)]
[u(q)� ��(q)] =

c0(q)

u0(q)
:

It is easy to verify that � �� 

 ��
= (��1)

(1� ��) � 0.
Proof of Lemma 1. Using the Implicit Function Theorem write q(�; �) =

q as the equilibrium. Let D0 = [� u(q)�(1� � (1�  )) c(q)] > 0 and D1 =
[(1� � (1� �))u(q) � ��c(q)] > 0, which respectively holds if V0 > 0 and

V1 > 0. Using the value of � from (31) we can rewrite (34) as

c0(q)

u0(q)
= g(�)

[D0]

[D1]
:

Take � as given and totally di¤erentiate this equation to get�
c00u0 � c0u00

u02

�
dq = g�

[D0]

[D1]
d�+ g(�)

�
D0�D1 �D0D1�

(D1)2

�
d�

+g(�)

�
D0
0D1 �D0D0

1

(D1)2

�
dq:

Collecting terms

dq =

�
g�
[D0]
[D1]

+ g(�)
h
D0�D1�D0D1�

(D1)2

i�
��

c00u0�c0u00
u02

�
� g(�)

h
D0
0D1�D0D0

1
(D1)2

i�d�:
From the de�nitions of we �nd D0� = � �(u(q) � c(q)) < 0 and D1� =

���(u(q) � c(q)) > 0, and it is easy to show that g� < 0. Therefore, the

numerator of the above equation is always negative. Next, the �rst term in

the denominator is always positive since u00 � 0. It remains to show that

the term
h
D0
0D1�D0D0

1
(D1)2

i
< 0 for all q 2 (0; qmax). One can verify that this is
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the case for all � and � 2 (0; ��) if and only if u0c0 <
u
cwhich holds given the

properties of the functions u and c. Finally, notice that there is discontinuity

� = 0. Given the above demonstration, lim�!0 q(�; �) = qmax, but at � = 0,

no monetary equilibrium can exist and q(0) = 0.

To show the impact of � on q consider the following derivatives D0� =

 (u � c) > 0 and D1� = �(u � c) > 0. Totally di¤erentiate the �rst-order

condition to get�
c00u0 � c0u00

u02

�
dq = g(�)

�
D0�D1 �D0D1�

(D1)2

�
d�

= g(�)(u� c)( D1 � �D0)
(D1)2

d�

where the sign of ( D1 � �D0) as the same sign as � = V1 � V0 > 0.

Proposition 10 Assume c0(0) > 0,

(i) For any � (hence M), there exists a � > 0, such that for all � < � the

unique equilibrium is a non-monetary equilibrium;

(ii) For any � < 1, there exists a �� such that for all � > ��, the unique

equilibrium is a non-monetary equilibrium;

(iii) For all other parameter values, there exists a non-monetary equilibrium

and a unique monetary equilibrium.

Proof. First the non-monetary equilibrium q = V0 = V1 = 0 is easily

established since it satis�es all the conditions from the de�nition of an equi-

librium. Write the following transformation function representing the �rst

derivative of the seller�s objective function evaluated at the steady state

symmetric equilibrium q :

T (q) = g(�)[��(q)� c(q)]u0(q)� [u(q)� ��(q)]c0(q)

where�(q) is the steady state value from equation (31) and g(�) =
�

1��
 +��1

�
.

It implies that T (q) = 0 represent the �rst-order condition, and in steady

state the equation (28). To show existence, observe that T (0) = 0, and

T (q), is continuous since u(�) and c(�) are continuous, and recall that only
q 2 [0; qmax], are equilibrium steady state candidates. Now consider

T 0(0) = g(�)[��0(0)� c0(0)]u0(0)� [u0(0)� ��0(0)]c0(0):
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and it can be sown that [��0(0) � c0(0)] > 0 if and only if V 00(0) > 0 and

[u0(0) � ��0(0)] > 0 if and only V 01(0) > 0, which they are. It follows that

T 0(0) = 0 if and only if

� =
(g(�) + 1)c0(0)u0(0)

�0(0)j�[g(�)u0(0) + c0(0)]
> 0 for all �

or

g(��)[��0(0)j�� � c0(0)]u0(0) = [u0(0)� ��0(0)j��]c0(0) for all � < 1:

Noting that g0(�) < 0, with @T 0(0)
@� > 0 and @T 0(0)

@� < 0, for all � < � or

� > ��, T 0(0) < 0 and there cannot be a value of q > 0 satisfying the �rst-

order condition. Only non-monetary equilibrium exist. Otherwise, we have

T 0(0) > 0 and the rest of the proof proceed as in Proposition 5.

Proof of Lemma 2. Assume �0 > 0, then possible outcomes within a

match implies c(�q) = u(q) > 0, and hence, q > 0. Under the assumptions

about u(�) and c(�), u�1(c(�q)) = q is a strictly convex (one to one) equilib-

rium relationship, and note that u(�q) > c(�q) = u(q) for �q 2 (0; q̂). If �0 = 0,
clearly q = �q = 0. Since c(�q) = ��0 implies �q is increasing in �0, there exist

a �̂0 such that �q = q̂.

Proof of Lemma 3. First we must show that �q is decreasing in �. Using

the de�nition of T (�q) from the proof of Proposition 5

T (�q) = �
 pu(�q) + �mc(u

�1(c(�q)))

1� �(1�  p � �m)
� c(�q)

and the fact that we have uniqueness, it must be that T 0(�q) < 0 at the

equilibrium �q > 0. Totally di¤erentiating T (�q) with respect to �q and �, we

need to show that
d�q

d�
= � T�

T 0(�q)
< 0:

Therefore, we are left to demonstrate that T� < 0. Taking the derivative

and using q = u�1(c(�q)) into the equilibrium values (43) and (44) we �nd

T� =
�

1� �(1�  p � �m)
 m�

(1� �)V1(�q)
 m

� �p�
(1� �)V0(�q)

�p
< 0

since  m� < 0 and in equilibrium it must be that V1(�q) > 0 and V0(�q) > 0.

Next we must show �q is increasing in �. Totally di¤erentiating T (�q)

again with respect to �q and �, we need to show that

d�q

d�
= � T�

T 0(�q)
> 0;
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which holds since T� = (1� �)
 pu(�q)+�mc(u

�1(c(�q)))

(1��(1� p��m))2
> 0.

Proof of Proposition 7.
Set up the Lagrangian

L = max
�q;�

fu(�q) + �V1 � ���+ �0(���� c(�q)) + �1(1� �)g

with �rst-order conditions

u0(�q) = �0c
0(�q)

(�0 � 1)�� = �1

and complementary slackness conditions

�0(���� c(�q)) = 0

�1(� � 1) = 0

Possibilities:

(1) �0 > 0; �1 > 0

�� = c(�q)

� = 1

This is the case of the standard auction in the paper. Note that u0(�q) =

�0c
0(�q), but �0 > 0 can be bigger or smaller than 1, so consistent with our

�ndings.

(2) �0 = 0; �1 > 0 or �0 = �1 = 0

u0(�q) = 0 and �� = 0

cannot be an equilibrium.

(3) �0 > 0; �1 = 0. From (�0 � 1)�� = �1 = 0 or �0 = 1.

u0(�q) = c0(�q)) �q = q�

� =
c(q�)

��
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This joined with the n > 1 case, we have u(q) = �� and equilibrium

� = c(q�)
u(q) once we �nd equilibrium q. Using the value for � we have

u(q) = �
 u(q�) + �c(q)

1� �(1� c(q�)
u(q)  � �)

Formulate

F (q) = � (u(q�)� c(q�))� ��(u(q)� c(q))� (1� �)u(q)

in equilibrium F (q) = 0. First note that F (0) = � (u(q�) � c(q�)) > 0

and F 0(q) = ��c0(q)) � (1 � �(1 � �))u0(q) R 0. Since �� < (1 � �(1 � �))

for all � < 1, when q < q�, u0(q) > c0(q)) and F 0(q) < 0. However, for

q > q�, u0(q) > c0(q)), then F 0(q) > 0. In fact F (q) reaches a minimum and

F (q̂) > 0. Therefore, there exist two values of q such that F (q) = 0. Hence,

multiple equilibria.

Lemma 4 The equilibrium q0 < q� when � 2 (0; 1) is strictly decreasing in
� and increasing in �.

Proof of the Lemma. Setting F (q0) = 0 and totally di¤erentiating with

respect to q0 and � yields

dq0

d�
=

�
� �(u(q

�)� c(q�))� ���(u(q0)� c(q0))
�

�F 0(q0) < 0

since  � < 0, �� > 0 and F
0(q0) < 0 for q < q�. Similarly, but with respect

to q0 and � yields

dq0

d�
=
 (u(q�)� c(q�)) + �c(q)) + (1� �)u(q)

�F 0(q) > 0:

Lemma 5 The equilibrium q1 < q� when � 2 (0; 1) is strictly increasing in
� and in �.

Proof of the Lemma. Similar to the proof of the previous lemma but

noticing that F 0(q1) > 0 for q1 > q�.

The rest of the proof follows from these Lemmas and Lemma 1 in the

paper.

42



Proof of Proposition 8.
Consider the Lagrangian for the deviant seller�s problem in (57)

L = max
f~q2[eqmin;eqmax]; ~dg ~V0 (m0; ~; )+�0

0@e � [u(q)� ��(m1;m1 � d; 0e)]h
u(eq)� ��(m1;m1 � ~d; 0e)

i 
1A+�1(m1� ~d)

(70)

with the associated �rst-order conditions with respect to:

(eq) : @ ~V0 (m0; ~; )

@eq +�0

0B@e eq + [u(q)� ��(m1;m1 � d; 0e)]h
u(eq)� ��(m1;m1 � ~d; 0e)

i2 u0(eq)
1CA = 0

( ~d) :
@ ~V0 (m0; ~; )

@ ~d
+�0

0B@e ~d � [u(q)� ��(m1;m1 � d; 0e)]h
u(eq)� ��(m1;m1 � ~d; 0e)

i2 @V (m1 � d; 0e)
@ ~d

1CA = �1

(�0) : e � [u(q)� ��(m1;m1 � d; 0e)]h
u(eq)� ��(m1;m1 � ~d; 0e)

i = 0
(�1) : m1 � ~d = 0:

It should be clear that �0 > 0 since the associated constraint is always

binding for any deviations. Otherwise, buyers would not be using mixed

strategies. From Kuhn-Tucker conditions, the �rst two conditions become:

@ ~V0 (m0; ~; )

@eq = ~�q[��(m0;m0 + ~d; 0e)� c(~q)]� ~�c0(~q) = 0 (71)

@ ~V0 (m0; ~; )

@ ~d
= �1

where it is easily shown that @ ~V0(m0;~;)

@ ~d
> 0, hence, �1 > 0, and we have

~d = m1.

The remainder of the proof follows the one for Proposition 2 where we

exploit link between the probabilities of trade given by (69) but now

e eq = � [u(q)� ��(m1;m1 � d; 0e)]h
u(eq)� ��(m1;m1 � ~d; 0e)

i2 u0(eq)
which simpli�es to

~ eq = � ~ h
u(eq)� ��(m1;m1 � ~d; 0e)

iu0(~q):
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Using this into (69) and into the �rst-order condition (71) yields

�
~��
~ 

~ �

[��(m0;m0 + ~d; 0e)� c(~q)]u0(~q)h
u(eq)� ��(m1;m1 � ~d; 0e)

i = ~�c0(~q):

In a symmetric equilibrium, ~q = q = qe, which implies ~� = �, ~� = �, and
~ =  . It is easy to verify that � �� 

 ��
= (��1)

(1� ��) � 0.
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