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Abstract

We study a multiperiod principal-agent problem with moral haz-
ard in which the agent is required to exert e¤ort only in the initial
period of the contract. The e¤ort choice of the agent in this �rst pe-
riod determines the conditional distribution of output in the following
periods. The paper characterizes the optimal compensation scheme.
We �nd that the results for the static moral hazard problem extend
to this setting: consumption at each point in time is ranked accord-
ing to the likelihood ratio of the corresponding history. As the length
of the contract increases, the cost of implementing e¤ort decreases,
and consumption on the equilibrium path becomes less volatile. If the
contract lasts for an in�nite number of periods, assuming the e¤ect
of e¤ort does not depreciate with time, the cost of the principal gets
arbitrarily close to that of the �rst best.

1 Introduction

There is by now a fairly large literature on dynamic contracts. Most of this
literature relies on a model of repeated moral hazard: each period, an agent
takes an unobservable action that only a¤ects the contemporaneous outcome,
which is observed by the principal. The problem is to bring the agent to exert
a certain level of e¤ort, every period, at a minimum cost. There is a wide
array of applications of these models in macroeconomics, industrial organi-
zation, or public �nance. The lack of persistence of e¤ort is an important
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limitation in some of these applications, such as in the literature on incom-
plete insurance due to asymmetric information (see, for example, [2] and
[10]), CEO�s optimal compensation ([13]), optimal design of loans for entre-
preneurs ([1]), or the study of optimal unemployment insurance programs
([12],[7]). There is a reason for this gap in the literature: it is considered a
very di¢ cult problem. This paper studies a special problem of moral haz-
ard with persistence that turns out to have an elementary solution. The
key simpli�cation is that the agent takes only one action, at time zero, with
persistent e¤ects.
The model is as follows. At time zero, a principal o¤ers a contract to an

agent, specifying consumption contingent on a publicly observable history
of states. The conditional distribution for these states is a¤ected by the
agent�s choice of e¤ort at time zero, which can take two values: low and high.
The agent has time separable, strictly concave utility with discounting. The
principal is risk neutral. For simplicity we assume principal and agent have
the same discount factor. The problem is to implement high e¤ort at the
lowest expected discounted cost.
In spite of its dynamic structure, this problem reduces to a standard

static moral hazard case. The intuition for this result is the following. The
information structure for the standard moral hazard case is given by a set
of states and probability distributions over these states, conditional on the
actions. The agent maximizes expected utility, which is a convex combination
of the utility associated to each state with the corresponding probabilities.
Let the state in the dynamic case be the set of all histories (all possible
nodes in the tree) with probabilities that are adjusted by the corresponding
discount factors and normalized to add up to one. The expected discounted
utility of any contingent consumption reduces to a convex combination of the
utilities in each of these states, with these adjusted weights.
The optimal compensation scheme is derived as in the static moral hazard

problem: all histories -regardless of time period- are ordered by likelihood
ratios, and the assigned consumption is a monotone function of this ratio.
As in the static case, compensation will be monotone in the past realizations
of output only if likelihood ratios are so, i.e. if the monotone likelihood ratio
property holds for all histories.
The model has some simple predictions. Longer histories contain obvi-

ously more information, so the dispersion of likelihood ratios and compen-
sation increases over time. Extending the number of periods reduces the
cost of implementing high e¤ort and reduces the variance of compensation
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in earlier periods. When realizations are iid over time, the wage given to the
agent in the previous period of the contract, his tenure and current output
are su¢ cient to determine his current compensation. Moreover, in this iid
framework the cost of the contract approaches the �rst best as the number
of time periods goes to in�nity. This result is explained by the fact that
the variance of likelihood ratios goes to in�nity with time, so asymptotically,
deviations can be statistically discriminated at no cost. The paper considers
the e¤ect of reducing persistence by examining a speci�cation where the ef-
fect of the initial action depreciates over time. As persistence decreases, the
variability of compensation increases and so does the cost of implementation.
The paper is organized as follows. A characterization of the optimal

contract is given for the general model in the next section. Results and
numerical examples are discussed in sections 3 and 4, for the iid case and
the model with decreasing persistence respectively. In section 5 the case of
in�nite contracts is discussed.

2 The Model

The relationship between the principal and the agent lasts for T periods,
where T is possibly in�nite. There is the same �nite set of possible outcomes
each period, fyigni=1. Let Y t denote the set of histories of outcome realiza-
tions up to time t; with typical element yt = fy0;y1; :::; ytg : This history of
outcomes is assumed to be common knowledge. The agent can exert two
possible levels of e¤ort, feL; eHg ; with eL < eH :

1 A contract prescribes an
e¤ort to the agent at time 0; as well as a transfer ct from the principal to
the agent, contingent on the history of outcomes up to the present time:
ct : Y

t ! R+;for t = 1; 2; :::; T .2 Each period, the probability of a given
history of outcomes is conditional on the e¤ort level chosen at time zero:
Pr (yt) if the e¤ort is eH , and cPr (yt) if the e¤ort is eL: Both the agent and
the principal discount cost and utility at the same rate �. Commitment to

1As it becomes clear in the core of the paper, the results presented here generalize
to the case of multiple e¤ort levels as much as those of a static moral hazard problem.
That is, it may be that some of the levels are not implementable, and for a continuum of
e¤orts we would need to rely on the validity of the �rst order approach to �nd the optimal
contract.

2Even though unlimited punishments are needed for the asymptotic results of the paper,
the restriction on consumption is without loss of generality; we only need utility to be
unbounded below.
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the contract is assumed on both parts.
Assuming that parameters are such that it is pro�table for the principal

to implement the high level of e¤ort, the cost of the contract is simply the
expected discounted stream of consumption to be provided to the agent:

K =

1X
t=0

X
yt

�t
�
c
�
yt
�	
Pr
�
yt
�
:

The expected utility that the agent gets from a given contract (an e¤ort
recommendation, eH and contingent consumtion fc (yt)g1t=0) that implements
the high level of e¤ort, equals his expected utility of consumption, minus the
disutility of e¤ort.

U
�
e;
�
c
�
yt
�	1

t=0

�
=

1X
t=0

X
yt

�tu
�
c
�
yt
��
Pr
�
yt
�
� eH :

Letting U denote the initial outside utility, the Participation Constraint (PC)
reads:

U �
1X
t=0

X
yt

�tu
�
c
�
yt
��
Pr
�
yt
�
� eH ; (PC)

Given the moral hazard problem due to the unobservability of the e¤ort taken
by the agent, the standard Incentive Compatibility (IC) condition further
constrains the choice of the contract:

1X
t=0

X
yt

�tu
�
c
�
yt
��
Pr
�
yt
�
� eH

�
1X
t=0

X
yt

�tu
�
c
�
yt
��cPr �yt�� eL: (IC)

In words, the expected utility of the agent when choosing the high level of
e¤ort should be at least as high as the one from choosing the low e¤ort.
In order to satisfy this constraint, the di¤erence in costs of e¤ort should
be compensated by assigning higher consumption to histories that are more
likely under the required action than under the deviation. Formally, the
optimal contract is the solution to the following cost minimization problem:

min
fc(yt)g1t=0

1X
t=0

X
yt

�t
�
c
�
yt
�	
Pr
�
yt
�

s:t: PC and IC
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The analysis of the in�nite period contract is postponed until Section
5. The �nite contract can be characterized by looking at the �rst order
conditions of this problem. As in the static moral hazard case, the Likelihood
Ratio of a history LR (yt) can be de�ned as the ratio of the probability
of observing that history under a deviation, to the probability under the
recommended level of e¤ort:

LR
�
yt
�
�
cPr (yt)
Pr (yt)

:

Proposition 1 The optimal sequence fc� (y� )gT�=0 of contingent consump-
tion in the Second Best contract is ranked according to the likelihood ratios
of the histories of pro�t realizations up to time T :

c
�
yt
�
> c

�eyt�, LR
�
yt
�
< LR

�eyt�
Proof. Since utility is separable in consumption and e¤ort, both the PC
and the IC will be binding. From the FOC�s,

�
c
�
yt
��
:

1

u0 (c (yt))
= �+ �

"
1�

cPr (yt)
Pr (yt)

#
8yt; (1)

where � and � are the multipliers associated with the PC and the IC re-
spectively. Since u0 (�) is decreasing, the result follows from the above set of
equations.
As in the static problem, the contract tries to balance insurance and

incentives. To achieve this optimally, punishments (lower consumption levels)
are assigned to histories of outcomes that are more likely under a deviation
than under the recommended e¤ort.
The FOC�s of the problem described in equation 1 can be combined to

get the following expression:

1

u0 (c (yt))
=
X
yt

1

u0 (c (yt; yt+1))
Pr
�
yt; yt+1

�
: (2)

As in Rogerson , this property implies that whenever the inverse of the
marginal utility of consumption is convex, the agent, if allowed, would like to
save part of his wage every period in order to smooth his consumption over
time. Other properties discussed by Rogerson are also true in this setup, as
indicated in the next proposition
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Proposition 2 In the Second Best contract, the expected wage decreases with
time whenever 1

u0(�) is convex, increases if it is concave, and is constant when-
ever utility is logarithmic. (Rogerson)

Proof. As in the dynamic moral hazard problem studied by Rogerson, (2)
holds. Take the case of 1

u0(�) being convex. By Jensen�s inequality,

u0
�
c
�
yt
��
<
X
yt

u0
�
c
�
yt; yt+1

��
Pr
�
yt; yt+1

�
:

Since utility is concave, this implies

c
�
yt
�
>
X
yt

c
�
yt; yt+1

�
Pr
�
yt; yt+1

�
:

A similar argument applies for the other two cases.

3 Outcomes Independently and Identically Dis-
tributed

In this section, we study a particular speci�cation of the probability distrib-
ution of outcomes: an iid process. This assumption puts additional structure
on the probability distribution of histories, and allows for the optimal con-
tract to be further characterized.
Suppose there are two possible outcomes, fyL; yHg : If e¤ort is high, let

Pr (yH) = �

Pr (yL) = 1� �

If the low e¤ort is chosen instead,

cPr (yH) = b�cPr (yL) = 1� b�;
with � > b�:
In this speci�c setup, the optimal contract can be further characterized.

First, we establish monotonicity of wages.
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Proposition 3 Given any history yt of any �nite length t, c (yt; yH) >
c (yt; yL). In other words, the wage of the agent increases when a new high
realization is observed.

Proof. The likelihood ratio that determines the ordering of consumptions
in the optimal contract is also the product of the likelihood ratios of the
individual one�period output realizations. Since

LR(yH) =
b�
�
< 1

and

LR(yH) =
1� b�
1� � > 1

for a given history yt, a high realization at time t + 1 makes the likelihood
ratio smaller than a low realization, implying higher consumption:

LR
�
yt; yH

�
= LR

�
yt
� b�
�
< LR

�
yt
� 1� b�
1� � = LR

�
yt; yL

�
8yt:

Moreover, in this simple setup, the fraction of high realizations of the
output in a history is a su¢ cient statistic for the history�s probability. For any
history yt = (y1; y2; : : : ; yt), denote the number of high realizations contained
in the history as x (yt) :

Proposition 4 For any two histories of the same length yt and eyt; c (yt) �
c (eyt) if and only if x (yt) � x (eyt) ; regardless of the sequence in which the
realizations occurred in each of the histories.

Proof. Under the iid assumption, the probability of a given history is just
the product of the probability of each of the realizations that conform it. In
the iid case, the likelihood ratio of a history can be written as

LR
�
yt
�
=

�b�
�

�x(yt)�1� b�
1� �

�t�x(yt)
:

Since b�
�
< 1 and 1�b�

1�� > 1; x (yt) � x (eyt) implies LR (yt) < LR (eyt). The
result follows from the ordering of consumption imposed by the �rst order
conditions.
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In other words, there is perfect substitutability of output realizations
across time. This implies, in fact, that we do not need to carry all the
information contained in the history of realizations. Faced with a current
output realization yt following a given history yt�1, we only need to know
x (yt�1) to determine current compensation. Simply put, the wage received
by the agent in the previous period, together with his tenure in the contract
are su¢ cient to determine his current wage.
Under the iid assumption, time gives us some information about the rank-

ing of the likelihood ratios of histories of di¤erent length. We can translate
this temporal structure into two formal properties of the contract. First,
the range of variation in wages within a certain period is larger in the latter
periods of the contract. Denote yt the history at t with all high outcomes,
that is, x (yt) = t: Similarly, yt denotes the one with all low outcomes, with
x
�
yt
�
= 0:

yt = (yH ; yH ; : : : ; yH)

yt = (yL; yL; : : : ; yL) ;

both of length t:

Proposition 5 As t increases, c (yt) increases and c
�
yt
�
decreases.

Proof. In the IID case, for a length t, the lowest likelihood ratio will be that
of the history with t high realizations of output:

LR
�
yt
�
=
b�t
�t
:

For the highest, instead, will be

LR
�
y
t

�
=
(1� b�)t
(1� �)t

:

Given that b�
�
< 1 and (1�b�)

(1��) > 1;

LR
�
yt
�
> LR

�
yt+1

�
;

LR
�
y
t

�
< LR

�
y
t+1

�
:

The result follows from the ranking established by the �rst order condi-
tions.
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Corollary 6 As t increases, dt = c (yt)� c
�
yt
�
increases.

The di¤erence between the highest and the lowest wage within a period,
denoted here by dt, increases with time; this follows simply from Prop. 5.
For the case of logarithmic utility, which we use in the numerical examples
reported later in the paper, consumption changes linearly with likelihood
ratios:

ct+1 � ct = LR
�
yt+1

�
� LR

�
yt
�

ct � ct�1 = LR
�
y
t

�
� LR

�
y
t+1

�
:

3.1 Changes in the Length of the Contract

In the iid context analyzed here, longer contracts have a better information
structure that allows the implementation of high e¤ort at a lower cost per
period. We make explicit this point in the next proposition. Below, we
present numerical results for an example that illustrates the e¤ect of contract
length on the variation in the optimal consumption.
To isolate the e¤ect of better information, we conduct comparative statics

on the number of periods in the contract. We wish to abstract from the fact
that it is always cheaper to provide a given level of utility in several periods
than in one period, simply because the agent�s utility function is concave.
We therefore change the speci�cation of the model, so that the participation
constraint does not become looser when increasing the contract length T: As
T grows, we renormalize the agent�s outside utility, U (T ) ; so that the per
period utility U remains constant

U (T ) =
1� �T�1

1� � U:

The same normalization is used for the disutility of e¤ort, which now depends
on T :

eH (T ) =
1� �T�1

1� � eH :

The per period cost of the contract is de�ned in the obvious way:

K (T ) =
1� �
1� �T�1

TX
t=1

�tc
�
yt
�
Pr
�
yt
�
:
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Proposition 7 Longer contracts have a lower per period cost.

Proof. Let n (t) denote the number of time-t histories and yjt; j = 1; :::; n (t)
a typical t-period history. Let pjt and ~pjt denote the probabilities under
high and low e¤orts for these histories. We will now de�ne a static moral
hazard problem that is identical to this dynamic one. Let the state space
S = [t

�
y1t; :::; yn(t)t

	
: De�ne probabilities qTjt = �

tpjt=�(T ) ; where

�(T ) =
1� �T

1� � :

Similarly de�ne probabilities ~qTjt with distribution ~pjt: The optimal contract
can be rewritten as:

K (T ) =
1

� (T )
min

X
j;t

qTjtwjt

subject to:X
j;t

u (wjt) q
T
jt � eH (T ) =�(T ) � U (T ) =�(T )X

j;t

u (wjt) (q
T
jt � ~qTjt) � (eH (T )� eL (T )) =�(T ) :

Now suppose we decrease the number of time periods to T�1: De�ne a static
problem by using the same state space as above, but zero probability to those
states that correspond to T�period histories and probabilities qT�1jt and ~qT�1jt

to all other histories as done above, but using �(T � 1) instead of �(T ) :
The corresponding T � 1 period moral hazard problem is equivalent to the
above, replacing �(T � 1) for �(T ) : (It follows from our de�nitions that
e (T )� (T ) = e (T � 1)� (T � 1) and the same holds for U(T ).) It is easy
to show that the information structure

�
qTjt; ~q

T
jt

�
is su¢ cient for

�
qT�1jt ; ~qT�1jt

�
(in the sense of Blackwell), so by Grossman and Hart [3] it follows that:

�(T )K (T ) � �(T � 1)K (T � 1) ;

which completes the proof.
The intuition for this result hinges on the better quality of the signal

structure of the problem when the contract is longer. As already established
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by Holmstrom [5], any informative signal is valuable. Under the assumption
of an iid process determined by the initial e¤ort, a longer contract trans-
lates into a greater number of informative signals. When more periods are
available, information quality increases and incentives can be given more ef-
�ciently: the wage scheme calls for less variation in the early periods, since
punishments in later periods are exercised with lower probability on the equi-
librium path.

T = 1 E[ct]
c�

�t
E[ct]

dt
ct

t = 1 2.7 1.30 19.1
t = 2 - -
t = 3 - -
t = 4 - -

T = 2 E[ct]
c�

�t
E[ct]

dt
ct

t = 1 1.7 0.66 2.5
t = 2 0.94 32.7
t = 3 - -
t = 4 - -

T = 3 E[ct]
c�

�t
E[ct]

dt
ct

t = 1 1.4 0.43 1.3
t = 2 0.61 4.6
t = 3 0.75 57.9
t = 4 - -

T = 4 E[ct]
c�

�t
E[ct]

dt
ct

t = 1 1.3 0.30 0.8
t = 2 0.44 2.1
t = 3 0.54 5.3
t = 4 0.63 132.1

Table 1. Changes in length of contract: e¤ect on variability of consump-
tion.

Table 1 presents an example3 of the e¤ect of increasing T on expected
wage and on two di¤erent measures of variability of consumption. The so-
lution for consumption under observable e¤ort can be used as a benchmark
to evaluate the changes in cost, as the contract length is modi�ed. When
e¤ort is observable, the optimal contract (sometimes referred to as the First
Best) can achieve perfect insurance, which minimizes the cost of delivering
the outside utility level. The constant wage c� in the First Best satis�es:

eU + eH = u (c�) :
Expected consumption represents as well the per period cost of the contract.
Since we use logarithmic utility in the example, as established in Prop. 2,
E [ct] is constant for a given T:

3Parameters of the example: T = 4, � = :95, U= 1, eH = :7; eL = :4; � = :3; b� = :2:
Utility is logarithmic.
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The table contains four matrices, each corresponding to a di¤erent length
T; going from one to four. All other parameters are kept equal. Expected
consumption is reported in the �rst column of each matrix. For comparison
purposes, we divide E [c] by consumption in the First Best contract. The
expected consumption decreases from 2.7 times the constant consumption in
the First Best, when T = 1; to 1.3 times when T = 4:
The second and the third column present the variability measures. Again,

to keep the values comparable, we divide the standard deviation by expected
consumption in the contract, �t

E[c]
: The third column reports the di¤erence

between the highest and the lowest consumption levels in a given period, dt;
relative to the lowest consumption:

dt
ct
=
ct � ct
ct

:

This normalization captures the fact that, since utility is concave, the same
dt represents more variation in utility when the levels of consumption are
lower. Both � and d vary across periods within the same matrix, and across
matrices. The pattern is the same for both: when T increases, they decrease
(�1 goes from 1.30 in the T = 1 contract to 0.3 in the T = 4 one; for
the same observations, d1 changes from 19.1 to 0.8). Looking at any given
matrix instead, for example the one corresponding to T = 4; we see that both
measures of variability increase with t: In the �rst period of the contract, the
scaled standard deviation of consumption is 0.3, and the scaled di¤erence of
consumption is 0.8. At the fourth period of the contract, the values increase
to 0.63 and 132.1 correspondingly.
Both the change across di¤erent lengths and within contracts respond to

the better quality of information. Variation in consumption is necessary for
implementing high e¤ort. It is e¢ cient to concentrate most of this variation
in longer histories for which relative likelihoods are more informative. In
particular, the bigger change in the scaled dt compared to that of the scaled
�t is explained by the fact that dt measures maximum variation within a
period, and not expected variation. For long histories, the probability of the
history associated with min (ct) becomes much smaller under the equilibrium
e¤ort than under the deviation. Punishments are exercised less often in
equilibrium, lowering the risk premium and thus reducing the cost of the
contract.
In Fig.1 the e¤ect of time on the multiplier of the IC, �; is plotted for the

same example as analyzed in Table 1. The numerical examples all obtain a
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Figure 1: E¤ect of time on the multiplier of the IC.

decrease in � with time. Although we do not have a formal proof for this
e¤ect, the discussion above supports it intuitively. The IC is easier to satisfy
as the length of the contract increases. The availability of better quality
information is materialized in more extreme values of the likelihood ratios.
In fact, the patterns for the variability of consumption we just described can
be understood in terms of decrease of �. Just recall the FOC�s of the Second
Best. Now, rearranging them, we have that for any two histories yt and eyet
of any length,

1

u0 (c (yt))
� 1

u0
�
c
�eyet�� = �

0@cPr
�eyet�

Pr
�eyet� � cPr (yt)Pr (yt)

1A :
For the logarithmic utility used in the example, this means that the di¤erence
in consumption is proportional to the di¤erence in the likelihood ratios. The
factor of proportionality is �: A lower multiplier for longer contracts delivers
the general decrease in variability, since the sensitivity of compensation to the
likelihood ratios is smaller. However, likelihood ratios take on more extreme
values for long histories. For the most favorable history with T successes,

LR
�
yT
�
=

�b�
�

�T
;
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and since b�
�
< 1;this likelihood ratio tends to zero. For the one with zero

high realizations,

LR
�
yT
�
=

�
1� b�
1� �

�T
;

and since 1�b�
1�� > 1, the likelihood ratio tends to in�nity. This di¤erentiated

e¤ect in the likelihood ratios implies that variability is concentrated in latter
periods, and the lowest consumption is associated with very unlikely histories.

4 Decrease in persistence of e¤ort

The iid assumption allows for a more complete characterization of the con-
tract, but it implies a very strong concept of e¤ort persistence. In this section,
we propose a modi�ed stochastic structure that still preserves the tractability
of the solution, but relaxes the assumption of �perfect�persistence.
The e¤ect of the action may now decrease as time passes. We model this

by making the probability of the high level of output a convex combination
of the e¤ort-determined probability, � or b�; and an exogenously determined
probability (i.e., independent of the agent�s e¤ort choice), denoted by �:

Prt (yH) = (�t� + (1� �t)�) :
The sequence of weights, f�tgTt=1 with 0 � �t � 1 for every t, represents
the rate at which the e¤ect of e¤ort diminishes. This gives a measure of
persistence of e¤ort: �t = 1 for all t corresponds to the iid case of perfect
persistence, while �t = 0 for all t implies that e¤ort does not a¤ect the
distribution of output. We consider a sequence for �t such that 0 < �t < 1
for every t; and decreases over time. The e¤ects of time on cost described in
the previous section still hold as long as �t > 0; i.e., as long as there is some
information contained in new realizations, the principal is better o¤ when
contracts are longer. Also, the changes in the properties of the contract with
T are as described in the previous section.
Lowering persistence worsens the quality of information available. The

e¤ect on cost parallels that of shortening the contract, as established in the
following proposition:

Proposition 8 Consider two possible persistence sequences (�1; :::; �T ) and
(�01; :::; �

0
T ) where �t � �0t for all t: The cost of the contract is lower for the

problem with higher persistence, (�1; :::; �T ) :
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Proof. Consider any two sequences of probabilities fPt (yt)g ; fP 0t (yt)g
where p0t (yt) = tpt (yt) + (1� t)�t (yt) ; for 0 � t � 1: Let P0 (y1; :::; yt)
and P (y1; :::; yt) be the corresponding probability distributions over histories
for these processes with probabilities fp0tg and fptg, respectively. It follows
that:

P0 (y1; :::; yt) = �j
�
jpj (yj) + (1� j)�j(yj)

�
:

A typical element in the expansion of this product has the form:

��j2��f1;::;tgpj (yj)

where � is some coe¢ cient that varies with the subset � of terms considered
(the constant term corresponds to � = ? :) This term can be obtained inte-
grating out all histories that coincide on this subset of realizations fyjjj 2 �g
and can thus be expressed as a linear combination of probabilities P (y1; :::; yt)
for all these realizations: It follows that P0 (y1; :::; yt) is also a linear combi-
nation of probabilities de�ned by P and thus the information system de�ned
by P is su¢ cient for P0 and the corresponding implementation cost to the
principal is lower. Now consider two information structures with same base-
line probabilities but di¤erent weights (�1; :::; �T ) ; (�01; :::; �

0
T ) where �t � �0t

for all t: Letting pt (yt) denote the probability de�ned by the �rst informa-
tion structure and t = �0t=�t the previous result can be applied showing
that the the �rst information structure is su¢ cient for the second and the
corresponding cost of implementation lower.
For the numerical examples presented, we choose to have �t decrease

exponentially:
�t = �

t 8t:
Fixing T = 4; we describe changes in the optimal contracts for the example of
Table 1 under di¤erent levels of persistence. Table 2 contains four matrices,
with � ranging from 1 to 0.48; all other parameters are kept equal.
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� = 1:00
E[ct]
c�

�t
E[ct]

dt
ct

t = 1 1.3 0.30 0.8
t = 2 0.44 2.1
t = 3 0.54 5.3
t = 4 0.63 132.1

� = 0:83
E[ct]
c�

�t
E[ct]

dt
ct

t = 1 1.5 0.42 1.3
t = 2 0.55 3.3
t = 3 0.63 8.9
t = 4 0.68 415.5

� = 0:65
E[ct]
c�

�t
E[ct]

dt
ct

t = 1 1.7 0.58 2.0
t = 2 0.69 5.7
t = 3 0.74 16.5
t = 4 0.76 953.2

� = 0:48
E[ct]
c�

�t
E[ct]

dt
ct

t = 1 2.0 0.78 3.5
t = 2 0.87 11.1
t = 3 0.89 36.5
t = 4 0.89 754.2

Table 2. Changes in persistence of e¤ort: e¤ect on variability of con-
sumption.

When persistence is lower, the e¤ect on the variability of consumption
parallels that of a decrease in T:When � is lower, the quality of information
decreases as it does when the length is shorter. Both the scaled standard
deviation and the di¤erence between highest and lowest consumption increase
signi�cantly when persistence is lower. The expected consumption increases
when � decreases (it goes from the original 1.3 of the First Best cost when
� = 1 to being twice of the First Best when �=.48), re�ecting the increase
in the risk premium due to the higher variability.

5 Asymptotic Optimal Contract

If the principal and the agent could commit to an in�nite contractual rela-
tionship, assuming that output is distributed iid, and utility is unbounded
below (as in the logarithmic case) the cost of the contract under moral haz-
ard could get arbitrarily close to that of the First Best, i.e., under observable
e¤ort.
Consider a �one-step" contract, a tuple (c�; c; L) of two possible consump-

tion levels c� and c plus a threshold L for the Likelihood Ratio. The contract
is de�ned in the following way:
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c(yt) =

�
c� if LR (yt) < L
c if LR (yt) � L :

Proposition 9 For any � 2 (0; 1] and any " > 0; there exists a one-step
contract (c�; c; L) such that the principal can implement high e¤ort at a cost
C < Co + ", where Co is the cost when e¤ort is observable.

Proof. Let

Ft (L) = P

(
ytjL

�
yt
�
�
~P (yt)

P (yt)
� L

)

~Ft (L) = ~P

(
ytjL

�
yt
�
�
~P (yt)

P (yt)
� L

)

It is easy to verify by de�nition that
�
1� ~Ft (L)

�
� L (1� Ft (L)) : This

implies that

Ft (L)� ~Ft (L) =
�
1� ~Ft (L)

�
� (1� Ft (L))

� (L� 1) (1� Ft (L))

and also

Ft (L)� ~Ft (L) �

�
1� ~Ft (L)

�
L

:

Let � > 0: For any L; de�ne P so that4:

eH � eL = P
1X
t=0

�t
�
Ft (L)� eFt (L)� (3)

From the above inequalities, this will hold whenever 1� eFt (L) > 0 for some t:
For the discrete case, this occurs if there exists a path yt such that L (yt) > L;
which is guaranteed in the iid case. Let ct be the consumption plan where
u(ct (y

t)) = u0+� whenever L (yt) � L and u (ct (yt)) = u0+��P otherwise.
4This de�nition requires that

P
�tFt (L) >

P
�t eFt (L) :
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It is easy to verify that by the above de�nition of P; this plan is incentive
compatible. Moreover, the utility of the agent is equal to:

U =
u0 + �

1� � � P
1X
t=0

�t (1� Ft (L)) (4)

Rewriting the IC constraint and using the above inequality:

eH � eL = P
1X
t=0

�t
�
Ft (L)� eFt (L)�

= P
1X
t=0

�t
�
1� eFt (L)� (1� Ft (L))�

� P
1X
t=0

�t (1� Ft (L)) (L� 1)

Combining this inequality with equation (4) it follows that:

U � u0 + �

1� � �
eH � eL
L� 1 :

The cost of this plan C (�; P ) � c�1(u0+�)
(1��) : For any �; take su¢ ciently large L

so that U > u0= (1� �) : This gives a plan that is incentive compatible and
satis�es the participation constraint. Taking the limit as � goes to zero, the
cost of the plan converges to the cost of the �rst best plan.
This result requires the assumption that the principal has unlimited pun-

ishment power, that is, that the utility of the agent can be made as low as
wanted. Also, it is derived under the assumption of extreme persistence of
e¤ort (i.e., � = 1): This is in fact what allows the quality of the information
to keep on growing and reach levels that permit to tailor punishments so that
they are almost surely not exercised in equilibrium.

6 Conclusions

We study a simple representation of persistence in which only one e¤ort is
taken by the agent at the begining of the contract. This e¤ort determines the
probability distribution of outcomes in all the periods to come. In spite of its
dynamic structure, the contract has a very simple solution. Time is just an
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extra element in the signal structure, and the problem can be understood as
a static moral hazard: the optimal compensation scheme determines that all
histories -regardless of time period- are ordered by likelihood ratios, and the
assigned consumption is a monotone function of this ratio. As in the static
case, compensation will be monotone in the past realizations of output only
if likelihood ratios are so, i.e. if the monotone likelihood ratio property holds
for all histories.
Relying on comparisons of the quality, or informativeness, of probability

distributions, several conclusions are reached: longer contracts have a lower
cost of implementing high e¤ort, and a lower variance of compensation in
earlier periods. When realizations are iid over time, the cost of the contract
approaches the �rst best as the number of time periods goes to in�nity. As
persistence decreases, the variability of compensation increases and so does
the cost of implementation.
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7 Algorithm for Numerical Examples

The program computes the optimal wage contract that the principal should
set in order to implement the high level of e¤ort at the minimum cost. The
set of parameters consists of the physical environment and the preferences.
The �rst can be described by the length of the contract (T ) ; the probabil-
ity structure (� and b�; as well as �) and the persistence sequence (f�tgTt=1 ;
where � takes values between 0 and 1). The outside utility of the agent (U) ;
the discount factor (�) ; the disutility of both levels of e¤ort (eL and eH) ; to-
gether with the choice of the logarithmic utility function, conform the choice
for the preferences of the agent and the principal.
The code starts by computing the probabilities of all the possible histories

given the length T: Then for each t < T it uses the foc�s of the minimization
problem and the two binding constraints to �nd the solution for the optimal
contract of length t. A solution exists for the contract for any given set of
parameters, since the equality constraints are linear in the level of utility
provided after each history and the objective function is strictly convex in it.
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Given a guess for the multipliers (�0; �0) ; using the foc�s a corresponding
guess for all contingent consumptions can be calculated from the probabili-
ties, using the likelihood ratios:

c0
�
yt
�
= �0 + �0

 
1�

cPr (yt)
Pr (yt)

!
8yt:

This set of implied consumptions can in turn be plugged into the PC and
the IC. Since (�0; �0) do not typically coincide with the real solution for the
multipliers, the two constraints are not met for the guess. The �rst step of the
computational strategy is to construct a grid for possible values of �: For each
of this values, the value of � that makes the PC closest to hold with equality
is calculated using the bisection method; denote this temporary solution as
�PC (�i) ; where �i is an arbitrary value on the grid. As an illustration, the
PC for a one period contract is:

0 = U + eH � � ln
�
�+ �

�
1� b�

�

��
� (1� �) ln

�
�+ �

�
1� 1� b�

1� �

��
:

Holding � constant,

@PC

@�PC
= � �

�+ �
�
1� b�

�

� � (1� �)
�+ �

�
1� 1�b�

1��
� < 0;

showing that the error in the PC, denoted �PC ; changes monotonically with
� and thus the bisection method is appropriate. For an arbitrary �i;

�PC = U + eH � � ln
�
�PC (�i) + �i

�
1� b�

�

��
� (1� �) ln

�
�PC (�i) + �i

�
1� 1� b�

1� �

��
There is a nonnegativity constraint on consumption, so the initial lower
bound for the bisection, �(�i), is chosen the smallest possible; that is, to
make the lowest consumption an " bigger than zero. The history that re-
ceives the lowest consumption is that with the highest value for the likelihood
ratio (in the case of an iid process and one period duration, it corresponds
to c (yL)):

" = � (�i) + �i

 
1�max

yt

(cPr (yt)
Pr (yt)

)!
:
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The error �PC is positive for such low value of �; the upper bound of the
bisection, � (�i) ;is chosen arbitrarily big in order to be sure that�PC is nega-
tive and the bisection works properly. Starting with a � (�i) very far from the
�nal solution does not seem to increase the computation time considerably.
The same is done for the IC, obtaining a (typically di¤erent) value �IC (�i) :

The program then proceeds to select the �i that minimizes the di¤erence
[�PC (�i)� �IC (�i)] ; since in the solution they ought to be equal. The grid
is re�ned around the selected �i and the loop is repeated until the two con-
straints are satis�ed with equality up to numerical precision. By the implicit
function theorem,

@�PC
@�

= �
@PC
@�

@PC
@�PC

=
� (��b�)2
�(1��)

�+ � (1�2�)(��b�)
�(1��)

> 0;

since it was already established that @PC
@�PC

< 0 and

@PC

@�
= � (� � b�)

�+ �
�
1� b�

�

� + (� � b�)
�+ �

�
1� 1�b�

1��
� > 0:

In the same way,

@IC

@�IC
= (� � b�)" 1

�+ �
�
1� b�

�

� � 1

�+ �
�
1� 1�b�

1��
�# < 0

assures the monotonicity in the bisection search for �IC (�i) : Together with
the fact that

@IC

@�
= (� � b�)2 " 1

�
�
�+ �

�
1� b�

�

�� + 1

(1� �)
�
�+ �

�
1� 1�b�

1��
��# > 0;

it implies that
@�IC
@�

= �
@IC
@�

@IC
@�IC

=
�

�
> 0:

This monotonicity and that established by @�PC
@�

> 0, ensure that for a big
enough starting grid for �, the procedure chooses the right pair of �0s that
minimize [�PC (�i)� �IC (�i)] ; regardless of how �ne the initial grid is around
the solution point.
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The graphics coming out of the simulations suggest that this monotonic
patterns are also true for longer contracts.
The set of consumptions calculated with the two resulting multipliers is

the optimal contract. The cost of such contract is simply the sum of the
expected consumption in every period. Measures of dispersion such as stan-
dard deviation or di¤erence between the highest and the lowest consumption
within a period are calculated in the obvious way.
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