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Abstract

We study markets where innovators can sell ideas to entrepreneurs,
who may be better at implementing them. These markets are decen-
tralized, with random matching and bargaining. Entrepreneurs hold
liquid assets lest potentially pro�table opportunities may be lost. We
extend existing models of the demand for liquidity along several dimen-
sions, including allowing agents to put deals on hold while they try to
raise funds. We determine which ideas get traded in equilibrium, com-
pare this to the e¢ cient outcome, and discuss policy implications. We
also discuss several special aspects of ideas, as opposed to generic con-
sumption goods: e.g. they are intermediate inputs; they are indivisible;
and they are at least partially public (nonrivalous) goods.
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1 Introduction

We take it for granted that people understand that the development and im-

plementation of new ideas is one of the major factors underlying economic

performance.1 In this vein, the concept of technology transfer is important

to innovators and entrepreneurs looking to come up with and commercial-

ize new technologies, and also to policy makers seeking to spur economic

development. The issue is this: When innovators come up with new inven-

tions (or ideas or projects), should they try to implement them themselves,

say through start-up �rms? Or should they try to sell them, perhaps to

established �rms, or more generally to entrepreneurs who are better at im-

plementing these ideas?

If agents are heterogeneous in their abilities to come up with ideas and

to extract their returns, one can imagine that some will specialize in inno-

vation while others will specialize in implementation or commercialization.

A superior allocation of resources will generally emerge when those who

have the ideas are not necessarily those who implement them. Scholars in

the �knowledge transactions �eld�share the view that the transfer of ideas

from innovators to entrepreneurs leads to a more e¢ cient use of resources,

making all parties better o¤ and increasing the incentives for investments

1Both the inputs to and outputs of this process are important. On the input side,
research and development expenditures account for 3% of US GDP, and according to a
survey by the Association of University Technology Managers, the licensing of innovations
just by universities, hospitals, research institutions, and patent management �rms added
more than $40 billion to the economy in 1999 and supported 270,000 jobs. On the output
side, it is obvious that new ideas and technologies are essential to production and growth,
and going back to Schumpeter (1934) it is often said that the creation of new �rms is a
signi�cant mechanism through which new technologies are implemented.
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in research. As Katz and Shapiro (1986) put it, �Inventor-founded startups

are often second-best, as innovators do not have the entrepreneurial skills

to commercialize new ideas or products.�2

Obviously, however, this requires some mechanism �say, some market

�for the exchange of ideas, and the details of how this mechanism works

could in principle have a big impact on outcomes. This is the subject of the

current study.

Our analysis is related to the well-known work of Holmes and Schmitz

(1990, 1995), although we also deviate considerably from their approach.

What we share with them is, in their words, the following: �The model

has two key features. The �rst crucial assumption is that opportunities for

developing new products repeatedly arise through time... The second key

feature is that we assume that individuals di¤er in their abilities to develop

emerging opportunities.�Hence, �There are two tasks in the economy, devel-

oping products and producing products previously developed�(Holmes and

Schmitz 1990, p. 266-7). Where we di¤er is the way we envision the market

where ideas or projects get traded. While they model it as a centralized
2As reported in a recent special feature in The Economist (Oct. 2005) on ideas,

patents and related topics, �as the patent system has evolved, it ... leads to a degree of
specialization that makes business more e¢ cient. Patents are transferable assets, and by
the early 20th century they had made it possible to separate the person who makes an
invention from the on who commercializes it. This recognized the fact that someone who
is good at coming up with ideas is not necessarily the best person to bring these ideas to
market� (p.6, emphasis added). And they quote Henry Chesbrough as saying �You see
people innovating and creating new ideas and technologies, but not taking them all the
way through to the market. They carry it to a certain stage and then hand the baton
on to others who bring it on to commercialization� (p.14). Of course, one could imagine
innovators trying to buy implementation expertise from entrepreneurs, but the usual view
is that such expertise is largely tacit and di¢ cult to measure, so it seems more natural
for the ideas to be sold to implementers. See also Teece et al. (1997), Pisano and Mang
(1993), and Shane (2002).
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market in competitive equilibrium, we take seriously the notion that there

are considerable frictions in this market.

We think it is clear that there is in reality no centralized market for ideas.

Innovators do not simply choose a quantity of ideas to supply to maximize

pro�t taking as given the competitive price, and entrepreneurs do not simply

choose how many new ideas to buy at a given price. The idea market

is in our view much more decentralized. Hence, we model it using search

theory, with random matching and bilateral bargaining between innovators

and entrepreneurs. Also, in accordance with a large literature regarding

entrepreneurs and liquidity constraints (discussed below), we consider that

the availability of liquid assets may be important to close the deal: when

there are imperfect markets for the exchange of ideas, it is not only relevant

who you meet and what they know, there is also the issue of how to pay for

it. The fact that you are better at implementing a project may means little

if you have nothing to o¤er in exchange.

This is especially important in highly decentralized markets, where it

is easy to imagine reasons why I might be reluctant to give you my idea

for a promise of future payment (e.g. once I give you the information, you

might decide not to pay, and it may be hard to take the idea back). Hence,

it is easy to imagine that quid pro quo may well be the order of the day:

�You want my idea? Show me the money.�Given this, entrepreneurs may

choose to keep liquid assets, cash being the purest example, in case they

come across a potentially pro�table opportunity that could be lost if there

is not a quick agreement. Naturally, how much liquidity they hold depends
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on the cost, e.g. interest rates, which are at least in part determined by

policy.

Our view that liquidity broadly speaking matters in this context is by

no means new. Evans and Jovanovic (1989) e.g. �nd that the decision to

become an entrepreneur depends positively on wealth, and interpret this

as evidence of �nancial constraints. They conclude that the �liquidity con-

straint is binding for virtually all the individuals who are likely to start a

business.�They predict that if such constraints were removed, the proba-

bility of becoming an entrepreneur would increase by 34%. Others come to

similar conclusions.3 To be fair, Lusardi and Hurst (2004) provide a dissent-

ing opinion: while they also �nd a positive correlation between wealth and

the probability a household subsequently owns a business, they suggest it is

at least partly due to di¤erences between business owners and non-owners

in abilities, preferences and background, rather than liquidity.4

At one level, this discussion is not pivotal for what we want to say,

because ideas are not only inputs to new businesses but also existing busi-

nesses, and liquidity constraints may impinge on the scale of operations as

3See also Evans and Leighton (1989), Holtz-Eakin et al. (1994), Fairlie (1999),
Quadrini (1999, 2000), Gentry and Hubbard (2000), Paulson and Townsend (2000), Guiso,
Sapienza and Zingales (2001), and Lel and Udell (2002).

4They conclude �Our results do not imply that any given household wanting to start
a small business has unlimited access to credit at reasonable borrowing rates. Given
optimal lender behavior, and common sense, such results would be implausible. We do
conclude, however, that even if some households that want to start small businesses are
currently constrained in their borrowing, such constraints are not empirically important in
deterring the majority of small business formation in the United States. This may simply
re�ect the fact that the starting capital required for most businesses is su¢ ciently small.
... Alternatively, even if the required starting capital for some small businesses is high,
existing institutions and lending markets in the United States appear to work su¢ ciently
well at funnelling funds to households with worthy entrepreneurial projects.�

4



well as the probability of starting up. But in any case, we want to remain

agnostic and construct a model where, by varying parameters, we cover the

case where liquidity is critical, where it is irrelevant, and anything in be-

tween. Moreover, the way we model liquidity is quite di¤erent than previous

work on entrepreneurship where various credit market imperfections are im-

posed in sometimes rather ad hoc ways.5 We also emphasize that liquidity

is endogenous in our framework �entrepreneurs choose their liquid assets,

depending on various factors, including interest rates, market frictions, etc.

In this sense our model is related to some work in the search-based

monetary literature, and particular we follow Lagos and Wright (2005) by

assuming agents sometimes trade in centralized markets and sometimes in

decentralized markets. But while we adopt that feature, we also extend

existing versions of that model in several important ways. First, to the

extent that ideas are intermediate inputs, we stress that operation of the

idea market can spill over to other markets and especially to wages and

employment. Second, we take seriously the notion that there may be a

public good aspect at play: the fact that I tell you my idea does not mean

that I cannot also use it (although it may be somewhat less valuable to me

if you also know it).

Third, partly because of the previous points, we suggest that monetary

policy may be more potent than is commonly understood from models where

5Some people simply assume there is no credit (Lloyd-Ellis and Bernhardt 2000 and
Buera 2005), some assume credit is exogenously limited to a �xed multiple of wealth
(Evans and Jovanovic 1989), some try to model it using moral hazard (Aghion and Bolton
1996), and some using asymmetric information (Fazzari et al. 1988, 2000).
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liquidity is only relevant for trading consumption goods. Fourth, since ideas

are indivisible and have random valuations, and since trades may be liquid-

ity constrained, our bargaining problem may be nonconvex and hence we

consider the interesting possibility of randomized trade (lotteries). Finally,

in what is perhaps the most interesting innovation, agents with insu¢ cient

liquidity can attempt to put deals on hold and raise additional funds in the

next centralized market; the probability this attempt fails is what parame-

terizes the extent of the liquidity problem. All of this goes well beyond

existing work in the related monetary literature.

The rest of the paper is organized as follows. Section 2 lays out our

basic assumptions. Section 3 discusses the centralized market, and Section

4 discusses the decentralized market where ideas are traded. Section 5 puts

things together to characterize equilibrium. Section 6 takes up various ex-

tensions. Section 7 concludes. Some technical results are relegated to the

Appendix.6

6We mention some other related work. Several studies consider the transfer of ideas
as a strategic action among �rms, including Katz and Shapiro (1986), Gallini and Winter
(1985), and Shepard (1994). Baccara and Razin (2004) consider strategic behavior among
agents forming a team to implement an idea. Anton and Yao (1994, 2002) study markets
where buyers do not know the value of an idea, and sellers are reluctant to reveal it
because buyers may not pay afterwards. Others focus on licensing contracts in terms of
incentives, including Aghion and Tirole (1994) and Arora (1995). There is a literature
that focuses on university inventions, including Lowe (2003), Shane (2002), and Jensen
and Thursby (2001). Chari, Golosov and Tsyvinski (2004) study the e¤ects of taxation,
den Haan, Ramey and Watson (2003) study matching between entrpreneurs and lenders,
and Serrano (2005) studies empirically the market for patent transfers.
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2 Basic Assumptions

Time is discrete and continues forever. As in Lagos and Wright (2005), al-

ternating over time there are two types of markets: a centralized market,

denoted CM, where agents perform the usual activities of working, consum-

ing and adjusting their assets; and a decentralized market, denoted DM,

where agents meet bilaterally and, in our model, may trade ideas. Agents

have discount factor � between one DM and the next CM, and discount fac-

tor � between the CM and the next DM, where �� < 1. There are two types

of agents: innovators, denoted i, who are relatively good at coming up with

ideas, and entrepreneurs, denoted e, who may be better at implementing

them. For now the numbers of each type, Ni and Ne, are exogenous.

Every time the DM opens, innovator i gets some idea (for now for free)

that has value Ri � 0 if he implements it himself, where Ri is drawn from

CDF Fi(�). This return is realized in the next CM. To keep things simple,

if not implemented in one CM, an idea�s value in the next period is an

i.i.d. draw. Hence, if i �nds himself in the CM with an idea, he will always

implement it, since he gets a new draw in any event. Entrepreneur e does

not get ideas on his own, but if i with an idea worth Ri to him meets e in

the DM, it has value Re � 0 to e, where Re is drawn from Fe(�jRi). When

convenient we sometimes assume the densities F 0i (Ri) and F
0
e(RejRi) exist

and are continuous, but this is not really necessary.7

7As a special case, if Ri and Re are independent, we can say what matters is only the
match between the idea and the agent. Another special case discussed in Section 6.1 is
the one with Ri = �Ri with probability 1, including �Ri = 0, where i is are purely an �idea
man�who cannot implement anything. We could easily allow entrepreneurs to come up

7



One may well ask, what exactly is an idea? One view is that an idea I is

an intermediate input into some production process that can be implemented

by agent j with technology fj(h; I), where h is a vector of inputs, including

labor. Given I, j solves

Rj(I) = max
h
ffj(h; I)�whg ; (1)

where w is a vector of factor prices, including wages. This is important

because it shows the allocation of ideas can a¤ect employment, wages, and

other variables in general equilibrium, and having the wrong agent imple-

menting I can have a big impact on economic aggregates. However, to ease

the presentation we begin with the case where Rj = fj(I) does not require

additional inputs, and return to the general speci�cation in Section 6.

We assume ideas are indivisible: either I tell you or I don�t. We assume

there is no private information: in a meeting, both agents know (Ri; Re),

even though e cannot implement the idea without i giving him the details.

For example, if my idea is for a restaurant with some new cuisine, I can let

you taste a sample without necessarily giving you the recipe. We abstract

from informational frictions here not because they are uninteresting, but

because we want to focus on di¤erent issues (several papers mentioned in

the Introduction consider private information).

We do take seriously the notion that there may be a public good aspect

to ideas: the fact that I tell you my idea does not mean that I cannot also

with some of their own ideas, or even reduce the model a single type �all agents get ideas
from F (R), but an idea worth R to you is worth R̂ to me, drawn from F̂ (R̂jR). The
reason for having two types is that it will be interesting to endogenize their numbers.
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use it. One way to capture this is to assume that if agent j is the only one

to implement the idea he gets Rj , while if another agent also implements it

then j only gets �jRj . If �j = 1, e.g., ideas are pure public (nonrival) goods.

In general, if i sells his idea to e and both implement, they get �iRi and

�eRe; if i keeps it for himself, they get Ri and 0 respectively. To simplify

the presentation we begin with the case �i = 0 and �e = 1, which can be

interpreted as saying that i does not also implement an idea once he sells it

�say, because there is only room for one new restaurant in town, or more

generally, stepping outside the model, perhaps because of some exclusive

licensing agreement. We return to the general case in Section 6.

If i and e meet in the CM and there are gains from trade, they bargain

over the price of the idea. The price is in terms of money �by which we

do not necessarily mean cash, but relatively liquid assets generally, where

a liquid asset is one that can be readily accessed on short notice.8 If the

price p at which they would trade in the absence of liquidity considerations

is greater than the assets e happens to have available in the DM, several

things could happen: i could keep the idea for himself; he could settle for

a lower price; or he could suggest they try to meet again in the next CM,

where e can always raise funds. However, if they try to meet again, with

probability 1�  they fail. Rather than go into details, we simply label this

8He, Huang and Wright (2005) introduce banks and checking accounts explicitly into
a search model of monetary exchange, and something similar can be done here. To focus
the discussion, we avoid these details and frame the formal analysis in terms of money,
but hopefully it is understood that the point applies to liquid assets more broadly. Obvi-
ously, in the real world di¤erent assets can have marginal di¤erences in liquidity, but for
simplicity we assume it is either 0 or 1.
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event an exogenous breakdown, or say that the deal falls through.

This possibility is what generates a demand for liquidity. Clearly, we

need imperfect credit enforcement for this to work; so i does not give up

his idea for a promise of future payments, since e can simply renege.9 Also,

we understand that there are many ways in the real world for innovators

to get people who are good at implementation involved in their projects:

hiring them, forming partnerships, licensing, etc. We consider only the

case where they sell the idea. While this is not the only possibility it is

surely an interesting one. Among other reasons, it captures the notion that

innovators prefer not to be involved in actual operations so that they can

focus on coming up with new ideas.10

3 The CM

LetWj(m;R) be the the value functions for type j = i; e agents entering the

CM, with m dollars and a project in hand with value R (for i this would be

his own idea if he did not sell it in the previous DM, and for e this would

be an idea that he purchased). We use R = 0 to indicate either a project

with 0 return or no project (for i this would be because he sold his idea,

and for e this would be because he failed to buy one). Let Vj(m) be the

value function for agents entering the DM with m dollars before the random

9 It is important for this that we cannot use reputation to enforce payment. A standard
way in monetary theory to rule out reputation is to assume some form of anonymity; see
e.g. Kocherlakota (1998), Wallace (2001) or Corbae et al. (2003).

10Again referring to The Economist (Oct. 2005), �licensing usually works only alongside
a basket of products or services. For IBM, for example, the majority of its intellectual-
property revenue comes from the sale of knowledge, not patent licenses alone. In essence,
the di¤erence is that between the recipe for a dish and a list of ingredients.�
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values of the ideas are drawn.

Then for j = i; e, the CM problem is

Wj (m;R) = max
X;H;m̂

fU(X)� h+ �Vj(m̂)g (2)

s.t. X = X0 + wh+ �(m� m̂+ �M) +R;

where X is consumption, h labor supply, m̂ money taken out of the CM,

X0 an endowment, w the real wage, and � the value of money (i.e., 1=�

is the nominal price level). The term �M is a lump sum transfer, with M

the aggregate money stock when the CM opens, which evolves over time

according to M 0 = (1 + �)M . Formally it looks like we are taking liquidity

literally to be money here, although as discussed above the theory is meant

to apply to liquid assets more generally. If one interprets m as �at money, �

will be the equilibrium in�ation rate, and the model can be used to discuss

monetary policy; one does not have to buy into this, however, and m can

be interpreted as any asset that can be accessed from the DM.

Assume for now there is a representative �rm with a linear technology,

so the equilibrium wage is pinned down and can be normalized without loss

of generality to w = 1. Then, using the budget equation, rewrite (2) as

Wj (m;R) = X0 + �m+ ��M +R+max
X
fU(X)�Xg (3)

+max
m̂
f��m̂+ �Vj(m̂)g:

>From (3) the following results are immediate.11

11These results assume an interior solution. One can guarantee this for X by assuming
U 0(0) =1; for h, one can adapt the assumptions in Lagos and Wright (2005). The results
also assume the strict concavity of Vj , which we verify below.
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Lemma 1 (i) Wj is linear in (m;R), with @Wj=@m = � and @Wj=@R = 1;

(ii) X is given by the solution to @U(X)=@X = 1; (iii) m̂ is given by the

solution to

��+ � @Vj(m̂)
@m̂

� 0, = 0 if m̂ > 0; (4)

and in particular, all agents of a given type j take the same m̂j out of the

CM, regardless of the (m;R) with which they enter.

4 The DM

Let �j be the DM arrival rate (probability of a meeting) for j = i; e. Nor-

malizing Ne = 1, the only restriction on arrival rates is �e = �iNi, so we

can take �j to be exogenous, for now. If an e does not meet anyone, he

enters the next CM with his money but no project, (m̂e; 0). Similarly, if i

does not meet anyone, he enters the next CM with (m̂i; Ri). If an e and i do

happen to meet, several things can happen. If Re � Ri there are no gains

from trade; if Re > Ri there are, and two cases need to be considered.

On the one hand, suppose m̂e � p, where p is the price they would agree

to if there were no issues of liquidity �e.g. if e had access to the funds he

will have available in the next CM from his endowment and his labor supply.

Then they can �an in equilibrium they will �trade immediately at price p.

On the other hand, suppose m̂e < p. In this case the bargaining problem

is nonconvex, and in principle they may want to trade using lotteries. How-

ever, for simplicity we assume lotteries are not available for now, and revisit

the issue in Section 6, where we show that the main economic results are
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very similar. Hence, for now they can either settle for m̂e, or put the deal

on hold and try to meet again in the next CM, where e can always raise the

funds. If they do meet again they can renegotiate the price to p0, but we will

see that p0 = p. In any case, meeting again in the next CM only happens

with probability ; otherwise the deal falls through. The big decision for i

is: should he settle for m̂e and close the deal now, or put the deal on hold

for a chance at p0?

We now analyze the bargaining problems in more detail. We use the

generalized Nash solution, where threat points are given by continuation

values and � denotes the bargaining power of e. To begin, consider what

happens if they put the deal on hold and meet again in the next CM. Given

the value function next period W 0
j , the bargaining solution is:

max
p0
[W 0

e(m̂e � p0; Re)�W 0
e(m̂e; 0)]

�[W 0
i (m̂i + p

0; 0)�W 0
i (m̂i; Ri)]

1��

By Lemma 1, W 0
e(m̂e� p0; Re)�W 0

e(m̂e; 0) = Re��0p0 and W 0
i (m̂i+ p

0; 0)�

W 0
i (m̂i; Ri) = �

0p0 �Ri. Hence the problem reduces to:

max
p0

�
Re � �0p0

�� �
�0p0 �Ri

�1��
This immediately yields

p0 =
�Ri + (1� �)Re

�0
: (5)

Now, back up to this period and consider what happens in the DM. One

di¤erence from CM bargaining is that the threat points are given by the
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expected values of putting the deal on hold,

W
0
e = W 0

e(m̂e � p0; Re) + (1� )W 0
e(m̂e; 0)

W
0
i = W 0

i (m̂i + p
0; 0) + (1� )W 0

i (m̂i; Ri):

A second di¤erence is that we have a constraint p � m̂e, since e can only

pay out of liquid assets in the DM (by de�nition). The problem becomes:

max
p�m̂e

[��0p+ �0p0 + (1� )Re]�[�0p� �0p0 � (1� )Ri]1��

Suppose �rst that the constraint does not bind. Then it is simple to show

p = p0, the same as the solution in the CM next period. In this case the

agents settle immediately. Suppose now that m̂e < p0, which is equivalent

to Re > B(Ri) � �0m̂e��Ri
1�� (the label B stands for the fact that the liquidity

constraint just binds). In this case e wants to pay m̂e and close the deal

now, but i prefers to put the deal on hold i¤W 0
i (m̂i + m̂e; 0) < W

0
i, which

simpli�es to Re > H(Ri) � �0m̂e�Ri(1�+�)
(1��) (the label H stands for the fact

that he is just willing to putting the deal on hold).

Given Re > Ri, so that there are gains from trade, we can summarize

the outcome as follows, where the proof follows directly from the discussion

in the text.

Lemma 2 In the DM, if Re � B(Ri) they trade now at p = p0, given by

(5); if B(Ri) < Re � H(Ri) they trade now at p = m̂e; and if Re > H(Ri)

the deal is put on hold. In the CM, they trade at p0.

The results are illustrated in Figure 1 in the space of realizations for a DM

meeting, taking z = �0m̂e as given (it will be determined in equilibrium
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below). We want to emphasize is that it is potential deals for the best ideas

that are put on hold, and hence may fall through. Intuitively, when Ri and

Re are high p0 is high, so i has a big incentive to take a chance; and when

Ri is high, there is also less downside risk. Hence, if this market functions

poorly, for whatever reason, there can potentially be serious consequences.

Figure 1 about here.

Given the bargaining solution, we now proceed to the DM value function.

For e, this is given by

Ve(m̂) = (1� �e)�W 0
e(m̂; 0) + �e�

Z
A0

W 0
e(m̂; 0) (6)

+�e�

Z
A1

W 0
e(m̂� p;Re) + �e�

Z
A2

W 0
e(0; Re) + �e�

Z
A3[A4

W
0
e

where
R
Aj
(�) is the integral over region Aj in Figure 1; e.g.

Z
A1

(�) =
�0m̂Z
0

B(Ri)Z
Ri

(�)dFe(RejRi)dFi(Ri):

In words, the �rst term in (6) is the payo¤ to no meeting; the second is

the payo¤ to a meeting with no trade; the third is the payo¤ to trading at

p = [�Ri + (1� �)Re] =�0; the fourth is the payo¤ to trading at p = m̂; and

the �fth is the payo¤ to a deal on hold.12 Using the linearity of W 0
e and

12We distinguish between A3 and A4, even though in both regions the outcome is the
same (the deal is put on hold) for two reasons. First, it is useful for some technical results
in the Appendix. Second, the economic interpretation is di¤erent. In A4, even if e were
to give i all his money, i is better o¤ keeping the idea since Ri > m̂e�

0. In A3, because
Ri < m̂e�

0, i prefers trading for m̂e to implementing the idea himself, but he still prefers
putting the deal on hold for a chance at p0.
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inserting p, we can simplify (6) to

Ve(m̂) = �W 0
e(m̂; 0) + �e��

Z
A1

(Re �Ri) (7)

+�e�

Z
A2

(Re � �0m̂) + �e��
Z

A3[A4

(Re �Ri):

A similar exercise can be performed for i, and it turns out that

Vi(m̂) = ��
0m̂+ v; (8)

where v does not depend on m̂. Intuitively, for i, neither the probability of

trade nor the terms of trade depend on his own liquidity (they depend on

liquidity on the other side of the market). So any m̂ he brings to the DM,

he simply takes back to the next CM.

We also need the derivatives. For i, this is trivially @Vi=@m̂ = ��0.

For e, we establish in Appendix A the following result, which is somewhat

complicated because we have to break things into several cases to avoid

dividing by 0.

Lemma 3 @Ve=@m̂ = ��0
�
1 + `(�0m̂)

�
, where for any z, `(z) is de�ned as

follows: (i) if  > 0 and � < 1 then

`(z) =
�e(1� )
2(1� �)2

zZ
0

(z �Ri)F 0e [H(Ri)jRi] dFi(Ri) (9)

��e
zZ
0

fFe [H(Ri)jRi]� Fe [B(Ri)jRi]g dFi(Ri);
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(ii) if  = 0 and � < 1 then

`(z) = �eF
0
i (z)

1Z
z

(Re � z)dFe(Rejz) (10)

��e
zZ
0

f1� Fe [B(Ri)jRi]g dFi(Ri);

(iii) if � = 1 then

`(z) = (1� )�eF 0i (z)
1Z
z

(Re � z)dFe(Rejz): (11)

Note that `(z) is the net marginal bene�t of liquidity. Consider for

example case (ii), with  = 0. The �rst term in (10) is the probability of

meeting i with Ri = z, which is �eF 0i (z), times the net gain for e from buying

the idea, Re � z, integrated over Re. The second term is the probability of

(Ri; Re) 2 A2 times �1, since in A2 the constraint binds and the marginal

dollar is simply taken by i. Notice also that, comparing the marginal bene�ts

for e and i, we have @Ve=@m̂ = [1 + `(z)] @Vi=@m̂, which says that for e the

return on m̂ includes a liquidity component that is not there for i.13

5 Equilibrium

We now combine the DM and CM and de�ne equilibrium. The key condition

from the CM is the FOC for m̂, given by (4). All we need to do is insert the

derivative of the DM value function Vj to determine the choice of m̂j . For

j = i this is easy: by (8), @Vi=@m̂ = ��0, so (4) becomes

��+ ���0 � 0, = 0 if m̂ > 0:

13See Lagos (2005) for an discussion of similar equations in a related model of liquidity
applied to asset pricing.
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As is standard in monetary economics (see e.g. Lagos and Wright 2005),

we only consider equilibria where ���0 < �, and hence we conclude that

innovators have no demand for liquidity: m̂i = 0.

To be clear, the reason it is standard to only consider equilibria satisfying

���0 < � is this: when ���0 > � no equilibrium exists, and when ���0 = �

equilibrium is indeterminate. One way to understand this is to use the

Fisher equation: 1+ in = (1+ ir)�=�0, where in is the nominal interest rate,

ir the interest real rate, and �=�0 the in�ation rate between two meetings

of the CM. In this model, 1 + ir = 1=��, so ���0 < � reduces to in > 0. To

restate what we said above in terms of the interest rate, in < 0 is inconsistent

with equilibrium and in = 0 implies equilibrium is indeterminate. Hence,

our assumption is simply in > 0, although we do consider the limiting case

in ! 0, which is called the Friedman rule. In other words, we assume

liquidity is costly, but also take the limit where it is not.

A similar exercise for j = e is less simple. By Lemma 3, we have

��+ ���0
�
1 + `(�0m̂)

�
� 0, = 0 if m̂ > 0: (12)

Given any path for M , equilibrium could be de�ned in terms of a path for

� satisfying (12), plus some side conditions, but to simplify the discussion

we focus on steady state equilibria where z = �M is constant. Since m̂e =

M 0 (entrepreneurs hold all the money), again using the Fisher equation, in

steady state (12) can be simpli�ed to

`(z) � in, = in if z > 0: (13)
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Note that in this condition in is exogenous �it is a policy variable.14

Consider �rst the generic case  2 (0; 1) and � 2 (0; 1). Since `(0) = 0, a

steady state with z = 0 always exists. From now on we concentrate on what

we call a monetary steady state, which is a z > 0 such that `(z) = in and, in

addition, `0(z) = @2Ve=@m̂
2 � 0, which is necessary because otherwise the

SOC for m̂e in the CM problem is violated. We formalize this as:

De�nition 1 A monetary steady state equilibrium is a z > 0 such that

`(z) = in and `0(z) � 0.

Continuing with the case  2 (0; 1) and � 2 (0; 1), in Appendix B we

verify that limz!1 `(z) = 0. We also verify in Appendix B that one can

impose simple conditions, such as F 0j continuous, to guarantee that ` is

continuous, and `(z) > 0 for some z > 0. Hence there exist a solution to

`(z) = in i¤ in is not too big, and these solutions generically come in pairs.

For each pair of solutions, the higher z constitutes a monetary equilibrium,

while the lower one does not because it violates `0(z) � 0. Figures 2 and 3

show two examples that illustrate the idea. But the general result, the proof

of which follows directly from Appendix B and the above discussion, is this:

Proposition 1 Given  2 (0; 1), � 2 (0; 1) and ` continuous, there exists a

monetary equilibrium z > 0 i¤ in is not too big.

Figures 2 and 3 about here.

14A central bank can either set in directly and let the money growth rate � adjust, or
they can �x � and �=�0 = 1 + � will pin down in through the Fisher equation.

19



For completeness, we discuss what happens in extreme cases. When

� = 1 or  = 0, the results are the same but for minor details; e.g. we

could have `(0) > 0, but this is irrelevant for the economics.15 If  = 1,

however, things are quite di¤erent, because then `(z) = 0 for all z and the

only equilibrium is z = 0. This is because, when  = 1, e has no demand for

liquidity as he can always raise funds in the CM without fear that a deal will

fall through. Also, perhaps surprisingly, when � = 0 a monetary equilibrium

can still exist, contrary to the typical search and bargaining model. Usually

when � = 0 money cannot be valued because the buyer gets 0 surplus from

trade. Here e still gets positive surplus in region A2, where the constraint

p � m̂ is binding, because the idea is indivisible.16

In any case, given Re > Ri, i and e want to trade, but if  < 1 then

not every deal can get done in the next CM. If a deal is put on hold, with

probability 1�  it falls through. If z is bigger, it is more likely that deals

get closed in the DM and less likely that they fall through. The following

obvious result then says that the higher is in the more likely it is that deals

fall through, and therefore the best outcome obtains in the limit when in is

as small as possible. If we interpret m as central bank money, this says that

the optimal central bank policy is the Friedman rule, in ! 0. This is not

really too surprising, perhaps, as this policy minimizes the cost of liquidity

which maximizes the amount of liquidity in equilibrium which maximizes

15 If `(0) > 0, we may lose the �rst solution to `(z) = in, but this is irrelevant because
this solution is not an equilibrium anyway since it violates `0(z) � 0.

16This result (the possible existence of equilibrium with z > 0 even if � = 0) is not true
when we introduce lotteries in Section 6.
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the amount of trade.

Proposition 2 @z=@in � 0, so z is maximized and the number of deals that

fall through is minimized at in = 0.

We think this points to a new and potentially important channel through

which monetary policy might matter. It is potentially important because it

highlights the idea that money (liquidity) may not only be needed for small

purchases like cigarettes and taxi rides, but perhaps also for in the market

for ideas. If interest rates go up and people start to economize on liquidity,

this can not only lead to less smoking and more walking, but to less e¢ cient

technology transfer, and due to spill-over e¤ects like those discussed in the

next section this can have a big impact on economic aggregates. We do

not want to push the policy line too hard, because we do not want to be

forced to say that liquidity means only central bank money, but the general

implication that it is good to have liquidity relatively inexpensive seems

sound.

Even though the limiting case of in = 0 is optimal, it does not generally

entail full e¢ ciency. The e¢ cient outcome is for e to have su¢ cient liquidity

to close the deal in the DM with probability 1 whenever Re > Ri. If in =

0, we minimize the probability that a deal fall through, but for e¢ ciency

generally we also need � = 1. >From Figure 2 it is clear that when � < 1

the equilibrium z generally does not allow e to to close pro�table deals with

probability 1, and from (11) it is clear that � = 1 does yield full e¢ ciency at

in = 0. This is a classic holdup problem. When e chooses m̂, he is making
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an investment, but as long as � < 1 he does not get the full return on his

investment in the DM. This causes him to underinvest in liquidity, and the

rest is obvious.

Proposition 3 Equilibrium is e¢ cient i¤ in = 0 and � = 1.

6 Extensions

6.1 One-Sided Uncertainty

Consider a version of the model where Ri = �R with probability 1, so that all

ideas are valued the same to i (which could be �R = 0), but the value to any

e is still random. Because there is somewhat less algebra in this version, it

could be useful in applications. There are two cases to consider for possible

equilibria: z < �R and z > �R.

In the former case z < �R, we are either in A0 or A4 in any meeting, and

therefore

Ve(m̂) = �W
0
e(m̂; 0) + �e��

1Z
�R

(Re � �R)dFe(Re):

In the latter case z < �R, we can be in A0, A1, A2 or A3, and

Ve(m̂) = �W 0
e(m̂; 0) + �e��

B( �R)Z
�R

(Re � �R)dFe(Re)

+�e�

H( �R)Z
B( �R)

(Re � �0m̂)dFe(Re) + �e��
1Z

H( �R)

(Re � �R)dFe(Re):

As always, V 0e = ��0 [1 + `(z)], where after a little calculus one �nds the
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following: if z < �R then `(z) = 0, and if z > �R then

`(z) =
�e(1� )(z � �R)

2(1� �)2 F 0e
�
H( �R)

�
� �e

�
Fe
�
H( �R)

�
� Fe

�
B( �R)

�	
:

Suppose for example that Re is uniform on [0; 1]. Straightforward algebra

yields

`(z) =

8>>><>>>:
0 z < �R

�e(1�)(1�+�)(z� �R)
2(1��)2

�R < z < zH
�e(z�� �R�1+�)

1�� zH < �R < zB
0 �R > zB

where zH = (1��)+(1�+�) �R and zB = 1��+� �R solve H(zH) = 1 and

H(zB) = 1. As seen in Figure 4, `(z) is piece-wise linear with a discontinuity

at zH , and for any in < {̂n there is a unique monetary equilibrium at z =

zH .17 The upper bound on in is

{̂n =
�e(1� )(1� � + �)(1� �R)

(1� �) :

This example is nice because we can solve for everything explicitly, but

it does have the property that the equilibrium z is (locally) insensitive to

in. Figure 5 shows an example with Re log-normal, which does not yield

a closed-form solution, but it is easy to see that `(z) is continuous and z

smoothly decreases with in.

Figures 4 and 5 about here.

17The discontinuity is no problem for existence: at z = zH � " the marginal value of
additional liquidity exceeds in, and at z = zH + " marginal value is actually negative, so
e chooses z = zH .
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6.2 Lotteries

When ideas are indivisible, one might think agents would want to trade using

lotteries.18 Appendix C shows that lotteries are never be used in the CM,

because even if ideas are indivisible, when there is no liquidity constraint

the bargaining problem is convex; but they may be used in the DM when

the constraint p � m̂e binds. Appendix C also shows that deals are not

put directly on hold when we allow lotteries: when the constraint p � m̂e

binds, �rst there is a deal where e gives i all his money in exchange for a

probability � 2 (0; 1) of transferring the idea. If e does not win this lottery

he does not get the idea, but they still might meet in the next CM, where

as always e gets it for p0.

Thus, e potentially pays twice: once for the lottery in the DM, and if that

does not pan out, also in the CM if they manage to meet again. Whether

or not this is �realistic�we want to know for completeness what happens

when lotteries are allowed. To this end, the payo¤ for e is

�W 0
e(m̂e � p;Re) + (1� �)[W 0

e(m̂e � p� p0; Re) + (1� )W 0
e(m̂e � p; 0)];

and his threat point is W 0
e(m̂e � p0; Re) + (1 � )W 0

e(m̂e; 0). Hence his

surplus is ��0p + �(1 � )Re + ��0p0. Similarly, the surplus for i is �0p �

�(1� )Ri � ��0p0, and the bargaining problem reduces to:19

max
p�m̂e;��1

�
��0p+ �(1� )Re + ��0p0

�� �
�0p� �(1� )Ri � ��0p0

�1��
18One might think this is based on some previous work in monetary theory. The analysis

here follows Berentsen, Molico and Wright (2002), although that paper only considers the
very special case where agents are restricted to m̂ 2 f0; 1g.

19We ignore nonnegativity constraints since they will not bind as long as Re > Ri.
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Absent the constraints p � m̂e and � � 1, FOC wrt p and � are

0 = �
�
�0p� �(1� )Ri � ��0p0

�
(14)

�(1� �)
�
��0p+ �(1� )Re + ��0p0

�
0 = �

�
�0p� �(1� )Ri � ��0p0

� �
(1� )Re + �0p0

�
(15)

�(1� �)
�
��0p+ �(1� )Re + ��0p0

� �
(1� )Re + �0p0

�
These cannot both hold when Re > Ri; hence we cannot have p < m̂e and

� < 1. If � = 1 and p < m̂e then (14) implies p = p0. If p = m̂e and � < 1

then (15) implies � = 
�0m̂e, where


 =
(� +  � 2�)Re + (1� � �  + 2�)Ri

[(1� �)Re + �Ri][(1� �)Re + (1�  + �)Ri]
:

Appendix C veri�es that @
=@Ri < 0 and @
=@Re < 0, and that � =


�0m̂e < 1 i¤ Re > B(Ri), where B is the same as in the model without

lotteries. Appendix C also shows that @�=@� > 0 and @�=@ < 0.

All of this implies that the outcome is as depicted in Figure 6, which

shows the bargaining solution (p; �) as a function of Re for a given Ri (the

Figure is drawn assuming Ri < �0m̂e). As Re increases, p increases while

� stays at 1 until p hits m̂e, after which � decreases while p stays at m̂e.

The main impact of introducing lotteries is to allow immediate trade to

potentially occur in what was region A3[A4, where the deal previously was

put on hold. However, the lottery only allows the idea to be transferred

with probability � in the DM. Also, note that it is still the best deals that

have the greatest risk of falling through; indeed, �! 0 as Re !1.20

20One can derive the liquidity function as above with lotteries; e.g. if  > 0 and � < 1
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Figure 6 about here.

6.3 Nonrival Ideas

Earlier we said that, in general, if i transfers his idea to e their payo¤s are

�iRi and �eRe, but to this point we assumed �i = 0 and �e = 1. Here

we consider the general case. In terms of interpretation, suppose i gives e

an idea for a good restaurant, e.g., and they both open for business. Then

instead of receiving the full return either would get if he were a monopolist,

they receive only a fraction since they are now monopolistic competitors.

One immediate di¤erence from the baseline model is that there are now

gains from trade as long as �eRe > (1��i)Ri �i.e. as long as the return to

e exceeds the loss to i.

The CM bargaining problem is now

max
p0
[�eRe � �p]�[�p0 � (1� �i)Ri]1��

which implies �p0 = �(1� �i)Ri + (1� �)�eRe. The DM problem is

max
p�me

[��p+ �p0 + (1� )�eRe]�[�p� �p0 � (1� )(1� �i)Ri]1��

then

`(z) � �e�(1�)
(1��)2

zZ
0

[z+Ri(1�)�1](z�Ri)
z+Ri(1�)

F 0e [B(Ri)jRi] dFi(Ri)

+�e�(1� )
zZ
0

1Z
B(Ri)

Re�Ri
(1��)Re+(1�+�)Ri

dFe(RejRi) dFi(Ri)

+�e�(1� )
1Z
z

1Z
Ri

Re�Ri
(1��)Re+(1�+�)Ri

dFe(RejRi) dFi(Ri):
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and, as in the baseline model, if the constraint does not bind the solution is

p = p0. The constraint binds i¤ Re > B(Ri) =
�m��(1��i)Ri

(1��)�e , and the deal

is put on hold i¤ Re > H(Ri) =
�m�Ri(1��i)(1�+�)

(1��)�e , generalizing what we

had with �i = 0 and �e = 1. The outcome is shown in Figure 7, which looks

a lot like Figure 1 except the slopes of the lines are modi�ed.21

Figure 7 about here.

What is interesting about this extension is probably its quantitative

impact. In the baseline model, if a deal falls through the social loss is

Re � Ri, but here it is �eRe + �iRi � Ri. At the extreme, if an idea is a

pure nonrival good (�i = �e = 1) the social loss is simply Re. Thus the

potential bene�t from having the idea market function relatively smoothly

�say, because  is high or because in is low e.g. �is bigger when there is

a public good component to ideas. To the extent that policy has an e¤ect

on the cost of liquidity, the cost of bad policy is therefore bigger than one

might think based on theories where liquidity is important only for certain

private consumption goods; i.e. the cost is even bigger than the discussion

following Proposition 2 suggests.

21 In the limiting case where �i = 1, e.g., A0 vanishes since all trade is pro�table and B
and H become horizontal. Again one can derive the liquidity function; e.g. if  > 0 and
� < 1 then

`(z) � (1� )�e
2(1� �)2�e

z
1��iZ
0

[z � (1� �i)Ri]F 0e [H(Ri)jRi] dFi(Ri)

��e

z
1��iZ
0

fFe [H(Ri)jRi]� Fe [B(Ri)jRi]g dFi(Ri):
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6.4 Ideas as Intermediate Inputs

Here we return to the speci�cation in (1), Rj(I) = maxh ffj(h; I)�whg

where h is a vector of inputs and w a vector of prices. Since it su¢ ces

to make the point, we assume that the only input other than the idea is

labor, so we can write h = h and w = w. >From the FOC f 0j(h; I) = w,

as long as f 0j(h; I) is increasing in I, it is clear that having a better match

between I and j increases the maximizing choice of h. Hence, anything that

improves the functioning of the idea market �including a higher  or lower

in �increases labor demand.

Since we have a general equilibrium model we also need to consider labor

supply. From the CM budget equation, for j in state (m;R), this is

hj(m;R) =
1

w
[X �X0 � �(m� m̂j + �M)�R] :

Hence, individual labor supply depends on (m;R) as well as w. Aggregating

across agents and using money market clearing
R
j m̂jdj =M

0, market labor

supply is

H(w) =

Z
j
hj(m;R) =

1

w
[X(w)�X0 � ER] ;

where X(w) solves U 0(X) = 1=w. Notice X 0(w) = �1=w2U 00 > 0, and so

H 0(w) =
wX 0(w)�X(w)

w2
' �1�XU 00=U 0;

where ' means �is equal in sign to.� Thus, H 0(w) > 0 i¤ the coe¢ cient

of relative risk aversion exceeds 1. Let us assume H 0 > 0, for the sake of

discussion.
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Observe that H is decreasing in ER, since higher ER means agents do

not have to work as hard to �nance X (and we do not have to worry about

e¤ects on m̂ since they aggregate to 0). Therefore, anything that makes the

allocation in the DM better �higher  or lower in e.g. �reduces labor supply

at the same time it increases demand. The net e¤ect is to unambiguously

increase the equilibrium wage w and consumption X(w), while employment

could go up or down. In any case, anything that a¤ects the market for ideas

can have important general equilibrium e¤ects. This is further evidence

that the cost of a bad policy, to the extent that policy can a¤ect the cost of

liquidity, may be higher than one might think.22

6.5 Endogenous 

Suppose e can choose his  in the CM, at the same time as he chooses m̂.

On the one hand, having  big is desirable because then fewer pro�table

deals will fall through �e.g., if  = 1 then e can set m̂ = 0 and still close all

deals in the next CM. On the other hand, having  small has an advantage,

because it makes i reluctant to put deals on hold, and hence e may get the

idea for m̂ rather than the CM price p0. So we look for symmetric Nash

equilibrium in the game where e chooses (̂; m̂). Note that we assume e can

22Actually, an alternative version of the model (that is equivalent for most purposes
but simpler for this extension) is to assume utility is linear in X rather than h, say
U = X � v(h), with v0 > 0 and v00 > 0. Then the CM problem is

Wj(m;R) = max
X;h;m̂

fX � v(h) + �Vj(m̂)g

s:t: X = X0 + wh+ �(m� m̂+ �M) +R:

This implies the same FOC for m̂, but now H(w) solves w = v0(h) and hence H 0(w) =
1=v00 > 0. Labor supply is unambiguously increasing in w and independent of wealth. So
any improvement in the DM unambiguously increases employment, as well as w and X.
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choose any ̂ 2 [0; 1] here for free, although it would also be interesting to

assume there is a cost to choosing higher ̂.

First, given e can have any ̂ for free, we claim there is always an equi-

librium with (̂; m̂) = (1; 0). Suppose  = 1 for all e. From the discussion

following Proposition 1, equilibrium must entail z = 0, and m is not valued.

Then the only way for e to trade is in the CM, and it is easy to check that

this implies the best choice is ̂ = 1. Therefore  = 1 is always an equilib-

rium. We do not think this is especially interesting, however, for a couple

of reasons. For one thing, in a more general model, m could still be valued

even if it is not used in the idea market; for another, in a more general model

there would be some cost to having higher . What we want to emphasize

is not equilibrium with  = 1, but the possibility of equilibrium with  < 1,

even though e can have  = 1 for free.

In Appendix D we show that under the weak condition F 00e � 0, Ve

is a convex function ̂. Hence, any best response and therefore any Nash

equilibrium must have  2 f0; 1g. We already know  = 1 is an equilibrium,

so consider a candidate equilibrium with  = 0. Let z0 be the solution to

`(z0) = in, which gives us the equilibrium value of money �0 = z0=M when

 = 0. Suppose e in the CM contemplates a one-shot deviation to (̂; m̂).23

Since Ve is convex in ̂, if such a deviation is to be pro�table, we may as

well consider the best such deviation, which is to (̂; m̂) = (1; 0) (it is clear

that given ̂ = 1 the demand for m̂ is 0).

23Restricting attention to one-shot deviations here is without loss of generality, by the
unimprovability principle.
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Let Ve(̂; m̂) denote the DM payo¤ when e chooses (̂; m̂), given the

candidate equilibrium where all others choose  = 0 and the value of money

is given by z0. Then in the CM, e gains from the contemplated deviation i¤

� = z0 + �Ve(1; 0) � �Ve(0; z0) > 0, since he saves on acquiring money but

also must weigh the consequences for DM trade. After some algebra,

� ' z0in + �e�

1Z
z0

1Z
Ri

(Re �Ri)dFe(RejRi)dFi(Ri) (16)

��e
z0Z
0

1Z
B0(Ri)

[(1� �)Re + �Ri � z0]dFe(RejRi)dFi(Ri)

where B0(Ri) = z0��Ri
1�� . Intuitively, a deviation to (̂; m̂) = (1; 0) saves e

the interest cost z0in and allows trade at p0 in region A4 (the �rst integral),

but also leads to trade a higher price in A2 (the last integral).

It is clear that when in is high, � > 0 and a deviation to (̂; m̂) = (1; 0)

is pro�table. Suppose in � 0, and therefore we can ignore this e¤ect. Then

� depends on �. Clearly if � is su¢ ciently low then � < 0 and the deviation

is not pro�table, since when � � 0, e gets very no surplus from trade at the

CM (unconstrained) price p0, so he may as well take a shot trading at the

(constrained) price in the DM. Hence when � is low, there is an equilibrium

with  = 0. When � = 1, the last term vanishes, since B0 !1 and region

A2 disappears. If in > 0 then typically we have � > 0, since z0 will not be

su¢ cient to close all deals in the DM, and the deviation is always pro�table.

As in ! 0, however, with � = 1, z0 will be big enough to close all deals in

the DM by Proposition 3. Hence, in case in � 0 and � = 1, we have � = 0,

and e is indi¤erent between ̂ = 0 and ̂ = 1.
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Figure 8 About Here

Figure 8 shows examples for Re and Ri independent log-normal (with

the same mean but �e = 0:5 and �i = 1). Notice that for a given in, a

deviation is more likely to be pro�table when � is bigger; and for a given �

a deviation is more likely to be pro�table when in is bigger. We summarize

the results as follows.

Proposition 4 There is always a Nash equilibrium with  = 1 and z = 0.

There is a Nash equilibrium with  = 0 and z > 0 i¤ in and � are not too

big.

While this result is perhaps special due to the simplicity of the model, it

highlights the notion that liquidity constraints can be endogenized, and it is

not obvious that individuals want them relaxed �especially when liquidity

costs are low and the pricing implications are signi�cant.

7 Conclusion

We developed a model of the market for ideas characterized by several fric-

tions, including matching, bargaining and liquidity. We have fairly strong

results about the outcome in any bilateral meeting, and about the existence

of equilibrium where the amount of liquidity z is determined endogenously.

We also have strong results concerning the impact of interest rates and bar-

gaining power on e¢ ciency. We considered some technical extensions, such

as allowing lotteries in nonconvex bargaining games. We also allowed ideas
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to be at least partially nonrival goods, or intermediate inputs, to show how

outcomes in the idea market can spill over to other markets, wages and

employment. We also allowed entrepreneurs to choose the extent to which

liquidity is important, and found an equilibrium where they choose  = 0.

Our emphasis on bargaining seems realistic, and highlights certain holdup

problems that may well be important in this context in the real world. The

way we focus on liquidity in this market is perhaps especially novel, although

it is also consistent with some of the literature discussed in the Introduction;

in any case the importance of liquidity can varied by adjusting . One in-

teresting aspect of the way we model liquidity is that it may generate some

di¤erent implications from existing theories. For instance, if the problem

in the market is simply borrowing constraints, high interest rates may help

by increasing savings, while our approach suggests high interest rates may

make things worse by raising the cost of maintaining liquidity. This remains

to be studied carefully.

Of the many other possible extensions, several come to mind immedi-

ately. It would be good to endogenize the number of agents on one side of the

market, say innovators, by a free entry condition a la Pissarides (2000), and

thus determine arrival rates endogenously. A related extension is to make

innovators pay something ex ante to come up with ideas. Both of these

extensions would introduce two-sided holdup problems in the bargaining.

Another extension is to give ideas returns that are not i.i.d. across periods

when they are not implemented. This would introduce speculative issues

for an innovator deciding whether to sell an idea to an entrepreneur with
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a moderately high Re, or hold out in case he meets one later with an even

higher Re. Similar issues would arise when deciding whether to implement

an idea or take it to the market.

Another extension is to introduce alternative ways to trade that help

get around the liquidity problem. For example, one can explicitly introduce

banks into the model, where entrepreneurs who happen across ideas with

very high Re may be able to borrow from funds deposited by others; Chiu

and Meh (2005) have already made some progress on this. Finally, although

perhaps it is obvious, an explicit endogenous growth version of the model

seems worth pursuing. After all, one of the ways we began motivating the

project was to mention the importance of technology transfer for growth.

It seems a natural application, and it may also be useful to further extend

growth theory to incorporate frictions �including matching, bargaining and

liquidity �the way we do in here.
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Appendix A: Derivation of `

Inserting the correct limits for the various regions, we can write (7) explicitly

as

Ve(m̂) = �W 0
e(m̂; 0) + �e��

�0m̂Z
0

B(Ri)Z
Ri

(Re �Ri)dFe(RejRi)dFi(Ri)

+�e�

�0m̂Z
0

H(Ri)Z
B(Ri)

(Re � �0m̂)dFe(RejRi)dFi(Ri)

+�e��

�0m̂Z
0

1Z
H(Ri)

(Re �Ri)dFe(RejRi)dFi(Ri)

+�e��

1Z
�0m̂

1Z
Ri

(Re �Ri)dFe(RejRi)dFi(Ri):

We now show how to di¤erentiate this to get `(�) in the various cases.

(i)  > 0 and � < 1. The derivative of the �rst term wrt m̂ is ��0. By

Leibniz Rule, the derivatives of the four integral terms are:

D1 = �
0
�0m̂Z
0

�
�0m̂�Ri

�
(1� �)2 F 0e[B(Ri)jRi]dFi(Ri)

D2 = �0
�0m̂Z
0

(�0m̂�Ri)(1�  + �)
2(1� �)2 F 0e[H(Ri)jRi]dFi(Ri)

��0
�0m̂Z
0

�(�0m̂�Ri)
(1� �)2 F 0e[B(Ri)jRi]dFi(Ri)

��0
�0m̂Z
0

H(Ri)Z
B(Ri)

dFe(RejRi)dFi(Ri)
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D3 = �0F 0i (�
0m̂)

1Z
�0m̂

(Re � �0m̂)dFe(Rej�0m̂)

��0
�0m̂Z
0

�0m̂�Ri
2(1� �)2F

0
e[H(Ri)jRi]dFi(Ri)

D4 = ��0F 0i (�0m̂)
1Z

�0m̂

(Re � �0m̂)dFe(Rej�0m̂)

Summing these and simplifying yields (9).

(ii)  = 0 and � < 1. The results similar except for two things. First,

H(Ri) = 1 becomes vertical at Ri = z, so region A3 vanishes and we can

ignore D3. Second, the derivative D2 is not correct since we divided by

 = 0. The correct derivative in this case over region A2 is

D2 = �0F 0i (�
0m̂)

1Z
B(Ri)

(Re � �0m̂)dFe(Rej�0m̂)

�
�0m̂Z
0

�(�0m̂�Ri)
(1� �)2 F 0e[B(Ri)jRi]dFi(Ri)

��0 �(�
0m̂�Ri)
(1� �)2

�0m̂Z
0

1Z
B(Ri)

dFe(RejRi)dFi(Ri):

Summing now leads to (10).

(iii) � = 1. In this case B(Ri) = H(Ri) =1 both become vertical at z,

and A2 as well as A3 vanish. Also, in this case the correct derivatives over

regions A1 and A4 are

D1 = �
0F 0i (Ri)

1Z
0

�
Re � �0m̂

�
dFe(Rej�0m̂)
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D4 = ��0F 0i (Ri)
1Z
0

�
Re � �0m̂

�
dFe(Rej�0m̂)

Summing now leads to (11). �

Appendix B: Existence

Here we derive some properties of `(z) and use them to verify the existence

result in Proposition 1, assuming for simplicity a continuous joint density

for (Ri; Re) with ERj <1. We claim �rst that limz!1 `(z) = 0. Consider

the generic case  > 0 and � < 1, and begin by rewriting (9) as `(z) =

�e
P4
j=1 Ij(z), where

I1(z) � 1�
2(1��)2

zZ
0

zF 0e [H(Ri)jRi] dFi(Ri)

I2(z) � � 1�
2(1��)2

zZ
0

RiF
0
e [H(Ri)jRi] dFi(Ri)

I3(z) � �
zZ
0

Fe [H(Ri)jRi] dFi(Ri)

I4(z) �
zZ
0

Fe [B(Ri)jRi] dFi(Ri):

We claim each Ij(z)! 0 as z !1.

Consider I1(z), and suppose that
R1
0 zF 0e [H(Ri)jRi] dFi(Ri)9 0 as z !

1. Making a change of variable using Re = z�Ri(1�+�)
(1��) = H(Ri) = H,

this is equivalent to

1Z
0

[(1� �)H +Ri(1�  + �)]F 0e(HjRi)dFi(Ri)9 0 as H !1:
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Integrating with respect to H over (0;1), this implies

1 =

1Z
0

1Z
0

[(1� �)H +Ri(1�  + �)]F 0e(HjRi)dFi(Ri)dH

= (1� �)
1Z
0

1Z
0

HF 0e(HjRi)dFi(Ri)dH

+(1�  + �)
1Z
0

1Z
0

RiF
0
e(HjRi)dFi(Ri)dH

But this implies either ERe = 1 or ERi = 1, a contradiction. Hence

I1(z) ! 0 as z ! 1. Similar arguments can be used to show Ij(z) ! 0 as

z ! 1, j = 2; :::4. Hence, as we claimed, `(z) ! 0 as z ! 1 in the case

where  > 0 and � < 1.

The same basic approach works when  = 0 and � < 1. Rewrite (10) as

`(z) =
P
j Ij(z) where now I1(z) � F 0i (z)

R1
z RedFe(Rejz) and so on. For

example, consider I1(z), and suppose F 0i (z)
R1
0 RedFe(Rejz)9 0. Integrat-

ing with respect to z, this implies the contradiction

ERe =

1Z
0

F 0i (z)

1Z
0

RedFe(Rejz)dz =1:

Similar arguments show Ij(z)! 0 as z !1, j = 2; :::4. Hence `(z)! 0 as

z !1 when  = 0. The same basic approach works for � = 1. However, to

ease the presentation somewhat, for the rest of the discussion we focus on

the generic case  > 0 and � < 1 and leave other cases as exercises.

The next thing we prove is that, in the generic case, `(R) = 0 and `(z) >

0 for some z in the neighborhood of R, where R = inffRjF 0i (R)F 0e(RjR) >
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0g, and we assume R <1. For the �rst result, notice that

`(R) = 1�
2(1��)2

RZ
0

(R�Ri)F 0e[H(Ri)jRi]dFi(Ri)

�
RZ
0

fFe[H(Ri)jRi]� Fe[B(Ri)jRi]g dFi(Ri)

= 1�
2(1��)2 (R�R)F

0
e[H(R)jR]F 0i (R)

�fFe[H(R)jR]� Fe[B(R)jR]gF 0i (R) = 0;

because H(R) = B(R) = R when z = R.

Now consider

`0(R) = 1�
2(1��)2

RZ
0

n
F 0e[H(Ri)jRi] +

R�Ri
(1��)F

00
e [H(Ri)jRi]

o
dFi(Ri)

� 1
(1��)

RZ
0

�
F 0e[H(Ri)jRi]� F 0e[B(Ri)jRi]

	
dFi(Ri)

= 1�
2(1��)2

n
F 0e(RjR) +

R�R
(1��)F

00
e (RjR)

o
F 0i (R)

� 1
(1��)

�
F 0e(RjR)� F 0e(RjR)

	
F 0i (R)

= 1�
2(1��)2F

0
e(RjR)F 0i (R) [1� (1� �)] :

By de�nition of R, `0(R + ") > 0 for some " > 0. Hence, `(z) > 0 for

some z near R. The combination of the results in this Appendix, `(z) > 0

for z near R and limz!1 `(z) = 0, tells us that for small in there always

exist solutions to `(z) = in, and for big in there does not. Obviously when

there do exist solutions they come in pairs, and generically every alternative
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solution satis�es `0(z) < 0. This is all we need to establish Proposition 1,

the existence of equilibrium z > 0 for small in.

Appendix C: Lotteries

First, we verify that agents never use lotteries in the CM. Assume e pays p0

to i in exchange for a lottery that gives e the idea with probability �0 (the

possibility that e pays a random amount is easily ruled out as in Berentsen

et al. 2002). The payo¤ to e is �0W 0
e(m̂e�p0; Re)+(1��0)W 0

e(m̂e�p0; 0) and

the payo¤ to i is �0W 0
i (p

0; 0)+ (1��0)W 0
i (p

0; Ri), while the threat points are

as before. Using the linearity of W 0
j , the bargaining problem can be written:

max
p0;�0

�
�0Re � �0p0

�� �
�0p0 � �0Ri

�1��
Maximizing wrt p0, we get �0p0 = �0 [�Ri + (1� �)Re]. Using this, we can

reduce the derivative wrt �0 to (1 � �)(Re � Ri)(�0Re � �0p0). As long as

Re > Ri and �0Re > �0p0, both of which are necessary for trade, this is

strictly positive for all �0 > 0. Hence, for a maximum �0 = 1.

Returning to the DM, the next claim to verify is that pro�table deals

are never directly put on hold when we have lotteries. The usual calcu-

lation indicates that i puts the deal on hold i¤ Re > H(Ri), except that

with lotteries we have H(Ri) =
�0m̂�Ri�(1�+�)

�(1��) . Substituting � from the

bargaining solution into H, it is easy to show Re > Ri implies Re < H(Ri),

establishing the claim.

Next we verify @
=@Rj < 0, j = i; e. Considering i (the other case is

symmetric), straightforward algebra yields @
=@Ri ' �c1R2e � c2RiRe �

c3R
2
i , where ' means �equal in sign� and c1, c2 and c3 are functions of
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(�; ). One can show c1, c2 and c3 are positive, the only tricky case being

c1, which is a complicated polynomial in � and . Consider minimizing c1

over (�; ). First we checked that c1 > 0 on the boundary of [0; 1]2, then

we checked that it is positive at every possible critical point in [0; 1]2. So

c1 > 0 for all (�; ), which establishes the claim @
=@Ri < 0.

Next we verify � < 1 i¤ Re > B(Ri). This actually follows easily from

inspection of the Figure showing the outcome of the bargain. Suppose we

�x Ri and increase Re starting at Re = Ri. Then we switch from � = 1 to

� < 1 at some point, say ~Re = ~Re(Ri). Since this is the same point at which

switch from p = [�Ri + (1� �)Re] =�0 < m̂ to [�Ri + (1� �)Re] =�0 > m̂, we

conclude that this point is ~Re(Ri) =
�m̂��Ri
1�� , which tells us that ~Re = B(Ri).

This completes the argument.

Finally, we verify that @�=@� > 0 and @�=@ < 0. The �rst derivative is

simple, the second less so. A straightforward calculation yields @�=@ ' �,

where

� � �(1�  + 2�)R3i + (1� 3 + 6�)ReR2i

+(1 + 3 � 6�)R2eRi � (1�  + 2�)R3e:

Notice that  = 0 implies � < 0. Can � ever be positive? Suppose we try to

maximize it. Since @�=@� = 2(Re�Ri)3 > 0, this means, as long as  > 0

which is must be if we are to have any hope of � > 0, we must set � = 1.

Then @�=@ = (Re � Ri)3(2� � 1), which is also positive given � = 1, and

we must also set  = 1. Hence, the unique maximum occurs at  = � = 1,

where � = �2Ri(Re �Ri)2 < 0. This completes the argument. �
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Appendix D: Ve Convex in 

The �rst partial of Ve wrt  is

@Ve
@

= ��e�
zZ
0

(Ri�z)2(1�)
3(1��)2 F 0e [H(Ri)jRi] dFi(Ri)

+�e��

zZ
0

1Z
H(Ri)

(Re �Ri)dFe(RejRi)dFi(Ri)

+�e��

1Z
z

1Z
Ri

(Re �Ri)dFe(RejRi)dFi(Ri):

Hence the second derivative satis�es

@2Ve
@2

'
(1� )

�
(1� ) + 3(1� �)2

�
3(1� �)3

zZ
0

(Ri � z)2F 0e [H(Ri)jRi] dFi(Ri)

� (1� )
35(1� �)

zZ
0

(Ri � z)3 F 00e (H(Ri)jRi)dFi(Ri)

+
�

3(1� �)2

zZ
0

(z �Ri)2 dFi(Ri)

The �rst and third terms are unambiguously positive. As long as F 00e � 0,

the middle term is also positive. �
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Graphs

Figure 1: Meeting outcomes for (Ri,Re).
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Figure 2: Plot for independent Lognormal distribution.

Figure 3: Plot for independent Uniform distribution.
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Figure 4: Plots for Re uniform and Ri degenerate.

Figure 5: Plot for Re lognorm and Ri degenerate.
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Figure 6: Lottery outcomes given z and Ri.
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Figure 7: Meeting outcome for Non-rivalrous ideas where 1� �i < �e.
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