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Abstract

We analyze a version of Akerlof�s market for lemons in which a sequence of buyers make
o¤ers to a long-lived seller endowed with a single unit for sale. We consider both the case
in which previous o¤ers are observable and the case in which they are not. When o¤ers are
observable, trade may only occur in the �rst period, so that the resulting ine¢ ciency may
be worse than in the static model. In the unobservable case, trade occurs with probability
one eventually.
JEL codes: C72, D82, D83

1 Introduction

In this paper, we examine the relationship between the outcome of traded with asymmetric
information and the observability of past o¤ers. Search models typically assume that successive
potential buyers never learn anything over time about the o¤ering of the seller, so that the
distribution of o¤ers faced by the seller is stationary. On the other hand, bargaining models
usually assume that potential buyers observe the entire public history, including past o¤ers that
were rejected. This a¤ects the buyers�beliefs about the quality of the good that is being put on
sale, and therefore the o¤ers that are submitted.
While most markets characterized by adverse selection fall between those two extremes, they

widely vary in this respect. In the housing market, potential buyers typically know the time
on market, as well as the list price that is quoted by the seller. Buyers of second-hand cars do
not usually have any reliable information regarding what o¤ers and how many o¤ers have been
turned down by the seller. Employers may obtain veri�able information about the duration of
unemployment of potential employees, but much less evidence regarding o¤ers they may have
rejected in the meantime. In yet other markets, it is up to the seller to decide ex ante whether
his decisions will be public or private.
We consider two variants of Akerlof�s market for lemons. In both variants, a su¢ ciently

patient single seller with private information faces a sequence of (short-run) potential buyers who
submit o¤ers. Buyers know how long the item has been put on sale. In the �rst variant, buyers
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also know the o¤ers that were rejected, while in the second those o¤ers remain unobservable. All
that is known by a potential buyer is that all the previous o¤ers must have been turned down.
Results contrast sharply. In the case of public o¤ers, only the �rst potential buyer submits

a serious o¤er. That is, only the �rst o¤er is accepted with positive probability. In case this
o¤er is turned down by the seller, as does occur if his valuation is high enough, all later o¤ers
are losing o¤ers: from that point on, the seller rejects all equilibrium o¤ers. Therefore, merely
allowing for trade over time does not solve the moral hazard problem. In fact, it may worsen it.
Not so, however, in the case of private o¤ers. In every equilibrium, trade occurs with probability
one eventually, and there always exist equilibria in which trade occurs in �nite time.
This striking contrast can be understood as follows. Consider the case of private o¤ers.

Suppose that an out-of-equilibrium high o¤er is submitted. Because turning it down is interpreted
as very favorable news by the next buyer, whose o¤er following such a deviation will be serious,
the seller accepts this high o¤er only if his valuation is especially low. That is, the perspective
of selling at a higher price tomorrow exacerbates the adverse selection problem today, making
the high o¤er unattractive to the buyer. While this intuition help explain why it is equilibrium
behavior for all potential buyers but the �rst one to submit losing o¤ers, it is worth pointing
out that we show that this is the unique equilibrium behavior. In the case of private o¤ers, the
equilibrium need not be unique. For the sake of contradiction, suppose that from some point on,
all equilibrium o¤ers are losing. Because o¤ers are unobservable, the behavior of future bidders
is not a¤ected by a deviation by the current bidder. Therefore, a potential buyer would strictly
prefer an o¤er slightly below his worst-case valuation for the good to his equilibrium o¤er, as the
former always implies a strictly positive pro�t conditional on trade, and it is necessarily accepted
by the seller with some positive probability.
In terms of actual payo¤s, comparisons are less clear-cut. For instance, the dynamic game

with public o¤ers may actually be more or less e¢ cient than the static game, depending on
the parameters. As we argue, the low probability of trade in the dynamic model is driven by
competition among potential buyers. Somewhat paradoxically, if there is a unique, long-lived and
equally patient potential buyer, the good is traded with probability one in the unique equilibrium
outcome. To shed more light on the relationship between the static game and the in�nite-horizon
game, we provide a detailed analysis of the game with �nite, but arbitrary, horizon.
While it is possible to explicitly solve for equilibrium strategies in the case of private o¤ers,

the case of public o¤ers is more complex, and we provide only a partial characterization of the
equilibrium strategies. We show by means of speci�c example that equilibrium multiplicity can
occur, and we prove that, quite generally, all potential buyers but the �rst and the last ones
must use mixed strategies. Explicit solutions are available in some special cases: (i) the case of
two periods, (ii) the case of two values, (iii) some particular ranges of parameters.
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1.1 Related Literature

Our contribution is related to three strands of literature. First, several authors have already
considered dynamic versions of Akerlof�s model. Second, our model shares many features with
the bargaining literature. Finally, a pair of papers have investigated the di¤erence between public
and private o¤ers in the framework of Spence�s educational signaling model.
Janssen and Roy (2002) consider a dynamic, competitive durable good setting, with a �xed

set of sellers. They prove that all trade for all qualities of the good occurs in �nite time. While
there are several inessential di¤erences between their model and ours, the critical di¤erence lies in
the market mechanism. In their model, the price in every period must clear the market. That is,
by de�nition, the market price must be at least as large as the good�s expected value to the buyer
conditional on trade, with equality if trade occurs with positive probability (this is condition (ii)
of their equilibrium de�nition).1 This expected value is derived from the equilibrium strategies
when such trade occurs with positive probability, and is assumed to be at least as large as the
lowest unsold value even when no trade occurs in a given period (this is condition (iv) of their
de�nition). This immediately implies that the price exceeds the valuation to the lowest quality
seller, so that trade must occur eventually, if not in a given period. Also related are Taylor
(1999), Hendel and Lizzeri (1999), and Hendel, Lizzeri and Siniscalchi (2005).
In the bargaining literature, the closest paper is Evans (1989), which shows that, with corre-

lated values, the bargaining may result in an impasse when the buyer is too impatient relative to
the seller. Our assumption of short-run buyers is less general, since it is implies that the buyer
is actually myopic.2 However, Evans considers the case of binary values. Moreover, there is no
gain from trade in case of a low value. In our set-up, Proposition 1 holds instead quite generally,
and trade is always strictly e¢ cient. In his appendix, Vincent (1989) provides another example
of equilibrium in which bargaining breaks down. As in Evans, there are only two possible values
in his object. While there are gains of trade for both values in his case, it is not known whether
his example admits other equilibria, potentially exhausting all gains of trade eventually. Other
related contributions include Cramton (1984), Gul and Sonnenschein (1988) and Vincent (1990).
Other related contributions include Cramton (1984), Gul and Sonnenschein (1988) and Vincent
(1990).
Nöldeke and van Damme (1990) and Swinkels (1999) develop an analogous distinction in

Spence�s signalling model. Both consider a discrete-time version of the model, in which education
is acquired continuously and a sequence of short-run o¤ers submit o¤ers that the worker can either
accept or reject. Nöldeke and van Damme considers the case of public o¤ers, while Swinkels
focuses mainly on the case of private o¤ers. Nöldeke and van Damme shows that there is a
unique equilibrium outcome that satis�es the never a weak best response requirement, and that

1More precisely, equality obtains whenever there is a positive measure of goods�qualities traded, since there
is a continuum of sellers in their model.

2There is no di¢ culty in generalizing Proposition 1 to the case of an impatient, but not myopic buyer, but we
feel that there is no much gain from such generality.
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the equilibrium outcome converges to the Riley outcome as the time interval between consecutive
periods shrinks. With private o¤ers, Swinkels proves that the sequential equilibrium outcome is
unique, and shows that, in contrast to the public case, it involves pooling in the limit. While
the set-up is rather di¤erent, the logic driving these results is similar to ours, at least with
public o¤ers. Indeed, in both papers, when o¤ers are observable, �rms (buyers) are deterred
from submitting mutually bene�cial o¤ers because rejecting such an o¤er sends a strong signal
to future �rms (buyers) that is so attractive that only very low types would prefer to accept the
o¤er immediately.

2 The model

We consider a dynamic game between a single seller, with one unit for sale, and a countable
in�nity of potential buyers, or buyers for short. Time is discrete, and indexed by n = 1; : : : ;1.
At each time n, one buyer makes an o¤er for the unit. Each buyer makes an o¤er only at one
time, and we refer to buyer n as the buyer who makes an o¤er in period n, provided the seller
has accepted no previous o¤er. After observing the o¤er, the buyer either accepts or turns down
the o¤er. If the o¤er is accepted, the game ends. If the o¤er is turned down, a period elapses
and it is the next buyer�s turn to submit an o¤er.
The (reservation) value of the unit is seller�s private information. The reservation value to the

seller is c (x), where the random variable x is determined by nature and uniformly distributed
over the interval [x; 1] ; x 2 [0; 1). We interpret x as an index, such as the quality of the good.
The valuation of the unit to buyers is common to all of them, and is denoted v (x). Buyers do
not observe the realization of x, but its distribution is common knowledge. We assume that c
and v are strictly positive, strictly increasing and di¤erentiable, with bounded derivatives.3 In
fact, we shall need the slightly stronger assumption that v is strongly increasing over [x; 1], that
is,

inf
x 6=x0

v (x)� v (x0)
x� x0 > 0:

Observe that the assumption that x is uniformly distributed is with little loss of generality, since
few restrictions are imposed on the functions v and c.
We assume that gains from trade are always positive with infx v (x)�c (x) > � for some � > 0.

In examples and extensions, we shall often restrict attention to the case in which v (x) = x and
c (x) = �x, with x > 0, i.e. the reservation value to the seller is a fraction � 2 (0; 1) of the
valuation x to the buyers. The seller is impatient, with discount factor � < 1. We are particularly
interested in the case in which � is su¢ ciently large, and lower bounds on � play an important
role in our analysis. In each period in which the seller owns the unit, he derives a per-period

3In fact, the main results (Propositions 1-4) hold provided only that v be strongly increasing and c be non-
decreasing and Lipschitz continuous.
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gross surplus of (1� �) c (x). Therefore, the seller can always guarantee a gross surplus of c (x)
by never selling the unit.
Buyer n submits an o¤er pn that can take any real value. An outcome of the game is a

triple (x; n; pn), with the interpretation that the realized index is x, and that the seller accepts
buyer n�s o¤er of pn (implying that he rejected all previous o¤ers). The case n =1 corresponds
to the outcome in which the seller rejects all o¤ers (set p1 equal to zero). The seller�s von
Neumann-Morgenstern utility functions over outcomes is his net surplus:

n�1X
i=1

(1� �) �i�1c (x) + �n�1pn � c (x) = �n�1 (pn � c (x)) ;

when n <1, and zero otherwise. An alternative formulation that is equivalent to the one above
is that the seller derives no per-period gross surplus from owning the unit, but incurs a production
cost of c (x) at the time he accepts the buyer�s o¤er. It is immediate that this interpretation
yields the same utility function.
Buyer n�s utility function over outcomes, given outcome (x; n; pn), n <1, is equal to:

v (x)� pn,

and the utility of all other buyers is set to zero. If n =1, all buyers�utility is zero. All players
are risk-neutral. We de�ne the players�expected utility over lotteries of outcomes, or payo¤ for
short, in the standard fashion. We allow for mixed strategies on the part of all players.
We consider both the case in which o¤ers are public, or observable, and the case in which

previous o¤ers are private, or not observable. It is worth pointing out that the results for the
case in which o¤ers are public would also hold for any information structure (about previous
o¤ers) in which each buyer n > 1 observes the o¤er made by buyer n� 1.
A history hn�1 2 Hn�1 in case no agreement has been reached at time n is a sequence

(p1; : : : ; pn�1) of o¤ers that were submitted by the buyers and rejected by the seller (set H0
equal to f?g). A strategy for the seller is a sequence of jointly measurable functions �nS :
[x; 1] � Hn�1 � R! [0; 1], mapping the realized valuation v, the history hn�1, and buyer n�s
o¤er pn into a probability of acceptance. In the public case, a strategy for buyer n is a function
�nB : H

n�1!P (R), mapping the history hn�1 into a probability distribution over o¤ers, where
the set R of real numbers is endowed with the Borel structure. In the private case, a strategy for
buyer n is an element �nB 2 P (R). A sequential equilibrium is de�ned in the standard fashion.
Given some sequential equilibrium, a buyer�s o¤er is serious if it is accepted by the seller with
positive probability. An o¤er is losing if it is not serious. Clearly, the speci�cation of losing o¤ers
in a sequential equilibrium is to a large extent arbitrary. Therefore, statements about uniqueness
are understood to be made up to the speci�cation of the losing o¤ers. Finally, an o¤er is a
winning o¤er if it is accepted with probability one.
Observe that, whether o¤ers are public or private, the seller�s optimal strategy must be of the

cut-o¤ type. That is, if �nS (x; h
n�1; pn) > 0 for some v, then �nS (x

0; hn�1; pn) = 1 for all x0 > x.
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The proof of this skimming property can be found in Fudenberg and Tirole (Chapter 10, Lemma
10.1), for instance. If �nS (x

0; hn�1; pn) = 0 for all x0 < x, and �nS (x
0; hn�1; pn) = 1 for all

x0 > x, the valuation x is called the marginal valuation (at history (hn�1; pn) given the strategy
pro�le). Since the speci�cation of the action of the seller with marginal valuation does not a¤ect
payo¤s, we also identify equilibria which only di¤er in this regard. For de�niteness, in all formal
statements, we shall follow the convention that the seller with marginal valuation rejects the o¤er
so that the set of valuations still assigned positive probability following a rejection is a closed set,
and for conciseness, we shall omit to specify that some statements only hold �with probability
one�. For instance, we shall say that the seller accepts the o¤er when he does so with probability
one. Standard arguments also establish that buyers never submit any o¤er that is strictly larger
than c (1) = �c, the highest possible reservation value to the seller.
The model considered by Akerlof (1970) is not quite the static version of this game, as the

market mechanism adopted there is Walrasian. Much closer is the second variant analyzed by
Wilson (1980), although he considers a continuum of buyers. We brie�y sketch here the static
equivalent of the dynamic game described above if there is only one potential buyer, who submits
a take-it-or-leave-it o¤er. The game then ends whether the o¤er is accepted or rejected, with
payo¤s speci�ed as before (with n = 1). Clearly, the seller accepts any o¤er p provided p > c (x).
Therefore, the buyers o¤ers c (x�), where x� maximizes

xZ
x

(v (t)� c (x)) dt;

over x 2 [x; 1]. More generally, given t 2 [x; 1), let x� (t) denote the marginal valuation given the
optimal o¤er when the distribution is uniform over [t; 1]. Observe that x� (t) > t for all t 2 [x; 1).

3 Observable o¤ers

3.1 Main result

In this section, we maintain the assumption that o¤ers are public. Observe that the equation
1Z
x

(v (t)� �c) dt = 0

admits either no or exactly one solution x in [x; 1) since its integrand is strictly positive (negative)
above (below) the unique root of v (t) = �c. Indeed, if such a solution x1 exists, it is an element
of [x; 1). Obviously, this solution x1 exists if and only if:

1Z
x

(v (t)� �c) dt < 0;
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that is, if it is unpro�table for the �rst buyer to submit an o¤er that is accepted with probability
one by the seller. More generally, given 1 =: x0 > x1 > � � � > xk, de�ne xk+1 as the unique
solution in [x; xk), if any, of the equation

xkZ
x

(v (t)� c (xk)) dt = 0:

Clearly, this process must eventually stop. The resulting �nite sequence fxkgKk=0, xk � [x; 1], all
k, is easy to compute for special functions v and c. For instance, if c (x) = �v (x) = �x, xk = �

k,
where � := 2�� 1. The sequence fxkg plays an important role in Proposition 1.
Proposition 1: Assume that xK > x. There exists a unique equilibrium outcome provided

� > ��, for some �� < 1. On the equilibrium path, the �rst buyer submits the o¤er c (xK), which
the seller accepts if and only if x < xK . If the o¤er is rejected, all buyers n > 1 submit a losing
o¤er.
Proof : The proof is by induction, and is broken into two steps.
We �rst claim that there exists some value s1 2 [x; 1) such that, in any equilibrium, for

any n, and any history hn�1 such that the marginal valuation is x, buyer n o¤ers �c if and only
x > s1(which the seller accepts with probability one). Given any history for which x > s1,
suppose that buyer n�s equilibrium o¤er is accepted by the seller precisely if t < s, and let p (s)
denote this o¤er. Obviously, p (s) � c (s). Therefore, for any s, buyer n�s payo¤ Vn (hn�1) must
satisfy:

Vn
�
hn�1

�
= (1� x)�1

sZ
x

fv (t)� p (s)g dt � (1� x)�1
sZ
x

fv (t)� c (s)g dt;

Observe that the integral is di¤erentiable, with derivative v (s) � c (s) � c0 (s) (s� x) > � �
(1� x) supt c0 (t), which is strictly positive provided x is close enough to one. Therefore, for
x close enough to one, this upper bound is strictly increasing in s, so that it achieves a strict
maximum at s = 1. Since the payo¤ is bounded above by this upper bound, and it is equal to
this upper bound for s = 1, it follows that s = 1 is then also a strict maximum for the payo¤.
Thus, there exists a s1 as claimed.
Next, we claim that s1 = x1. Suppose not. If s1 < x1, the contradiction is immediate, because

o¤ering �c results in a net loss. So suppose s1 > x1, and consider an equilibrium in which for some
n and some history hn�1, the marginal valuation is x := s1� " > x1, " > 0, and buyer n�s o¤er is
accepted by the seller precisely if t < s, for s < 1. As before, let p (s) denote the corresponding
o¤er.
Observe �rst that it cannot be that s 2 (s1; 1). Indeed, since buyer n+1 then o¤ers �c whenever

the o¤er is rejected, it must otherwise be the case that p (s) solves p (s)� c (s) = � (�c� c (s)), so
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that buyer n�s payo¤ is:

Vn
�
hn�1

�
= (1� x)�1

sZ
x

fv (t)� ��c� (1� �) c (s)g dt;

which we argue is strictly convex in s on the interval (s1; 1). Indeed, the integral is di¤erentiable
in s, with derivative:

(v (s)� ��c� (1� �) c (s))� (1� �) c0 (s) (s� x) :

As � ! 1, the numerator tends to v (s)� �c, which is strongly increasing. Therefore, there exists
�� < 1 such that the numerator is strictly increasing in s provided � > ��.4 It follows that Vn (hn�1)
is strictly convex in s over (s1; 1), and cannot achieve a maximum there. Thus, s � s1. This
implies, however, that:

Vn
�
hn�1

�
�

s1Z
s1�"

(v (t)� c (x)) dt � (v (1)� c (x)) ";

which tends to 0 as "! 0. At the same time, since s1 � " > x1, the payo¤ Vn (hn�1) is bounded
away from 0, since buyer n can always o¤er �c. The contradiction follows by taking " su¢ ciently
small.
To conclude, we have shown that in any equilibrium, for any n and hn�1 such that the

marginal valuation is strictly above x1, buyer n o¤ers �c, which is accepted with probability one
by the seller.
Suppose that we have shown that, in any equilibrium, for any n and any hn�1 such that the

marginal valuation is x 2 (xk; xk�1], buyer n o¤ers c (xk�1), and, if the o¤er is rejected, all future
buyers submit losing o¤ers. Suppose that x < xk, and consider now any equilibrium, any n and
any hn�1 such that the marginal valuation is x 2 (xk+1; xk], k < K, or w 2 (x; xk] if k = K.
Suppose �rst that x < xk. We claim that, if buyer n�s o¤er is accepted precisely if t < s, then

it must be that s � xk. Indeed, the payo¤ that results from a choice of s in (sj; sj�1], j � k,
is strictly convex in s over each such subinterval (the corresponding price solving p (s)� c (s) =
� (c (xj�1)� c (s))) by the same argument as above, and it is strictly negative for each possible
choice s = xj�1, j � k, by de�nition of xj, given that s < xk � xj.
Suppose now that s = xk, and assume that buyer n� 1�s equilibrium o¤er pn�1 was a serious

o¤er accepted if and only if t < xk. We claim that buyer n and all subsequent buyers must
submit a losing bid. Suppose not. Then it must be that pn > c (xk). Without loss of generality,
consider the history hn�1 for which pn is maximized. More precisely, let �pn = supn;hn�1 pn, and

4The conclusion would not necessarily hold if v were only assumed to be strictly increasing. This is the one
place where the stronger assumption is needed.

8



pick (n; hn�1) such that jpn � �pnj < " for " = (1� �) (�pn � c (xk)) =2. Observe that if buyer n�1
deviates and submits a serious o¤er accepted if and only if t < s, where s < xk, the price p (s) he
must o¤er cannot exceed c (s)+� (c (xk) + � (�pn � c (xk))� c (s)), since the next serious o¤er itself
cannot exceed c (xk) + � (�pn � c (xk)) by the previous claim. Now, pn�1 � �pn + (1� �) c (xk).
Therefore, 8s < xk,

pn�1 � p (s) � ��pn � �"+ (1� �) c (xk)� (1� �) c (s)� �2�pn � � (1� �) c (xk)
� � (1� �) (�pn � c (xk))� �"
� � (1� �) (�pn � c (xk)) =2;

implying that, for s close enough to xk , such an o¤er yields a pro�table deviation.
This establishes that, if x < xk, then all future equilibrium o¤ers must be rejected by the

seller if t > xk. Furthermore, buyer n can secure a payo¤arbitrarily close to
R xk
x
(v (t)� c (xk)) dt

by o¤ering a price arbitrarily close to c (xk). The same argument as in the case k = 0 establishes
that, if x > sk+1, for some sk+1 < xk close enough to xk, the payo¤ of any o¤er that is rejected
by the seller if and only if t < x, for x < xk, is strictly less than this supremum. From this it
follows that an optimal o¤er, and therefore an equilibrium, only exists if indeed buyer n o¤ers
�vk and all future buyers submit losing o¤ers. The proof that sk+1 is in fact xk+1 is virtually
identical to the case k = 0 and is omitted. �
For completeness, let us brie�y comment on the knife-edge case in which x = xK . Then

as long as the marginal valuation is x, any randomization over the o¤ers fc (xK) ; c (xK�1)g is
optimal, the payo¤ of either o¤er being zero. Because x = xK , equilibrium considerations do
not uniquely �pin down�the mixture, as is done in the proof above for the case x < xK in which
the marginal valuation is xk, k � K, after an equilibrium o¤er that is serious. Indeed, the only
reason why the equilibrium (as opposed to the equilibrium outcome) for the case x < xK is
not unique is that nothing pins down the behavior when the marginal valuation is xk, k � K,
following an out-of-equilibrium o¤er. Beyond this indeterminacy, the case x = xK is identical to
the case x < xK ; in particular, along the equilibrium path, the seller will reject all o¤ers provided
t � xK�1.
The comparison to the static case is immediate: if x is su¢ ciently close to xK , then the

probability of agreement is arbitrarily small, and the outcome is more ine¢ cient than in the
static case. On the other hand, if x is su¢ ciently small relative to xK , then the probability of
agreement is larger than in the static case, as it must be that x� (x) < xK , since the payo¤ from
o¤ering c (xK) can be chosen arbitrarily close to zero.

3.2 Patient Single buyer

Proposition 1 assumes that each buyer makes only one o¤er. However, its proof goes through
with a single, long-lived buyer provided the buyer�s discount factor is small enough, �xing the
seller�s discount factor. On the other hand, the result is no longer valid if the long-lived buyer
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and seller share the same discount factor � < 1. In that case, we know from Vincent (1989) that
there exists a (genericallly) unique Perfect Bayesian Equilibrium, and that, in this equilibrium,
bargaining ends after a �nite sequence of serious o¤ers, one of which is accepted. Furthermore,
Vincent exhibits an example with binary values in which delay does not vanish as the time
interval between successive o¤ers tends to zero.5

For sake of illustration, we describe here the equilibrium in the case in which c (x) = �v (x) =
�x. De�ne the sequences:

x0 = 0, xn+1 =
�

1� � +
�x2n
xn�1

; z0 = 1, zn =
nY
k=1

xk � 1
xk

:

We show in appendix that there exists a unique equilibrium of the game with a long-lived buyer
with discount factor �. With probability one, agreement is reached in �nite time. If the marginal
valuation is s 2 [zn+1; zn), the buyer o¤ers

p = (1� �) (1� �) x2n
xn � 1

s+ �n�;

which the seller accepts if and only if:

t <
xn

xn � 1
s:

The expected payo¤ of the buyer is then:

1

2

�
(1� �) (1� �) x2n

xn � 1
� 1
�
s2 + �n�s� 2�� 1

2
�n:

We solve here for the case in which F is the uniform distribution. All proofs are gathered in
Appendix.
In fact, the maximal number of o¤ers in equilibrium, N , converges as � ! 1, so that, as the

time interval between successive o¤ers tends to zero, agreement is immediate, contrasting with
the binary example studied by Vincent (1989). [To see this, observe that, for all n, the value
of xn tends to a well-de�ned limit strictly larger than one, and therefore zn+1 � zn tends to a
strictly positive limit; given x, it then follows that, for � large enough, the duration of bargaining
is independent of �.]

3.3 Finite Horizon

Proposition 1 implies that all buyers but the �rst one submit losing o¤ers. Yet when the game
has �nite horizon, this conclusion is blatantly false when x < x1. In particular, if the seller

5In fact, Vincent (1989) proves this result more generally for the case in which the buyer is at least as patient
as the seller.

10



rejects all previous o¤ers with positive probability, the last buyer must submit a serious o¤er.
Indeed, his problem reduces then to the static case, for some speci�c x. Whether agreement is
reached with probability one before the last buyer, or the last buyer submits a serious bid, the
qualitative conclusions of the �nite horizon game seem to cast some doubt on the pertinence of
Proposition 1. Therefore, the analysis of the game of the �nite-horizon is not only an important
extension that includes the static benchmark as a special case, but also a robustness test: as the
length of the horizon increase, do the equilibria of the game with �nite-horizon converge to the
in�nite-horizon equilibrium? For simplicity, we state our results here only for the case in which
v (x) = x and c (x) = �x, with x > 0, only their extension to the case of general functions is
immediate.
Proposition 2: The equilibrium strategies of the �nite horizon game converge pointwise to

the equilibrium strategies in the in�nite-horion game, as the length goes to in�nity. In particular,
the Perfect Bayesian equilibrium is essentially unique, and is in pure strategy. In that equilibrium,
the strategy of buyer i is associated with thresholds 0 < s0i < s

1
i < � � � < skii = 1. The strategy

�i has the following form:

� if vi � s0i , buyer i o¤ers a price bivi, and attracts all types up to civi for some ci � 1 and
bi � �. Thus, �i(vi) = civi.

� if vi 2 (ski ; s0i ), �i(vi) = s
lk
i�1 for some lk: buyer i o¤ers a price which does not depend on

the speci�c value of vi in that interval, and attracts all types up to s
lk
i�1.

4 Unobservable o¤ers

In this section, we maintain the assumption that all o¤ers are unobservable, or private. The
main result is the following.
Proposition 3: There exists �� < 1, for all � > ��, in all sequential equilibria of the in�nite

horizon game with private o¤ers, trade occurs with probability one eventually.
Proof: Given x 2 [x; 1] and some equilibrium, let Fn (x) denote the (unconditional) probability

that the seller is of type t � x and has rejected all o¤ers submitted by buyers i = 1; : : : ; n � 1.
Suppose for the sake of contradiction that trade does not occur with probability one eventually,
i.e. limn!1 Fn (x) 6= 0 for some x < 1. Let F = limn!1 Fn, and de�ne x1 := inf fx : F (x) > 0g.
By assumption, x1 < 1. Let x� = inf fx : c (x) = v (x1)� "=2g (x� := 1 if c (1) < v (x1)� "=2),
and let x0 := (x� + x1) =2. Since c0 is bounded, it follows that there exists some v > 0 such that
x0 > (1 + v)x1. Observe that, given the de�nition of F , there exists N 2 N such that, for all
n > N;

Fn ((1 + v=2)x1)� Fn (x1) > 2v (1) (Fn (x1)� Fn (xn)) =";
where xn := inf fx : Fn (x) > 0g. Pick any n > N . Consider an o¤er equal to c ((1 + v)x1).
Either such an o¤er is accepted, in which case player n�s (unconditional) equilibrium payo¤ is at
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least (Fn ((1 + v=2)x1)� Fn (x1)) "=2. In this case, player n�s lowest o¤er must strictly exceed
x1, a contradition given the de�nition of x1. Or such an o¤er is rejected, which means that the
discounted (total) probability that at least as high an o¤er is submitted in the future must be at
least (c ((1 + v)x1)� c ((1 + v=2)x1)) = (�c� c ((1 + v=2)x1)). Since this must be true for all
such n, it follows that Fn ((1 + v=2)x1)! 0, contradicting the de�nition of x1.�
Thus, o¤ers that are accepted by seller�s types arbitrarily close to one are eventually sub-

mitted. Further, the next lemma shows that o¤ers that are accepted by all types must be
submitted with positive probability. To do so, we introduce the following notation. As before,
given some equilibrium, Fn (x) denote the (unconditional) probability that the unit is of index
t � x and that the seller has rejected all o¤ers submitted by buyers i = 1; : : : ; n � 1. Set
xn := inf fx : Fn (x) > 0g. Also, let Sn denote the set of marginal types corresponding to the set
of o¤ers in the support of buyer n�s strategy. That is, x 2 Sn if and only if there exists an o¤er
pn submitted by buyer n with positive probability that the seller accepts if and only if his type
is less than or equal to x.
Lemma 1: There exists �� < 1, for all � > ��, in all sequential equilibria of the in�nite horizon

game with private o¤ers, some buyer submits a winning o¤er with positive probability: there
exists N 2 N such that maxSN = 1.
Proof: From Proposition 3, we know that limn Fn (1) = 0. Fix some N such that FN (1) <

"=�c0, where �c0 > 0 is an upper bound on the derivative of c over [x; 1]. Let:

~Vn (x) :=

Z x

x

fv (t)� c (x)g dFn (t) :

Observe that ~Vn (x) is an upper bound to the (unconditional) payo¤ buyer n obtains when
submitting an o¤er for which x is the marginal type, with equality if and only if either it is a
losing o¤er (Fn (x) = 0), or a winning o¤er (x = 1). For sake of contradiction, suppose that
the lemma�s statement is false. Therefore, the interval [TN ; 1], where TN := maxn<N maxSn,
has nonempty interior, and the function FN (x) is di¤erentiable on this interval, with derivative
equal to one. Hence, on that interval, ~VN is di¤erentiable and its derivative equals:

~V 0N (x) = v (x)� c (x)� FN (x) c0 (x) ;

which is strictly positive. Therefore ~VN is strictly increasing on (TN ; 1), so that buyer n�s payo¤
cannot be maximized on this open interval. Hence, any such buyer can only submit either a
winning o¤er -which is ruled out by assumption- or o¤ers for which the marginal type is less than
TN , implying that such all marginal types are bounded away from one, contradicting Proposition
3.�
We will see later that the conclusion of the lemma can be further strengthened. Indeed, either

some buyer submits a winning o¤er with probability one, or in�nitely many buyers each submit
a winning o¤er with probability bounded away from zero.
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Let N := min fn 2 N : Vn (1) � 0g. By the previous lemma, such an integer exists. Observe
that buyer N need not actually submit a winning o¤er with positive probability.
Lemma 2: All buyers n < N submit a serious o¤er with positive probability.
Proof : Suppose that player n < N does not submit a serious o¤er w.p.p. (i.e., with positive

probability). This implies, in particular, that his payo¤ is zero. Observe that some player n0 > n
must submit a serious o¤er w.p.p., by Proposition 2. Let n0 be the �rst such buyer, and let x0

be the marginal type indi¤erent between accepting and rejecting the highest o¤er among the
o¤ers buyer n0 may submit. Observe that the price that buyer n needs to submit so that s0 is
indi¤erent between accepting and rejecting this o¤er is strictly smaller than the price n0 needs to
submit. Observe also that the expected value of the unit, conditional on an o¤er being accepted
by all seller�s types less than x0 is the same for buyer n and n0. Therefore, buyer n gets a strictly
positive payo¤ from submitting such an o¤er, a contradiction. �
The next lemma is repeatedly used in the sequel.
Lemma 3: Suppose that minSn+1 > xn+1. Then there exists �� < 1, for all � > ��, Sn \

(xn;minSn+1) = ;.
Proof : For x > xn, let pn (x) denote the o¤er that buyer n must submit for type x to

be the marginal type. For x < minSn+1, the hypothesis of the lemma implies that pn (x) =
(1� �) c (x) + C for some constant C. The (unconditional) payo¤ of buyer n from submitting
an o¤er for which the marginal type is x is given by:Z x

x

(v (t)� p (x)) dFn (t) :

Clearly, if v (x) = p (x) for some x > xn, o¤ering p (x) results in a strict loss, so in order to �nd
the maximizers of this payo¤, we can restrict attention to x such that v (x) > p (x). Since c0 is
bounded and v is strongly increasing, this implies that we can restrict attention to x above some
threshold �x, provided � is su¢ cently close to one. Since Fn is convex (given the cream-skimming
property), it is piecewise continuously di¤erentiable on (xn;minSn+1), with derivative, on each
subinterval, given by:

dFn (x)

dt
(v (x)� p (x))� (1� �) c0 (x)Fn (x) ;

which is strictly increasing for all � su¢ ciently large, since v is strongly increasing, while Fn
is convex. Therefore, the payo¤ is strictly convex on each of those subintervals, a result that
holds more generally over (�x;minSn+1) since at all points this interval; D�Fn (x) < D+Fn (x).
Therefore, this payo¤ is �rst strictly negative and then strictly convex in x, so that it admits no
maximum in this interval. �
An immediate consequence of Lemma 3 is that no buyer before N , with the possible exception

of the �rst buyer, uses a pure strategy.
Lemma 4: There exists �� < 1, for all � > ��, no buyer n = 2; : : : ; N � 1 uses a pure strategy.
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Proof : Suppose that buyer n = 2; : : : ; N � 1 uses a pure strategy. Choose � close enough to
one so that Lemma 2 and 3 are valid. By Lemma 2, buyer n�s unique o¤er must be serious. Let
x < 1 denote the marginal type indi¤erent between accepting and rejecting this o¤er. By Lemma
3, buyer n � 1 cannot submit any o¤er for which the marginal type would be in (xn; x). This
implies that the expected value conditional on the marginal type being equal to x is the same
both for buyer n and buyer n+1. Since buyer n�s o¤er is serious, buyer n� 1 must thus submit
a losing o¤er with positive probability, and therefore have a zero equilibrium payo¤. However,
the o¤er he must submit such that the marginal type equals x is strictly less than the unique
o¤er submitted by buyer n (because of discounting), a contradiction. �
Given some equilibrium, let N 0 := inf fn 2 N : minn Sn = 1g, N 0 :=1 if minn Sn < 1 for all

n.
Lemma 5: There exists �� < 1, for all � > ��, Sn � fxN ; 1g, for all n = N; : : : ; N 0. Moreover,

if N > 1, N 0 > N .
Proof : Consider the �rst statement. For the sake of contradiction, suppose that buyer

n 2 fN; : : : ; N 0g submits w.p.p. an o¤er for which the marginal type is x 2 (xN ; 1). Then
buyer n + 1 cannot submit a winning o¤er with probability one, given Lemma 3, and thus
both buyer n + 1 and buyer n + 2�s (unconditional) payo¤s are strictly positive. This implies
that minSn+2 > xn+2 � minSn+1 > xn+1, which contradicts Lemma 3. Consider the second
statement. Suppose that N 0 = N . Then by Lemma 3, SN�1 �

�
xN�1; 1

	
, so that the expected

value of the unit, conditional on submitting a winning o¤er �c, is the same for buyer N � 1 and
buyer N , violating the de�nition of N . �
Therefore, for discount factors close enough to one, we can break down any equilibrium into

two phases.
- in the �rst phase (buyers 1 through N�1), all buyers but the �rst one use a (nondegenerate)

mixed strategy, and all submit a serious o¤er with positive probability.
- in the second phase (buyers N through N 0), buyers use a (possibly degenerate) randomiza-

tion over fxN ; 1g.
This raises several questions.
First, when is N > 1? If x < x1, where x1 is as de�ned in the observable case, N > 1, since

submitting a winning o¤er results in a strict loss for the �rst buyer. More generally, if x < xk,
then N > k. On the other hand, the same argument as in the proof of Lemma 5 (�rst statement)
yields that N = 1 if x � x1, and in fact, buyer 1 submits a winning o¤er with probability one if
x > x1.
Second, does an equilibrium necessarily exist? The answer is positive, and follows from

Glicksberg�s �xed point theorem. As the set-up is not quite static, we record the result here and
provide a proof in appendix.
Proposition 4: A (mixed-strategy) equilibrium exists.
Third, is an equilibrium necessarily unique? We shall show that the answer is negative, by

means of example.
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Third, is Sn �nite, for n < N 0? The analysis from the two-period case (see next section)
suggests otherwise, although it may still be true that is Sn is �nite for some equilibrium.
Fourth, is N 0 �nite? We claim that there always exist an equilibrium in which N 0 is �nite,

but also that there always exists an equilibrium in which N 0 is in�nite.
Lemma 6: There exists �� < 1, for all � > ��: an equilibrium exists in which N 0 is �nite;

further, if x � x1, an equilibrium exists in which N 0 is in�nite; if x > x1, N 0 = 1 in every
equilibrium.
Proof : Consider any equilibrium for � close enough to one, so that Lemma 1-5 hold. Let �n

denote the probability that buyer n submits a losing o¤er, along that equilibrium. Pick � � 1
and N 0 such that:

N 0X
n=N

 
n�1Y
j=N

��j

!
�n�N (1� ��n) +

 
N 0�1Y
j=N

��j

!
�N

0�N =
1X
n=N

 
n�1Y
j=N

�j

!
�n�N (1� �n) ;

and ��n � 1, for n < N 0. That is, from the point of view of any buyer n < N , the discounted
probability that a winning o¤er is submitted is the same in the equilibrium than for the strategy
pro�le that only di¤ers from the equilibrium in the probabilities with which buyers n � N submit
winning o¤ers, namely 1� ��n rather than 1��n if n < N 0, and 1 rather than 1��n if n � N 0.
Therefore, the payo¤ function of any such buyer has not changed, so that his original strategy
remains optimal. From the point of view of any buyer n � N , the discounted probability that a
winning o¤er is submitted (after them) has weakly increased, so that the payo¤ from any o¤er
they submit has weakly decreased. This payo¤ remains the same, however, for the winning o¤er
�c, so that their original strategy remains optimal as well. The second statement follows a similar
construction, while the third was explained in the text. �
Observe that the di¤erent equilibria exhibited in the proof of Lemma 6 are payo¤-equivalent,

from the point of the view of the seller. Nevertheless, the examples of multiple equilibria given
in the next subsection show that this need not be the case for all equilibria. However, it seems
important to study payo¤s and expected delay.
Lemma 7: There exists �� < 1, for all � > ��, the payo¤of all buyers n � N is zero. Moreover,

if x < x1, for all n, and the unconditional payo¤of any buyer isO
�
(1� �)2

�
, while the conditional

payo¤ of any buyer is O (1� �). Further, for eachM 2 N, there exists �� < 1, for all � > �� and all
n, if buyer n�s payo¤is positive, then the payo¤of all buyers n0 = n�M; : : : ; n�1; n+1; : : : ; n+M
is zero.
Proof : To be completed. �
While it seems natural to ask whether all buyers but possibly the �rst one make zero pro�t

in some or all equilibria, we have been unable to answer this question.
Finally, Lemma 8 addresses the issue of expected delay.
Lemma 8:
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4.1 Conjectures and Numerical Evaluations

We have been unable to explicitly solve for the equilibria of the game, except in special cases dis-
cussed below. As shown above, any equilibrium can be partitioned into two �phases�. Provided
that the �rst player�s payo¤ from submitting an o¤er accepted with probability one is negative,
there must be a �rst buyer (say, player N > 1) who must be precisely indi¤erent between submit-
ting a losing o¤er or submitting an o¤er accepted with probability one. From this point on, all
buyers randomize over those kinds of o¤ers, and as long as the latter o¤er is not submitted with
probability one by some buyer, the conditional beliefs of the seller do not change any more. The
�rst phase (up to player N � 1) is more complicated. In particular, all buyers but the �rst must
use a mixed strategy, with strictly positive probability assigned to at least two o¤ers. While it is
possible to rule out many con�gurations with simple considerations, a wide range of possibilities
remain; in fact, simple examples of multiple equilibria can be constructed.
The simplest conjecture consistent with our partial characterization is that each buyer ran-

domizes over two o¤ers, the lower of the two being a losing o¤er. It is then easy to show that, in
fact, the other o¤er is serious, and is accepted by all types up to xi, where xi is strictly increasing
in i for i < N . (This randomization must be strict up to buyer N � 1).
From numerical simulations, it appears that such equilibria exists for all � and �, but only

if x is su¢ ciently high. See �gure 1. For lower values of x, this does not work, because buyer 2
strictly gains from submitting an o¤er accepted with small but positive probability. This problem
can be remedied by assuming instead that buyer 2�s lower o¤er is serious as well, so that only
the low o¤er of buyers n � 3 is a losing o¤er (in this revised conjecture, buyer 2�s payo¤ is still
zero). Such equilibria exist, and indeed, they can be constructed for lower values of x than is
consistent with the �rst conjecture. However, it is again necessary that x be su¢ ciently high,
for otherwise the same problem arises with buyer 4.
It seems therefore natural to amend the conjecture further, by considering the case in which,

for a subsequence of the buyers in the �rst phase, the low o¤er is serious, while it is losing for
the others. (It is easy to see that no two consecutive buyers can belong to that subsequence).
Unfortunately, the resulting systems of equations is untractable, even numerically.
To be completed.
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