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Example: Longitudinal count dataI

e Famous epilepsy data from Thall & Vail (1990)
e 59 subjects j were randomized to receive progabide or placebo
e Outcomes:

— Counts y;; of epileptic seizures during the two weeks before each of
four clinic visits, t = 1,---,nj, n; =4

e Between-subject covariates x;:

— [Lbas] The logarithm of a quarter of the number of seizures in the
eight weeks preceding entry into the trial

— [Treat] Dummy variable for treatment group

— [LbasTrt] Interaction between two variables above

— [Lage] Logarithm of age

e Within-subject covariate z;;:

— [V4] Dummy for visit 4



Model and estimatesI

e Model Il from Breslow & Clayton (1993)
yij ~ Poisson(pij),  n(uij) = xiB + Bszij +uj,  wj ~ N(0,07)

gllamm y lbas treat lbas_trt lage v4, i(subj) fam(poiss) nip(15) adapt
gllamm, robust

Robust
Est (SE) (SE)

Fixed effects:

By [Cons] 211 (0.22) (0.21)
B [Lbas] 0.88 (0.13) (0.11)
Ba [Treat] -0.93 (0.40) (0.40)
B3 [LbasTrt] 0.34 (0.20) (0.20)
B4 [Lage] 0.48 (0.35) (0.30)
B35 [V4] 0.16 (0.05) (0.07)
Random effect:

o 0.50 (0.06) (0.06)

Log-likelihood -665.29




Influence of top-level unit jI

e Influence on log-likelihood: Cook's D
Dj = —28;-H_1Sj,

e D; can be interpreted as a quadratic approximation to twice the change
in log-likelihood when parameters are estimated with and without cluster

J

— s; is the score vector (first derivatives of log-likelihood contribution)
for cluster j

— H is the Hessian of the total log-likelihood

— In gllamm (using numerical derivatives):

gllapred c, cooksd



Interpreting influence of top-level unit jI

e Influence on particular parameter 0,

0, — 0,
DFBETAS,; = pSTéi()”
p

_ 4 is the estimate of the pth parameter when cluster j is deleted



Influence for epilepsy data I

DFBETAS
Cook's
Subj. [Base] Y, D  [Treat] [V4] o
Placebo
126 13.0 40 20 23 12 1.10 -0.02 0.51 0.02
135 25 14 13 6 0 152 0.39 0.40 -0.34
227 13.8 18 24 76 25 1.46 -0.14 0.39 -0.33
Progabide
207 37.8 102 65 72 63 1.68 0.58 0.24 -0.16
225 55 1 2319 8 1.05 -0.23 0.18 -0.45
232 33 0 0 0 0 157 0.34 0.00 -0.44

Mean over all subjects
7.8 89848473

0.30




o [Treat]

— Deleting subjects with large counts in placebo group (135) and small
counts in progabide group (232) will diminish the negative treatment
effect
— positive DFBETAS

— Deleting subjects with small counts in placebo group and large counts
in progabide group (225) will increase the negative treatment effect
—> negative DFBETAS

— Subject 207 is complicated; due to the lage baseline value, this subject
is responsible for the positive coefficient of [LbasTrt] with a DFBETAS
of -0.71 (the coefficient becomes nearly 0)

e [V4]: Subjects 126, 135 and 227 have a large drop at visit 4, so that
deleting them will diminish the negative coefficient of [V4]
— positive DFBETAS

e 0: Deleting subjects with extreme counts, relative to baseline,
(large: 135, 227, 225; small: 232) will decrease o
— negative DFBETAS



Estimation using adaptive quadratureI

e Likelihood contribution for cluster j by Gaussian quadrature:

R
6(8.0) = [ otu0.0) [ flus 1w duy = S W, T[ 4wy | oA
7 r=1 7
63 poster‘i;r of wj;
— A,: Quadrature locations — W,: Quadrature weights

e Adaptive quadrature:

R
((B,0) ~ Y wir [ fWij | 0ajri B)
r=1 7

— ajp: Adaptive quadrature location: u; + 7; A,
* w;: Posterior mean of u;
— Locations shifted to posterior mean ~ peak of integrand
* 7j: Posterior standard deviation of u;
—> Locations scaled by posterior sd &~ width of peak

— wjr: Adaptive quadrature weights: v/277; exp(A2/2)é(cvjr )W,



Adaptive quadratureI
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Empirical Bayes using adaptive quadrature

e Posterior mean and variance given y; with B and o plugged in

Jujd(uj;0,8) IT, £ (yij | ugs B)du;

uj = Elu; | y;,%;:8,0] =

(;(B,5)
- o Jue(u0.6) T fyiy L wgs B)duy
7, = var(u; | y;,%;;3,0] = —— — U
£(B,0)

e Adaptive quadrature (in gllamm; similar to Naylor & Smith, 1988)

— Start with 179 =0 and 7']0 =1
— In iteration k (between NR steps):

KJ(B,&\)IC = Z Hf ?/zy’ao‘]r ) )
r=1

L zfil(aozr Yk T, £y | 5k B)

! <ﬁ, 5)k
(7F? = Zﬁﬂ&o‘k 2wl L (g | Gl p) _ @2
! @5 !




Variances for EB prediction & approximations

e Posterior variance (by numerical integration):
var[u; | y;,%;; 6]

e Marginal sampling variance:

v; = vary[ﬂjEB | Xj;b\] ~ ol
‘Diagnostic’ variance
e Prediction error variance (marginal):
EB o~ 2

varylu; —u; | ;0] = 7;

‘Comparative’ variance



Deletion residualsI

e A large true residual will lead to a larger estimate of the random effects
variance, making the residual appear more consistent with the model

e To avoid this problem, estimate EB residuals u;_;, using parameter es-
timates 6(_;) when the jth top-level cluster is deleted

-~

uj—j = Elu; [ y;,x5;0 )]

e Standardised deletion residual

e In multilevel models, delete the top-level cluster to derive deletion resid-

uals for all lower-level units in that cluster



EB prediction in gllamm

e Raw and standardised residuals:

gllapred res_, u /* posterior mean and sd in res_ml res_sl */
gllapred stres_, ustd /x stres_ml = u;/v; */

e Deletion residuals:

gllamm ... if subj~=126, i(subj) from(a)
gllapred dres if subj==126, u fsample /* fsample to include 126 */
gllapred dstres if subj==126, ustd fsample



Level-2 residuals for epilepsy dataI

DFBETAS

Placebo

126 0.02 1.04 089 0.44
135 -0.34 223 197 0.93
206 -0.32 -2.11 -1.91 -0.88
227 -0.33 219 193 0.96
Progabide

207 -0.16 197 137 0.69
112 -0.32 225 207 1.01
225 -0.46 247 226 1.09

232 -0.44 -2.92 -2.77 -0.97




Cross-validation by simulation I

e Obtain sampling distribution of deletion statistic .5;_;) for cluster j under null hypoth-
esis that the responses for cluster j come from the same distribution as for remaining
clusters (Similar to Marshall & Spiegelhalter, 2001):

— For cluster j, simulate new responses yf from the model with parameters 6 _

— Obtain the statistic S]’?(fj) for the simulated responses

e Stata commands for simulating standardised deletion residuals under null hypothesis:

postfile file res using delres, replace

forvalues i=1/1000 {
gllasim y1 if subj==126, fsample /* simulate new responses */
replace y = yl if subj==126
gllapred b if subj==126, ustd fsample /* simulated std. del. res. */
summ bml
post file (r(mean))
drop y1 bml bsl

}

postclose file

e Obtain p-value using empirical sampling distribution



Cross-validation resultsI

Std. Deletion Residual -2 Del. Log-likelihood ¢;(_;

J(=J)

Power o« = 0.05 Power o = 0.05

Sub_] Obs. p-value wu;=-1 u; =1 Obs. p-value wu;j=-1 wu;=1

Placebo

126 1.04 0314 043 058 -19.1 0.005 0.00 0.55
135 223 0.026 026 0.47 -20.1 0.001 0.00 0.49
206 -2.11 0.058 033 0.44 -194 0.004 0.00 0.52
227 220 0.026 038 0.69 -39.9 0.001 0.01 0.63
Progabide

207 1.98 0.068 050 040 -21.3 0.004 0.01 0.58
112 225 0.028 049 068 -13.8 0.043 0.00 0.63
225 247 0.020 035 0.46 -26.4 0.001 0.00 0.50
232 -2.92 0.002 0.25 0.57 -6.4 0.821 0.00 0.57




Conclusions I

e Adaptive quadrature can be used to obtain reliable estimates and empirical Bayes pre-
dictions

e Cook's distances and DFBETAS are useful for identifying influential top-level clusters

e Standardized residuals (and their deletion counterparts) can flag potential outliers at
any level

e Cross-validation is a useful method for testing for outliers/influential units at any level.
This method is feasible for applications since the parameters do not need to be re-
estimated in each simulation

e All diagnostics discussed, as well as simulations, are available in gllamm (from next
update after 20 May 2003)

e gllamm can also be used to compute expected counts for categorical data. If there is
a moderate number of response and covariate patters, these can be used to obtain the
deviance, Pearson X2 and various residuals

e gllamm can be downloaded from:

www.iop.kcl.ac.uk/IoP/Departments/BioComp/programs/gllamm.html
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