Diagnostics for generalised linear mixed models

Sophia Rabe-Hesketh, Institute of Psychiatry, King's College, London

Anders Skrondal, Norwegian Institute of Public Health, Oslo

Outline

- Example: Longitudinal epileptic seizure count data
- Influence
- Empirical Bayes (EB) prediction of higher-level residuals
- Detecting outliers by cross-validation
- Conclusions

Example: Longitudinal count data

- Famous epilepsy data from Thall & Vail (1990)
- 59 subjects j were randomized to receive progabide or placebo
- Outcomes:
 - Counts y_{ij} of epileptic seizures during the two weeks before each of four clinic visits, $i=1,\cdots,n_i,\ n_i=4$
- Between-subject covariates x_i :
 - [Lbas] The logarithm of a quarter of the number of seizures in the eight weeks preceding entry into the trial
 - [Treat] Dummy variable for treatment group
 - [LbasTrt] Interaction between two variables above
 - [Lage] Logarithm of age
- Within-subject covariate z_{ij} :
 - [V4] Dummy for visit 4

Model and estimates

• Model II from Breslow & Clayton (1993)

$$y_{ij} \sim \text{Poisson}(\mu_{ij}), \quad \ln(\mu_{ij}) = \mathbf{x}'_{j}\boldsymbol{\beta} + \beta_5 z_{ij} + u_j, \quad u_j \sim N(0, \sigma^2)$$

gllamm y lbas treat lbas_trt lage v4, i(subj) fam(poiss) nip(15) adapt gllamm, robust

	Est	(SE)	Robust (SE)
E1 1 66	LSt	(3L)	(3L)
Fixed effects:			
eta_0 [Cons]	2.11	(0.22)	(0.21)
eta_1 [Lbas]	0.88	(0.13)	(0.11)
eta_2 [Treat]	-0.93	(0.40)	(0.40)
eta_3 [LbasTrt]	0.34	(0.20)	(0.20)
eta_4 [Lage]	0.48	(0.35)	(0.30)
eta_5 [V4]	-0.16	(0.05)	(0.07)
Random effect:			
σ	0.50	(0.06)	(0.06)
Log-likelihood		-665.29	

Influence of top-level unit j

• Influence on log-likelihood: Cook's D

$$D_j = -2s_j' \mathbf{H}^{-1} s_j,$$

- ullet D_j can be interpreted as a quadratic approximation to twice the change in log-likelihood when parameters are estimated with and without cluster j
 - $m{s}_j$ is the score vector (first derivatives of log-likelihood contribution) for cluster j
 - -H is the Hessian of the total log-likelihood
 - In gllamm (using numerical derivatives):
 gllapred c, cooksd

Interpreting influence of top-level unit j

ullet Influence on particular parameter $heta_p$

$$\mathsf{DFBETAS}_{pj} \ = \ \frac{\widehat{\theta}_p - \widehat{\theta}_{p(-j)}}{\mathsf{SE}(\widehat{\theta}_p)},$$

 $\widehat{\theta}_{p(-j)}$ is the estimate of the pth parameter when cluster j is deleted

Influence for epilepsy data

							DFBETAS		
						Cook's			
Subj.	[Base]		$oldsymbol{y}$	j		D	[Treat]	[V4]	σ
Placebo									
126	13.0	40	20	23	12	1.10	-0.02	0.51	0.02
135	2.5	14	13	6	0	1.52	0.39	0.40	-0.34
227	13.8	18	24	76	25	1.46	-0.14	0.39	-0.33
Progabide									
207	37.8	102	65	72	63	1.68	0.58	0.24	-0.16
225	5.5	1	23	19	8	1.05	-0.23	0.18	-0.45
232	3.3	0	0	0	0	1.57	0.34	0.00	-0.44
Mean over all subjects									
	7.8	8.9	8.4	8.4	7.3	0.30			

- [Treat]
 - Deleting subjects with large counts in placebo group (135) and small counts in progabide group (232) will diminish the negative treatment effect
 - ⇒ positive DFBETAS
 - Deleting subjects with small counts in placebo group and large counts in progabide group (225) will increase the negative treatment effect
 negative DFBETAS
 - Subject 207 is complicated; due to the lage baseline value, this subject is responsible for the positive coefficient of [LbasTrt] with a DFBETAS of -0.71 (the coefficient becomes nearly 0)
- [V4]: Subjects 126, 135 and 227 have a large drop at visit 4, so that deleting them will diminish the negative coefficient of [V4] ⇒ positive DFBETAS
- σ : Deleting subjects with extreme counts, relative to baseline, (large: 135, 227, 225; small: 232) will decrease σ \Longrightarrow negative DFBETAS

Estimation using adaptive quadrature

• Likelihood contribution for cluster *j* by Gaussian quadrature:

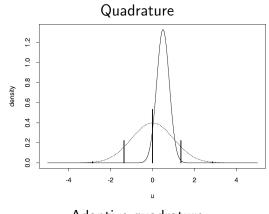
$$\ell_{j}(\boldsymbol{\beta}, \sigma) = \int \underbrace{\phi(u_{j}; 0, \sigma) \prod_{i} f(y_{ij} \mid u_{j}; \boldsymbol{\beta})}_{\text{α posterior of } u_{j}} du_{j} \approx \sum_{r=1}^{R} W_{r} \prod_{i} f(y_{ij} \mid \sigma A_{r}; \boldsymbol{\beta})$$

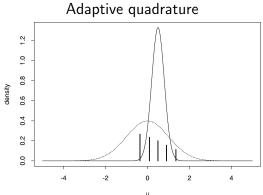
- $-A_r$: Quadrature locations $-W_r$: Quadrature weights
- Adaptive quadrature:

$$\ell_j(\boldsymbol{\beta}, \sigma) \approx \sum_{r=1}^R \omega_{jr} \prod_i f(y_{ij} \mid \sigma \alpha_{jr}; \boldsymbol{\beta})$$

- $-\alpha_{jr}$: Adaptive quadrature location: $\widetilde{u}_j + \tau_j A_r$
 - * \widetilde{u}_j : Posterior mean of u_j
 - \Longrightarrow Locations shifted to posterior mean pprox peak of integrand
 - * au_j : Posterior standard deviation of u_j
 - \Longrightarrow Locations scaled by posterior sd \approx width of peak
- $-\omega_{jr}$: Adaptive quadrature weights: $\sqrt{2\pi}\tau_{j}\exp(A_{r}^{2}/2)\phi(\alpha_{jr})W_{r}$

Adaptive quadrature





Prior (dotted curve) and posterior (solid curve) densities

Empirical Bayes using adaptive quadrature

 \bullet Posterior mean and variance given ${\pmb y}_j$ with $\widehat{\pmb \beta}$ and $\widehat{\sigma}$ plugged in

$$\widetilde{u}_{j} = \mathrm{E}[u_{j} \mid \boldsymbol{y}_{j}, \mathbf{x}_{j}; \widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\sigma}}] = \frac{\int u_{j} \phi(u_{j}; 0, \widehat{\boldsymbol{\sigma}}) \prod_{i} f(y_{ij} \mid u_{j}; \widehat{\boldsymbol{\beta}}) \mathrm{d}u_{j}}{\ell_{j}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\sigma}})}$$

$$\tau_{j}^{2} = \mathrm{var}[u_{j} \mid \boldsymbol{y}_{j}, \mathbf{x}_{j}; \widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\sigma}}] = \frac{\int u_{j}^{2} \phi(u_{j}; 0, \widehat{\boldsymbol{\sigma}}) \prod_{i} f(y_{ij} \mid u_{j}; \widehat{\boldsymbol{\beta}}) \mathrm{d}u_{j}}{\ell_{j}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\sigma}})} - \widetilde{u}_{j}^{2}$$

- Adaptive quadrature (in gllamm; similar to Naylor & Smith, 1988)
 - Start with $\widetilde{u}_{i}^{0}=0$ and $\tau_{i}^{0}=1$
 - In iteration k (between NR steps):

$$\ell_{j}(\widehat{\boldsymbol{\beta}},\widehat{\boldsymbol{\sigma}})^{k} = \sum_{r=1}^{R} w_{jr}^{k-1} \prod_{i} f(y_{ij} \mid \widehat{\boldsymbol{\sigma}} \alpha_{jr}^{k-1}; \widehat{\boldsymbol{\beta}})$$

$$\widetilde{u}_{j}^{k} = \frac{\sum_{r=1}^{R} (\widehat{\boldsymbol{\sigma}} \alpha_{jr}^{k-1}) w_{jr}^{k-1} \prod_{i} f(y_{ij} \mid \widehat{\boldsymbol{\sigma}} \alpha_{jr}^{k-1}; \widehat{\boldsymbol{\beta}})}{\ell_{j}(\widehat{\boldsymbol{\beta}},\widehat{\boldsymbol{\sigma}})^{k}}$$

$$(\tau_{j}^{k})^{2} = \frac{\sum_{r=1}^{R} (\widehat{\boldsymbol{\sigma}} \alpha_{jr}^{k-1})^{2} w_{jr}^{k-1} \prod_{i} f(y_{ij} \mid \widehat{\boldsymbol{\sigma}} \alpha_{jr}^{k-1}; \widehat{\boldsymbol{\beta}})}{\ell_{j}(\widehat{\boldsymbol{\beta}},\widehat{\boldsymbol{\sigma}})^{k}} - (\widetilde{u}_{j}^{k})^{2}$$

Variances for EB prediction & approximations

Posterior variance (by numerical integration):

$$\operatorname{var}[u_j \mid \boldsymbol{y}_j, \mathbf{x}_j; \widehat{\boldsymbol{\theta}}]$$

• Marginal sampling variance:

$$u_j^2 \equiv \operatorname{var}_{\boldsymbol{y}}[\widetilde{u}_j^{\mathsf{EB}} \mid \mathbf{x}_j; \widehat{\boldsymbol{\theta}}] \approx \widehat{\sigma}^2 - \tau_j^2$$

'Diagnostic' variance

• Prediction error variance (marginal):

$$\operatorname{var}_{\boldsymbol{y}}[\widetilde{u}_{j}^{\mathsf{EB}} - u_{j} \mid \mathbf{x}_{j}; \widehat{\boldsymbol{\theta}}] \approx \tau_{j}^{2}$$

'Comparative' variance

Deletion residuals

- A large true residual will lead to a larger estimate of the random effects variance, making the residual appear more consistent with the model
- ullet To avoid this problem, estimate EB residuals $\widetilde{u}_{j(-j)}$ using parameter estimates $\widehat{m{ heta}}_{(-j)}$ when the jth top-level cluster is deleted

$$\widetilde{u}_{j(-j)} = \mathrm{E}[u_j \mid \boldsymbol{y}_j, \mathbf{x}_j; \widehat{\boldsymbol{\theta}}_{(-j)}]$$

Standardised deletion residual

$$\frac{\widetilde{u}_{j(-j)}}{\nu_{j(-j)}}$$

• In multilevel models, delete the top-level cluster to derive deletion residuals for all lower-level units in that cluster

EB prediction in gllamm

• Raw and standardised residuals:

```
gllapred res_, u /* posterior mean and sd in res_m1 res_s1 */ gllapred stres_, ustd /* stres_m1 = \widetilde{u}_i/\nu_i */
```

Deletion residuals:

Level-2 residuals for epilepsy data

DFBETAS							
Subj.	σ	$\frac{\widetilde{u}_{j(-j)}}{\nu_{j(-j)}}$	$\frac{\widetilde{u}_j}{\nu_j}$	\widetilde{u}_j			
Placebo		3(3)	J				
126	0.02	1.04	0.89	0.44			
135	-0.34	2.23	1.97	0.93			
206	-0.32	-2.11	-1.91	-0.88			
227	-0.33	2.19	1.93	0.96			
Progabide							
207	-0.16	1.97	1.37	0.69			
112	-0.32	2.25	2.07	1.01			
225	-0.46	2.47	2.26	1.09			
232	-0.44	-2.92	-2.77	-0.97			

Cross-validation by simulation

- Obtain sampling distribution of deletion statistic $S_{j(-j)}$ for cluster j under null hypothesis that the responses for cluster j come from the same distribution as for remaining clusters (Similar to Marshall & Spiegelhalter, 2001):
 - For cluster j , simulate new responses ${\boldsymbol y}_j^k$ from the model with parameters $\widehat{{\boldsymbol \theta}}_{(-j)}$
 - Obtain the statistic $S_{j(-j)}^k$ for the simulated responses
- Stata commands for simulating standardised deletion residuals under null hypothesis:

• Obtain p-value using empirical sampling distribution

Cross-validation results

	Std. [Deletion	Residua	Del. Log-likelihood $\ell_{j(-j)}$					
			Power α	$\frac{\nu_{j(-j)}}{=0.05}$			Power $\alpha=0.05$		
Subj.	Obs.	$p ext{-}value$	$u_j = -1$	$u_j = 1$	Obs.	$p ext{-}value$	$u_j = -1$	$u_j = 1$	
Placebo									
126	1.04	0.314	0.43	0.58	-19.1	0.005	0.00	0.55	
135	2.23	0.026	0.26	0.47	-20.1	0.001	0.00	0.49	
206	-2.11	0.058	0.33	0.44	-19.4	0.004	0.00	0.52	
227	2.20	0.026	0.38	0.69	-39.9	0.001	0.01	0.63	
Progabide									
207	1.98	0.068	0.50	0.40	-21.3	0.004	0.01	0.58	
112	2.25	0.028	0.49	0.68	-13.8	0.043	0.00	0.63	
225	2.47	0.020	0.35	0.46	-26.4	0.001	0.00	0.50	
232	-2.92	0.002	0.25	0.57	-6.4	0.821	0.00	0.57	

Conclusions

- Adaptive quadrature can be used to obtain reliable estimates and empirical Bayes predictions
- Cook's distances and DFBETAS are useful for identifying influential top-level clusters
- Standardized residuals (and their deletion counterparts) can flag potential outliers at any level
- Cross-validation is a useful method for testing for outliers/influential units at any level.
 This method is feasible for applications since the parameters do not need to be reestimated in each simulation
- All diagnostics discussed, as well as simulations, are available in gllamm (from next update after 20 May 2003)
- ullet gllamm can also be used to compute expected counts for categorical data. If there is a moderate number of response and covariate patters, these can be used to obtain the deviance, Pearson X^2 and various residuals
- gllamm can be downloaded from:

References to our work

- Generalized multilevel structural equation modeling. *Psychometrika*, in press. (S.Rabe-Hesketh, A.Skrondal & A.Pickles).
- Generalized latent variable modeling: Multilevel, longitudinal and structural equation models. Boca Raton, FL: Chapman & Hall/ CRC, to appear. (A.Skrondal & S.Rabe-Hesketh).
- GLLAMM Manual. London: Institute of Psychiatry, 2001. (S.Rabe-Hesketh, A.Pickles & A.Skrondal).
- Reliable estimation of generalized linear mixed models using adaptive quadrature. The Stata Journal, 2: 1-21, 2002.
 (S.Rabe-Hesketh, A.Skrondal & A.Pickles).
- Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation. *Statistical Modelling*, in press. (S.Rabe-Hesketh, A.Pickles & A.Skrondal).

References

- Breslow & Clayton (1993). Approximate inference in generalized linear mixed models. JASA 88, 9-25.
- Marshall C. & Spiegelhalter D. (2001). Simulation-based tests for divergent behaviour in hierarchical models. Submitted.
- Naylor & Smith (1988). Econometric illustrations of novel numerical integration strategies for Bayesian inference. Journal of Econometrics 38, 103-125.
- Thall & Vail (1990). Some covariance models for longitudinal count data with overdispersion. Biometrics 46, 657-671.