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Clustered Errors

Suppose we have a regression model like

Yit = Xitβ + ui + eit

where the ui can be interpreted as individual-level fixed effects or errors. The t
index brings to mind panel data, with multiple observations on people or firms
over time, but in fact the t index can represent any arbitrary index for
observations grouped along two dimensions.

The usual assumption is that eit is iid (independently and identically
distributed) but this is clearly violated in many cases. A natural generalization
is to assume “clustered errors” i.e. that observations within group i are
correlated in some unknown way, inducing correlation in eit within i , but that
groups i and j do not have correlated errors.

In the presence of clustered errors, OLS estimates are still unbiased but
standard errors may be quite wrong, leading to incorrect inference in a
surprisingly high proportion of finite samples.
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Types of Clustering—Serial Corr. and Cluster Sampling

The notation above naturally brings to mind a paradigmatic case of
clustering: a panel model with group-level shocks (ui ) and serial
correlation in errors (eit), in which case i indexes panel and t indexes
time of observation. This type of clustering could also arise from a survey
in which blocks of observations are selected randomly, but there is no
reason to suppose that observations within block have uncorrelated
errors. For example, consider a random sample of schools that contain
students whose response to some policy X might be correlated (in which
case i indexes school and t indexes student within school).

Another leading example is where eit is iid but the ui are unmodeled
(perhaps because some variable of interest in X does not vary across
both i and t). Here, the group-level innovations drive the clustering of
errors νit = ui + eit .
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Types of Clustering—Induced Group-Level Shocks

Another similar type occurs where observations are randomly sampled,
but the explanatory variable X is measured at a higher level (see Moulton
1990; Bertrand, Duflo, and Mullainathan 2004). For example, students
might be randomly sampled to model test scores as a function of school
characteristics, but this will result in clustered errors at the school level.
If students were randomly sampled to model test scores as a function of
classes taken (measured at the individual level, not the school level), but
classes taken and their effects on test scores are correlated within school,
this may also induce clustering of errors at the higher level (school in the
example). Any measurement error or misspecification in these types of
models will also naturally “induce” group-level shocks ui and correlation
in errors eit even if they are absent in the “true” model.
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FE and Clusters

The model as written
Yit = Xitβ + ui + eit

naturally raises the question of how “fixed effects” (FE) relate to “clustered
errors.” In short, if the eit are iid, the ui if unmodeled produce clustering of the
aggregate error νit = ui + eit .

FE is an example of modeling “error components”, where the structure is very
special, i.e., every observation within the group is equally-well correlated with
every other observation. It’s from the GLS school, so to speak. Partial out the
fixed effects and you’re left with a homoskedastic idiosyncratic error—use
xtreg,fe with the classical VCV.

“Clustered errors” is an example of Eicker-Huber-White-robust treatment of
errors, i.e., make as few assumptions as possible. We keep the assumption of
zero correlation across groups as with fixed effects, but allow the within-group
correlation to be anything at all—use regress with cluster().
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Combining FE and Clusters

If the model is overidentified, clustered errors can be used with two-step GMM
or CUE estimation to get coefficient estimates that are efficient as well as
robust to this arbitrary within-group correlation—use ivreg2 with the
cluster(v) gmm2s option set.

Finally, the “GLS” and “robust” approaches can be combined. Partial-out the
fixed effects, and then use cluster-robust to address any remaining within-group
correlation—use xtreg,fe with cluster().

First-differencing (FD) can be similarly motivated: FD to get rid of the fixed
effects, and then use cluster-robust errors to mop up the remaining and/or
introduced serial correlation.

For some reason, combining the GLS and robust approaches is absolutely
standard in the panel/serial correlation literature, and almost completely
ignored in cross-section/heteroskedasticity practice. It’s perfectly reasonable to
do feasible GLS on a cross-section to get improvements in efficiency and then
use robust SEs to address any remaining heteroskedasticity, but nobody seems
to do this (GLS is too old-fashioned, perhaps?).
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Number of Clusters

The cluster-robust standard error estimator converges to the true standard
error as the number of clusters M approaches infinity, not the number of
observations N.

Kézdi (2004) shows that 50 clusters (with roughly equal cluster sizes) is often
close enough to infinity for accurate inference, and further that, even in the
absence of clustering, there is little to no cost of using the CRSE estimator, as
long as the number of clusters is large.

With a small number of clusters (M << 50), or very unbalanced cluster sizes,
the cure can be worse than the disease, i.e. inference using the cluster-robust
estimator may be incorrect more often than when using the
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Rank of VCV

The rank of the variance-covariance matrix produced by the cluster-robust
estimator has rank no greater than the number of clusters M, which means
that at most M linear constraints can appear in a hypothesis test (so we can
test for joint significance of at most M coefficients).

In a fixed-effect model, where there are a large number of parameters, this
often means that test of overall model significance is feasible. However, testing
fewer than M linear constraints is perfectly feasible in these models, though
when fixed effects and clustering are specified at the same level, tests that
involve the fixed effects themselves are inadvisable (the standard errors on fixed
effects are likely to be substantially underestimated, though this will not affect
the other variance estimates in general).
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Estimates and their VCV

Note that the heteroskedasticity-robust and cluster-robust estimators for
standard errors have no impact whatsoever on point estimates.

One could use information about the within-cluster correlation of errors to
obtain more efficient estimates in many cases (see e.g. Diggle et al. 2002).
There are also a variety of multi-level methods of parametrizing the distribution
of errors to obtain more efficient estimates (using e.g. xtmixed and other
model types—see Rabe-Hesketh and Skrondal 2005 for more). We will focus
however on models where the point estimates are unchanged and only the
estimated variance of our point estimates is affected by changing assumptions
about errors.

In addition to improving the efficiency of the point estimates in regressions,
modeling intra-cluster correlations can also result in improvements in
meta-analysis, both in correctly modeling the variance of individual estimates
and computing effect sizes. See Hedges (2006) for details.
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Two Families of Sandwich Estimators

The OLS estimator of the Var-Cov matrix is: V̂O = qV̂ = q (X′X)
−1

(where for
regress, q is just the residual variance estimate s2 = 1

N−k

∑N
j=1 ê2

i ). The
heteroskedasticity-robust estimator is:

V̂H = qcV̂

(
N∑

j=1

wjϕ
′
jwjϕj

)
V̂

where the ϕj are observation-level contributions to ∂ ln L/∂β and the wj are
observation-level weights. For regress, the ϕj are just êjxj . The VDV
structure explains the common name “sandwich estimator” though the
cluster-robust estimator is also a sandwich estimator:

V̂C = qcV̂

(
M∑

j=1

(
ϕG

j

)′
ϕG

j

)
V̂

where now the ϕG
j are within-cluster weighted sums of observation-level

contributions to ∂ ln L/∂β, and there are M clusters.
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Sandwich Estimators and Other Robustifications

Eicker (1967) and Huber (1967) introduced these sandwich estimators, but White
(1980; 1982), Liang and Zeger (1986), Arellano (1987), Newey and West (1987),
Froot (1989), Gail, Tan, and Piantodosi (1988), Kent (1982), Royall (1986), and Lin
and Wei (1989), Rogers (1993), Williams (2000), and others explicated and extended
aspects of the method in a non-survey context, so these are often cited as sources in
specific applications. In the context of clustering induced by survey design, Kish and
Frankel (1974), Fuller (1975), and Binder (1983), and Binder and Patak (1994), also
derived results on cluster-robust estimators with broad applicability.

Baum, Schaffer, and Stillman (2003; 2007) describe a variety of SE estimators (all
calculated by their ivreg2 program for Stata, with or without instrumental variables)
robust to various other violations of the iid error assumptions, including
heteroskedasticity-and-autocorrelation-robust (HAC-robust) estimators.

Stock and Watson (2006) point out that with fixed effects, both the standard
heteroskedasticity-robust and HAC-robust covariance estimators are inconsistent for T
fixed and T > 2, but the cluster-robust estimator does not suffer from this problem.
One of their conclusions is that if serial correlation is expected, the cluster-robust
estimator is the preferred choice.
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Finite-Sample Adjustments

The finite-sample adjustment qc takes two forms (not including qc = 1,
another possibility), depending on the model used:

qc =
N − 1

N − k

M

M − 1

where M is the number of clusters and N the number of observations, or

qc =
M

M − 1

The Methods and Formulas of [R] regress calls these the regression-like
formula and the asymptotic-like formula respectively. Fuller et al. (1986) and
Mackinnon and White (1985) discuss finite-sample adjustments in more detail.
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The Nature of the CRSE Correction

The heteroskedasticity-robust SE estimator scales not by the sum of squared
residuals, but by the sum of “squared” products of residuals and the X
variables, and the CRSE estimator further sums the products within cluster (if
the products are negatively correlated within cluster, the CRSE will be smaller
than the HRSE, and if positively correlated, larger). If the traditional OLS
model is true, the residuals should, of course, be uncorrelated with the X
variables, but this is rarely the case in practice.

The correlation may arise not from correlations in the residuals within a
correctly specified model, but from specification error (such as omitted
variables), so one should always be alert to that possibility.
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Misspecification and the CRSE Correction

As Sribney (1998) points out: When CRSE estimates are smaller than standard
SE estimates,

since what you are seeing is an effect due to (negative) correlation of
residuals, it is important to make sure that the model is reasonably
specified and that it includes suitable within-cluster predictors. With
the right predictors, the correlation of residuals could disappear, and
certainly this would be a better model.

...suppose that you measured the number of times each month that
individuals took out the garbage, with the data clustered by
household. There should be a strong negative correlation here.
Adding a gender predictor to the model should reduce the residual
correlations.

The CRSE will do nothing about bias in β̂ when E(X ′e) 6= 0.
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Approximating the CRSE Correction

As Cameron, Gelbach, and Miller (2006a, p.5) note, if the primary source of clustering is due to
group-level common shocks, a useful approximation is that for the jth regressor the default OLS
variance estimate based on s2(X ′X )−1 should be inflated by a factor of

1 + ρeρxj
(N̄g − 1)

where ρxj
is the intra-cluster correlation of xj , ρe is the intra-cluster correlation of residuals, and

N̄g is the average cluster size; in many settings the adjustment factor can be large even if ρe is
small.

This approximation is closely related to the approximation given in Kish (1965, p.162) for the
estimation of means in clustered data: he recommends inflating the variance estimate for the mean
by a factor (or the SE by the square root of the factor):

1 + r(N̄g − 1)

where r is the measure of intraclass correlation (ICC) known as roh [not rho]. The approximation
for regression with group-level common shocks is quite similar, with the adjustment that we now
want the mean of y conditional on X .
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Non-Nested and Nested Clusters

An extension of the basic one-dimensional case is to multiple levels of
clustering. For example, errors may be clustered by country and by city, or
errors may be clustered by country and by year. In the first case, the levels of
clustering are nested, but in the second case, the clustering is along two
dimensions and observations in each cluster along one dimension may appear in
multiple clusters along the other. The latter case of non-nested clusters is
discussed by Cameron, Gelbach, and Miller (2006a), who provide Stata code
for estimating cluster-robust standard errors in this case.

To estimate cluster-robust standard errors in the presence of nested multi-level
clustering, one can use the svy suite of commands.

Austin Nichols and Mark Schaffer Clustered Errors in Stata



Overview of Problem
Potential Problems with CRSE’s

Test for Clustering
Some Specific Examples with Simulations

References

Clustering of Errors
Cluster-Robust Standard Errors
More Dimensions
A Seemingly Unrelated Topic

Nested Clusters Using svy

It is straightforward to compute cluster-robust estimates for multi-level
clustering with nested clusters using

svyset clevel1 || clevel2

(pweights are easily added as well) and then any command that allows the svy:
prefix. In general, however, the correction at the highest level is the important
one. Specifying clustering at the classroom level and clustering at the school
level is unlikely to result in any substantive differences in inference relative to
merely specifying clustering at the school level.

This argues for always specifying clustering at the highest of all nested levels at
which intra-cluster correlation in errors may be a problem, but there is a
tradeoff: at higher levels the number of clusters will be smaller, so the
asymptotic results for the estimator are less likely to hold.
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Clustering Using suest

The suest command also implements a cluster correction, for TG equations
with M observations each corresponding to M clusters (both assume M going
off to infinity). In suest, 5 equations of 10 observations each is not equivalent
to 50 observations, it’s 10 “super-observations.”

The intuition behind suest is that it clusters by observational unit across
equations. The suest clusters are the outer products of the errors for an
observational unit, where “errors” means the vector of errors across equations.

Again, we have the contrast between the GLS school and the robust school. In
the GLS school, you run sureg and estimate the cross-equation covariances. In
the robust school, you run suest and come up with a Var-Cov matrix that is
robust to arbitrary cross-equation correlation.
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Problems with Cluster-Robust SE’s

Why specify cluster (or use svy)?

I If the assumptions are satisfied, and errors are clustered, you’ll get much
better SE estimates.

I If the assumptions are satisfied, and errors aren’t clustered, you’ll get
roughly the same SE estimates as if you had not specified cluster (i.e. no
cost of robustness).

Why not always specify cluster (or use svy)?

I Convergence

I Bias

I Correlation across clusters

I Degrees of freedom
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Speed of Convergence

The CRSE is asymptotic in the number of clusters M. If M is small,
there is no guarantee that the cluster-robust estimator will improve your
inference—the cluster-robust estimator may make matters worse.

Kézdi (2004) shows that 50 clusters is often close enough to infinity for
accurate inference, but these are simulations for a specific type of model.
You may want to do simulations for a model that fits your specific
application if you are worried about the convergence of the cluster-robust
estimator, and what it implies for the reliability of your inferences.
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Downward Bias

Rogers (1993) argues that “if no cluster is larger than 5 percent or so of
the total sample, the standard errors will not be too far off because each
term will be off by less than 1 in 400.” This implies that CRSE’s with 20
equal-sized clusters would suffer from a very small bias.

With finite M, the cluster-robust estimator produces estimates of
standard errors that are too small on average (i.e. they are biased
downward). With M much less than 50, the bias can be substantial,
particularly with M < 10. Cameron, Gelbach, and Miller (2006b) report
that a “wild bootstrap” cluster-robust estimator performs well when
M < 50. See also Wooldridge (2003) for more discussion and suggestions.
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Degrees of freedom

Since the rank of the VCV matrix produced by the CRSE is no greater
than the number of clusters M you may not be able to test as many
parameters as desired. For example, you could not cluster at the panel
level and test for panel-specific intercepts and trends, since you would
have at least twice as many parameters as degrees of freedom.

Given the limits on the number of parameters that may be tested in
theory, even asymptotically, one might be worried about the small-sample
properties of tests that involve nearly as many constraints as M. We will
present simulations for certain cases.
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A test for clustering

If you’re worried about potential problems when using CRSE estimates,
you’d like to test for the presence of clustering, to see whether you really
need to adjust for clustering. Kézdi (2007) provides a test for clustering
in the spirit of the White (1980) test for heteroskedasticity (see
hettest, whitetst, ivhettest in Stata)

Two programs cltest and xtcltest (to be available from SSC soon)
implement the Kézdi (2007) test in Stata, when run after reg and xtreg
estimation commands, respectively.
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Balanced Panels, Equal Cluster Sizes, OLS-SE

Suppose we have the error components model

Yit = Xitβ + ui + eit

with β1 = 1 and we have 50 balanced clusters, and 20 observations per cluster.
Let the share of error variance due to the within-cluster component vary from 0
to 1 (across rows) and the share of within-cluster variation in regressors vary
from 0 to 1 (across columns), and test H0 : β1 = 1 with α = 0.05:

Rejection rates, nominal 5 percent level, OLS-SE
0 25 50 75 100

0 .048 .043 .049 .048 .065625
25 .054 .057 .113 .157 .3052959
50 .052 .153 .312 .455 .6832814
75 .054 .209 .468 .679 .876161
100 .056 .241 .503 .716
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Balanced Panels, Equal Cluster Sizes, HRSE

Rejection rates, nominal 5 percent level, Het-Robust SE
0 25 50 75 100

0 .049 .045 .05 .049 .0708333
25 .051 .057 .112 .154 .3094496
50 .054 .154 .321 .459 .6874351
75 .053 .202 .475 .679 .877193
100 .056 .242 .503 .715
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Balanced Panels, Equal Cluster Sizes, CRSE

Rejection rates, nominal 5 percent level, Clust-Robust SE
0 25 50 75 100

0 .054 .039 .06 .09
25 .053 .046 .107 .196
50 .052 .07 .139 .335
75 .056 .08 .179 .425
100 .054 .078 .189 .434
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Balanced Panels, Equal Cluster Sizes, FECRSE

Rejection rates, nominal 5 percent level, FE and Clust-Robust SE
0 25 50 75 100

0 .061 .038 .055 .055
25 .054 .04 .044 .042
50 .057 .054 .053 .062
75 .056 .047 .044 .058
100 .046 .047 .052 .042
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Unbalanced Panels and Unequal Cluster Sizes, OLS-SE

Now suppose we have 50 clusters and 1000 observations again, but 10
observations per cluster in 49 clusters and one cluster with 510 obs:

Rejection rates, nominal 5 percent level, OLS-SE
0 25 50 75 100

0 .047 .056 .053 .058 .0679916
25 .047 .071 .073 .1 .1753112
50 .05 .171 .223 .347 .5658996
75 .04 .221 .41 .589 .8569948
100 .044 .27 .452 .677
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Unbalanced Panels and Unequal Cluster Sizes, HRSE

0 25 50 75 100

0 .045 .053 .05 .059 .0700837
25 .048 .069 .077 .098 .1991701
50 .05 .166 .207 .34 .5774059
75 .047 .216 .388 .569 .8632124
100 .045 .271 .436 .654
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Unbalanced Panels and Unequal Cluster Sizes, CRSE

0 25 50 75 100

0 .113 .104 .106 .123
25 .105 .104 .095 .166
50 .071 .133 .106 .253
75 .031 .111 .096 .297
100 .024 .116 .092 .299
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Unbalanced Panels and Unequal Cluster Sizes, FECRSE

0 25 50 75 100

0 .119 .112 .115 .127
25 .134 .123 .097 .111
50 .106 .113 .103 .129
75 .118 .118 .123 .126
100 .088 .11 .078 .084
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Testing the Limits of df

Kézdi (2004) and our own simulations tell us that the CRSE performs
extremely well in relation to the HRSE or OLS SE estimators with respect to
inference on a single parameter, as long as we have at least 50 clusters.

However, we know that we cannot test more than M coefficients. It makes
sense to question how well the CRSE estimator performs when testing M − 2 or
M − 1 coefficients.

Preliminary simulations show that the rejection rate rises from 5 percent to 100
percent as the number of coefficients increases from 1 to M. This needs
further investigation.
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Comparisons to a Parametric Correction

Suppose we have autocorrelated errors in a panel model:

Yit = Xitβ + ui + eit

with
eit = ρei(t−1) + zit

where zit is iid. We could use xtregar y x, fe, xtpcse y x, c(p), or xtreg y x,
fe cluster(). How do these compare in finite samples? We can use MC
simulation to evaluate the two approaches.

Additionally, Wooldridge (2002, pp.282-283) derives a simple test for
autocorrelation in panel-data models, and the user-written program xtserial

(Drukker 2003) performs this test in Stata. We can compare the performance
of xtserial and cltest using MC simulation.
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SE Estimates with Autocorrelation

Suppose t ∈ {1, 2, 3, 4, 5, 6, 7} and x = t − 4 with y = x + e and M = 100 (i.e. we
are estimating a trend line β = 1 and there are 100 clusters). Suppose ui is mean zero
and uniform on (−.5, .5). Here is a comparison of the reported and true SD of the
OLS estimates (see also Diggle et al. 2002 Figure 1.7):
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Rejection Rates, AR(1) Errors

Mean rejection rates of β = 1 with nominal size 0.05

rho reg xtreg, fe xtpcse xtregar reg, clust xtreg, fe clust
-.9 0 0 .15 0 .05 .05
-.5 .006 .006 .162 0 .039 .039
-.1 .033 .037 .184 .037 .055 .055
0 .043 .053 .194 .06 .054 .054
.1 .053 .065 .206 .054 .043 .043
.5 .095 .156 .192 .069 .052 .052
.9 .055 .243 .21 .094 .039 .039
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Rej Rates, AR(1) Errors
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Rej Rates, AR(1) Errors
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Tests for Clustering, AR(1) Errors

The test for clustering after reg is cltest, and the test for clustering after
xtreg, fe is xtcltest (to be available from SSC shortly). It performs nearly as
well as xtserial (which by construction is the correct test for this particular
variety of clustering):
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More Examples and Simulations?

We plan to turn this talk into a Stata Journal submission. Any suggestions on
additional topics that you feel should be included are welcomed—contact
Austin at austinnichols@gmail.com if you like.
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