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Motivation

�The success of Cox regression has perhaps had the unintended
side-e¤ect that practitioners too seldom invest e¤orts in studying the
baseline hazard. . .

. . . a parametric version [of the Cox model], ... if found to be
adequate, would lead to more precise estimation of survival
probabilities and ... concurrently contribute to a better understanding
of the phenomenon under study. � (Hjort 1992)
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Sir David Roxbee Cox (b. 15 July 1924)
Taken at IBC, 2008
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Problems with the Cox model

Discards information on the survival distribution

Di¢ cult to visualize the hazard function

Problem of non-proportional hazards (non-PH)� modelling to deal
with non-PH can be complex

May want a completely speci�ed probability model

e.g. for prediction, simulation or model validation
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Quote from Sir David Cox (Reid, 1994)

Reid �What do you think of the cottage industry that�s grown up
around [the Cox model]?�

Cox �In the light of further results one knows since, I think I
would normally want to tackle the problem parametrically.
. . . I�m not keen on non-parametric formulations normally.�

Reid �So if you had a set of censored survival data today, you
might rather �t a parametric model, even though there was a
feeling among the medical statisticians that that wasn�t quite
right.�

Cox �That�s right, but since then various people have shown that
the answers are very insensitive to the parametric
formulation of the underlying distribution. And if you want
to do things like predict the outcome for a particular patient,
it�s much more convenient to do that parametrically.�
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Outline (part 1� Patrick)

Motivation for �exible parametric proportional hazards models

Very brief introduction to Royston-Parmar models

Generalization of �exible parametric PH models

Smoothing baseline distribution functions with splines
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Outline (part 2� Paul)

The stpm2 command

Why we need �exible models

Applications of stpm2
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Flexible parametric proportional hazards models I

Start with about the simplest survival distribution: exponential

S (t) = exp (�λt)

Transform to log cumulative hazard scale:

lnH (t) = ln [� lnS (t)]
= ln (λt) = lnλ+ ln t

We see that lnH (t) is a linear function of ln t with slope 1
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Flexible parametric proportional hazards models II

Generalize lnH (t) to a linear function of ln t with slope γ:

lnH (t) = lnλ+ γ ln t

This is a Weibull distribution. Now add covariates, x:

lnH (tjx) = lnλ+ γ ln t + xβ

Further generalize the ln t part to allow greater �exibility:

lnH (tjx) = lnλ+ s (ln t) + xβ

Here, s (ln t) is a suitable smooth function of ln t
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Flexible parametric proportional hazards models III

We actually use a restricted cubic spline function for s (ln t)

more coming on splines shortly

Let�s write the model more generally as
�log cumul. hazard = log baseline cumul. hazard + covariate e¤ect�:

lnH (tjx) = lnH0 (t) + xβ

The baseline log cumulative hazard is a smooth function of ln t:

lnH0 (t) = lnH (t; x = 0)
= lnλ+ s (ln t)
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Why model on the log cumulative hazard scale? I

We are used to the log hazard scale� why change to the log
cumulative hazard scale?

Under proportional hazards, covariate e¤ects are proportional on the
log cumulative hazard scale AND on the log hazard scale:

lnH (tjx) = lnH0 (t) + xβ

) H (tjx) = H0 (t) exp (xβ)

) h (tjx) = h0 (t) exp (xβ)
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Why model on the log cumulative hazard scale? II

The log cumulative hazard as a function of log time is often simple

in the Weibull model, it is a straight line

It�s easier to capture the shape of simple functions than complicated
ones

e.g. the log hazard function is usually more complicated than the log
cumulative hazard
you can too easily get �wiggly��tted hazard functions
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Royston-Parmar models
A further generalization!

We can generalize the model for the log cumulative hazard function
by going back a few steps

No details given here� see Royston & Parmar (2002)

The most important other class of Royston-Parmar models is
proportional cumulative odds models:

O (tjx) = O0 (t) exp (xβ)

where
O (t) = [1� S (t)] /S (t)

is the (cumulative) odds of an event occurring before time t
Proportional odds models for survival data were �rst suggested by
Bennett (1983)
They sometimes give a better �t than proportional hazards models
But we won�t be discussing them much today
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Examples of survival, cumulative hazard and cumulative
odds functions in real data

The Rotterdam breast cancer dataset:

N = 2982 patients with primary breast cancer

1,477 events for relapse-free survival

Time is years since surgery to remove the primary tumour

Data restricted to �rst 10 years of follow-up
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Survival function (Kaplan-Meier)

sts gen s = s
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Cumulative hazard function (Nelson-Aalen)

sts gen H = na
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Log cumulative hazard function

gen lnH = ln(H)
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Log cumulative hazard and odds functions

gen lnO = ln(1 - s) / s
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Spline functions: A brief description

Splines are �exible mathematical functions de�ned by piecewise
polynomials joined at points on the x axis known as knots

Regression splines are particularly useful, because

they can be incorporated into any regression model which has a linear
predictor
they are relatively simple but still �exible enough for most practical data

Cubic regression splines can be constrained in di¤erent ways to
improve their smoothness

e.g. the �tted function is forced to have continuous 0th, �rst and
second derivatives at the knots

The following graph shows how smoothness improves as the curve
and its derivatives are more and more constrained
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Restricted cubic splines I

A further useful constraint is to force the �tted function to be linear
in the tails

i.e. beyond the lowest and highest knots� known as boundary knots

This stabilizes the function in the two regions which usually have the
sparsest data

These splines are known as �restricted�(or �natural�) cubic
splines� RCS

We use RCS in Royston-Parmar models to smooth the baseline
distribution function
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Restricted cubic splines II

An RCS with K interior knots and 2 boundary knots has K + 1 d.f.
and K + 1 basis functions:

s (x) = γ0 + γ1z1 + γ2z2 + γK+1zK+1

where z1 equals x and the other z�s are simple functions of the knots
and x

If K = 0 the spline simpli�es to the linear function γ0 + γ1x

no boundary knots, of course

Will shortly return to the question of how many knots to choose in
the Stata demonstration
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But how do I do any of this in Stata?

Let�s visit Stata now and see how to �t some simple �exible proportional
hazards models to the Rotterdam breast cancer data

We use Paul�s powerful stpm2 program to do the model-�tting, and its
predict function to get the outputs we need.
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Notes on stpm2

stpm2 can �t a wide variety of types of model� Paul will demonstrate
some of them shortly

Particularly strong are its prediction facilities:

Survival, cumulative hazard, hazard, cumulative odds, ...
All with pointwise con�dence intervals if desired (ci option)
Can handle important derived quantities such as hazard ratios, hazard
di¤erences and survival di¤erences

Now hand over to Paul to continue.
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