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Concomitant variables in observational studies

I In an observational study, the outcome variable is the variable
that we would like to change. (Such as asthma or lung capacity
in children.)

I An exposure variable is a variable that we might propose to
change (or fantasize about changing), in order to cause a change
in the outcome. (Such as smoking or paracetamol use during
pregnancy.)

I Other variables included in the model are known as concomitant
variables. (Such as housing tenure, income, and education level.)

I They should have the feature that we do not expect them to be
changed by our proposed (or fantasized) intervention to change
the exposure.

I We aim to estimate the effect of changing the exposure by
comparing the outcome in subjects with different exposure levels
and the same concomitant values.
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What concomitant variables should we include?

I In the epidemiology sector, most people nowadays think that
there is a historic culture of under–adjustment. (See, for instance,
Davey Smith and Ebrahim (2002)[1].)

I Therefore, if we have a large cohort study with many
concomitant variables, then we may instinctively use large
confounder sets in order to be safe.

I However, we are then likely to be accused by journal referees of
“over–adjusting”.

I It is not clear what these referees mean, except that we should
have adjusted for fewer concomitants.
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So what do we mean by “over–adjusting”?

I would argue that “over–adjusting” can mean one of two completely
different things:

I Some of the concomitants are causally downstream from the
exposure. For instance, if we think that a proposed intervention
to reduce smoking exposure during pregnancy will have the side
effect of increasing birthweight, then we should not include
birthweight as a concomitant, when estimating the effect of this
intervention on child lung capacity at 7 years of age.

I The concomitants predict the exposure “too well”. This may
cause loss of power to detect exposure effects, especially if the
number of concomitants becomes too close to the number of
study subjects.

In this presentation, we focus on the second problem.
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Problems with “stepwise” variable selection

I These are discussed extensively (with references) at
http://www.stata.com/support/faqs/stat/stepwise.html .

I The main problem is that confidence interval formulas do not
cover us for finding a model in the data from which the
parameters of that model will later be estimated.

I However, they do cover us for finding a model in the sample
distribution of the exposure and the concomitants (“Step 1”).

I We can then estimate the parameters of that model from the
conditional distribution of the outcome, given the exposure and
the concomitants (“Step 2”).

I In this presentation, we focus on Step 1 of this strategy.
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Homoskedastic adjustment inflation factors: the haif package

I The haif package, downloadable from SSC, is a more
comprehensive version of estat vif.

I It inputs a core variable list, defining a core design matrix X, and
an additional variable list, defining an additional submatrix A.

I It outputs the homoskedastic adjustment inflation factors
(HAIFs), by which the variances and standard errors of the
coefficients for the X–variables are scaled (or inflated) by
adjusting additionally for the A–variables, assuming X to be the
true design matrix.

I Note that these factors are calculated assuming (a) that the
A–variables have no independent effect on the mean of the
outcome, and (b) that the variance of the outcome is not affected
either by the X-variables or by the A-variables (or, in other
words, that the outcome is homoskedastic).

I Therefore, the HAIFs represent a “worst case” scenario,
assuming that the A–variables are not really necessary.

Homoskedastic adjustment inflation factors in model selection Frame 6 of 21



Homoskedastic adjustment inflation factors: the haif package

I The haif package, downloadable from SSC, is a more
comprehensive version of estat vif.

I It inputs a core variable list, defining a core design matrix X, and
an additional variable list, defining an additional submatrix A.

I It outputs the homoskedastic adjustment inflation factors
(HAIFs), by which the variances and standard errors of the
coefficients for the X–variables are scaled (or inflated) by
adjusting additionally for the A–variables, assuming X to be the
true design matrix.

I Note that these factors are calculated assuming (a) that the
A–variables have no independent effect on the mean of the
outcome, and (b) that the variance of the outcome is not affected
either by the X-variables or by the A-variables (or, in other
words, that the outcome is homoskedastic).

I Therefore, the HAIFs represent a “worst case” scenario,
assuming that the A–variables are not really necessary.

Homoskedastic adjustment inflation factors in model selection Frame 6 of 21



Homoskedastic adjustment inflation factors: the haif package

I The haif package, downloadable from SSC, is a more
comprehensive version of estat vif.

I It inputs a core variable list, defining a core design matrix X, and
an additional variable list, defining an additional submatrix A.

I It outputs the homoskedastic adjustment inflation factors
(HAIFs), by which the variances and standard errors of the
coefficients for the X–variables are scaled (or inflated) by
adjusting additionally for the A–variables, assuming X to be the
true design matrix.

I Note that these factors are calculated assuming (a) that the
A–variables have no independent effect on the mean of the
outcome, and (b) that the variance of the outcome is not affected
either by the X-variables or by the A-variables (or, in other
words, that the outcome is homoskedastic).

I Therefore, the HAIFs represent a “worst case” scenario,
assuming that the A–variables are not really necessary.

Homoskedastic adjustment inflation factors in model selection Frame 6 of 21



Homoskedastic adjustment inflation factors: the haif package

I The haif package, downloadable from SSC, is a more
comprehensive version of estat vif.

I It inputs a core variable list, defining a core design matrix X, and
an additional variable list, defining an additional submatrix A.

I It outputs the homoskedastic adjustment inflation factors
(HAIFs), by which the variances and standard errors of the
coefficients for the X–variables are scaled (or inflated) by
adjusting additionally for the A–variables, assuming X to be the
true design matrix.

I Note that these factors are calculated assuming (a) that the
A–variables have no independent effect on the mean of the
outcome, and (b) that the variance of the outcome is not affected
either by the X-variables or by the A-variables (or, in other
words, that the outcome is homoskedastic).

I Therefore, the HAIFs represent a “worst case” scenario,
assuming that the A–variables are not really necessary.

Homoskedastic adjustment inflation factors in model selection Frame 6 of 21



Homoskedastic adjustment inflation factors: the haif package

I The haif package, downloadable from SSC, is a more
comprehensive version of estat vif.

I It inputs a core variable list, defining a core design matrix X, and
an additional variable list, defining an additional submatrix A.

I It outputs the homoskedastic adjustment inflation factors
(HAIFs), by which the variances and standard errors of the
coefficients for the X–variables are scaled (or inflated) by
adjusting additionally for the A–variables, assuming X to be the
true design matrix.

I Note that these factors are calculated assuming (a) that the
A–variables have no independent effect on the mean of the
outcome, and (b) that the variance of the outcome is not affected
either by the X-variables or by the A-variables (or, in other
words, that the outcome is homoskedastic).

I Therefore, the HAIFs represent a “worst case” scenario,
assuming that the A–variables are not really necessary.

Homoskedastic adjustment inflation factors in model selection Frame 6 of 21



Homoskedastic adjustment inflation factors: the haif package

I The haif package, downloadable from SSC, is a more
comprehensive version of estat vif.

I It inputs a core variable list, defining a core design matrix X, and
an additional variable list, defining an additional submatrix A.

I It outputs the homoskedastic adjustment inflation factors
(HAIFs), by which the variances and standard errors of the
coefficients for the X–variables are scaled (or inflated) by
adjusting additionally for the A–variables, assuming X to be the
true design matrix.

I Note that these factors are calculated assuming (a) that the
A–variables have no independent effect on the mean of the
outcome, and (b) that the variance of the outcome is not affected
either by the X-variables or by the A-variables (or, in other
words, that the outcome is homoskedastic).

I Therefore, the HAIFs represent a “worst case” scenario,
assuming that the A–variables are not really necessary.

Homoskedastic adjustment inflation factors in model selection Frame 6 of 21



Example: Adjusting weight effects by car origin in the auto data
In the auto data, we might want to estimate effect of weight (per
pound) on fuel consumption. And we might consider adjusting this
effect for origin (US or non–US), which might or might not have
independent predictive value. How much power might this lose?

. sysuse auto, clear;
(1978 Automobile Data)

. haif weight, addvars(foreign);
Number of observations: 74
Homoskedastic adjustment inflation factors
for variances and standard errors:

Variance SE
weight 1.5418947 1.2417305
_cons 1.8340183 1.3542593

We see that, if the variable foreign has no independent predictive
power, then adjusting for it will inflate the confidence interval for the
weight effect (per pound) by a factor of 1.24. This could be cancelled
out by increasing the sample size by a factor of 1.54, assuming the
sample composition to stay the same. (And homoskedasticity.)
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Formulas for homoskedastic adjustment inflation factors (HAIFs)
I Suppose that X is the core design matrix, A is the

additional–variables matrix, and D is the diagonal matrix of
weights.

I Then the variance HAIF for the kth column of X is a ratio, whose
denominator is the kth diagonal element of

(X′DX)−1

and whose numerator is the kth diagonal element of

[(X, A)′D(X, A)]−1

where X, A is the horizontal concatenation matrix of X and A.
I The kth standard error HAIF is the square root of the kth

variance HAIF.
I The weight matrix D is either the default identity matrix, or a

diagonal matrix containing inverse variance weights.
I In the second case, the HAIF is a heteroskedastic adjustment

inflation factor, assuming that we guessed the form of the
heteroskedasticity correctly in advance.
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Note that the HAIF represents a “worst–case” scenario

I The HAIFs are calculated assuming that the additional variables
A do not predict the outcome, independently of the core variables
X.

I This is why they can be calculated from A and X, without
looking at the outcome.

I If the variables A predict only the distribution of the outcome,
conditional on the X–values, then including them may actually
decrease the sampling variance of the X–effects.

I If the variables in A are in fact confounders properly so called,
predicting the exposure and the outcome, then the effect of
including them will probably be intermediate between these two
extremes.

I See Seber (1977)[4] for a rigorous discussion of these issues.
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HAIF ratios: the haifcomp module

I The haif package has two modules, haif and haifcomp.
I The haifcomp module inputs a core variable list, defining a

core design matrix X, and two alternative additional variable
lists, defining two alternative submatrices B and C.

I It outputs, for each core variable in X, the ratio between its
variance HAIF for adding the submatrix C and its variance HAIF
for adding the submatrix B. (And the corresponding standard
error HAIFs.)

I haifcomp is useful if the columns of the denominator
submatrix B are linearly dependent on the columns of the
numerator submatrix C, without being a subset of the columns of
C.

I In that case, the HAIF ratios are the inflation factors caused by
unnecessarily using the design matrix (X, C), when in fact (X, B)
is the true design matrix.
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Formulas for HAIF ratios

I Suppose that X is the core design matrix, B and C are the two
alternative additional–variables matrices, and D is the diagonal
matrix of weights.

I Then the variance HAIF ratio for the kth column of X is a ratio,
whose denominator is the kth diagonal element of

[(X, B)′D(X, B)]−1

and whose numerator is the kth diagonal element of

[(X, C)′D(X, C)]−1

I A typical application is choosing between two linear regression
models, each with a common slope and an array of intercepts
corresponding to a grouping of the data.

I In that case, X may contain the variable defining the slope, B may
contain identifier variables for the groups in a coarser grouping,
and C may contain identifiers for the groups in a finer grouping.
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Example: Adjusting weight effects for length in the auto data

I When measuring weight effects (per pound) on fuel consumption
(in gallons/mile), we might want to adjust for length (in inches).

I We might decide to fit a multi–intercept model, with one
intercept for each of a number of length categories, and a
common slope (per pound).

I And we might be wondering whether to group length into 4
quartiles (the submodel), or to group length into 8 octiles (the
supermodel).

I So we might use haifcomp to assess the loss of power caused
by fitting the supermodel, assuming that the submodel is true.
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Setting up the grouping variables for length groups

In the auto data, the following Stata 11 code sets up two new
grouping variables, containing length quartiles and octiles, using
xtile:

. xtile lengp4=length, nquantiles(4);

. xtile lengp8=length, nquantiles(8);

(Note that, in Stata 10, we would have needed two xi commands at
this point, to create indicator variables for these two grouping
variables. These xi commands are no longer needed in Stata 11,
which has factor variables instead.)
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Computing HAIF ratios for weight between the length octile and quartile
models

We now use haifcomp, with the noconst option, to calculate the
variance and SE HAIF ratios between the length–octile–adjusted
model and the length–quartile–adjusted model for the per-pound
weight effect:

. haifcomp weight, noconst daddvars(ibn.lengp4) naddvars(ibn.lengp8);
Number of observations: 74
Homoskedastic adjustment inflation factor ratios
for variances and standard errors:

Variance SE
weight 1.3477577 1.1609297

We see that, if the length–quartile–adjusted model is true, then using
the length–octile–adjusted model will inflate the confidence interval
for the weight effect (per pound) by a factor of 1.16. This could be
cancelled out by increasing the sample size by a factor of 1.35,
assuming the sample composition to stay the same.
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Real–world example: Prenatal smoking and lung capacity in the ALSPAC
cohort

I In the ALSPAC birth cohort study in Bristol, mothers of 13383
children gave information on smoking habits over pregnancy.

I Outcomes were lung capacity measures of the children at 7 years
of age, converted to standardized residuals (in SD units) with
respect to gender and height.

I Prenatal tobacco exposure was defined as a 5–level ordinal
variable (“Not exposed”, “Passive only”, “Mother 1–9/day”,
“Mother 10–19/day”, or “Mother 20+/day”).

I 32 concomitant variables (suspected as confounders) were also
measured. (These mostly were “socio–economic”, or referred to
previous maternal disease history.)

I These were used to define a propensity score (Lu et al., 2001)[2],
using ologit to fit an ordinal logistic regression model, with
prenatal tobacco exposure as the outcome.
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Histograms of the propensity score at each exposure level

I The panels correspond to
the 5 levels of prenatal
tobacco exposure.

I The histograms give the
distribution of the
propensity score in
children at each exposure
level.
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seems to predict tobacco
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well, as there is a lot of
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Choosing a model to measure tobacco exposure effects on lung capacity

I We planned to measure overall lung capacity trend using linear
regression models, containing a single per–category slope with
respect to tobacco exposure.

I We planned to fit an unadjusted model, with a single intercept,
representing the unexposed mean outcome.

I And we also planned to fit a propensity–adjusted model, with
one intercept for each of a number of propensity groups,
generated from the propensity score using xtile.

I This, of course, poses the question. . .
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How many propensity groups to use?

I We considered groupings with 1, 2, 4, 8, 16, 32, 64 and 128
nearly–equal groups, generated using xtile.

I Note that each successive grouping is defined by splitting each
group of the previous grouping into two nearly–equal subgroups.

I Therefore, the multi–intercept models for these groupings are a
sequence of nested models, in which the earlier models in the
sequence are submodels of the later models in the sequence (the
supermodels).

I We used haifcomp to compute the HAIF ratios for the linear
per–category tobacco exposure effect, with the lists of multiple
group factor variables as the numerator lists, and the single
constant term for the single–intercept model as the denominator
list.
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Costs and benefits of nested propensity groupings: Methods
I The cost of each number of groups was measured using its

variance and SE HAIF ratios for the linear per–category tobacco
exposure effect, compared to the single–intercept model.

I Note that, for any 2 unequal numbers of groups, the ratio
between their HAIF ratios measures the cost of using the model
with more groups, assuming that the model with fewer groups is
true.

I The benefit of each number of groups was measured using the
within–strata Somers’ D of propensity score with respect to
exposure, restricted to comparisons within propensity groups
(Newson, 2006)[3].

I Somers’ D is 1 for a perfect positive ordinal predictor, -1 for a
perfect negative ordinal predictor, and 0 for an ordinal
non–predictor.

I In this case, it is interpreted as the highest level of within–group
exposure–outcome association which might be caused by
residual confounding by the propensity score within groups.
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Costs and benefits of nested propensity groupings: Results

I The variance and SE
HAIF ratios measure
costs, in inflated sample
sizes and confidence
intervals.

I The within–group
Somers’ D measures
benefits, in reducing
residual confounding.

I We decided that 32
propensity groups would
be enough for our
analyses.
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This presentation can be downloaded from the conference website at
http://ideas.repec.org/s/boc/usug09.html

The haif, xsvmat, parmest and dsconcat packages, used in
producing this presentation, can be downloaded from SSC, using the
ssc command.
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